xref: /netbsd-src/sys/dev/pci/if_age.c (revision de4fa6c51a9708fc05f88b618fa6fad87c9508ec)
1 /*	$NetBSD: if_age.c,v 1.32 2009/08/05 15:29:51 cegger Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.32 2009/08/05 15:29:51 cegger Exp $");
35 
36 #include "bpfilter.h"
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_agereg.h>
81 
82 static int	age_match(device_t, cfdata_t, void *);
83 static void	age_attach(device_t, device_t, void *);
84 static int	age_detach(device_t, int);
85 
86 static bool	age_resume(device_t PMF_FN_PROTO);
87 
88 static int	age_miibus_readreg(device_t, int, int);
89 static void	age_miibus_writereg(device_t, int, int, int);
90 static void	age_miibus_statchg(device_t);
91 
92 static int	age_init(struct ifnet *);
93 static int	age_ioctl(struct ifnet *, u_long, void *);
94 static void	age_start(struct ifnet *);
95 static void	age_watchdog(struct ifnet *);
96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int	age_mediachange(struct ifnet *);
98 
99 static int	age_intr(void *);
100 static int	age_dma_alloc(struct age_softc *);
101 static void	age_dma_free(struct age_softc *);
102 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
103 static void	age_phy_reset(struct age_softc *);
104 
105 static int	age_encap(struct age_softc *, struct mbuf **);
106 static void	age_init_tx_ring(struct age_softc *);
107 static int	age_init_rx_ring(struct age_softc *);
108 static void	age_init_rr_ring(struct age_softc *);
109 static void	age_init_cmb_block(struct age_softc *);
110 static void	age_init_smb_block(struct age_softc *);
111 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
112 static void	age_mac_config(struct age_softc *);
113 static void	age_txintr(struct age_softc *, int);
114 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
115 static void	age_rxintr(struct age_softc *, int);
116 static void	age_tick(void *);
117 static void	age_reset(struct age_softc *);
118 static void	age_stop(struct ifnet *, int);
119 static void	age_stats_update(struct age_softc *);
120 static void	age_stop_txmac(struct age_softc *);
121 static void	age_stop_rxmac(struct age_softc *);
122 static void	age_rxvlan(struct age_softc *sc);
123 static void	age_rxfilter(struct age_softc *);
124 
125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
126     age_match, age_attach, age_detach, NULL);
127 
128 int agedebug = 0;
129 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
130 
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
133 
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
136 {
137 	struct pci_attach_args *pa = aux;
138 
139 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 }
142 
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
145 {
146 	struct age_softc *sc = device_private(self);
147 	struct pci_attach_args *pa = aux;
148 	pci_intr_handle_t ih;
149 	const char *intrstr;
150 	struct ifnet *ifp = &sc->sc_ec.ec_if;
151 	pcireg_t memtype;
152 	int error = 0;
153 
154 	aprint_naive("\n");
155 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156 
157 	sc->sc_dev = self;
158 	sc->sc_dmat = pa->pa_dmat;
159 	sc->sc_pct = pa->pa_pc;
160 	sc->sc_pcitag = pa->pa_tag;
161 
162 	/*
163 	 * Allocate IO memory
164 	 */
165 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 	switch (memtype) {
167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 		break;
171         default:
172 		aprint_error_dev(self, "invalid base address register\n");
173 		break;
174 	}
175 
176 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 		aprint_error_dev(self, "could not map mem space\n");
179 		return;
180 	}
181 
182 	if (pci_intr_map(pa, &ih) != 0) {
183 		aprint_error_dev(self, "could not map interrupt\n");
184 		goto fail;
185 	}
186 
187 	/*
188 	 * Allocate IRQ
189 	 */
190 	intrstr = pci_intr_string(sc->sc_pct, ih);
191 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 	    age_intr, sc);
193 	if (sc->sc_irq_handle == NULL) {
194 		aprint_error_dev(self, "could not establish interrupt");
195 		if (intrstr != NULL)
196 			aprint_error(" at %s", intrstr);
197 		aprint_error("\n");
198 		goto fail;
199 	}
200 	aprint_normal_dev(self, "%s\n", intrstr);
201 
202 	/* Set PHY address. */
203 	sc->age_phyaddr = AGE_PHY_ADDR;
204 
205 	/* Reset PHY. */
206 	age_phy_reset(sc);
207 
208 	/* Reset the ethernet controller. */
209 	age_reset(sc);
210 
211 	/* Get PCI and chip id/revision. */
212 	sc->age_rev = PCI_REVISION(pa->pa_class);
213 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 	    MASTER_CHIP_REV_SHIFT;
215 
216 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218 
219 	if (agedebug) {
220 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 	}
224 
225 	/* Set max allowable DMA size. */
226 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228 
229 	/* Allocate DMA stuffs */
230 	error = age_dma_alloc(sc);
231 	if (error)
232 		goto fail;
233 
234 	callout_init(&sc->sc_tick_ch, 0);
235 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236 
237 	/* Load station address. */
238 	age_get_macaddr(sc, sc->sc_enaddr);
239 
240 	aprint_normal_dev(self, "Ethernet address %s\n",
241 	    ether_sprintf(sc->sc_enaddr));
242 
243 	ifp->if_softc = sc;
244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 	ifp->if_init = age_init;
246 	ifp->if_ioctl = age_ioctl;
247 	ifp->if_start = age_start;
248 	ifp->if_stop = age_stop;
249 	ifp->if_watchdog = age_watchdog;
250 	ifp->if_baudrate = IF_Gbps(1);
251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 	IFQ_SET_READY(&ifp->if_snd);
253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254 
255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256 
257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
258 				IFCAP_CSUM_TCPv4_Rx |
259 				IFCAP_CSUM_UDPv4_Rx;
260 #ifdef AGE_CHECKSUM
261 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
262 				IFCAP_CSUM_TCPv4_Tx |
263 				IFCAP_CSUM_UDPv4_Tx;
264 #endif
265 
266 #if NVLAN > 0
267 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
268 #endif
269 
270 	/* Set up MII bus. */
271 	sc->sc_miibus.mii_ifp = ifp;
272 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
273 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
274 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
275 
276 	sc->sc_ec.ec_mii = &sc->sc_miibus;
277 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
278 	    age_mediastatus);
279 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
280 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
281 
282 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
283 		aprint_error_dev(self, "no PHY found!\n");
284 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
285 		    0, NULL);
286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
287 	} else
288 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
289 
290 	if_attach(ifp);
291 	ether_ifattach(ifp, sc->sc_enaddr);
292 
293 	if (!pmf_device_register(self, NULL, age_resume))
294 		aprint_error_dev(self, "couldn't establish power handler\n");
295 	else
296 		pmf_class_network_register(self, ifp);
297 
298 	return;
299 
300 fail:
301 	age_dma_free(sc);
302 	if (sc->sc_irq_handle != NULL) {
303 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 		sc->sc_irq_handle = NULL;
305 	}
306 	if (sc->sc_mem_size) {
307 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 		sc->sc_mem_size = 0;
309 	}
310 }
311 
312 static int
313 age_detach(device_t self, int flags)
314 {
315 	struct age_softc *sc = device_private(self);
316 	struct ifnet *ifp = &sc->sc_ec.ec_if;
317 	int s;
318 
319 	pmf_device_deregister(self);
320 	s = splnet();
321 	age_stop(ifp, 0);
322 	splx(s);
323 
324 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
325 
326 	/* Delete all remaining media. */
327 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
328 
329 	ether_ifdetach(ifp);
330 	if_detach(ifp);
331 	age_dma_free(sc);
332 
333 	if (sc->sc_irq_handle != NULL) {
334 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 		sc->sc_irq_handle = NULL;
336 	}
337 	if (sc->sc_mem_size) {
338 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
339 		sc->sc_mem_size = 0;
340 	}
341 	return 0;
342 }
343 
344 /*
345  *	Read a PHY register on the MII of the L1.
346  */
347 static int
348 age_miibus_readreg(device_t dev, int phy, int reg)
349 {
350 	struct age_softc *sc = device_private(dev);
351 	uint32_t v;
352 	int i;
353 
354 	if (phy != sc->age_phyaddr)
355 		return 0;
356 
357 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
358 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
359 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
360 		DELAY(1);
361 		v = CSR_READ_4(sc, AGE_MDIO);
362 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
363 			break;
364 	}
365 
366 	if (i == 0) {
367 		printf("%s: phy read timeout: phy %d, reg %d\n",
368 			device_xname(sc->sc_dev), phy, reg);
369 		return 0;
370 	}
371 
372 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
373 }
374 
375 /*
376  * 	Write a PHY register on the MII of the L1.
377  */
378 static void
379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
380 {
381 	struct age_softc *sc = device_private(dev);
382 	uint32_t v;
383 	int i;
384 
385 	if (phy != sc->age_phyaddr)
386 		return;
387 
388 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
389 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
390 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
391 
392 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
393 		DELAY(1);
394 		v = CSR_READ_4(sc, AGE_MDIO);
395 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
396 			break;
397 	}
398 
399 	if (i == 0) {
400 		printf("%s: phy write timeout: phy %d, reg %d\n",
401 		    device_xname(sc->sc_dev), phy, reg);
402 	}
403 }
404 
405 /*
406  *	Callback from MII layer when media changes.
407  */
408 static void
409 age_miibus_statchg(device_t dev)
410 {
411 	struct age_softc *sc = device_private(dev);
412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
413 	struct mii_data *mii;
414 
415 	if ((ifp->if_flags & IFF_RUNNING) == 0)
416 		return;
417 
418 	mii = &sc->sc_miibus;
419 
420 	sc->age_flags &= ~AGE_FLAG_LINK;
421 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 		case IFM_10_T:
424 		case IFM_100_TX:
425 		case IFM_1000_T:
426 			sc->age_flags |= AGE_FLAG_LINK;
427 			break;
428 		default:
429 			break;
430 		}
431 	}
432 
433 	/* Stop Rx/Tx MACs. */
434 	age_stop_rxmac(sc);
435 	age_stop_txmac(sc);
436 
437 	/* Program MACs with resolved speed/duplex/flow-control. */
438 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
439 		uint32_t reg;
440 
441 		age_mac_config(sc);
442 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
443 		/* Restart DMA engine and Tx/Rx MAC. */
444 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
445 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
446 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
447 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
448 	}
449 }
450 
451 /*
452  *	Get the current interface media status.
453  */
454 static void
455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
456 {
457 	struct age_softc *sc = ifp->if_softc;
458 	struct mii_data *mii = &sc->sc_miibus;
459 
460 	mii_pollstat(mii);
461 	ifmr->ifm_status = mii->mii_media_status;
462 	ifmr->ifm_active = mii->mii_media_active;
463 }
464 
465 /*
466  *	Set hardware to newly-selected media.
467  */
468 static int
469 age_mediachange(struct ifnet *ifp)
470 {
471 	struct age_softc *sc = ifp->if_softc;
472 	struct mii_data *mii = &sc->sc_miibus;
473 	int error;
474 
475 	if (mii->mii_instance != 0) {
476 		struct mii_softc *miisc;
477 
478 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
479 			mii_phy_reset(miisc);
480 	}
481 	error = mii_mediachg(mii);
482 
483 	return error;
484 }
485 
486 static int
487 age_intr(void *arg)
488 {
489         struct age_softc *sc = arg;
490         struct ifnet *ifp = &sc->sc_ec.ec_if;
491 	struct cmb *cmb;
492         uint32_t status;
493 
494 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
495 	if (status == 0 || (status & AGE_INTRS) == 0)
496 		return 0;
497 
498 	cmb = sc->age_rdata.age_cmb_block;
499 	if (cmb == NULL) {
500 		/* Happens when bringing up the interface
501 		 * w/o having a carrier. Ack. the interrupt.
502 		 */
503 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
504 		return 0;
505 	}
506 
507 	/* Disable interrupts. */
508 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
509 
510 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
511 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
512 	status = le32toh(cmb->intr_status);
513 	if ((status & AGE_INTRS) == 0)
514 		goto back;
515 
516 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 	    TPD_CONS_SHIFT;
518 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 	    RRD_PROD_SHIFT;
520 
521 	/* Let hardware know CMB was served. */
522 	cmb->intr_status = 0;
523 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 	    BUS_DMASYNC_PREWRITE);
526 
527 	if (ifp->if_flags & IFF_RUNNING) {
528 		if (status & INTR_CMB_RX)
529 			age_rxintr(sc, sc->age_rr_prod);
530 
531 		if (status & INTR_CMB_TX)
532 			age_txintr(sc, sc->age_tpd_cons);
533 
534 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 			if (status & INTR_DMA_RD_TO_RST)
536 				printf("%s: DMA read error! -- resetting\n",
537 				    device_xname(sc->sc_dev));
538 			if (status & INTR_DMA_WR_TO_RST)
539 				printf("%s: DMA write error! -- resetting\n",
540 				    device_xname(sc->sc_dev));
541 			age_init(ifp);
542 		}
543 
544 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
545 			age_start(ifp);
546 
547 		if (status & INTR_SMB)
548 			age_stats_update(sc);
549 	}
550 
551 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
552 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 	    BUS_DMASYNC_POSTREAD);
555 
556 back:
557 	/* Re-enable interrupts. */
558 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
559 
560 	return 1;
561 }
562 
563 static void
564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
565 {
566 	uint32_t ea[2], reg;
567 	int i, vpdc;
568 
569 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
570 	if ((reg & SPI_VPD_ENB) != 0) {
571 		/* Get VPD stored in TWSI EEPROM. */
572 		reg &= ~SPI_VPD_ENB;
573 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
574 	}
575 
576 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
577 	    PCI_CAP_VPD, &vpdc, NULL)) {
578 		/*
579 		 * PCI VPD capability found, let TWSI reload EEPROM.
580 		 * This will set Ethernet address of controller.
581 		 */
582 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
583 		    TWSI_CTRL_SW_LD_START);
584 		for (i = 100; i > 0; i++) {
585 			DELAY(1000);
586 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
587 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
588 				break;
589 		}
590 		if (i == 0)
591 			printf("%s: reloading EEPROM timeout!\n",
592 			    device_xname(sc->sc_dev));
593 	} else {
594 		if (agedebug)
595 			printf("%s: PCI VPD capability not found!\n",
596 			    device_xname(sc->sc_dev));
597 	}
598 
599 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
600 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
601 
602 	eaddr[0] = (ea[1] >> 8) & 0xFF;
603 	eaddr[1] = (ea[1] >> 0) & 0xFF;
604 	eaddr[2] = (ea[0] >> 24) & 0xFF;
605 	eaddr[3] = (ea[0] >> 16) & 0xFF;
606 	eaddr[4] = (ea[0] >> 8) & 0xFF;
607 	eaddr[5] = (ea[0] >> 0) & 0xFF;
608 }
609 
610 static void
611 age_phy_reset(struct age_softc *sc)
612 {
613 	uint16_t reg, pn;
614 	int i, linkup;
615 
616 	/* Reset PHY. */
617 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
618 	DELAY(2000);
619 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
620 	DELAY(2000);
621 
622 #define ATPHY_DBG_ADDR		0x1D
623 #define ATPHY_DBG_DATA		0x1E
624 #define ATPHY_CDTC		0x16
625 #define PHY_CDTC_ENB		0x0001
626 #define PHY_CDTC_POFF		8
627 #define ATPHY_CDTS		0x1C
628 #define PHY_CDTS_STAT_OK	0x0000
629 #define PHY_CDTS_STAT_SHORT	0x0100
630 #define PHY_CDTS_STAT_OPEN	0x0200
631 #define PHY_CDTS_STAT_INVAL	0x0300
632 #define PHY_CDTS_STAT_MASK	0x0300
633 
634 	/* Check power saving mode. Magic from Linux. */
635 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
636 	for (linkup = 0, pn = 0; pn < 4; pn++) {
637 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
638 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
639 		for (i = 200; i > 0; i--) {
640 			DELAY(1000);
641 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
642 			    ATPHY_CDTC);
643 			if ((reg & PHY_CDTC_ENB) == 0)
644 				break;
645 		}
646 		DELAY(1000);
647 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
648 		    ATPHY_CDTS);
649 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
650 			linkup++;
651 			break;
652 		}
653 	}
654 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
655 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
656 	if (linkup == 0) {
657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 		    ATPHY_DBG_ADDR, 0);
659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 		    ATPHY_DBG_DATA, 0x124E);
661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 		    ATPHY_DBG_ADDR, 1);
663 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
664 		    ATPHY_DBG_DATA);
665 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
666 		    ATPHY_DBG_DATA, reg | 0x03);
667 		/* XXX */
668 		DELAY(1500 * 1000);
669 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 		    ATPHY_DBG_ADDR, 0);
671 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
672 		    ATPHY_DBG_DATA, 0x024E);
673 	}
674 
675 #undef ATPHY_DBG_ADDR
676 #undef ATPHY_DBG_DATA
677 #undef ATPHY_CDTC
678 #undef PHY_CDTC_ENB
679 #undef PHY_CDTC_POFF
680 #undef ATPHY_CDTS
681 #undef PHY_CDTS_STAT_OK
682 #undef PHY_CDTS_STAT_SHORT
683 #undef PHY_CDTS_STAT_OPEN
684 #undef PHY_CDTS_STAT_INVAL
685 #undef PHY_CDTS_STAT_MASK
686 }
687 
688 static int
689 age_dma_alloc(struct age_softc *sc)
690 {
691 	struct age_txdesc *txd;
692 	struct age_rxdesc *rxd;
693 	int nsegs, error, i;
694 
695 	/*
696 	 * Create DMA stuffs for TX ring
697 	 */
698 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
699 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
700 	if (error) {
701 		sc->age_cdata.age_tx_ring_map = NULL;
702 		return ENOBUFS;
703 	}
704 
705 	/* Allocate DMA'able memory for TX ring */
706 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
707 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
708 	    &nsegs, BUS_DMA_WAITOK);
709 	if (error) {
710 		printf("%s: could not allocate DMA'able memory for Tx ring, "
711 		    "error = %i\n", device_xname(sc->sc_dev), error);
712 		return error;
713 	}
714 
715 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
716 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
717 	    BUS_DMA_NOWAIT);
718 	if (error)
719 		return ENOBUFS;
720 
721 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
722 
723 	/*  Load the DMA map for Tx ring. */
724 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
725 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
726 	if (error) {
727 		printf("%s: could not load DMA'able memory for Tx ring, "
728 		    "error = %i\n", device_xname(sc->sc_dev), error);
729 		bus_dmamem_free(sc->sc_dmat,
730 		    &sc->age_rdata.age_tx_ring_seg, 1);
731 		return error;
732 	}
733 
734 	sc->age_rdata.age_tx_ring_paddr =
735 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
736 
737 	/*
738 	 * Create DMA stuffs for RX ring
739 	 */
740 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
741 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
742 	if (error) {
743 		sc->age_cdata.age_rx_ring_map = NULL;
744 		return ENOBUFS;
745 	}
746 
747 	/* Allocate DMA'able memory for RX ring */
748 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 	    &nsegs, BUS_DMA_WAITOK);
751 	if (error) {
752 		printf("%s: could not allocate DMA'able memory for Rx ring, "
753 		    "error = %i.\n", device_xname(sc->sc_dev), error);
754 		return error;
755 	}
756 
757 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 	    BUS_DMA_NOWAIT);
760 	if (error)
761 		return ENOBUFS;
762 
763 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
764 
765 	/* Load the DMA map for Rx ring. */
766 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 	if (error) {
769 		printf("%s: could not load DMA'able memory for Rx ring, "
770 		    "error = %i.\n", device_xname(sc->sc_dev), error);
771 		bus_dmamem_free(sc->sc_dmat,
772 		    &sc->age_rdata.age_rx_ring_seg, 1);
773 		return error;
774 	}
775 
776 	sc->age_rdata.age_rx_ring_paddr =
777 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
778 
779 	/*
780 	 * Create DMA stuffs for RX return ring
781 	 */
782 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 	if (error) {
785 		sc->age_cdata.age_rr_ring_map = NULL;
786 		return ENOBUFS;
787 	}
788 
789 	/* Allocate DMA'able memory for RX return ring */
790 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
791 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
792 	    &nsegs, BUS_DMA_WAITOK);
793 	if (error) {
794 		printf("%s: could not allocate DMA'able memory for Rx "
795 		    "return ring, error = %i.\n",
796 		    device_xname(sc->sc_dev), error);
797 		return error;
798 	}
799 
800 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
801 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
802 	    BUS_DMA_NOWAIT);
803 	if (error)
804 		return ENOBUFS;
805 
806 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
807 
808 	/*  Load the DMA map for Rx return ring. */
809 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
810 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
811 	if (error) {
812 		printf("%s: could not load DMA'able memory for Rx return ring, "
813 		    "error = %i\n", device_xname(sc->sc_dev), error);
814 		bus_dmamem_free(sc->sc_dmat,
815 		    &sc->age_rdata.age_rr_ring_seg, 1);
816 		return error;
817 	}
818 
819 	sc->age_rdata.age_rr_ring_paddr =
820 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
821 
822 	/*
823 	 * Create DMA stuffs for CMB block
824 	 */
825 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
826 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
827 	    &sc->age_cdata.age_cmb_block_map);
828 	if (error) {
829 		sc->age_cdata.age_cmb_block_map = NULL;
830 		return ENOBUFS;
831 	}
832 
833 	/* Allocate DMA'able memory for CMB block */
834 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
835 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
836 	    &nsegs, BUS_DMA_WAITOK);
837 	if (error) {
838 		printf("%s: could not allocate DMA'able memory for "
839 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
840 		return error;
841 	}
842 
843 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
844 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
845 	    BUS_DMA_NOWAIT);
846 	if (error)
847 		return ENOBUFS;
848 
849 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
850 
851 	/*  Load the DMA map for CMB block. */
852 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
853 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
854 	    BUS_DMA_WAITOK);
855 	if (error) {
856 		printf("%s: could not load DMA'able memory for CMB block, "
857 		    "error = %i\n", device_xname(sc->sc_dev), error);
858 		bus_dmamem_free(sc->sc_dmat,
859 		    &sc->age_rdata.age_cmb_block_seg, 1);
860 		return error;
861 	}
862 
863 	sc->age_rdata.age_cmb_block_paddr =
864 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
865 
866 	/*
867 	 * Create DMA stuffs for SMB block
868 	 */
869 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
870 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
871 	    &sc->age_cdata.age_smb_block_map);
872 	if (error) {
873 		sc->age_cdata.age_smb_block_map = NULL;
874 		return ENOBUFS;
875 	}
876 
877 	/* Allocate DMA'able memory for SMB block */
878 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
879 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
880 	    &nsegs, BUS_DMA_WAITOK);
881 	if (error) {
882 		printf("%s: could not allocate DMA'able memory for "
883 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
884 		return error;
885 	}
886 
887 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
888 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
889 	    BUS_DMA_NOWAIT);
890 	if (error)
891 		return ENOBUFS;
892 
893 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
894 
895 	/*  Load the DMA map for SMB block */
896 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
897 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
898 	    BUS_DMA_WAITOK);
899 	if (error) {
900 		printf("%s: could not load DMA'able memory for SMB block, "
901 		    "error = %i\n", device_xname(sc->sc_dev), error);
902 		bus_dmamem_free(sc->sc_dmat,
903 		    &sc->age_rdata.age_smb_block_seg, 1);
904 		return error;
905 	}
906 
907 	sc->age_rdata.age_smb_block_paddr =
908 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
909 
910 	/* Create DMA maps for Tx buffers. */
911 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
912 		txd = &sc->age_cdata.age_txdesc[i];
913 		txd->tx_m = NULL;
914 		txd->tx_dmamap = NULL;
915 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
916 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
917 		    &txd->tx_dmamap);
918 		if (error) {
919 			txd->tx_dmamap = NULL;
920 			printf("%s: could not create Tx dmamap, error = %i.\n",
921 			    device_xname(sc->sc_dev), error);
922 			return error;
923 		}
924 	}
925 
926 	/* Create DMA maps for Rx buffers. */
927 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
928 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
929 	if (error) {
930 		sc->age_cdata.age_rx_sparemap = NULL;
931 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
932 		    device_xname(sc->sc_dev), error);
933 		return error;
934 	}
935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
936 		rxd = &sc->age_cdata.age_rxdesc[i];
937 		rxd->rx_m = NULL;
938 		rxd->rx_dmamap = NULL;
939 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
940 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
941 		if (error) {
942 			rxd->rx_dmamap = NULL;
943 			printf("%s: could not create Rx dmamap, error = %i.\n",
944 			    device_xname(sc->sc_dev), error);
945 			return error;
946 		}
947 	}
948 
949 	return 0;
950 }
951 
952 static void
953 age_dma_free(struct age_softc *sc)
954 {
955 	struct age_txdesc *txd;
956 	struct age_rxdesc *rxd;
957 	int i;
958 
959 	/* Tx buffers */
960 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
961 		txd = &sc->age_cdata.age_txdesc[i];
962 		if (txd->tx_dmamap != NULL) {
963 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
964 			txd->tx_dmamap = NULL;
965 		}
966 	}
967 	/* Rx buffers */
968 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
969 		rxd = &sc->age_cdata.age_rxdesc[i];
970 		if (rxd->rx_dmamap != NULL) {
971 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
972 			rxd->rx_dmamap = NULL;
973 		}
974 	}
975 	if (sc->age_cdata.age_rx_sparemap != NULL) {
976 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
977 		sc->age_cdata.age_rx_sparemap = NULL;
978 	}
979 
980 	/* Tx ring. */
981 	if (sc->age_cdata.age_tx_ring_map != NULL)
982 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
983 	if (sc->age_cdata.age_tx_ring_map != NULL &&
984 	    sc->age_rdata.age_tx_ring != NULL)
985 		bus_dmamem_free(sc->sc_dmat,
986 		    &sc->age_rdata.age_tx_ring_seg, 1);
987 	sc->age_rdata.age_tx_ring = NULL;
988 	sc->age_cdata.age_tx_ring_map = NULL;
989 
990 	/* Rx ring. */
991 	if (sc->age_cdata.age_rx_ring_map != NULL)
992 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
993 	if (sc->age_cdata.age_rx_ring_map != NULL &&
994 	    sc->age_rdata.age_rx_ring != NULL)
995 		bus_dmamem_free(sc->sc_dmat,
996 		    &sc->age_rdata.age_rx_ring_seg, 1);
997 	sc->age_rdata.age_rx_ring = NULL;
998 	sc->age_cdata.age_rx_ring_map = NULL;
999 
1000 	/* Rx return ring. */
1001 	if (sc->age_cdata.age_rr_ring_map != NULL)
1002 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1003 	if (sc->age_cdata.age_rr_ring_map != NULL &&
1004 	    sc->age_rdata.age_rr_ring != NULL)
1005 		bus_dmamem_free(sc->sc_dmat,
1006 		    &sc->age_rdata.age_rr_ring_seg, 1);
1007 	sc->age_rdata.age_rr_ring = NULL;
1008 	sc->age_cdata.age_rr_ring_map = NULL;
1009 
1010 	/* CMB block */
1011 	if (sc->age_cdata.age_cmb_block_map != NULL)
1012 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1013 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1014 	    sc->age_rdata.age_cmb_block != NULL)
1015 		bus_dmamem_free(sc->sc_dmat,
1016 		    &sc->age_rdata.age_cmb_block_seg, 1);
1017 	sc->age_rdata.age_cmb_block = NULL;
1018 	sc->age_cdata.age_cmb_block_map = NULL;
1019 
1020 	/* SMB block */
1021 	if (sc->age_cdata.age_smb_block_map != NULL)
1022 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1023 	if (sc->age_cdata.age_smb_block_map != NULL &&
1024 	    sc->age_rdata.age_smb_block != NULL)
1025 		bus_dmamem_free(sc->sc_dmat,
1026 		    &sc->age_rdata.age_smb_block_seg, 1);
1027 	sc->age_rdata.age_smb_block = NULL;
1028 	sc->age_cdata.age_smb_block_map = NULL;
1029 }
1030 
1031 static void
1032 age_start(struct ifnet *ifp)
1033 {
1034         struct age_softc *sc = ifp->if_softc;
1035         struct mbuf *m_head;
1036 	int enq;
1037 
1038 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1039 		return;
1040 
1041 	enq = 0;
1042 	for (;;) {
1043 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1044 		if (m_head == NULL)
1045 			break;
1046 
1047 		/*
1048 		 * Pack the data into the transmit ring. If we
1049 		 * don't have room, set the OACTIVE flag and wait
1050 		 * for the NIC to drain the ring.
1051 		 */
1052 		if (age_encap(sc, &m_head)) {
1053 			if (m_head == NULL)
1054 				break;
1055 			ifp->if_flags |= IFF_OACTIVE;
1056 			break;
1057 		}
1058 		enq = 1;
1059 
1060 #if NBPFILTER > 0
1061 		/*
1062 		 * If there's a BPF listener, bounce a copy of this frame
1063 		 * to him.
1064 		 */
1065 		if (ifp->if_bpf != NULL)
1066 			bpf_mtap(ifp->if_bpf, m_head);
1067 #endif
1068 	}
1069 
1070 	if (enq) {
1071 		/* Update mbox. */
1072 		AGE_COMMIT_MBOX(sc);
1073 		/* Set a timeout in case the chip goes out to lunch. */
1074 		ifp->if_timer = AGE_TX_TIMEOUT;
1075 	}
1076 }
1077 
1078 static void
1079 age_watchdog(struct ifnet *ifp)
1080 {
1081 	struct age_softc *sc = ifp->if_softc;
1082 
1083 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1084 		printf("%s: watchdog timeout (missed link)\n",
1085 		    device_xname(sc->sc_dev));
1086 		ifp->if_oerrors++;
1087 		age_init(ifp);
1088 		return;
1089 	}
1090 
1091 	if (sc->age_cdata.age_tx_cnt == 0) {
1092 		printf("%s: watchdog timeout (missed Tx interrupts) "
1093 		    "-- recovering\n", device_xname(sc->sc_dev));
1094 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1095 			age_start(ifp);
1096 		return;
1097 	}
1098 
1099 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1100 	ifp->if_oerrors++;
1101 	age_init(ifp);
1102 
1103 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1104 		age_start(ifp);
1105 }
1106 
1107 static int
1108 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1109 {
1110 	struct age_softc *sc = ifp->if_softc;
1111 	int s, error;
1112 
1113 	s = splnet();
1114 
1115 	error = ether_ioctl(ifp, cmd, data);
1116 	if (error == ENETRESET) {
1117 		if (ifp->if_flags & IFF_RUNNING)
1118 			age_rxfilter(sc);
1119 		error = 0;
1120 	}
1121 
1122 	splx(s);
1123 	return error;
1124 }
1125 
1126 static void
1127 age_mac_config(struct age_softc *sc)
1128 {
1129 	struct mii_data *mii;
1130 	uint32_t reg;
1131 
1132 	mii = &sc->sc_miibus;
1133 
1134 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1135 	reg &= ~MAC_CFG_FULL_DUPLEX;
1136 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1137 	reg &= ~MAC_CFG_SPEED_MASK;
1138 
1139 	/* Reprogram MAC with resolved speed/duplex. */
1140 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1141 	case IFM_10_T:
1142 	case IFM_100_TX:
1143 		reg |= MAC_CFG_SPEED_10_100;
1144 		break;
1145 	case IFM_1000_T:
1146 		reg |= MAC_CFG_SPEED_1000;
1147 		break;
1148 	}
1149 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1150 		reg |= MAC_CFG_FULL_DUPLEX;
1151 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1152 			reg |= MAC_CFG_TX_FC;
1153 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1154 			reg |= MAC_CFG_RX_FC;
1155 	}
1156 
1157 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1158 }
1159 
1160 static bool
1161 age_resume(device_t dv PMF_FN_ARGS)
1162 {
1163 	struct age_softc *sc = device_private(dv);
1164 	uint16_t cmd;
1165 
1166 	/*
1167 	 * Clear INTx emulation disable for hardware that
1168 	 * is set in resume event. From Linux.
1169 	 */
1170 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1171 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1172 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1173 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1174 		    PCI_COMMAND_STATUS_REG, cmd);
1175 	}
1176 
1177 	return true;
1178 }
1179 
1180 static int
1181 age_encap(struct age_softc *sc, struct mbuf **m_head)
1182 {
1183 	struct age_txdesc *txd, *txd_last;
1184 	struct tx_desc *desc;
1185 	struct mbuf *m;
1186 	bus_dmamap_t map;
1187 	uint32_t cflags, poff, vtag;
1188 	int error, i, nsegs, prod;
1189 #if NVLAN > 0
1190 	struct m_tag *mtag;
1191 #endif
1192 
1193 	m = *m_head;
1194 	cflags = vtag = 0;
1195 	poff = 0;
1196 
1197 	prod = sc->age_cdata.age_tx_prod;
1198 	txd = &sc->age_cdata.age_txdesc[prod];
1199 	txd_last = txd;
1200 	map = txd->tx_dmamap;
1201 
1202 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1203 
1204 	if (error == EFBIG) {
1205 		error = 0;
1206 
1207 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1208 		if (m == NULL) {
1209 			printf("%s: can't defrag TX mbuf\n",
1210 			    device_xname(sc->sc_dev));
1211 			m_freem(*m_head);
1212 			*m_head = NULL;
1213 			return ENOBUFS;
1214 		}
1215 
1216 		M_COPY_PKTHDR(m, *m_head);
1217 		if ((*m_head)->m_pkthdr.len > MHLEN) {
1218 			MCLGET(m, M_DONTWAIT);
1219 			if (!(m->m_flags & M_EXT)) {
1220 				m_freem(*m_head);
1221 				m_freem(m);
1222 				*m_head = NULL;
1223 				return ENOBUFS;
1224 			}
1225 		}
1226 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1227 		    mtod(m, void *));
1228 		m_freem(*m_head);
1229 		m->m_len = m->m_pkthdr.len;
1230 		*m_head = m;
1231 
1232 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1233 		  	    BUS_DMA_NOWAIT);
1234 
1235 		if (error != 0) {
1236 			printf("%s: could not load defragged TX mbuf\n",
1237 			    device_xname(sc->sc_dev));
1238 			if (!error) {
1239 				bus_dmamap_unload(sc->sc_dmat, map);
1240 				error = EFBIG;
1241 			}
1242 			m_freem(*m_head);
1243 			*m_head = NULL;
1244 			return error;
1245 		}
1246 	} else if (error) {
1247 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1248 		return error;
1249 	}
1250 
1251 	nsegs = map->dm_nsegs;
1252 
1253 	if (nsegs == 0) {
1254 		m_freem(*m_head);
1255 		*m_head = NULL;
1256 		return EIO;
1257 	}
1258 
1259 	/* Check descriptor overrun. */
1260 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1261 		bus_dmamap_unload(sc->sc_dmat, map);
1262 		return ENOBUFS;
1263 	}
1264 
1265 	m = *m_head;
1266 	/* Configure Tx IP/TCP/UDP checksum offload. */
1267 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1268 		cflags |= AGE_TD_CSUM;
1269 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1270 			cflags |= AGE_TD_TCPCSUM;
1271 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1272 			cflags |= AGE_TD_UDPCSUM;
1273 		/* Set checksum start offset. */
1274 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1275 	}
1276 
1277 #if NVLAN > 0
1278 	/* Configure VLAN hardware tag insertion. */
1279 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1280 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1281 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1282 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1283 	}
1284 #endif
1285 
1286 	desc = NULL;
1287 	for (i = 0; i < nsegs; i++) {
1288 		desc = &sc->age_rdata.age_tx_ring[prod];
1289 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1290 		desc->len =
1291 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1292 		desc->flags = htole32(cflags);
1293 		sc->age_cdata.age_tx_cnt++;
1294 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1295 	}
1296 
1297 	/* Update producer index. */
1298 	sc->age_cdata.age_tx_prod = prod;
1299 
1300 	/* Set EOP on the last descriptor. */
1301 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1302 	desc = &sc->age_rdata.age_tx_ring[prod];
1303 	desc->flags |= htole32(AGE_TD_EOP);
1304 
1305 	/* Swap dmamap of the first and the last. */
1306 	txd = &sc->age_cdata.age_txdesc[prod];
1307 	map = txd_last->tx_dmamap;
1308 	txd_last->tx_dmamap = txd->tx_dmamap;
1309 	txd->tx_dmamap = map;
1310 	txd->tx_m = m;
1311 
1312 	/* Sync descriptors. */
1313 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1314 	    BUS_DMASYNC_PREWRITE);
1315 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1316 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1317 
1318 	return 0;
1319 }
1320 
1321 static void
1322 age_txintr(struct age_softc *sc, int tpd_cons)
1323 {
1324 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1325 	struct age_txdesc *txd;
1326 	int cons, prog;
1327 
1328 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1329 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1330 
1331 	/*
1332 	 * Go through our Tx list and free mbufs for those
1333 	 * frames which have been transmitted.
1334 	 */
1335 	cons = sc->age_cdata.age_tx_cons;
1336 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1337 		if (sc->age_cdata.age_tx_cnt <= 0)
1338 			break;
1339 		prog++;
1340 		ifp->if_flags &= ~IFF_OACTIVE;
1341 		sc->age_cdata.age_tx_cnt--;
1342 		txd = &sc->age_cdata.age_txdesc[cons];
1343 		/*
1344 		 * Clear Tx descriptors, it's not required but would
1345 		 * help debugging in case of Tx issues.
1346 		 */
1347 		txd->tx_desc->addr = 0;
1348 		txd->tx_desc->len = 0;
1349 		txd->tx_desc->flags = 0;
1350 
1351 		if (txd->tx_m == NULL)
1352 			continue;
1353 		/* Reclaim transmitted mbufs. */
1354 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1355 		m_freem(txd->tx_m);
1356 		txd->tx_m = NULL;
1357 	}
1358 
1359 	if (prog > 0) {
1360 		sc->age_cdata.age_tx_cons = cons;
1361 
1362 		/*
1363 		 * Unarm watchdog timer only when there are no pending
1364 		 * Tx descriptors in queue.
1365 		 */
1366 		if (sc->age_cdata.age_tx_cnt == 0)
1367 			ifp->if_timer = 0;
1368 
1369 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1370 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1371 		    BUS_DMASYNC_PREWRITE);
1372 	}
1373 }
1374 
1375 /* Receive a frame. */
1376 static void
1377 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1378 {
1379 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1380 	struct age_rxdesc *rxd;
1381 	struct rx_desc *desc;
1382 	struct mbuf *mp, *m;
1383 	uint32_t status, index;
1384 	int count, nsegs, pktlen;
1385 	int rx_cons;
1386 
1387 	status = le32toh(rxrd->flags);
1388 	index = le32toh(rxrd->index);
1389 	rx_cons = AGE_RX_CONS(index);
1390 	nsegs = AGE_RX_NSEGS(index);
1391 
1392 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1393 	if ((status & AGE_RRD_ERROR) != 0 &&
1394 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1395 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1396 		/*
1397 		 * We want to pass the following frames to upper
1398 		 * layer regardless of error status of Rx return
1399 		 * ring.
1400 		 *
1401 		 *  o IP/TCP/UDP checksum is bad.
1402 		 *  o frame length and protocol specific length
1403 		 *     does not match.
1404 		 */
1405 		sc->age_cdata.age_rx_cons += nsegs;
1406 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1407 		return;
1408 	}
1409 
1410 	pktlen = 0;
1411 	for (count = 0; count < nsegs; count++,
1412 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1413 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1414 		mp = rxd->rx_m;
1415 		desc = rxd->rx_desc;
1416 		/* Add a new receive buffer to the ring. */
1417 		if (age_newbuf(sc, rxd, 0) != 0) {
1418 			ifp->if_iqdrops++;
1419 			/* Reuse Rx buffers. */
1420 			if (sc->age_cdata.age_rxhead != NULL) {
1421 				m_freem(sc->age_cdata.age_rxhead);
1422 				AGE_RXCHAIN_RESET(sc);
1423 			}
1424 			break;
1425 		}
1426 
1427 		/* The length of the first mbuf is computed last. */
1428 		if (count != 0) {
1429 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1430 			pktlen += mp->m_len;
1431 		}
1432 
1433 		/* Chain received mbufs. */
1434 		if (sc->age_cdata.age_rxhead == NULL) {
1435 			sc->age_cdata.age_rxhead = mp;
1436 			sc->age_cdata.age_rxtail = mp;
1437 		} else {
1438 			mp->m_flags &= ~M_PKTHDR;
1439 			sc->age_cdata.age_rxprev_tail =
1440 			    sc->age_cdata.age_rxtail;
1441 			sc->age_cdata.age_rxtail->m_next = mp;
1442 			sc->age_cdata.age_rxtail = mp;
1443 		}
1444 
1445 		if (count == nsegs - 1) {
1446 			/*
1447 			 * It seems that L1 controller has no way
1448 			 * to tell hardware to strip CRC bytes.
1449 			 */
1450 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1451 			if (nsegs > 1) {
1452 				/* Remove the CRC bytes in chained mbufs. */
1453 				pktlen -= ETHER_CRC_LEN;
1454 				if (mp->m_len <= ETHER_CRC_LEN) {
1455 					sc->age_cdata.age_rxtail =
1456 					    sc->age_cdata.age_rxprev_tail;
1457 					sc->age_cdata.age_rxtail->m_len -=
1458 					    (ETHER_CRC_LEN - mp->m_len);
1459 					sc->age_cdata.age_rxtail->m_next = NULL;
1460 					m_freem(mp);
1461 				} else {
1462 					mp->m_len -= ETHER_CRC_LEN;
1463 				}
1464 			}
1465 
1466 			m = sc->age_cdata.age_rxhead;
1467 			m->m_flags |= M_PKTHDR;
1468 			m->m_pkthdr.rcvif = ifp;
1469 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1470 			/* Set the first mbuf length. */
1471 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1472 
1473 			/*
1474 			 * Set checksum information.
1475 			 * It seems that L1 controller can compute partial
1476 			 * checksum. The partial checksum value can be used
1477 			 * to accelerate checksum computation for fragmented
1478 			 * TCP/UDP packets. Upper network stack already
1479 			 * takes advantage of the partial checksum value in
1480 			 * IP reassembly stage. But I'm not sure the
1481 			 * correctness of the partial hardware checksum
1482 			 * assistance due to lack of data sheet. If it is
1483 			 * proven to work on L1 I'll enable it.
1484 			 */
1485 			if (status & AGE_RRD_IPV4) {
1486 				if (status & AGE_RRD_IPCSUM_NOK)
1487 					m->m_pkthdr.csum_flags |=
1488 					    M_CSUM_IPv4_BAD;
1489 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1490 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1491 					m->m_pkthdr.csum_flags |=
1492 					    M_CSUM_TCP_UDP_BAD;
1493 				}
1494 				/*
1495 				 * Don't mark bad checksum for TCP/UDP frames
1496 				 * as fragmented frames may always have set
1497 				 * bad checksummed bit of descriptor status.
1498 				 */
1499 			}
1500 #if NVLAN > 0
1501 			/* Check for VLAN tagged frames. */
1502 			if (status & AGE_RRD_VLAN) {
1503 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1504 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1505 					continue);
1506 			}
1507 #endif
1508 
1509 #if NBPFILTER > 0
1510 			if (ifp->if_bpf)
1511 				bpf_mtap(ifp->if_bpf, m);
1512 #endif
1513 			/* Pass it on. */
1514 			ether_input(ifp, m);
1515 
1516 			/* Reset mbuf chains. */
1517 			AGE_RXCHAIN_RESET(sc);
1518 		}
1519 	}
1520 
1521 	if (count != nsegs) {
1522 		sc->age_cdata.age_rx_cons += nsegs;
1523 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1524 	} else
1525 		sc->age_cdata.age_rx_cons = rx_cons;
1526 }
1527 
1528 static void
1529 age_rxintr(struct age_softc *sc, int rr_prod)
1530 {
1531 	struct rx_rdesc *rxrd;
1532 	int rr_cons, nsegs, pktlen, prog;
1533 
1534 	rr_cons = sc->age_cdata.age_rr_cons;
1535 	if (rr_cons == rr_prod)
1536 		return;
1537 
1538 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1539 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1540 	    BUS_DMASYNC_POSTREAD);
1541 
1542 	for (prog = 0; rr_cons != rr_prod; prog++) {
1543 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1544 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1545 		if (nsegs == 0)
1546 			break;
1547 		/*
1548 		 * Check number of segments against received bytes
1549 		 * Non-matching value would indicate that hardware
1550 		 * is still trying to update Rx return descriptors.
1551 		 * I'm not sure whether this check is really needed.
1552 		 */
1553 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1554 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1555 		    (MCLBYTES - ETHER_ALIGN)))
1556 			break;
1557 
1558 		/* Received a frame. */
1559 		age_rxeof(sc, rxrd);
1560 
1561 		/* Clear return ring. */
1562 		rxrd->index = 0;
1563 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1564 	}
1565 
1566 	if (prog > 0) {
1567 		/* Update the consumer index. */
1568 		sc->age_cdata.age_rr_cons = rr_cons;
1569 
1570 		/* Sync descriptors. */
1571 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1572 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1573 		    BUS_DMASYNC_PREWRITE);
1574 
1575 		/* Notify hardware availability of new Rx buffers. */
1576 		AGE_COMMIT_MBOX(sc);
1577 	}
1578 }
1579 
1580 static void
1581 age_tick(void *xsc)
1582 {
1583 	struct age_softc *sc = xsc;
1584 	struct mii_data *mii = &sc->sc_miibus;
1585 	int s;
1586 
1587 	s = splnet();
1588 	mii_tick(mii);
1589 	splx(s);
1590 
1591 	callout_schedule(&sc->sc_tick_ch, hz);
1592 }
1593 
1594 static void
1595 age_reset(struct age_softc *sc)
1596 {
1597 	uint32_t reg;
1598 	int i;
1599 
1600 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1601 	CSR_READ_4(sc, AGE_MASTER_CFG);
1602 	DELAY(1000);
1603 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1604 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1605 			break;
1606 		DELAY(10);
1607 	}
1608 
1609 	if (i == 0)
1610 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1611 		    reg);
1612 
1613 	/* Initialize PCIe module. From Linux. */
1614 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1615 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1616 }
1617 
1618 static int
1619 age_init(struct ifnet *ifp)
1620 {
1621 	struct age_softc *sc = ifp->if_softc;
1622 	struct mii_data *mii;
1623 	uint8_t eaddr[ETHER_ADDR_LEN];
1624 	bus_addr_t paddr;
1625 	uint32_t reg, fsize;
1626 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1627 	int error;
1628 
1629 	/*
1630 	 * Cancel any pending I/O.
1631 	 */
1632 	age_stop(ifp, 0);
1633 
1634 	/*
1635 	 * Reset the chip to a known state.
1636 	 */
1637 	age_reset(sc);
1638 
1639 	/* Initialize descriptors. */
1640 	error = age_init_rx_ring(sc);
1641         if (error != 0) {
1642 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1643 		age_stop(ifp, 0);
1644 		return error;
1645         }
1646 	age_init_rr_ring(sc);
1647 	age_init_tx_ring(sc);
1648 	age_init_cmb_block(sc);
1649 	age_init_smb_block(sc);
1650 
1651 	/* Reprogram the station address. */
1652 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1653 	CSR_WRITE_4(sc, AGE_PAR0,
1654 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1655 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1656 
1657 	/* Set descriptor base addresses. */
1658 	paddr = sc->age_rdata.age_tx_ring_paddr;
1659 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1660 	paddr = sc->age_rdata.age_rx_ring_paddr;
1661 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1662 	paddr = sc->age_rdata.age_rr_ring_paddr;
1663 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1664 	paddr = sc->age_rdata.age_tx_ring_paddr;
1665 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1666 	paddr = sc->age_rdata.age_cmb_block_paddr;
1667 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1668 	paddr = sc->age_rdata.age_smb_block_paddr;
1669 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1670 
1671 	/* Set Rx/Rx return descriptor counter. */
1672 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1673 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1674 	    DESC_RRD_CNT_MASK) |
1675 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1676 
1677 	/* Set Tx descriptor counter. */
1678 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1679 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1680 
1681 	/* Tell hardware that we're ready to load descriptors. */
1682 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1683 
1684         /*
1685 	 * Initialize mailbox register.
1686 	 * Updated producer/consumer index information is exchanged
1687 	 * through this mailbox register. However Tx producer and
1688 	 * Rx return consumer/Rx producer are all shared such that
1689 	 * it's hard to separate code path between Tx and Rx without
1690 	 * locking. If L1 hardware have a separate mail box register
1691 	 * for Tx and Rx consumer/producer management we could have
1692 	 * indepent Tx/Rx handler which in turn Rx handler could have
1693 	 * been run without any locking.
1694 	*/
1695 	AGE_COMMIT_MBOX(sc);
1696 
1697 	/* Configure IPG/IFG parameters. */
1698 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1699 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1700 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1701 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1702 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1703 
1704 	/* Set parameters for half-duplex media. */
1705 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1706 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1707 	    HDPX_CFG_LCOL_MASK) |
1708 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1709 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1710 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1711 	    HDPX_CFG_ABEBT_MASK) |
1712 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1713 	     HDPX_CFG_JAMIPG_MASK));
1714 
1715 	/* Configure interrupt moderation timer. */
1716 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1717 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1718 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1719 	reg &= ~MASTER_MTIMER_ENB;
1720 	if (AGE_USECS(sc->age_int_mod) == 0)
1721 		reg &= ~MASTER_ITIMER_ENB;
1722 	else
1723 		reg |= MASTER_ITIMER_ENB;
1724 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1725 	if (agedebug)
1726 		printf("%s: interrupt moderation is %d us.\n",
1727 		    device_xname(sc->sc_dev), sc->age_int_mod);
1728 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1729 
1730 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1731 	if (ifp->if_mtu < ETHERMTU)
1732 		sc->age_max_frame_size = ETHERMTU;
1733 	else
1734 		sc->age_max_frame_size = ifp->if_mtu;
1735 	sc->age_max_frame_size += ETHER_HDR_LEN +
1736 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1737 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1738 
1739 	/* Configure jumbo frame. */
1740 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1741 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1742 	    (((fsize / sizeof(uint64_t)) <<
1743 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1744 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1745 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1746 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1747 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1748 
1749 	/* Configure flow-control parameters. From Linux. */
1750 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1751 		/*
1752 		 * Magic workaround for old-L1.
1753 		 * Don't know which hw revision requires this magic.
1754 		 */
1755 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1756 		/*
1757 		 * Another magic workaround for flow-control mode
1758 		 * change. From Linux.
1759 		 */
1760 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1761 	}
1762 	/*
1763 	 * TODO
1764 	 *  Should understand pause parameter relationships between FIFO
1765 	 *  size and number of Rx descriptors and Rx return descriptors.
1766 	 *
1767 	 *  Magic parameters came from Linux.
1768 	 */
1769 	switch (sc->age_chip_rev) {
1770 	case 0x8001:
1771 	case 0x9001:
1772 	case 0x9002:
1773 	case 0x9003:
1774 		rxf_hi = AGE_RX_RING_CNT / 16;
1775 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1776 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1777 		rrd_lo = AGE_RR_RING_CNT / 16;
1778 		break;
1779 	default:
1780 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1781 		rxf_lo = reg / 16;
1782 		if (rxf_lo < 192)
1783 			rxf_lo = 192;
1784 		rxf_hi = (reg * 7) / 8;
1785 		if (rxf_hi < rxf_lo)
1786 			rxf_hi = rxf_lo + 16;
1787 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1788 		rrd_lo = reg / 8;
1789 		rrd_hi = (reg * 7) / 8;
1790 		if (rrd_lo < 2)
1791 			rrd_lo = 2;
1792 		if (rrd_hi < rrd_lo)
1793 			rrd_hi = rrd_lo + 3;
1794 		break;
1795 	}
1796 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1797 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1798 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1799 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1800 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1801 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1802 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1803 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1804 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1805 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1806 
1807 	/* Configure RxQ. */
1808 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1809 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1810 	    RXQ_CFG_RD_BURST_MASK) |
1811 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1812 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1813 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1814 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1815 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1816 
1817 	/* Configure TxQ. */
1818 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1819 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1820 	    TXQ_CFG_TPD_BURST_MASK) |
1821 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1822 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1823 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1824 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1825 	    TXQ_CFG_ENB);
1826 
1827 	/* Configure DMA parameters. */
1828 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1829 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1830 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1831 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1832 
1833 	/* Configure CMB DMA write threshold. */
1834 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1835 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1836 	    CMB_WR_THRESH_RRD_MASK) |
1837 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1838 	    CMB_WR_THRESH_TPD_MASK));
1839 
1840 	/* Set CMB/SMB timer and enable them. */
1841 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1842 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1843 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1844 
1845 	/* Request SMB updates for every seconds. */
1846 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1847 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1848 
1849 	/*
1850 	 * Disable all WOL bits as WOL can interfere normal Rx
1851 	 * operation.
1852 	 */
1853 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1854 
1855         /*
1856 	 * Configure Tx/Rx MACs.
1857 	 *  - Auto-padding for short frames.
1858 	 *  - Enable CRC generation.
1859 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1860 	 *  of MAC is followed after link establishment.
1861 	 */
1862 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1863 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1864 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1865 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1866 	    MAC_CFG_PREAMBLE_MASK));
1867 
1868 	/* Set up the receive filter. */
1869 	age_rxfilter(sc);
1870 	age_rxvlan(sc);
1871 
1872 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1873 	reg |= MAC_CFG_RXCSUM_ENB;
1874 
1875 	/* Ack all pending interrupts and clear it. */
1876 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1877 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1878 
1879 	/* Finally enable Tx/Rx MAC. */
1880 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1881 
1882 	sc->age_flags &= ~AGE_FLAG_LINK;
1883 
1884 	/* Switch to the current media. */
1885 	mii = &sc->sc_miibus;
1886 	mii_mediachg(mii);
1887 
1888 	callout_schedule(&sc->sc_tick_ch, hz);
1889 
1890 	ifp->if_flags |= IFF_RUNNING;
1891 	ifp->if_flags &= ~IFF_OACTIVE;
1892 
1893 	return 0;
1894 }
1895 
1896 static void
1897 age_stop(struct ifnet *ifp, int disable)
1898 {
1899 	struct age_softc *sc = ifp->if_softc;
1900 	struct age_txdesc *txd;
1901 	struct age_rxdesc *rxd;
1902 	uint32_t reg;
1903 	int i;
1904 
1905 	callout_stop(&sc->sc_tick_ch);
1906 
1907 	/*
1908 	 * Mark the interface down and cancel the watchdog timer.
1909 	 */
1910 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1911 	ifp->if_timer = 0;
1912 
1913 	sc->age_flags &= ~AGE_FLAG_LINK;
1914 
1915 	mii_down(&sc->sc_miibus);
1916 
1917 	/*
1918 	 * Disable interrupts.
1919 	 */
1920 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1921 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1922 
1923 	/* Stop CMB/SMB updates. */
1924 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1925 
1926 	/* Stop Rx/Tx MAC. */
1927 	age_stop_rxmac(sc);
1928 	age_stop_txmac(sc);
1929 
1930 	/* Stop DMA. */
1931 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1932 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1933 
1934 	/* Stop TxQ/RxQ. */
1935 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1936 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1937 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1938 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1939 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1940 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1941 			break;
1942 		DELAY(10);
1943 	}
1944 	if (i == 0)
1945 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1946 		    device_xname(sc->sc_dev), reg);
1947 
1948 	/* Reclaim Rx buffers that have been processed. */
1949 	if (sc->age_cdata.age_rxhead != NULL)
1950 		m_freem(sc->age_cdata.age_rxhead);
1951 	AGE_RXCHAIN_RESET(sc);
1952 
1953 	/*
1954 	 * Free RX and TX mbufs still in the queues.
1955 	 */
1956 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1957 		rxd = &sc->age_cdata.age_rxdesc[i];
1958 		if (rxd->rx_m != NULL) {
1959 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1960 			m_freem(rxd->rx_m);
1961 			rxd->rx_m = NULL;
1962 		}
1963 	}
1964 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1965 		txd = &sc->age_cdata.age_txdesc[i];
1966 		if (txd->tx_m != NULL) {
1967 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1968 			m_freem(txd->tx_m);
1969 			txd->tx_m = NULL;
1970 		}
1971 	}
1972 }
1973 
1974 static void
1975 age_stats_update(struct age_softc *sc)
1976 {
1977 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1978 	struct age_stats *stat;
1979 	struct smb *smb;
1980 
1981 	stat = &sc->age_stat;
1982 
1983 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1984 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1985 
1986 	smb = sc->age_rdata.age_smb_block;
1987 	if (smb->updated == 0)
1988 		return;
1989 
1990 	/* Rx stats. */
1991 	stat->rx_frames += smb->rx_frames;
1992 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1993 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1994 	stat->rx_pause_frames += smb->rx_pause_frames;
1995 	stat->rx_control_frames += smb->rx_control_frames;
1996 	stat->rx_crcerrs += smb->rx_crcerrs;
1997 	stat->rx_lenerrs += smb->rx_lenerrs;
1998 	stat->rx_bytes += smb->rx_bytes;
1999 	stat->rx_runts += smb->rx_runts;
2000 	stat->rx_fragments += smb->rx_fragments;
2001 	stat->rx_pkts_64 += smb->rx_pkts_64;
2002 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2003 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2004 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2005 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2006 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2007 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2008 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2009 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2010 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2011 	stat->rx_alignerrs += smb->rx_alignerrs;
2012 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2013 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2014 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2015 
2016 	/* Tx stats. */
2017 	stat->tx_frames += smb->tx_frames;
2018 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2019 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2020 	stat->tx_pause_frames += smb->tx_pause_frames;
2021 	stat->tx_excess_defer += smb->tx_excess_defer;
2022 	stat->tx_control_frames += smb->tx_control_frames;
2023 	stat->tx_deferred += smb->tx_deferred;
2024 	stat->tx_bytes += smb->tx_bytes;
2025 	stat->tx_pkts_64 += smb->tx_pkts_64;
2026 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2027 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2028 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2029 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2030 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2031 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2032 	stat->tx_single_colls += smb->tx_single_colls;
2033 	stat->tx_multi_colls += smb->tx_multi_colls;
2034 	stat->tx_late_colls += smb->tx_late_colls;
2035 	stat->tx_excess_colls += smb->tx_excess_colls;
2036 	stat->tx_underrun += smb->tx_underrun;
2037 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2038 	stat->tx_lenerrs += smb->tx_lenerrs;
2039 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2040 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2041 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2042 
2043 	/* Update counters in ifnet. */
2044 	ifp->if_opackets += smb->tx_frames;
2045 
2046 	ifp->if_collisions += smb->tx_single_colls +
2047 	    smb->tx_multi_colls + smb->tx_late_colls +
2048 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2049 
2050 	ifp->if_oerrors += smb->tx_excess_colls +
2051 	    smb->tx_late_colls + smb->tx_underrun +
2052 	    smb->tx_pkts_truncated;
2053 
2054 	ifp->if_ipackets += smb->rx_frames;
2055 
2056 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2057 	    smb->rx_runts + smb->rx_pkts_truncated +
2058 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2059 	    smb->rx_alignerrs;
2060 
2061 	/* Update done, clear. */
2062 	smb->updated = 0;
2063 
2064 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2065 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2066 }
2067 
2068 static void
2069 age_stop_txmac(struct age_softc *sc)
2070 {
2071 	uint32_t reg;
2072 	int i;
2073 
2074 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2075 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2076 		reg &= ~MAC_CFG_TX_ENB;
2077 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2078 	}
2079 	/* Stop Tx DMA engine. */
2080 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2081 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2082 		reg &= ~DMA_CFG_RD_ENB;
2083 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2084 	}
2085 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2086 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2087 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2088 			break;
2089 		DELAY(10);
2090 	}
2091 	if (i == 0)
2092 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2093 }
2094 
2095 static void
2096 age_stop_rxmac(struct age_softc *sc)
2097 {
2098 	uint32_t reg;
2099 	int i;
2100 
2101 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2102 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2103 		reg &= ~MAC_CFG_RX_ENB;
2104 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2105 	}
2106 	/* Stop Rx DMA engine. */
2107 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2108 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2109 		reg &= ~DMA_CFG_WR_ENB;
2110 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2111 	}
2112 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2113 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2114 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2115 			break;
2116 		DELAY(10);
2117 	}
2118 	if (i == 0)
2119 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2120 }
2121 
2122 static void
2123 age_init_tx_ring(struct age_softc *sc)
2124 {
2125 	struct age_ring_data *rd;
2126 	struct age_txdesc *txd;
2127 	int i;
2128 
2129 	sc->age_cdata.age_tx_prod = 0;
2130 	sc->age_cdata.age_tx_cons = 0;
2131 	sc->age_cdata.age_tx_cnt = 0;
2132 
2133 	rd = &sc->age_rdata;
2134 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2135 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2136 		txd = &sc->age_cdata.age_txdesc[i];
2137 		txd->tx_desc = &rd->age_tx_ring[i];
2138 		txd->tx_m = NULL;
2139 	}
2140 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2141 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2142 }
2143 
2144 static int
2145 age_init_rx_ring(struct age_softc *sc)
2146 {
2147 	struct age_ring_data *rd;
2148 	struct age_rxdesc *rxd;
2149 	int i;
2150 
2151 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2152 	rd = &sc->age_rdata;
2153 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2154 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2155 		rxd = &sc->age_cdata.age_rxdesc[i];
2156 		rxd->rx_m = NULL;
2157 		rxd->rx_desc = &rd->age_rx_ring[i];
2158 		if (age_newbuf(sc, rxd, 1) != 0)
2159 			return ENOBUFS;
2160 	}
2161 
2162 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2163 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2164 
2165 	return 0;
2166 }
2167 
2168 static void
2169 age_init_rr_ring(struct age_softc *sc)
2170 {
2171 	struct age_ring_data *rd;
2172 
2173 	sc->age_cdata.age_rr_cons = 0;
2174 	AGE_RXCHAIN_RESET(sc);
2175 
2176 	rd = &sc->age_rdata;
2177 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2178 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2179 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2180 }
2181 
2182 static void
2183 age_init_cmb_block(struct age_softc *sc)
2184 {
2185 	struct age_ring_data *rd;
2186 
2187 	rd = &sc->age_rdata;
2188 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2189 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2190 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2191 }
2192 
2193 static void
2194 age_init_smb_block(struct age_softc *sc)
2195 {
2196 	struct age_ring_data *rd;
2197 
2198 	rd = &sc->age_rdata;
2199 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2200 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2201 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2202 }
2203 
2204 static int
2205 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2206 {
2207 	struct rx_desc *desc;
2208 	struct mbuf *m;
2209 	bus_dmamap_t map;
2210 	int error;
2211 
2212 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2213 	if (m == NULL)
2214 		return ENOBUFS;
2215 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2216 	if (!(m->m_flags & M_EXT)) {
2217 		 m_freem(m);
2218 		 return ENOBUFS;
2219 	}
2220 
2221 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2222 	m_adj(m, ETHER_ALIGN);
2223 
2224 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2225 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2226 
2227 	if (error != 0) {
2228 		if (!error) {
2229 			bus_dmamap_unload(sc->sc_dmat,
2230 			    sc->age_cdata.age_rx_sparemap);
2231 			error = EFBIG;
2232 			printf("%s: too many segments?!\n",
2233 			    device_xname(sc->sc_dev));
2234 		}
2235 		m_freem(m);
2236 
2237 		if (init)
2238 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2239 		return error;
2240 	}
2241 
2242 	if (rxd->rx_m != NULL) {
2243 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2244 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2245 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2246 	}
2247 	map = rxd->rx_dmamap;
2248 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2249 	sc->age_cdata.age_rx_sparemap = map;
2250 	rxd->rx_m = m;
2251 
2252 	desc = rxd->rx_desc;
2253 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2254 	desc->len =
2255 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2256 	    AGE_RD_LEN_SHIFT);
2257 
2258 	return 0;
2259 }
2260 
2261 static void
2262 age_rxvlan(struct age_softc *sc)
2263 {
2264 	uint32_t reg;
2265 
2266 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2267 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2268 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2269 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2270 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2271 }
2272 
2273 static void
2274 age_rxfilter(struct age_softc *sc)
2275 {
2276 	struct ethercom *ec = &sc->sc_ec;
2277 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2278 	struct ether_multi *enm;
2279 	struct ether_multistep step;
2280 	uint32_t crc;
2281 	uint32_t mchash[2];
2282 	uint32_t rxcfg;
2283 
2284 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2285 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2286 	ifp->if_flags &= ~IFF_ALLMULTI;
2287 
2288 	/*
2289 	 * Always accept broadcast frames.
2290 	 */
2291 	rxcfg |= MAC_CFG_BCAST;
2292 
2293 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2294 		ifp->if_flags |= IFF_ALLMULTI;
2295 		if (ifp->if_flags & IFF_PROMISC)
2296 			rxcfg |= MAC_CFG_PROMISC;
2297 		else
2298 			rxcfg |= MAC_CFG_ALLMULTI;
2299 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2300 	} else {
2301 		/* Program new filter. */
2302 		memset(mchash, 0, sizeof(mchash));
2303 
2304 		ETHER_FIRST_MULTI(step, ec, enm);
2305 		while (enm != NULL) {
2306 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2307 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2308 			ETHER_NEXT_MULTI(step, enm);
2309 		}
2310 	}
2311 
2312 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2313 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2314 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2315 }
2316