xref: /netbsd-src/sys/dev/pci/if_age.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: if_age.c,v 1.28 2009/04/28 11:47:56 cegger Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.28 2009/04/28 11:47:56 cegger Exp $");
35 
36 #include "bpfilter.h"
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_agereg.h>
81 
82 static int	age_match(device_t, cfdata_t, void *);
83 static void	age_attach(device_t, device_t, void *);
84 static int	age_detach(device_t, int);
85 
86 static bool	age_resume(device_t PMF_FN_PROTO);
87 
88 static int	age_miibus_readreg(device_t, int, int);
89 static void	age_miibus_writereg(device_t, int, int, int);
90 static void	age_miibus_statchg(device_t);
91 
92 static int	age_init(struct ifnet *);
93 static int	age_ioctl(struct ifnet *, u_long, void *);
94 static void	age_start(struct ifnet *);
95 static void	age_watchdog(struct ifnet *);
96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int	age_mediachange(struct ifnet *);
98 
99 static int	age_intr(void *);
100 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 static int	age_dma_alloc(struct age_softc *);
102 static void	age_dma_free(struct age_softc *);
103 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
104 static void	age_phy_reset(struct age_softc *);
105 
106 static int	age_encap(struct age_softc *, struct mbuf **);
107 static void	age_init_tx_ring(struct age_softc *);
108 static int	age_init_rx_ring(struct age_softc *);
109 static void	age_init_rr_ring(struct age_softc *);
110 static void	age_init_cmb_block(struct age_softc *);
111 static void	age_init_smb_block(struct age_softc *);
112 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 static void	age_mac_config(struct age_softc *);
114 static void	age_txintr(struct age_softc *, int);
115 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 static void	age_rxintr(struct age_softc *, int);
117 static void	age_tick(void *);
118 static void	age_reset(struct age_softc *);
119 static void	age_stop(struct ifnet *, int);
120 static void	age_stats_update(struct age_softc *);
121 static void	age_stop_txmac(struct age_softc *);
122 static void	age_stop_rxmac(struct age_softc *);
123 static void	age_rxvlan(struct age_softc *sc);
124 static void	age_rxfilter(struct age_softc *);
125 
126 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127     age_match, age_attach, age_detach, NULL);
128 
129 int agedebug = 0;
130 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
131 
132 #define ETHER_ALIGN 2
133 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 
135 static int
136 age_match(device_t dev, cfdata_t match, void *aux)
137 {
138 	struct pci_attach_args *pa = aux;
139 
140 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 }
143 
144 static void
145 age_attach(device_t parent, device_t self, void *aux)
146 {
147 	struct age_softc *sc = device_private(self);
148 	struct pci_attach_args *pa = aux;
149 	pci_intr_handle_t ih;
150 	const char *intrstr;
151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
152 	pcireg_t memtype;
153 	int error = 0;
154 
155 	aprint_naive("\n");
156 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 
158 	sc->sc_dev = self;
159 	sc->sc_dmat = pa->pa_dmat;
160 	sc->sc_pct = pa->pa_pc;
161 	sc->sc_pcitag = pa->pa_tag;
162 
163 	/*
164 	 * Allocate IO memory
165 	 */
166 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 	switch (memtype) {
168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 		break;
172         default:
173 		aprint_error_dev(self, "invalid base address register\n");
174 		break;
175 	}
176 
177 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 		aprint_error_dev(self, "could not map mem space\n");
180 		return;
181 	}
182 
183 	if (pci_intr_map(pa, &ih) != 0) {
184 		aprint_error_dev(self, "could not map interrupt\n");
185 		goto fail;
186 	}
187 
188 	/*
189 	 * Allocate IRQ
190 	 */
191 	intrstr = pci_intr_string(sc->sc_pct, ih);
192 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 	    age_intr, sc);
194 	if (sc->sc_irq_handle == NULL) {
195 		aprint_error_dev(self, "could not establish interrupt");
196 		if (intrstr != NULL)
197 			aprint_error(" at %s", intrstr);
198 		aprint_error("\n");
199 		goto fail;
200 	}
201 	aprint_normal_dev(self, "%s\n", intrstr);
202 
203 	/* Set PHY address. */
204 	sc->age_phyaddr = AGE_PHY_ADDR;
205 
206 	/* Reset PHY. */
207 	age_phy_reset(sc);
208 
209 	/* Reset the ethernet controller. */
210 	age_reset(sc);
211 
212 	/* Get PCI and chip id/revision. */
213 	sc->age_rev = PCI_REVISION(pa->pa_class);
214 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 	    MASTER_CHIP_REV_SHIFT;
216 
217 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 
220 	if (agedebug) {
221 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 	}
225 
226 	/* Set max allowable DMA size. */
227 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 
230 	/* Allocate DMA stuffs */
231 	error = age_dma_alloc(sc);
232 	if (error)
233 		goto fail;
234 
235 	callout_init(&sc->sc_tick_ch, 0);
236 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 
238 	/* Load station address. */
239 	age_get_macaddr(sc, sc->sc_enaddr);
240 
241 	aprint_normal_dev(self, "Ethernet address %s\n",
242 	    ether_sprintf(sc->sc_enaddr));
243 
244 	ifp->if_softc = sc;
245 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 	ifp->if_init = age_init;
247 	ifp->if_ioctl = age_ioctl;
248 	ifp->if_start = age_start;
249 	ifp->if_stop = age_stop;
250 	ifp->if_watchdog = age_watchdog;
251 	ifp->if_baudrate = IF_Gbps(1);
252 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
253 	IFQ_SET_READY(&ifp->if_snd);
254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255 
256 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257 
258 #ifdef AGE_CHECKSUM
259 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
260 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
261 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
262 #endif
263 
264 #if NVLAN > 0
265 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267 
268 	/* Set up MII bus. */
269 	sc->sc_miibus.mii_ifp = ifp;
270 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
273 
274 	sc->sc_ec.ec_mii = &sc->sc_miibus;
275 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 	    age_mediastatus);
277 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 	   MII_OFFSET_ANY, 0);
279 
280 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 		aprint_error_dev(self, "no PHY found!\n");
282 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 		    0, NULL);
284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 	} else
286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287 
288 	if_attach(ifp);
289 	ether_ifattach(ifp, sc->sc_enaddr);
290 
291 	if (!pmf_device_register(self, NULL, age_resume))
292 		aprint_error_dev(self, "couldn't establish power handler\n");
293 	else
294 		pmf_class_network_register(self, ifp);
295 
296 	return;
297 
298 fail:
299 	age_dma_free(sc);
300 	if (sc->sc_irq_handle != NULL) {
301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 		sc->sc_irq_handle = NULL;
303 	}
304 	if (sc->sc_mem_size) {
305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 		sc->sc_mem_size = 0;
307 	}
308 }
309 
310 static int
311 age_detach(device_t self, int flags)
312 {
313 	struct age_softc *sc = device_private(self);
314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
315 	int s;
316 
317 	pmf_device_deregister(self);
318 	s = splnet();
319 	age_stop(ifp, 0);
320 	splx(s);
321 
322 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323 
324 	/* Delete all remaining media. */
325 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326 
327 	ether_ifdetach(ifp);
328 	if_detach(ifp);
329 	age_dma_free(sc);
330 
331 	if (sc->sc_irq_handle != NULL) {
332 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 		sc->sc_irq_handle = NULL;
334 	}
335 	if (sc->sc_mem_size) {
336 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 		sc->sc_mem_size = 0;
338 	}
339 	return 0;
340 }
341 
342 /*
343  *	Read a PHY register on the MII of the L1.
344  */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 	struct age_softc *sc = device_private(dev);
349 	uint32_t v;
350 	int i;
351 
352 	if (phy != sc->age_phyaddr)
353 		return 0;
354 
355 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 		DELAY(1);
359 		v = CSR_READ_4(sc, AGE_MDIO);
360 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 			break;
362 	}
363 
364 	if (i == 0) {
365 		printf("%s: phy read timeout: phy %d, reg %d\n",
366 			device_xname(sc->sc_dev), phy, reg);
367 		return 0;
368 	}
369 
370 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372 
373 /*
374  * 	Write a PHY register on the MII of the L1.
375  */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 	struct age_softc *sc = device_private(dev);
380 	uint32_t v;
381 	int i;
382 
383 	if (phy != sc->age_phyaddr)
384 		return;
385 
386 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389 
390 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 		DELAY(1);
392 		v = CSR_READ_4(sc, AGE_MDIO);
393 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 			break;
395 	}
396 
397 	if (i == 0) {
398 		printf("%s: phy write timeout: phy %d, reg %d\n",
399 		    device_xname(sc->sc_dev), phy, reg);
400 	}
401 }
402 
403 /*
404  *	Callback from MII layer when media changes.
405  */
406 static void
407 age_miibus_statchg(device_t dev)
408 {
409 	struct age_softc *sc = device_private(dev);
410 	struct ifnet *ifp = &sc->sc_ec.ec_if;
411 	struct mii_data *mii;
412 
413 	if ((ifp->if_flags & IFF_RUNNING) == 0)
414 		return;
415 
416 	mii = &sc->sc_miibus;
417 
418 	sc->age_flags &= ~AGE_FLAG_LINK;
419 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
420 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
421 		case IFM_10_T:
422 		case IFM_100_TX:
423 		case IFM_1000_T:
424 			sc->age_flags |= AGE_FLAG_LINK;
425 			break;
426 		default:
427 			break;
428 		}
429 	}
430 
431 	/* Stop Rx/Tx MACs. */
432 	age_stop_rxmac(sc);
433 	age_stop_txmac(sc);
434 
435 	/* Program MACs with resolved speed/duplex/flow-control. */
436 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
437 		uint32_t reg;
438 
439 		age_mac_config(sc);
440 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
441 		/* Restart DMA engine and Tx/Rx MAC. */
442 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
443 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
444 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
445 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
446 	}
447 }
448 
449 /*
450  *	Get the current interface media status.
451  */
452 static void
453 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
454 {
455 	struct age_softc *sc = ifp->if_softc;
456 	struct mii_data *mii = &sc->sc_miibus;
457 
458 	mii_pollstat(mii);
459 	ifmr->ifm_status = mii->mii_media_status;
460 	ifmr->ifm_active = mii->mii_media_active;
461 }
462 
463 /*
464  *	Set hardware to newly-selected media.
465  */
466 static int
467 age_mediachange(struct ifnet *ifp)
468 {
469 	struct age_softc *sc = ifp->if_softc;
470 	struct mii_data *mii = &sc->sc_miibus;
471 	int error;
472 
473 	if (mii->mii_instance != 0) {
474 		struct mii_softc *miisc;
475 
476 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
477 			mii_phy_reset(miisc);
478 	}
479 	error = mii_mediachg(mii);
480 
481 	return error;
482 }
483 
484 static int
485 age_intr(void *arg)
486 {
487         struct age_softc *sc = arg;
488         struct ifnet *ifp = &sc->sc_ec.ec_if;
489 	struct cmb *cmb;
490         uint32_t status;
491 
492 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
493 	if (status == 0 || (status & AGE_INTRS) == 0)
494 		return 0;
495 
496 	cmb = sc->age_rdata.age_cmb_block;
497 	if (cmb == NULL) {
498 		/* Happens when bringing up the interface
499 		 * w/o having a carrier. Ack. the interrupt.
500 		 */
501 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
502 		return 0;
503 	}
504 
505 	/* Disable interrupts. */
506 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
507 
508 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
509 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
510 	status = le32toh(cmb->intr_status);
511 	if ((status & AGE_INTRS) == 0)
512 		goto back;
513 
514 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
515 	    TPD_CONS_SHIFT;
516 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
517 	    RRD_PROD_SHIFT;
518 
519 	/* Let hardware know CMB was served. */
520 	cmb->intr_status = 0;
521 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
522 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
523 	    BUS_DMASYNC_PREWRITE);
524 
525 	if (ifp->if_flags & IFF_RUNNING) {
526 		if (status & INTR_CMB_RX)
527 			age_rxintr(sc, sc->age_rr_prod);
528 
529 		if (status & INTR_CMB_TX)
530 			age_txintr(sc, sc->age_tpd_cons);
531 
532 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
533 			if (status & INTR_DMA_RD_TO_RST)
534 				printf("%s: DMA read error! -- resetting\n",
535 				    device_xname(sc->sc_dev));
536 			if (status & INTR_DMA_WR_TO_RST)
537 				printf("%s: DMA write error! -- resetting\n",
538 				    device_xname(sc->sc_dev));
539 			age_init(ifp);
540 		}
541 
542 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
543 			age_start(ifp);
544 
545 		if (status & INTR_SMB)
546 			age_stats_update(sc);
547 	}
548 
549 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
550 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
551 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
552 	    BUS_DMASYNC_POSTREAD);
553 
554 back:
555 	/* Re-enable interrupts. */
556 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
557 
558 	return 1;
559 }
560 
561 static int
562 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
563     uint32_t *word)
564 {
565 	int i;
566 	pcireg_t rv;
567 
568 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
569 	    offset << PCI_VPD_ADDRESS_SHIFT);
570 	for (i = AGE_TIMEOUT; i > 0; i--) {
571 		DELAY(10);
572 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
573 		    PCI_VPD_ADDRESS(vpdc));
574 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
575 			break;
576 	}
577 	if (i == 0) {
578 		printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
579 		*word = 0;
580 		return ETIMEDOUT;
581 	}
582 
583 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
584 	return 0;
585 }
586 
587 static void
588 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
589 {
590 	uint32_t ea[2], off, reg, word;
591 	int vpd_error, match, vpdc;
592 
593 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
594 	if ((reg & SPI_VPD_ENB) != 0) {
595 		/* Get VPD stored in TWSI EEPROM. */
596 		reg &= ~SPI_VPD_ENB;
597 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
598 	}
599 
600 	vpd_error = 0;
601 	ea[0] = ea[1] = 0;
602 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
603 	    PCI_CAP_VPD, &vpdc, NULL))) {
604 		/*
605 		 * PCI VPD capability exists, but it seems that it's
606 		 * not in the standard form as stated in PCI VPD
607 		 * specification such that driver could not use
608 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
609 		 * Search VPD data starting at address 0x0100. The data
610 		 * should be used as initializers to set AGE_PAR0,
611 		 * AGE_PAR1 register including other PCI configuration
612 		 * registers.
613 		 */
614 		word = 0;
615 		match = 0;
616 		reg = 0;
617 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
618 		    off += sizeof(uint32_t)) {
619 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
620 			if (vpd_error != 0)
621 				break;
622 			if (match != 0) {
623 				switch (reg) {
624 				case AGE_PAR0:
625 					ea[0] = word;
626 					break;
627 				case AGE_PAR1:
628 					ea[1] = word;
629 					break;
630 				default:
631 					break;
632 				}
633 				match = 0;
634 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
635 				match = 1;
636 				reg = word >> 16;
637 			} else
638 				break;
639 		}
640 		if (off >= AGE_VPD_REG_CONF_END)
641 			vpd_error = ENOENT;
642 		if (vpd_error == 0) {
643 			/*
644 			 * Don't blindly trust ethernet address obtained
645 			 * from VPD. Check whether ethernet address is
646 			 * valid one. Otherwise fall-back to reading
647 			 * PAR register.
648 			 */
649 			ea[1] &= 0xFFFF;
650 			if ((ea[0] == 0 && ea[1] == 0) ||
651 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
652 				if (agedebug)
653 					printf("%s: invalid ethernet address "
654 				    	    "returned from VPD.\n",
655 				    	    device_xname(sc->sc_dev));
656 				vpd_error = EINVAL;
657 			}
658 		}
659 		if (vpd_error != 0 && (agedebug))
660 			printf("%s: VPD access failure!\n",
661 			    device_xname(sc->sc_dev));
662 	} else {
663 		if (agedebug)
664 			printf("%s: PCI VPD capability not found!\n",
665 			    device_xname(sc->sc_dev));
666 	}
667 
668 	/*
669 	 * It seems that L1 also provides a way to extract ethernet
670 	 * address via SPI flash interface. Because SPI flash memory
671 	 * device of different vendors vary in their instruction
672 	 * codes for read ID instruction, it's very hard to get
673 	 * instructions codes without detailed information for the
674 	 * flash memory device used on ethernet controller. To simplify
675 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
676 	 * address which is supposed to be set by hardware during
677 	 * power on reset.
678 	 */
679 	if (vpd_error != 0) {
680 		/*
681 		 * VPD is mapped to SPI flash memory or BIOS set it.
682 		 */
683 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
684 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
685 	}
686 
687 	ea[1] &= 0xFFFF;
688 	eaddr[0] = (ea[1] >> 8) & 0xFF;
689 	eaddr[1] = (ea[1] >> 0) & 0xFF;
690 	eaddr[2] = (ea[0] >> 24) & 0xFF;
691 	eaddr[3] = (ea[0] >> 16) & 0xFF;
692 	eaddr[4] = (ea[0] >> 8) & 0xFF;
693 	eaddr[5] = (ea[0] >> 0) & 0xFF;
694 }
695 
696 static void
697 age_phy_reset(struct age_softc *sc)
698 {
699 	/* Reset PHY. */
700 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
701 	DELAY(1000);
702 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
703 	DELAY(1000);
704 }
705 
706 static int
707 age_dma_alloc(struct age_softc *sc)
708 {
709 	struct age_txdesc *txd;
710 	struct age_rxdesc *rxd;
711 	int nsegs, error, i;
712 
713 	/*
714 	 * Create DMA stuffs for TX ring
715 	 */
716 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
717 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
718 	if (error) {
719 		sc->age_cdata.age_tx_ring_map = NULL;
720 		return ENOBUFS;
721 	}
722 
723 	/* Allocate DMA'able memory for TX ring */
724 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
725 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
726 	    &nsegs, BUS_DMA_WAITOK);
727 	if (error) {
728 		printf("%s: could not allocate DMA'able memory for Tx ring, "
729 		    "error = %i\n", device_xname(sc->sc_dev), error);
730 		return error;
731 	}
732 
733 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
734 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
735 	    BUS_DMA_NOWAIT);
736 	if (error)
737 		return ENOBUFS;
738 
739 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
740 
741 	/*  Load the DMA map for Tx ring. */
742 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
743 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
744 	if (error) {
745 		printf("%s: could not load DMA'able memory for Tx ring, "
746 		    "error = %i\n", device_xname(sc->sc_dev), error);
747 		bus_dmamem_free(sc->sc_dmat,
748 		    &sc->age_rdata.age_tx_ring_seg, 1);
749 		return error;
750 	}
751 
752 	sc->age_rdata.age_tx_ring_paddr =
753 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
754 
755 	/*
756 	 * Create DMA stuffs for RX ring
757 	 */
758 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
759 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
760 	if (error) {
761 		sc->age_cdata.age_rx_ring_map = NULL;
762 		return ENOBUFS;
763 	}
764 
765 	/* Allocate DMA'able memory for RX ring */
766 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
767 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
768 	    &nsegs, BUS_DMA_WAITOK);
769 	if (error) {
770 		printf("%s: could not allocate DMA'able memory for Rx ring, "
771 		    "error = %i.\n", device_xname(sc->sc_dev), error);
772 		return error;
773 	}
774 
775 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
776 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
777 	    BUS_DMA_NOWAIT);
778 	if (error)
779 		return ENOBUFS;
780 
781 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
782 
783 	/* Load the DMA map for Rx ring. */
784 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
785 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
786 	if (error) {
787 		printf("%s: could not load DMA'able memory for Rx ring, "
788 		    "error = %i.\n", device_xname(sc->sc_dev), error);
789 		bus_dmamem_free(sc->sc_dmat,
790 		    &sc->age_rdata.age_rx_ring_seg, 1);
791 		return error;
792 	}
793 
794 	sc->age_rdata.age_rx_ring_paddr =
795 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
796 
797 	/*
798 	 * Create DMA stuffs for RX return ring
799 	 */
800 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
801 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
802 	if (error) {
803 		sc->age_cdata.age_rr_ring_map = NULL;
804 		return ENOBUFS;
805 	}
806 
807 	/* Allocate DMA'able memory for RX return ring */
808 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
809 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
810 	    &nsegs, BUS_DMA_WAITOK);
811 	if (error) {
812 		printf("%s: could not allocate DMA'able memory for Rx "
813 		    "return ring, error = %i.\n",
814 		    device_xname(sc->sc_dev), error);
815 		return error;
816 	}
817 
818 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
819 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
820 	    BUS_DMA_NOWAIT);
821 	if (error)
822 		return ENOBUFS;
823 
824 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
825 
826 	/*  Load the DMA map for Rx return ring. */
827 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
828 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
829 	if (error) {
830 		printf("%s: could not load DMA'able memory for Rx return ring, "
831 		    "error = %i\n", device_xname(sc->sc_dev), error);
832 		bus_dmamem_free(sc->sc_dmat,
833 		    &sc->age_rdata.age_rr_ring_seg, 1);
834 		return error;
835 	}
836 
837 	sc->age_rdata.age_rr_ring_paddr =
838 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
839 
840 	/*
841 	 * Create DMA stuffs for CMB block
842 	 */
843 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
844 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
845 	    &sc->age_cdata.age_cmb_block_map);
846 	if (error) {
847 		sc->age_cdata.age_cmb_block_map = NULL;
848 		return ENOBUFS;
849 	}
850 
851 	/* Allocate DMA'able memory for CMB block */
852 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
853 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
854 	    &nsegs, BUS_DMA_WAITOK);
855 	if (error) {
856 		printf("%s: could not allocate DMA'able memory for "
857 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
858 		return error;
859 	}
860 
861 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
862 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
863 	    BUS_DMA_NOWAIT);
864 	if (error)
865 		return ENOBUFS;
866 
867 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
868 
869 	/*  Load the DMA map for CMB block. */
870 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
871 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
872 	    BUS_DMA_WAITOK);
873 	if (error) {
874 		printf("%s: could not load DMA'able memory for CMB block, "
875 		    "error = %i\n", device_xname(sc->sc_dev), error);
876 		bus_dmamem_free(sc->sc_dmat,
877 		    &sc->age_rdata.age_cmb_block_seg, 1);
878 		return error;
879 	}
880 
881 	sc->age_rdata.age_cmb_block_paddr =
882 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
883 
884 	/*
885 	 * Create DMA stuffs for SMB block
886 	 */
887 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
888 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
889 	    &sc->age_cdata.age_smb_block_map);
890 	if (error) {
891 		sc->age_cdata.age_smb_block_map = NULL;
892 		return ENOBUFS;
893 	}
894 
895 	/* Allocate DMA'able memory for SMB block */
896 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
897 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
898 	    &nsegs, BUS_DMA_WAITOK);
899 	if (error) {
900 		printf("%s: could not allocate DMA'able memory for "
901 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
902 		return error;
903 	}
904 
905 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
906 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
907 	    BUS_DMA_NOWAIT);
908 	if (error)
909 		return ENOBUFS;
910 
911 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
912 
913 	/*  Load the DMA map for SMB block */
914 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
915 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
916 	    BUS_DMA_WAITOK);
917 	if (error) {
918 		printf("%s: could not load DMA'able memory for SMB block, "
919 		    "error = %i\n", device_xname(sc->sc_dev), error);
920 		bus_dmamem_free(sc->sc_dmat,
921 		    &sc->age_rdata.age_smb_block_seg, 1);
922 		return error;
923 	}
924 
925 	sc->age_rdata.age_smb_block_paddr =
926 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
927 
928 	/* Create DMA maps for Tx buffers. */
929 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
930 		txd = &sc->age_cdata.age_txdesc[i];
931 		txd->tx_m = NULL;
932 		txd->tx_dmamap = NULL;
933 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
934 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
935 		    &txd->tx_dmamap);
936 		if (error) {
937 			txd->tx_dmamap = NULL;
938 			printf("%s: could not create Tx dmamap, error = %i.\n",
939 			    device_xname(sc->sc_dev), error);
940 			return error;
941 		}
942 	}
943 
944 	/* Create DMA maps for Rx buffers. */
945 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
946 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
947 	if (error) {
948 		sc->age_cdata.age_rx_sparemap = NULL;
949 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
950 		    device_xname(sc->sc_dev), error);
951 		return error;
952 	}
953 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
954 		rxd = &sc->age_cdata.age_rxdesc[i];
955 		rxd->rx_m = NULL;
956 		rxd->rx_dmamap = NULL;
957 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
958 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
959 		if (error) {
960 			rxd->rx_dmamap = NULL;
961 			printf("%s: could not create Rx dmamap, error = %i.\n",
962 			    device_xname(sc->sc_dev), error);
963 			return error;
964 		}
965 	}
966 
967 	return 0;
968 }
969 
970 static void
971 age_dma_free(struct age_softc *sc)
972 {
973 	struct age_txdesc *txd;
974 	struct age_rxdesc *rxd;
975 	int i;
976 
977 	/* Tx buffers */
978 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
979 		txd = &sc->age_cdata.age_txdesc[i];
980 		if (txd->tx_dmamap != NULL) {
981 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
982 			txd->tx_dmamap = NULL;
983 		}
984 	}
985 	/* Rx buffers */
986 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
987 		rxd = &sc->age_cdata.age_rxdesc[i];
988 		if (rxd->rx_dmamap != NULL) {
989 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
990 			rxd->rx_dmamap = NULL;
991 		}
992 	}
993 	if (sc->age_cdata.age_rx_sparemap != NULL) {
994 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
995 		sc->age_cdata.age_rx_sparemap = NULL;
996 	}
997 
998 	/* Tx ring. */
999 	if (sc->age_cdata.age_tx_ring_map != NULL)
1000 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
1001 	if (sc->age_cdata.age_tx_ring_map != NULL &&
1002 	    sc->age_rdata.age_tx_ring != NULL)
1003 		bus_dmamem_free(sc->sc_dmat,
1004 		    &sc->age_rdata.age_tx_ring_seg, 1);
1005 	sc->age_rdata.age_tx_ring = NULL;
1006 	sc->age_cdata.age_tx_ring_map = NULL;
1007 
1008 	/* Rx ring. */
1009 	if (sc->age_cdata.age_rx_ring_map != NULL)
1010 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
1011 	if (sc->age_cdata.age_rx_ring_map != NULL &&
1012 	    sc->age_rdata.age_rx_ring != NULL)
1013 		bus_dmamem_free(sc->sc_dmat,
1014 		    &sc->age_rdata.age_rx_ring_seg, 1);
1015 	sc->age_rdata.age_rx_ring = NULL;
1016 	sc->age_cdata.age_rx_ring_map = NULL;
1017 
1018 	/* Rx return ring. */
1019 	if (sc->age_cdata.age_rr_ring_map != NULL)
1020 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1021 	if (sc->age_cdata.age_rr_ring_map != NULL &&
1022 	    sc->age_rdata.age_rr_ring != NULL)
1023 		bus_dmamem_free(sc->sc_dmat,
1024 		    &sc->age_rdata.age_rr_ring_seg, 1);
1025 	sc->age_rdata.age_rr_ring = NULL;
1026 	sc->age_cdata.age_rr_ring_map = NULL;
1027 
1028 	/* CMB block */
1029 	if (sc->age_cdata.age_cmb_block_map != NULL)
1030 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1031 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1032 	    sc->age_rdata.age_cmb_block != NULL)
1033 		bus_dmamem_free(sc->sc_dmat,
1034 		    &sc->age_rdata.age_cmb_block_seg, 1);
1035 	sc->age_rdata.age_cmb_block = NULL;
1036 	sc->age_cdata.age_cmb_block_map = NULL;
1037 
1038 	/* SMB block */
1039 	if (sc->age_cdata.age_smb_block_map != NULL)
1040 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1041 	if (sc->age_cdata.age_smb_block_map != NULL &&
1042 	    sc->age_rdata.age_smb_block != NULL)
1043 		bus_dmamem_free(sc->sc_dmat,
1044 		    &sc->age_rdata.age_smb_block_seg, 1);
1045 	sc->age_rdata.age_smb_block = NULL;
1046 	sc->age_cdata.age_smb_block_map = NULL;
1047 }
1048 
1049 static void
1050 age_start(struct ifnet *ifp)
1051 {
1052         struct age_softc *sc = ifp->if_softc;
1053         struct mbuf *m_head;
1054 	int enq;
1055 
1056 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1057 		return;
1058 
1059 	enq = 0;
1060 	for (;;) {
1061 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 		if (m_head == NULL)
1063 			break;
1064 
1065 		/*
1066 		 * Pack the data into the transmit ring. If we
1067 		 * don't have room, set the OACTIVE flag and wait
1068 		 * for the NIC to drain the ring.
1069 		 */
1070 		if (age_encap(sc, &m_head)) {
1071 			if (m_head == NULL)
1072 				break;
1073 			ifp->if_flags |= IFF_OACTIVE;
1074 			break;
1075 		}
1076 		enq = 1;
1077 
1078 #if NBPFILTER > 0
1079 		/*
1080 		 * If there's a BPF listener, bounce a copy of this frame
1081 		 * to him.
1082 		 */
1083 		if (ifp->if_bpf != NULL)
1084 			bpf_mtap(ifp->if_bpf, m_head);
1085 #endif
1086 	}
1087 
1088 	if (enq) {
1089 		/* Update mbox. */
1090 		AGE_COMMIT_MBOX(sc);
1091 		/* Set a timeout in case the chip goes out to lunch. */
1092 		ifp->if_timer = AGE_TX_TIMEOUT;
1093 	}
1094 }
1095 
1096 static void
1097 age_watchdog(struct ifnet *ifp)
1098 {
1099 	struct age_softc *sc = ifp->if_softc;
1100 
1101 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1102 		printf("%s: watchdog timeout (missed link)\n",
1103 		    device_xname(sc->sc_dev));
1104 		ifp->if_oerrors++;
1105 		age_init(ifp);
1106 		return;
1107 	}
1108 
1109 	if (sc->age_cdata.age_tx_cnt == 0) {
1110 		printf("%s: watchdog timeout (missed Tx interrupts) "
1111 		    "-- recovering\n", device_xname(sc->sc_dev));
1112 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1113 			age_start(ifp);
1114 		return;
1115 	}
1116 
1117 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1118 	ifp->if_oerrors++;
1119 	age_init(ifp);
1120 
1121 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1122 		age_start(ifp);
1123 }
1124 
1125 static int
1126 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1127 {
1128 	struct age_softc *sc = ifp->if_softc;
1129 	int s, error;
1130 
1131 	s = splnet();
1132 
1133 	error = ether_ioctl(ifp, cmd, data);
1134 	if (error == ENETRESET) {
1135 		if (ifp->if_flags & IFF_RUNNING)
1136 			age_rxfilter(sc);
1137 		error = 0;
1138 	}
1139 
1140 	splx(s);
1141 	return error;
1142 }
1143 
1144 static void
1145 age_mac_config(struct age_softc *sc)
1146 {
1147 	struct mii_data *mii;
1148 	uint32_t reg;
1149 
1150 	mii = &sc->sc_miibus;
1151 
1152 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1153 	reg &= ~MAC_CFG_FULL_DUPLEX;
1154 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1155 	reg &= ~MAC_CFG_SPEED_MASK;
1156 
1157 	/* Reprogram MAC with resolved speed/duplex. */
1158 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1159 	case IFM_10_T:
1160 	case IFM_100_TX:
1161 		reg |= MAC_CFG_SPEED_10_100;
1162 		break;
1163 	case IFM_1000_T:
1164 		reg |= MAC_CFG_SPEED_1000;
1165 		break;
1166 	}
1167 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1168 		reg |= MAC_CFG_FULL_DUPLEX;
1169 #ifdef notyet
1170 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1171 			reg |= MAC_CFG_TX_FC;
1172 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1173 			reg |= MAC_CFG_RX_FC;
1174 #endif
1175 	}
1176 
1177 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1178 }
1179 
1180 static bool
1181 age_resume(device_t dv PMF_FN_ARGS)
1182 {
1183 	struct age_softc *sc = device_private(dv);
1184 	uint16_t cmd;
1185 
1186 	/*
1187 	 * Clear INTx emulation disable for hardware that
1188 	 * is set in resume event. From Linux.
1189 	 */
1190 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1191 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1192 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1193 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1194 		    PCI_COMMAND_STATUS_REG, cmd);
1195 	}
1196 
1197 	return true;
1198 }
1199 
1200 static int
1201 age_encap(struct age_softc *sc, struct mbuf **m_head)
1202 {
1203 	struct age_txdesc *txd, *txd_last;
1204 	struct tx_desc *desc;
1205 	struct mbuf *m;
1206 	bus_dmamap_t map;
1207 	uint32_t cflags, poff, vtag;
1208 	int error, i, nsegs, prod;
1209 #if NVLAN > 0
1210 	struct m_tag *mtag;
1211 #endif
1212 
1213 	m = *m_head;
1214 	cflags = vtag = 0;
1215 	poff = 0;
1216 
1217 	prod = sc->age_cdata.age_tx_prod;
1218 	txd = &sc->age_cdata.age_txdesc[prod];
1219 	txd_last = txd;
1220 	map = txd->tx_dmamap;
1221 
1222 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1223 
1224 	if (error == EFBIG) {
1225 		error = 0;
1226 
1227 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1228 		if (m == NULL) {
1229 			printf("%s: can't defrag TX mbuf\n",
1230 			    device_xname(sc->sc_dev));
1231 			m_freem(*m_head);
1232 			*m_head = NULL;
1233 			return ENOBUFS;
1234 		}
1235 
1236 		M_COPY_PKTHDR(m, *m_head);
1237 		if ((*m_head)->m_pkthdr.len > MHLEN) {
1238 			MCLGET(m, M_DONTWAIT);
1239 			if (!(m->m_flags & M_EXT)) {
1240 				m_freem(*m_head);
1241 				m_freem(m);
1242 				*m_head = NULL;
1243 				return ENOBUFS;
1244 			}
1245 		}
1246 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1247 		    mtod(m, void *));
1248 		m_freem(*m_head);
1249 		m->m_len = m->m_pkthdr.len;
1250 		*m_head = m;
1251 
1252 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1253 		  	    BUS_DMA_NOWAIT);
1254 
1255 		if (error != 0) {
1256 			printf("%s: could not load defragged TX mbuf\n",
1257 			    device_xname(sc->sc_dev));
1258 			if (!error) {
1259 				bus_dmamap_unload(sc->sc_dmat, map);
1260 				error = EFBIG;
1261 			}
1262 			m_freem(*m_head);
1263 			*m_head = NULL;
1264 			return error;
1265 		}
1266 	} else if (error) {
1267 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1268 		return error;
1269 	}
1270 
1271 	nsegs = map->dm_nsegs;
1272 
1273 	if (nsegs == 0) {
1274 		m_freem(*m_head);
1275 		*m_head = NULL;
1276 		return EIO;
1277 	}
1278 
1279 	/* Check descriptor overrun. */
1280 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1281 		bus_dmamap_unload(sc->sc_dmat, map);
1282 		return ENOBUFS;
1283 	}
1284 
1285 	m = *m_head;
1286 	/* Configure Tx IP/TCP/UDP checksum offload. */
1287 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1288 		cflags |= AGE_TD_CSUM;
1289 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1290 			cflags |= AGE_TD_TCPCSUM;
1291 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1292 			cflags |= AGE_TD_UDPCSUM;
1293 		/* Set checksum start offset. */
1294 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1295 	}
1296 
1297 #if NVLAN > 0
1298 	/* Configure VLAN hardware tag insertion. */
1299 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1300 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1301 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1302 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1303 	}
1304 #endif
1305 
1306 	desc = NULL;
1307 	for (i = 0; i < nsegs; i++) {
1308 		desc = &sc->age_rdata.age_tx_ring[prod];
1309 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1310 		desc->len =
1311 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1312 		desc->flags = htole32(cflags);
1313 		sc->age_cdata.age_tx_cnt++;
1314 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1315 	}
1316 
1317 	/* Update producer index. */
1318 	sc->age_cdata.age_tx_prod = prod;
1319 
1320 	/* Set EOP on the last descriptor. */
1321 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1322 	desc = &sc->age_rdata.age_tx_ring[prod];
1323 	desc->flags |= htole32(AGE_TD_EOP);
1324 
1325 	/* Swap dmamap of the first and the last. */
1326 	txd = &sc->age_cdata.age_txdesc[prod];
1327 	map = txd_last->tx_dmamap;
1328 	txd_last->tx_dmamap = txd->tx_dmamap;
1329 	txd->tx_dmamap = map;
1330 	txd->tx_m = m;
1331 
1332 	/* Sync descriptors. */
1333 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1334 	    BUS_DMASYNC_PREWRITE);
1335 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1336 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1337 
1338 	return 0;
1339 }
1340 
1341 static void
1342 age_txintr(struct age_softc *sc, int tpd_cons)
1343 {
1344 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1345 	struct age_txdesc *txd;
1346 	int cons, prog;
1347 
1348 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1349 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1350 
1351 	/*
1352 	 * Go through our Tx list and free mbufs for those
1353 	 * frames which have been transmitted.
1354 	 */
1355 	cons = sc->age_cdata.age_tx_cons;
1356 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1357 		if (sc->age_cdata.age_tx_cnt <= 0)
1358 			break;
1359 		prog++;
1360 		ifp->if_flags &= ~IFF_OACTIVE;
1361 		sc->age_cdata.age_tx_cnt--;
1362 		txd = &sc->age_cdata.age_txdesc[cons];
1363 		/*
1364 		 * Clear Tx descriptors, it's not required but would
1365 		 * help debugging in case of Tx issues.
1366 		 */
1367 		txd->tx_desc->addr = 0;
1368 		txd->tx_desc->len = 0;
1369 		txd->tx_desc->flags = 0;
1370 
1371 		if (txd->tx_m == NULL)
1372 			continue;
1373 		/* Reclaim transmitted mbufs. */
1374 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1375 		m_freem(txd->tx_m);
1376 		txd->tx_m = NULL;
1377 	}
1378 
1379 	if (prog > 0) {
1380 		sc->age_cdata.age_tx_cons = cons;
1381 
1382 		/*
1383 		 * Unarm watchdog timer only when there are no pending
1384 		 * Tx descriptors in queue.
1385 		 */
1386 		if (sc->age_cdata.age_tx_cnt == 0)
1387 			ifp->if_timer = 0;
1388 
1389 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1390 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1391 		    BUS_DMASYNC_PREWRITE);
1392 	}
1393 }
1394 
1395 /* Receive a frame. */
1396 static void
1397 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1398 {
1399 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1400 	struct age_rxdesc *rxd;
1401 	struct rx_desc *desc;
1402 	struct mbuf *mp, *m;
1403 	uint32_t status, index;
1404 	int count, nsegs, pktlen;
1405 	int rx_cons;
1406 
1407 	status = le32toh(rxrd->flags);
1408 	index = le32toh(rxrd->index);
1409 	rx_cons = AGE_RX_CONS(index);
1410 	nsegs = AGE_RX_NSEGS(index);
1411 
1412 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1413 	if ((status & AGE_RRD_ERROR) != 0 &&
1414 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1415 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1416 		/*
1417 		 * We want to pass the following frames to upper
1418 		 * layer regardless of error status of Rx return
1419 		 * ring.
1420 		 *
1421 		 *  o IP/TCP/UDP checksum is bad.
1422 		 *  o frame length and protocol specific length
1423 		 *     does not match.
1424 		 */
1425 		sc->age_cdata.age_rx_cons += nsegs;
1426 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1427 		return;
1428 	}
1429 
1430 	pktlen = 0;
1431 	for (count = 0; count < nsegs; count++,
1432 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1433 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1434 		mp = rxd->rx_m;
1435 		desc = rxd->rx_desc;
1436 		/* Add a new receive buffer to the ring. */
1437 		if (age_newbuf(sc, rxd, 0) != 0) {
1438 			ifp->if_iqdrops++;
1439 			/* Reuse Rx buffers. */
1440 			if (sc->age_cdata.age_rxhead != NULL) {
1441 				m_freem(sc->age_cdata.age_rxhead);
1442 				AGE_RXCHAIN_RESET(sc);
1443 			}
1444 			break;
1445 		}
1446 
1447 		/* The length of the first mbuf is computed last. */
1448 		if (count != 0) {
1449 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1450 			pktlen += mp->m_len;
1451 		}
1452 
1453 		/* Chain received mbufs. */
1454 		if (sc->age_cdata.age_rxhead == NULL) {
1455 			sc->age_cdata.age_rxhead = mp;
1456 			sc->age_cdata.age_rxtail = mp;
1457 		} else {
1458 			mp->m_flags &= ~M_PKTHDR;
1459 			sc->age_cdata.age_rxprev_tail =
1460 			    sc->age_cdata.age_rxtail;
1461 			sc->age_cdata.age_rxtail->m_next = mp;
1462 			sc->age_cdata.age_rxtail = mp;
1463 		}
1464 
1465 		if (count == nsegs - 1) {
1466 			/*
1467 			 * It seems that L1 controller has no way
1468 			 * to tell hardware to strip CRC bytes.
1469 			 */
1470 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1471 			if (nsegs > 1) {
1472 				/* Remove the CRC bytes in chained mbufs. */
1473 				pktlen -= ETHER_CRC_LEN;
1474 				if (mp->m_len <= ETHER_CRC_LEN) {
1475 					sc->age_cdata.age_rxtail =
1476 					    sc->age_cdata.age_rxprev_tail;
1477 					sc->age_cdata.age_rxtail->m_len -=
1478 					    (ETHER_CRC_LEN - mp->m_len);
1479 					sc->age_cdata.age_rxtail->m_next = NULL;
1480 					m_freem(mp);
1481 				} else {
1482 					mp->m_len -= ETHER_CRC_LEN;
1483 				}
1484 			}
1485 
1486 			m = sc->age_cdata.age_rxhead;
1487 			m->m_flags |= M_PKTHDR;
1488 			m->m_pkthdr.rcvif = ifp;
1489 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1490 			/* Set the first mbuf length. */
1491 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1492 
1493 			/*
1494 			 * Set checksum information.
1495 			 * It seems that L1 controller can compute partial
1496 			 * checksum. The partial checksum value can be used
1497 			 * to accelerate checksum computation for fragmented
1498 			 * TCP/UDP packets. Upper network stack already
1499 			 * takes advantage of the partial checksum value in
1500 			 * IP reassembly stage. But I'm not sure the
1501 			 * correctness of the partial hardware checksum
1502 			 * assistance due to lack of data sheet. If it is
1503 			 * proven to work on L1 I'll enable it.
1504 			 */
1505 			if (status & AGE_RRD_IPV4) {
1506 				if (status & AGE_RRD_IPCSUM_NOK)
1507 					m->m_pkthdr.csum_flags |=
1508 					    M_CSUM_IPv4_BAD;
1509 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1510 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1511 					m->m_pkthdr.csum_flags |=
1512 					    M_CSUM_TCP_UDP_BAD;
1513 				}
1514 				/*
1515 				 * Don't mark bad checksum for TCP/UDP frames
1516 				 * as fragmented frames may always have set
1517 				 * bad checksummed bit of descriptor status.
1518 				 */
1519 			}
1520 #if NVLAN > 0
1521 			/* Check for VLAN tagged frames. */
1522 			if (status & AGE_RRD_VLAN) {
1523 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1524 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1525 					continue);
1526 			}
1527 #endif
1528 
1529 #if NBPFILTER > 0
1530 			if (ifp->if_bpf)
1531 				bpf_mtap(ifp->if_bpf, m);
1532 #endif
1533 			/* Pass it on. */
1534 			ether_input(ifp, m);
1535 
1536 			/* Reset mbuf chains. */
1537 			AGE_RXCHAIN_RESET(sc);
1538 		}
1539 	}
1540 
1541 	if (count != nsegs) {
1542 		sc->age_cdata.age_rx_cons += nsegs;
1543 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1544 	} else
1545 		sc->age_cdata.age_rx_cons = rx_cons;
1546 }
1547 
1548 static void
1549 age_rxintr(struct age_softc *sc, int rr_prod)
1550 {
1551 	struct rx_rdesc *rxrd;
1552 	int rr_cons, nsegs, pktlen, prog;
1553 
1554 	rr_cons = sc->age_cdata.age_rr_cons;
1555 	if (rr_cons == rr_prod)
1556 		return;
1557 
1558 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1559 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1560 	    BUS_DMASYNC_POSTREAD);
1561 
1562 	for (prog = 0; rr_cons != rr_prod; prog++) {
1563 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1564 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1565 		if (nsegs == 0)
1566 			break;
1567 		/*
1568 		 * Check number of segments against received bytes
1569 		 * Non-matching value would indicate that hardware
1570 		 * is still trying to update Rx return descriptors.
1571 		 * I'm not sure whether this check is really needed.
1572 		 */
1573 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1574 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1575 		    (MCLBYTES - ETHER_ALIGN)))
1576 			break;
1577 
1578 		/* Received a frame. */
1579 		age_rxeof(sc, rxrd);
1580 
1581 		/* Clear return ring. */
1582 		rxrd->index = 0;
1583 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1584 	}
1585 
1586 	if (prog > 0) {
1587 		/* Update the consumer index. */
1588 		sc->age_cdata.age_rr_cons = rr_cons;
1589 
1590 		/* Sync descriptors. */
1591 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1592 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1593 		    BUS_DMASYNC_PREWRITE);
1594 
1595 		/* Notify hardware availability of new Rx buffers. */
1596 		AGE_COMMIT_MBOX(sc);
1597 	}
1598 }
1599 
1600 static void
1601 age_tick(void *xsc)
1602 {
1603 	struct age_softc *sc = xsc;
1604 	struct mii_data *mii = &sc->sc_miibus;
1605 	int s;
1606 
1607 	s = splnet();
1608 	mii_tick(mii);
1609 	splx(s);
1610 
1611 	callout_schedule(&sc->sc_tick_ch, hz);
1612 }
1613 
1614 static void
1615 age_reset(struct age_softc *sc)
1616 {
1617 	uint32_t reg;
1618 	int i;
1619 
1620 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1621 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1622 		DELAY(1);
1623 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1624 			break;
1625 	}
1626 	if (i == 0)
1627 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1628 
1629 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1630 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1631 			break;
1632 		DELAY(10);
1633 	}
1634 
1635 	if (i == 0)
1636 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1637 		    reg);
1638 
1639 	/* Initialize PCIe module. From Linux. */
1640 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1641 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1642 }
1643 
1644 static int
1645 age_init(struct ifnet *ifp)
1646 {
1647 	struct age_softc *sc = ifp->if_softc;
1648 	struct mii_data *mii;
1649 	uint8_t eaddr[ETHER_ADDR_LEN];
1650 	bus_addr_t paddr;
1651 	uint32_t reg, fsize;
1652 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1653 	int error;
1654 
1655 	/*
1656 	 * Cancel any pending I/O.
1657 	 */
1658 	age_stop(ifp, 0);
1659 
1660 	/*
1661 	 * Reset the chip to a known state.
1662 	 */
1663 	age_reset(sc);
1664 
1665 	/* Initialize descriptors. */
1666 	error = age_init_rx_ring(sc);
1667         if (error != 0) {
1668 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1669 		age_stop(ifp, 0);
1670 		return error;
1671         }
1672 	age_init_rr_ring(sc);
1673 	age_init_tx_ring(sc);
1674 	age_init_cmb_block(sc);
1675 	age_init_smb_block(sc);
1676 
1677 	/* Reprogram the station address. */
1678 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1679 	CSR_WRITE_4(sc, AGE_PAR0,
1680 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1681 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1682 
1683 	/* Set descriptor base addresses. */
1684 	paddr = sc->age_rdata.age_tx_ring_paddr;
1685 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1686 	paddr = sc->age_rdata.age_rx_ring_paddr;
1687 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1688 	paddr = sc->age_rdata.age_rr_ring_paddr;
1689 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1690 	paddr = sc->age_rdata.age_tx_ring_paddr;
1691 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1692 	paddr = sc->age_rdata.age_cmb_block_paddr;
1693 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1694 	paddr = sc->age_rdata.age_smb_block_paddr;
1695 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1696 
1697 	/* Set Rx/Rx return descriptor counter. */
1698 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1699 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1700 	    DESC_RRD_CNT_MASK) |
1701 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1702 
1703 	/* Set Tx descriptor counter. */
1704 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1705 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1706 
1707 	/* Tell hardware that we're ready to load descriptors. */
1708 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1709 
1710         /*
1711 	 * Initialize mailbox register.
1712 	 * Updated producer/consumer index information is exchanged
1713 	 * through this mailbox register. However Tx producer and
1714 	 * Rx return consumer/Rx producer are all shared such that
1715 	 * it's hard to separate code path between Tx and Rx without
1716 	 * locking. If L1 hardware have a separate mail box register
1717 	 * for Tx and Rx consumer/producer management we could have
1718 	 * indepent Tx/Rx handler which in turn Rx handler could have
1719 	 * been run without any locking.
1720 	*/
1721 	AGE_COMMIT_MBOX(sc);
1722 
1723 	/* Configure IPG/IFG parameters. */
1724 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1725 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1726 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1727 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1728 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1729 
1730 	/* Set parameters for half-duplex media. */
1731 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1732 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1733 	    HDPX_CFG_LCOL_MASK) |
1734 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1735 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1736 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1737 	    HDPX_CFG_ABEBT_MASK) |
1738 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1739 	     HDPX_CFG_JAMIPG_MASK));
1740 
1741 	/* Configure interrupt moderation timer. */
1742 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1743 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1744 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1745 	reg &= ~MASTER_MTIMER_ENB;
1746 	if (AGE_USECS(sc->age_int_mod) == 0)
1747 		reg &= ~MASTER_ITIMER_ENB;
1748 	else
1749 		reg |= MASTER_ITIMER_ENB;
1750 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1751 	if (agedebug)
1752 		printf("%s: interrupt moderation is %d us.\n",
1753 		    device_xname(sc->sc_dev), sc->age_int_mod);
1754 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1755 
1756 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1757 	if (ifp->if_mtu < ETHERMTU)
1758 		sc->age_max_frame_size = ETHERMTU;
1759 	else
1760 		sc->age_max_frame_size = ifp->if_mtu;
1761 	sc->age_max_frame_size += ETHER_HDR_LEN +
1762 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1763 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1764 
1765 	/* Configure jumbo frame. */
1766 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1767 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1768 	    (((fsize / sizeof(uint64_t)) <<
1769 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1770 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1771 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1772 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1773 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1774 
1775 	/* Configure flow-control parameters. From Linux. */
1776 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1777 		/*
1778 		 * Magic workaround for old-L1.
1779 		 * Don't know which hw revision requires this magic.
1780 		 */
1781 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1782 		/*
1783 		 * Another magic workaround for flow-control mode
1784 		 * change. From Linux.
1785 		 */
1786 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1787 	}
1788 	/*
1789 	 * TODO
1790 	 *  Should understand pause parameter relationships between FIFO
1791 	 *  size and number of Rx descriptors and Rx return descriptors.
1792 	 *
1793 	 *  Magic parameters came from Linux.
1794 	 */
1795 	switch (sc->age_chip_rev) {
1796 	case 0x8001:
1797 	case 0x9001:
1798 	case 0x9002:
1799 	case 0x9003:
1800 		rxf_hi = AGE_RX_RING_CNT / 16;
1801 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1802 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1803 		rrd_lo = AGE_RR_RING_CNT / 16;
1804 		break;
1805 	default:
1806 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1807 		rxf_lo = reg / 16;
1808 		if (rxf_lo < 192)
1809 			rxf_lo = 192;
1810 		rxf_hi = (reg * 7) / 8;
1811 		if (rxf_hi < rxf_lo)
1812 			rxf_hi = rxf_lo + 16;
1813 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1814 		rrd_lo = reg / 8;
1815 		rrd_hi = (reg * 7) / 8;
1816 		if (rrd_lo < 2)
1817 			rrd_lo = 2;
1818 		if (rrd_hi < rrd_lo)
1819 			rrd_hi = rrd_lo + 3;
1820 		break;
1821 	}
1822 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1823 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1824 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1825 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1826 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1827 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1828 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1829 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1830 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1831 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1832 
1833 	/* Configure RxQ. */
1834 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1835 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1836 	    RXQ_CFG_RD_BURST_MASK) |
1837 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1838 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1839 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1840 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1841 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1842 
1843 	/* Configure TxQ. */
1844 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1845 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1846 	    TXQ_CFG_TPD_BURST_MASK) |
1847 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1848 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1849 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1850 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1851 	    TXQ_CFG_ENB);
1852 
1853 	/* Configure DMA parameters. */
1854 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1855 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1856 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1857 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1858 
1859 	/* Configure CMB DMA write threshold. */
1860 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1861 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1862 	    CMB_WR_THRESH_RRD_MASK) |
1863 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1864 	    CMB_WR_THRESH_TPD_MASK));
1865 
1866 	/* Set CMB/SMB timer and enable them. */
1867 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1868 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1869 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1870 
1871 	/* Request SMB updates for every seconds. */
1872 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1873 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1874 
1875 	/*
1876 	 * Disable all WOL bits as WOL can interfere normal Rx
1877 	 * operation.
1878 	 */
1879 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1880 
1881         /*
1882 	 * Configure Tx/Rx MACs.
1883 	 *  - Auto-padding for short frames.
1884 	 *  - Enable CRC generation.
1885 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1886 	 *  of MAC is followed after link establishment.
1887 	 */
1888 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1889 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1890 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1891 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1892 	    MAC_CFG_PREAMBLE_MASK));
1893 
1894 	/* Set up the receive filter. */
1895 	age_rxfilter(sc);
1896 	age_rxvlan(sc);
1897 
1898 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1899 	reg |= MAC_CFG_RXCSUM_ENB;
1900 
1901 	/* Ack all pending interrupts and clear it. */
1902 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1903 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1904 
1905 	/* Finally enable Tx/Rx MAC. */
1906 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1907 
1908 	sc->age_flags &= ~AGE_FLAG_LINK;
1909 
1910 	/* Switch to the current media. */
1911 	mii = &sc->sc_miibus;
1912 	mii_mediachg(mii);
1913 
1914 	callout_schedule(&sc->sc_tick_ch, hz);
1915 
1916 	ifp->if_flags |= IFF_RUNNING;
1917 	ifp->if_flags &= ~IFF_OACTIVE;
1918 
1919 	return 0;
1920 }
1921 
1922 static void
1923 age_stop(struct ifnet *ifp, int disable)
1924 {
1925 	struct age_softc *sc = ifp->if_softc;
1926 	struct age_txdesc *txd;
1927 	struct age_rxdesc *rxd;
1928 	uint32_t reg;
1929 	int i;
1930 
1931 	callout_stop(&sc->sc_tick_ch);
1932 
1933 	/*
1934 	 * Mark the interface down and cancel the watchdog timer.
1935 	 */
1936 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1937 	ifp->if_timer = 0;
1938 
1939 	sc->age_flags &= ~AGE_FLAG_LINK;
1940 
1941 	mii_down(&sc->sc_miibus);
1942 
1943 	/*
1944 	 * Disable interrupts.
1945 	 */
1946 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1947 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1948 
1949 	/* Stop CMB/SMB updates. */
1950 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1951 
1952 	/* Stop Rx/Tx MAC. */
1953 	age_stop_rxmac(sc);
1954 	age_stop_txmac(sc);
1955 
1956 	/* Stop DMA. */
1957 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1958 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1959 
1960 	/* Stop TxQ/RxQ. */
1961 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1962 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1963 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1964 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1965 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1966 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1967 			break;
1968 		DELAY(10);
1969 	}
1970 	if (i == 0)
1971 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1972 		    device_xname(sc->sc_dev), reg);
1973 
1974 	/* Reclaim Rx buffers that have been processed. */
1975 	if (sc->age_cdata.age_rxhead != NULL)
1976 		m_freem(sc->age_cdata.age_rxhead);
1977 	AGE_RXCHAIN_RESET(sc);
1978 
1979 	/*
1980 	 * Free RX and TX mbufs still in the queues.
1981 	 */
1982 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1983 		rxd = &sc->age_cdata.age_rxdesc[i];
1984 		if (rxd->rx_m != NULL) {
1985 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1986 			m_freem(rxd->rx_m);
1987 			rxd->rx_m = NULL;
1988 		}
1989 	}
1990 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1991 		txd = &sc->age_cdata.age_txdesc[i];
1992 		if (txd->tx_m != NULL) {
1993 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1994 			m_freem(txd->tx_m);
1995 			txd->tx_m = NULL;
1996 		}
1997 	}
1998 }
1999 
2000 static void
2001 age_stats_update(struct age_softc *sc)
2002 {
2003 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2004 	struct age_stats *stat;
2005 	struct smb *smb;
2006 
2007 	stat = &sc->age_stat;
2008 
2009 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2010 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2011 
2012 	smb = sc->age_rdata.age_smb_block;
2013 	if (smb->updated == 0)
2014 		return;
2015 
2016 	/* Rx stats. */
2017 	stat->rx_frames += smb->rx_frames;
2018 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2019 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2020 	stat->rx_pause_frames += smb->rx_pause_frames;
2021 	stat->rx_control_frames += smb->rx_control_frames;
2022 	stat->rx_crcerrs += smb->rx_crcerrs;
2023 	stat->rx_lenerrs += smb->rx_lenerrs;
2024 	stat->rx_bytes += smb->rx_bytes;
2025 	stat->rx_runts += smb->rx_runts;
2026 	stat->rx_fragments += smb->rx_fragments;
2027 	stat->rx_pkts_64 += smb->rx_pkts_64;
2028 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2029 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2030 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2031 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2032 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2033 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2034 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2035 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2036 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2037 	stat->rx_alignerrs += smb->rx_alignerrs;
2038 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2039 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2040 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2041 
2042 	/* Tx stats. */
2043 	stat->tx_frames += smb->tx_frames;
2044 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2045 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2046 	stat->tx_pause_frames += smb->tx_pause_frames;
2047 	stat->tx_excess_defer += smb->tx_excess_defer;
2048 	stat->tx_control_frames += smb->tx_control_frames;
2049 	stat->tx_deferred += smb->tx_deferred;
2050 	stat->tx_bytes += smb->tx_bytes;
2051 	stat->tx_pkts_64 += smb->tx_pkts_64;
2052 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2053 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2054 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2055 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2056 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2057 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2058 	stat->tx_single_colls += smb->tx_single_colls;
2059 	stat->tx_multi_colls += smb->tx_multi_colls;
2060 	stat->tx_late_colls += smb->tx_late_colls;
2061 	stat->tx_excess_colls += smb->tx_excess_colls;
2062 	stat->tx_underrun += smb->tx_underrun;
2063 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2064 	stat->tx_lenerrs += smb->tx_lenerrs;
2065 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2066 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2067 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2068 
2069 	/* Update counters in ifnet. */
2070 	ifp->if_opackets += smb->tx_frames;
2071 
2072 	ifp->if_collisions += smb->tx_single_colls +
2073 	    smb->tx_multi_colls + smb->tx_late_colls +
2074 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2075 
2076 	ifp->if_oerrors += smb->tx_excess_colls +
2077 	    smb->tx_late_colls + smb->tx_underrun +
2078 	    smb->tx_pkts_truncated;
2079 
2080 	ifp->if_ipackets += smb->rx_frames;
2081 
2082 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2083 	    smb->rx_runts + smb->rx_pkts_truncated +
2084 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2085 	    smb->rx_alignerrs;
2086 
2087 	/* Update done, clear. */
2088 	smb->updated = 0;
2089 
2090 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2091 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2092 }
2093 
2094 static void
2095 age_stop_txmac(struct age_softc *sc)
2096 {
2097 	uint32_t reg;
2098 	int i;
2099 
2100 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2101 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2102 		reg &= ~MAC_CFG_TX_ENB;
2103 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2104 	}
2105 	/* Stop Tx DMA engine. */
2106 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2107 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2108 		reg &= ~DMA_CFG_RD_ENB;
2109 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2110 	}
2111 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2112 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2113 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2114 			break;
2115 		DELAY(10);
2116 	}
2117 	if (i == 0)
2118 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2119 }
2120 
2121 static void
2122 age_stop_rxmac(struct age_softc *sc)
2123 {
2124 	uint32_t reg;
2125 	int i;
2126 
2127 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2128 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2129 		reg &= ~MAC_CFG_RX_ENB;
2130 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2131 	}
2132 	/* Stop Rx DMA engine. */
2133 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2134 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2135 		reg &= ~DMA_CFG_WR_ENB;
2136 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2137 	}
2138 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2139 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2140 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2141 			break;
2142 		DELAY(10);
2143 	}
2144 	if (i == 0)
2145 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2146 }
2147 
2148 static void
2149 age_init_tx_ring(struct age_softc *sc)
2150 {
2151 	struct age_ring_data *rd;
2152 	struct age_txdesc *txd;
2153 	int i;
2154 
2155 	sc->age_cdata.age_tx_prod = 0;
2156 	sc->age_cdata.age_tx_cons = 0;
2157 	sc->age_cdata.age_tx_cnt = 0;
2158 
2159 	rd = &sc->age_rdata;
2160 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2161 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2162 		txd = &sc->age_cdata.age_txdesc[i];
2163 		txd->tx_desc = &rd->age_tx_ring[i];
2164 		txd->tx_m = NULL;
2165 	}
2166 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2167 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2168 }
2169 
2170 static int
2171 age_init_rx_ring(struct age_softc *sc)
2172 {
2173 	struct age_ring_data *rd;
2174 	struct age_rxdesc *rxd;
2175 	int i;
2176 
2177 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2178 	rd = &sc->age_rdata;
2179 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2180 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2181 		rxd = &sc->age_cdata.age_rxdesc[i];
2182 		rxd->rx_m = NULL;
2183 		rxd->rx_desc = &rd->age_rx_ring[i];
2184 		if (age_newbuf(sc, rxd, 1) != 0)
2185 			return ENOBUFS;
2186 	}
2187 
2188 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2189 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2190 
2191 	return 0;
2192 }
2193 
2194 static void
2195 age_init_rr_ring(struct age_softc *sc)
2196 {
2197 	struct age_ring_data *rd;
2198 
2199 	sc->age_cdata.age_rr_cons = 0;
2200 	AGE_RXCHAIN_RESET(sc);
2201 
2202 	rd = &sc->age_rdata;
2203 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2204 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2205 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2206 }
2207 
2208 static void
2209 age_init_cmb_block(struct age_softc *sc)
2210 {
2211 	struct age_ring_data *rd;
2212 
2213 	rd = &sc->age_rdata;
2214 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2215 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2216 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2217 }
2218 
2219 static void
2220 age_init_smb_block(struct age_softc *sc)
2221 {
2222 	struct age_ring_data *rd;
2223 
2224 	rd = &sc->age_rdata;
2225 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2226 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2227 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2228 }
2229 
2230 static int
2231 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2232 {
2233 	struct rx_desc *desc;
2234 	struct mbuf *m;
2235 	bus_dmamap_t map;
2236 	int error;
2237 
2238 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2239 	if (m == NULL)
2240 		return ENOBUFS;
2241 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2242 	if (!(m->m_flags & M_EXT)) {
2243 		 m_freem(m);
2244 		 return ENOBUFS;
2245 	}
2246 
2247 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2248 	m_adj(m, ETHER_ALIGN);
2249 
2250 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2251 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2252 
2253 	if (error != 0) {
2254 		if (!error) {
2255 			bus_dmamap_unload(sc->sc_dmat,
2256 			    sc->age_cdata.age_rx_sparemap);
2257 			error = EFBIG;
2258 			printf("%s: too many segments?!\n",
2259 			    device_xname(sc->sc_dev));
2260 		}
2261 		m_freem(m);
2262 
2263 		if (init)
2264 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2265 		return error;
2266 	}
2267 
2268 	if (rxd->rx_m != NULL) {
2269 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2270 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2271 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2272 	}
2273 	map = rxd->rx_dmamap;
2274 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2275 	sc->age_cdata.age_rx_sparemap = map;
2276 	rxd->rx_m = m;
2277 
2278 	desc = rxd->rx_desc;
2279 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2280 	desc->len =
2281 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2282 	    AGE_RD_LEN_SHIFT);
2283 
2284 	return 0;
2285 }
2286 
2287 static void
2288 age_rxvlan(struct age_softc *sc)
2289 {
2290 	uint32_t reg;
2291 
2292 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2293 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2294 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2295 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2296 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2297 }
2298 
2299 static void
2300 age_rxfilter(struct age_softc *sc)
2301 {
2302 	struct ethercom *ec = &sc->sc_ec;
2303 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2304 	struct ether_multi *enm;
2305 	struct ether_multistep step;
2306 	uint32_t crc;
2307 	uint32_t mchash[2];
2308 	uint32_t rxcfg;
2309 
2310 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2311 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2312 	ifp->if_flags &= ~IFF_ALLMULTI;
2313 
2314 	/*
2315 	 * Always accept broadcast frames.
2316 	 */
2317 	rxcfg |= MAC_CFG_BCAST;
2318 
2319 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2320 		ifp->if_flags |= IFF_ALLMULTI;
2321 		if (ifp->if_flags & IFF_PROMISC)
2322 			rxcfg |= MAC_CFG_PROMISC;
2323 		else
2324 			rxcfg |= MAC_CFG_ALLMULTI;
2325 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2326 	} else {
2327 		/* Program new filter. */
2328 		memset(mchash, 0, sizeof(mchash));
2329 
2330 		ETHER_FIRST_MULTI(step, ec, enm);
2331 		while (enm != NULL) {
2332 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2333 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2334 			ETHER_NEXT_MULTI(step, enm);
2335 		}
2336 	}
2337 
2338 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2339 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2340 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2341 }
2342