xref: /netbsd-src/sys/dev/pci/if_age.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: if_age.c,v 1.41 2012/07/22 14:33:00 matt Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.41 2012/07/22 14:33:00 matt Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65 
66 #include <net/bpf.h>
67 
68 #include <sys/rnd.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76 
77 #include <dev/pci/if_agereg.h>
78 
79 static int	age_match(device_t, cfdata_t, void *);
80 static void	age_attach(device_t, device_t, void *);
81 static int	age_detach(device_t, int);
82 
83 static bool	age_resume(device_t, const pmf_qual_t *);
84 
85 static int	age_miibus_readreg(device_t, int, int);
86 static void	age_miibus_writereg(device_t, int, int, int);
87 static void	age_miibus_statchg(struct ifnet *);
88 
89 static int	age_init(struct ifnet *);
90 static int	age_ioctl(struct ifnet *, u_long, void *);
91 static void	age_start(struct ifnet *);
92 static void	age_watchdog(struct ifnet *);
93 static bool	age_shutdown(device_t, int);
94 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
95 static int	age_mediachange(struct ifnet *);
96 
97 static int	age_intr(void *);
98 static int	age_dma_alloc(struct age_softc *);
99 static void	age_dma_free(struct age_softc *);
100 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
101 static void	age_phy_reset(struct age_softc *);
102 
103 static int	age_encap(struct age_softc *, struct mbuf **);
104 static void	age_init_tx_ring(struct age_softc *);
105 static int	age_init_rx_ring(struct age_softc *);
106 static void	age_init_rr_ring(struct age_softc *);
107 static void	age_init_cmb_block(struct age_softc *);
108 static void	age_init_smb_block(struct age_softc *);
109 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
110 static void	age_mac_config(struct age_softc *);
111 static void	age_txintr(struct age_softc *, int);
112 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
113 static void	age_rxintr(struct age_softc *, int);
114 static void	age_tick(void *);
115 static void	age_reset(struct age_softc *);
116 static void	age_stop(struct ifnet *, int);
117 static void	age_stats_update(struct age_softc *);
118 static void	age_stop_txmac(struct age_softc *);
119 static void	age_stop_rxmac(struct age_softc *);
120 static void	age_rxvlan(struct age_softc *sc);
121 static void	age_rxfilter(struct age_softc *);
122 
123 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
124     age_match, age_attach, age_detach, NULL);
125 
126 int agedebug = 0;
127 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
128 
129 #define ETHER_ALIGN 2
130 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 
132 static int
133 age_match(device_t dev, cfdata_t match, void *aux)
134 {
135 	struct pci_attach_args *pa = aux;
136 
137 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 }
140 
141 static void
142 age_attach(device_t parent, device_t self, void *aux)
143 {
144 	struct age_softc *sc = device_private(self);
145 	struct pci_attach_args *pa = aux;
146 	pci_intr_handle_t ih;
147 	const char *intrstr;
148 	struct ifnet *ifp = &sc->sc_ec.ec_if;
149 	pcireg_t memtype;
150 	int error = 0;
151 
152 	aprint_naive("\n");
153 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
154 
155 	sc->sc_dev = self;
156 	sc->sc_dmat = pa->pa_dmat;
157 	sc->sc_pct = pa->pa_pc;
158 	sc->sc_pcitag = pa->pa_tag;
159 
160 	/*
161 	 * Allocate IO memory
162 	 */
163 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
164 	switch (memtype) {
165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
168 		break;
169         default:
170 		aprint_error_dev(self, "invalid base address register\n");
171 		break;
172 	}
173 
174 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
175 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
176 		aprint_error_dev(self, "could not map mem space\n");
177 		return;
178 	}
179 
180 	if (pci_intr_map(pa, &ih) != 0) {
181 		aprint_error_dev(self, "could not map interrupt\n");
182 		goto fail;
183 	}
184 
185 	/*
186 	 * Allocate IRQ
187 	 */
188 	intrstr = pci_intr_string(sc->sc_pct, ih);
189 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
190 	    age_intr, sc);
191 	if (sc->sc_irq_handle == NULL) {
192 		aprint_error_dev(self, "could not establish interrupt");
193 		if (intrstr != NULL)
194 			aprint_error(" at %s", intrstr);
195 		aprint_error("\n");
196 		goto fail;
197 	}
198 	aprint_normal_dev(self, "%s\n", intrstr);
199 
200 	/* Set PHY address. */
201 	sc->age_phyaddr = AGE_PHY_ADDR;
202 
203 	/* Reset PHY. */
204 	age_phy_reset(sc);
205 
206 	/* Reset the ethernet controller. */
207 	age_reset(sc);
208 
209 	/* Get PCI and chip id/revision. */
210 	sc->age_rev = PCI_REVISION(pa->pa_class);
211 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
212 	    MASTER_CHIP_REV_SHIFT;
213 
214 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
215 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
216 
217 	if (agedebug) {
218 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
219 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
220 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
221 	}
222 
223 	/* Set max allowable DMA size. */
224 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
225 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
226 
227 	/* Allocate DMA stuffs */
228 	error = age_dma_alloc(sc);
229 	if (error)
230 		goto fail;
231 
232 	callout_init(&sc->sc_tick_ch, 0);
233 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
234 
235 	/* Load station address. */
236 	age_get_macaddr(sc, sc->sc_enaddr);
237 
238 	aprint_normal_dev(self, "Ethernet address %s\n",
239 	    ether_sprintf(sc->sc_enaddr));
240 
241 	ifp->if_softc = sc;
242 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
243 	ifp->if_init = age_init;
244 	ifp->if_ioctl = age_ioctl;
245 	ifp->if_start = age_start;
246 	ifp->if_stop = age_stop;
247 	ifp->if_watchdog = age_watchdog;
248 	ifp->if_baudrate = IF_Gbps(1);
249 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
250 	IFQ_SET_READY(&ifp->if_snd);
251 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
252 
253 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
254 
255 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
256 				IFCAP_CSUM_TCPv4_Rx |
257 				IFCAP_CSUM_UDPv4_Rx;
258 #ifdef AGE_CHECKSUM
259 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
260 				IFCAP_CSUM_TCPv4_Tx |
261 				IFCAP_CSUM_UDPv4_Tx;
262 #endif
263 
264 #if NVLAN > 0
265 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
266 #endif
267 
268 	/* Set up MII bus. */
269 	sc->sc_miibus.mii_ifp = ifp;
270 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
271 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
272 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
273 
274 	sc->sc_ec.ec_mii = &sc->sc_miibus;
275 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
276 	    age_mediastatus);
277 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
278 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
279 
280 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
281 		aprint_error_dev(self, "no PHY found!\n");
282 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
283 		    0, NULL);
284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
285 	} else
286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
287 
288 	if_attach(ifp);
289 	ether_ifattach(ifp, sc->sc_enaddr);
290 
291 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
292 		pmf_class_network_register(self, ifp);
293 	else
294 		aprint_error_dev(self, "couldn't establish power handler\n");
295 
296 	return;
297 
298 fail:
299 	age_dma_free(sc);
300 	if (sc->sc_irq_handle != NULL) {
301 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
302 		sc->sc_irq_handle = NULL;
303 	}
304 	if (sc->sc_mem_size) {
305 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
306 		sc->sc_mem_size = 0;
307 	}
308 }
309 
310 static int
311 age_detach(device_t self, int flags)
312 {
313 	struct age_softc *sc = device_private(self);
314 	struct ifnet *ifp = &sc->sc_ec.ec_if;
315 	int s;
316 
317 	pmf_device_deregister(self);
318 	s = splnet();
319 	age_stop(ifp, 0);
320 	splx(s);
321 
322 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
323 
324 	/* Delete all remaining media. */
325 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
326 
327 	ether_ifdetach(ifp);
328 	if_detach(ifp);
329 	age_dma_free(sc);
330 
331 	if (sc->sc_irq_handle != NULL) {
332 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
333 		sc->sc_irq_handle = NULL;
334 	}
335 	if (sc->sc_mem_size) {
336 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
337 		sc->sc_mem_size = 0;
338 	}
339 	return 0;
340 }
341 
342 /*
343  *	Read a PHY register on the MII of the L1.
344  */
345 static int
346 age_miibus_readreg(device_t dev, int phy, int reg)
347 {
348 	struct age_softc *sc = device_private(dev);
349 	uint32_t v;
350 	int i;
351 
352 	if (phy != sc->age_phyaddr)
353 		return 0;
354 
355 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
356 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
357 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
358 		DELAY(1);
359 		v = CSR_READ_4(sc, AGE_MDIO);
360 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
361 			break;
362 	}
363 
364 	if (i == 0) {
365 		printf("%s: phy read timeout: phy %d, reg %d\n",
366 			device_xname(sc->sc_dev), phy, reg);
367 		return 0;
368 	}
369 
370 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
371 }
372 
373 /*
374  * 	Write a PHY register on the MII of the L1.
375  */
376 static void
377 age_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 	struct age_softc *sc = device_private(dev);
380 	uint32_t v;
381 	int i;
382 
383 	if (phy != sc->age_phyaddr)
384 		return;
385 
386 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
387 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
388 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
389 
390 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
391 		DELAY(1);
392 		v = CSR_READ_4(sc, AGE_MDIO);
393 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
394 			break;
395 	}
396 
397 	if (i == 0) {
398 		printf("%s: phy write timeout: phy %d, reg %d\n",
399 		    device_xname(sc->sc_dev), phy, reg);
400 	}
401 }
402 
403 /*
404  *	Callback from MII layer when media changes.
405  */
406 static void
407 age_miibus_statchg(struct ifnet *ifp)
408 {
409 	struct age_softc *sc = ifp->if_softc;
410 	struct mii_data *mii = &sc->sc_miibus;
411 
412 	if ((ifp->if_flags & IFF_RUNNING) == 0)
413 		return;
414 
415 	sc->age_flags &= ~AGE_FLAG_LINK;
416 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
417 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
418 		case IFM_10_T:
419 		case IFM_100_TX:
420 		case IFM_1000_T:
421 			sc->age_flags |= AGE_FLAG_LINK;
422 			break;
423 		default:
424 			break;
425 		}
426 	}
427 
428 	/* Stop Rx/Tx MACs. */
429 	age_stop_rxmac(sc);
430 	age_stop_txmac(sc);
431 
432 	/* Program MACs with resolved speed/duplex/flow-control. */
433 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
434 		uint32_t reg;
435 
436 		age_mac_config(sc);
437 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
438 		/* Restart DMA engine and Tx/Rx MAC. */
439 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
440 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
441 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
442 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
443 	}
444 }
445 
446 /*
447  *	Get the current interface media status.
448  */
449 static void
450 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
451 {
452 	struct age_softc *sc = ifp->if_softc;
453 	struct mii_data *mii = &sc->sc_miibus;
454 
455 	mii_pollstat(mii);
456 	ifmr->ifm_status = mii->mii_media_status;
457 	ifmr->ifm_active = mii->mii_media_active;
458 }
459 
460 /*
461  *	Set hardware to newly-selected media.
462  */
463 static int
464 age_mediachange(struct ifnet *ifp)
465 {
466 	struct age_softc *sc = ifp->if_softc;
467 	struct mii_data *mii = &sc->sc_miibus;
468 	int error;
469 
470 	if (mii->mii_instance != 0) {
471 		struct mii_softc *miisc;
472 
473 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
474 			mii_phy_reset(miisc);
475 	}
476 	error = mii_mediachg(mii);
477 
478 	return error;
479 }
480 
481 static int
482 age_intr(void *arg)
483 {
484         struct age_softc *sc = arg;
485         struct ifnet *ifp = &sc->sc_ec.ec_if;
486 	struct cmb *cmb;
487         uint32_t status;
488 
489 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
490 	if (status == 0 || (status & AGE_INTRS) == 0)
491 		return 0;
492 
493 	cmb = sc->age_rdata.age_cmb_block;
494 	if (cmb == NULL) {
495 		/* Happens when bringing up the interface
496 		 * w/o having a carrier. Ack the interrupt.
497 		 */
498 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
499 		return 0;
500 	}
501 
502 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
503 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
504 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
505 	status = le32toh(cmb->intr_status);
506 	/* ACK/reenable interrupts */
507 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
508 	while ((status & AGE_INTRS) != 0) {
509 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
510 		    TPD_CONS_SHIFT;
511 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
512 		    RRD_PROD_SHIFT;
513 
514 		/* Let hardware know CMB was served. */
515 		cmb->intr_status = 0;
516 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
517 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
518 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519 
520 		if (ifp->if_flags & IFF_RUNNING) {
521 			if (status & INTR_CMB_RX)
522 				age_rxintr(sc, sc->age_rr_prod);
523 
524 			if (status & INTR_CMB_TX)
525 				age_txintr(sc, sc->age_tpd_cons);
526 
527 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
528 				if (status & INTR_DMA_RD_TO_RST)
529 					printf("%s: DMA read error! -- "
530 					    "resetting\n",
531 					    device_xname(sc->sc_dev));
532 				if (status & INTR_DMA_WR_TO_RST)
533 					printf("%s: DMA write error! -- "
534 					    "resetting\n",
535 					    device_xname(sc->sc_dev));
536 				age_init(ifp);
537 			}
538 
539 			age_start(ifp);
540 
541 			if (status & INTR_SMB)
542 				age_stats_update(sc);
543 		}
544 		/* check if more interrupts did came in */
545 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
546 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
547 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
548 		status = le32toh(cmb->intr_status);
549 	}
550 
551 	return 1;
552 }
553 
554 static void
555 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
556 {
557 	uint32_t ea[2], reg;
558 	int i, vpdc;
559 
560 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
561 	if ((reg & SPI_VPD_ENB) != 0) {
562 		/* Get VPD stored in TWSI EEPROM. */
563 		reg &= ~SPI_VPD_ENB;
564 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
565 	}
566 
567 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
568 	    PCI_CAP_VPD, &vpdc, NULL)) {
569 		/*
570 		 * PCI VPD capability found, let TWSI reload EEPROM.
571 		 * This will set Ethernet address of controller.
572 		 */
573 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
574 		    TWSI_CTRL_SW_LD_START);
575 		for (i = 100; i > 0; i++) {
576 			DELAY(1000);
577 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
578 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
579 				break;
580 		}
581 		if (i == 0)
582 			printf("%s: reloading EEPROM timeout!\n",
583 			    device_xname(sc->sc_dev));
584 	} else {
585 		if (agedebug)
586 			printf("%s: PCI VPD capability not found!\n",
587 			    device_xname(sc->sc_dev));
588 	}
589 
590 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
591 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
592 
593 	eaddr[0] = (ea[1] >> 8) & 0xFF;
594 	eaddr[1] = (ea[1] >> 0) & 0xFF;
595 	eaddr[2] = (ea[0] >> 24) & 0xFF;
596 	eaddr[3] = (ea[0] >> 16) & 0xFF;
597 	eaddr[4] = (ea[0] >> 8) & 0xFF;
598 	eaddr[5] = (ea[0] >> 0) & 0xFF;
599 }
600 
601 static void
602 age_phy_reset(struct age_softc *sc)
603 {
604 	uint16_t reg, pn;
605 	int i, linkup;
606 
607 	/* Reset PHY. */
608 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
609 	DELAY(2000);
610 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
611 	DELAY(2000);
612 
613 #define ATPHY_DBG_ADDR		0x1D
614 #define ATPHY_DBG_DATA		0x1E
615 #define ATPHY_CDTC		0x16
616 #define PHY_CDTC_ENB		0x0001
617 #define PHY_CDTC_POFF		8
618 #define ATPHY_CDTS		0x1C
619 #define PHY_CDTS_STAT_OK	0x0000
620 #define PHY_CDTS_STAT_SHORT	0x0100
621 #define PHY_CDTS_STAT_OPEN	0x0200
622 #define PHY_CDTS_STAT_INVAL	0x0300
623 #define PHY_CDTS_STAT_MASK	0x0300
624 
625 	/* Check power saving mode. Magic from Linux. */
626 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
627 	for (linkup = 0, pn = 0; pn < 4; pn++) {
628 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
629 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
630 		for (i = 200; i > 0; i--) {
631 			DELAY(1000);
632 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
633 			    ATPHY_CDTC);
634 			if ((reg & PHY_CDTC_ENB) == 0)
635 				break;
636 		}
637 		DELAY(1000);
638 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
639 		    ATPHY_CDTS);
640 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
641 			linkup++;
642 			break;
643 		}
644 	}
645 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
646 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
647 	if (linkup == 0) {
648 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
649 		    ATPHY_DBG_ADDR, 0);
650 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
651 		    ATPHY_DBG_DATA, 0x124E);
652 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
653 		    ATPHY_DBG_ADDR, 1);
654 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
655 		    ATPHY_DBG_DATA);
656 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
657 		    ATPHY_DBG_DATA, reg | 0x03);
658 		/* XXX */
659 		DELAY(1500 * 1000);
660 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
661 		    ATPHY_DBG_ADDR, 0);
662 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
663 		    ATPHY_DBG_DATA, 0x024E);
664 	}
665 
666 #undef ATPHY_DBG_ADDR
667 #undef ATPHY_DBG_DATA
668 #undef ATPHY_CDTC
669 #undef PHY_CDTC_ENB
670 #undef PHY_CDTC_POFF
671 #undef ATPHY_CDTS
672 #undef PHY_CDTS_STAT_OK
673 #undef PHY_CDTS_STAT_SHORT
674 #undef PHY_CDTS_STAT_OPEN
675 #undef PHY_CDTS_STAT_INVAL
676 #undef PHY_CDTS_STAT_MASK
677 }
678 
679 static int
680 age_dma_alloc(struct age_softc *sc)
681 {
682 	struct age_txdesc *txd;
683 	struct age_rxdesc *rxd;
684 	int nsegs, error, i;
685 
686 	/*
687 	 * Create DMA stuffs for TX ring
688 	 */
689 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
690 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
691 	if (error) {
692 		sc->age_cdata.age_tx_ring_map = NULL;
693 		return ENOBUFS;
694 	}
695 
696 	/* Allocate DMA'able memory for TX ring */
697 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
698 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
699 	    &nsegs, BUS_DMA_NOWAIT);
700 	if (error) {
701 		printf("%s: could not allocate DMA'able memory for Tx ring, "
702 		    "error = %i\n", device_xname(sc->sc_dev), error);
703 		return error;
704 	}
705 
706 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
707 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
708 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
709 	if (error)
710 		return ENOBUFS;
711 
712 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
713 
714 	/*  Load the DMA map for Tx ring. */
715 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
716 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
717 	if (error) {
718 		printf("%s: could not load DMA'able memory for Tx ring, "
719 		    "error = %i\n", device_xname(sc->sc_dev), error);
720 		bus_dmamem_free(sc->sc_dmat,
721 		    &sc->age_rdata.age_tx_ring_seg, 1);
722 		return error;
723 	}
724 
725 	sc->age_rdata.age_tx_ring_paddr =
726 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
727 
728 	/*
729 	 * Create DMA stuffs for RX ring
730 	 */
731 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
732 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
733 	if (error) {
734 		sc->age_cdata.age_rx_ring_map = NULL;
735 		return ENOBUFS;
736 	}
737 
738 	/* Allocate DMA'able memory for RX ring */
739 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
740 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
741 	    &nsegs, BUS_DMA_NOWAIT);
742 	if (error) {
743 		printf("%s: could not allocate DMA'able memory for Rx ring, "
744 		    "error = %i.\n", device_xname(sc->sc_dev), error);
745 		return error;
746 	}
747 
748 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
749 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
750 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
751 	if (error)
752 		return ENOBUFS;
753 
754 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
755 
756 	/* Load the DMA map for Rx ring. */
757 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
758 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
759 	if (error) {
760 		printf("%s: could not load DMA'able memory for Rx ring, "
761 		    "error = %i.\n", device_xname(sc->sc_dev), error);
762 		bus_dmamem_free(sc->sc_dmat,
763 		    &sc->age_rdata.age_rx_ring_seg, 1);
764 		return error;
765 	}
766 
767 	sc->age_rdata.age_rx_ring_paddr =
768 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
769 
770 	/*
771 	 * Create DMA stuffs for RX return ring
772 	 */
773 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
774 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
775 	if (error) {
776 		sc->age_cdata.age_rr_ring_map = NULL;
777 		return ENOBUFS;
778 	}
779 
780 	/* Allocate DMA'able memory for RX return ring */
781 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
782 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
783 	    &nsegs, BUS_DMA_NOWAIT);
784 	if (error) {
785 		printf("%s: could not allocate DMA'able memory for Rx "
786 		    "return ring, error = %i.\n",
787 		    device_xname(sc->sc_dev), error);
788 		return error;
789 	}
790 
791 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
792 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
793 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
794 	if (error)
795 		return ENOBUFS;
796 
797 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
798 
799 	/*  Load the DMA map for Rx return ring. */
800 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
801 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
802 	if (error) {
803 		printf("%s: could not load DMA'able memory for Rx return ring, "
804 		    "error = %i\n", device_xname(sc->sc_dev), error);
805 		bus_dmamem_free(sc->sc_dmat,
806 		    &sc->age_rdata.age_rr_ring_seg, 1);
807 		return error;
808 	}
809 
810 	sc->age_rdata.age_rr_ring_paddr =
811 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
812 
813 	/*
814 	 * Create DMA stuffs for CMB block
815 	 */
816 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
817 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
818 	    &sc->age_cdata.age_cmb_block_map);
819 	if (error) {
820 		sc->age_cdata.age_cmb_block_map = NULL;
821 		return ENOBUFS;
822 	}
823 
824 	/* Allocate DMA'able memory for CMB block */
825 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
826 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
827 	    &nsegs, BUS_DMA_NOWAIT);
828 	if (error) {
829 		printf("%s: could not allocate DMA'able memory for "
830 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
831 		return error;
832 	}
833 
834 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
835 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
836 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
837 	if (error)
838 		return ENOBUFS;
839 
840 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
841 
842 	/*  Load the DMA map for CMB block. */
843 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
844 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
845 	    BUS_DMA_NOWAIT);
846 	if (error) {
847 		printf("%s: could not load DMA'able memory for CMB block, "
848 		    "error = %i\n", device_xname(sc->sc_dev), error);
849 		bus_dmamem_free(sc->sc_dmat,
850 		    &sc->age_rdata.age_cmb_block_seg, 1);
851 		return error;
852 	}
853 
854 	sc->age_rdata.age_cmb_block_paddr =
855 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
856 
857 	/*
858 	 * Create DMA stuffs for SMB block
859 	 */
860 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
861 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
862 	    &sc->age_cdata.age_smb_block_map);
863 	if (error) {
864 		sc->age_cdata.age_smb_block_map = NULL;
865 		return ENOBUFS;
866 	}
867 
868 	/* Allocate DMA'able memory for SMB block */
869 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
870 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
871 	    &nsegs, BUS_DMA_NOWAIT);
872 	if (error) {
873 		printf("%s: could not allocate DMA'able memory for "
874 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
875 		return error;
876 	}
877 
878 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
879 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
880 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
881 	if (error)
882 		return ENOBUFS;
883 
884 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
885 
886 	/*  Load the DMA map for SMB block */
887 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
888 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
889 	    BUS_DMA_NOWAIT);
890 	if (error) {
891 		printf("%s: could not load DMA'able memory for SMB block, "
892 		    "error = %i\n", device_xname(sc->sc_dev), error);
893 		bus_dmamem_free(sc->sc_dmat,
894 		    &sc->age_rdata.age_smb_block_seg, 1);
895 		return error;
896 	}
897 
898 	sc->age_rdata.age_smb_block_paddr =
899 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
900 
901 	/* Create DMA maps for Tx buffers. */
902 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
903 		txd = &sc->age_cdata.age_txdesc[i];
904 		txd->tx_m = NULL;
905 		txd->tx_dmamap = NULL;
906 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
907 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
908 		    &txd->tx_dmamap);
909 		if (error) {
910 			txd->tx_dmamap = NULL;
911 			printf("%s: could not create Tx dmamap, error = %i.\n",
912 			    device_xname(sc->sc_dev), error);
913 			return error;
914 		}
915 	}
916 
917 	/* Create DMA maps for Rx buffers. */
918 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
919 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
920 	if (error) {
921 		sc->age_cdata.age_rx_sparemap = NULL;
922 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
923 		    device_xname(sc->sc_dev), error);
924 		return error;
925 	}
926 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
927 		rxd = &sc->age_cdata.age_rxdesc[i];
928 		rxd->rx_m = NULL;
929 		rxd->rx_dmamap = NULL;
930 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
931 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
932 		if (error) {
933 			rxd->rx_dmamap = NULL;
934 			printf("%s: could not create Rx dmamap, error = %i.\n",
935 			    device_xname(sc->sc_dev), error);
936 			return error;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 static void
944 age_dma_free(struct age_softc *sc)
945 {
946 	struct age_txdesc *txd;
947 	struct age_rxdesc *rxd;
948 	int i;
949 
950 	/* Tx buffers */
951 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
952 		txd = &sc->age_cdata.age_txdesc[i];
953 		if (txd->tx_dmamap != NULL) {
954 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
955 			txd->tx_dmamap = NULL;
956 		}
957 	}
958 	/* Rx buffers */
959 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
960 		rxd = &sc->age_cdata.age_rxdesc[i];
961 		if (rxd->rx_dmamap != NULL) {
962 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
963 			rxd->rx_dmamap = NULL;
964 		}
965 	}
966 	if (sc->age_cdata.age_rx_sparemap != NULL) {
967 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
968 		sc->age_cdata.age_rx_sparemap = NULL;
969 	}
970 
971 	/* Tx ring. */
972 	if (sc->age_cdata.age_tx_ring_map != NULL)
973 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
974 	if (sc->age_cdata.age_tx_ring_map != NULL &&
975 	    sc->age_rdata.age_tx_ring != NULL)
976 		bus_dmamem_free(sc->sc_dmat,
977 		    &sc->age_rdata.age_tx_ring_seg, 1);
978 	sc->age_rdata.age_tx_ring = NULL;
979 	sc->age_cdata.age_tx_ring_map = NULL;
980 
981 	/* Rx ring. */
982 	if (sc->age_cdata.age_rx_ring_map != NULL)
983 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
984 	if (sc->age_cdata.age_rx_ring_map != NULL &&
985 	    sc->age_rdata.age_rx_ring != NULL)
986 		bus_dmamem_free(sc->sc_dmat,
987 		    &sc->age_rdata.age_rx_ring_seg, 1);
988 	sc->age_rdata.age_rx_ring = NULL;
989 	sc->age_cdata.age_rx_ring_map = NULL;
990 
991 	/* Rx return ring. */
992 	if (sc->age_cdata.age_rr_ring_map != NULL)
993 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
994 	if (sc->age_cdata.age_rr_ring_map != NULL &&
995 	    sc->age_rdata.age_rr_ring != NULL)
996 		bus_dmamem_free(sc->sc_dmat,
997 		    &sc->age_rdata.age_rr_ring_seg, 1);
998 	sc->age_rdata.age_rr_ring = NULL;
999 	sc->age_cdata.age_rr_ring_map = NULL;
1000 
1001 	/* CMB block */
1002 	if (sc->age_cdata.age_cmb_block_map != NULL)
1003 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1004 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1005 	    sc->age_rdata.age_cmb_block != NULL)
1006 		bus_dmamem_free(sc->sc_dmat,
1007 		    &sc->age_rdata.age_cmb_block_seg, 1);
1008 	sc->age_rdata.age_cmb_block = NULL;
1009 	sc->age_cdata.age_cmb_block_map = NULL;
1010 
1011 	/* SMB block */
1012 	if (sc->age_cdata.age_smb_block_map != NULL)
1013 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1014 	if (sc->age_cdata.age_smb_block_map != NULL &&
1015 	    sc->age_rdata.age_smb_block != NULL)
1016 		bus_dmamem_free(sc->sc_dmat,
1017 		    &sc->age_rdata.age_smb_block_seg, 1);
1018 	sc->age_rdata.age_smb_block = NULL;
1019 	sc->age_cdata.age_smb_block_map = NULL;
1020 }
1021 
1022 static void
1023 age_start(struct ifnet *ifp)
1024 {
1025         struct age_softc *sc = ifp->if_softc;
1026         struct mbuf *m_head;
1027 	int enq;
1028 
1029 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1030 		return;
1031 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1032 		return;
1033 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1034 		return;
1035 
1036 	enq = 0;
1037 	for (;;) {
1038 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1039 		if (m_head == NULL)
1040 			break;
1041 
1042 		/*
1043 		 * Pack the data into the transmit ring. If we
1044 		 * don't have room, set the OACTIVE flag and wait
1045 		 * for the NIC to drain the ring.
1046 		 */
1047 		if (age_encap(sc, &m_head)) {
1048 			if (m_head == NULL)
1049 				break;
1050 			IF_PREPEND(&ifp->if_snd, m_head);
1051 			ifp->if_flags |= IFF_OACTIVE;
1052 			break;
1053 		}
1054 		enq = 1;
1055 
1056 		/*
1057 		 * If there's a BPF listener, bounce a copy of this frame
1058 		 * to him.
1059 		 */
1060 		bpf_mtap(ifp, m_head);
1061 	}
1062 
1063 	if (enq) {
1064 		/* Update mbox. */
1065 		AGE_COMMIT_MBOX(sc);
1066 		/* Set a timeout in case the chip goes out to lunch. */
1067 		ifp->if_timer = AGE_TX_TIMEOUT;
1068 	}
1069 }
1070 
1071 static void
1072 age_watchdog(struct ifnet *ifp)
1073 {
1074 	struct age_softc *sc = ifp->if_softc;
1075 
1076 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1077 		printf("%s: watchdog timeout (missed link)\n",
1078 		    device_xname(sc->sc_dev));
1079 		ifp->if_oerrors++;
1080 		age_init(ifp);
1081 		return;
1082 	}
1083 
1084 	if (sc->age_cdata.age_tx_cnt == 0) {
1085 		printf("%s: watchdog timeout (missed Tx interrupts) "
1086 		    "-- recovering\n", device_xname(sc->sc_dev));
1087 		age_start(ifp);
1088 		return;
1089 	}
1090 
1091 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1092 	ifp->if_oerrors++;
1093 	age_init(ifp);
1094 	age_start(ifp);
1095 }
1096 
1097 static bool
1098 age_shutdown(device_t self, int howto)
1099 {
1100 	struct age_softc *sc;
1101 	struct ifnet *ifp;
1102 
1103 	sc = device_private(self);
1104 	ifp = &sc->sc_ec.ec_if;
1105 	age_stop(ifp, 1);
1106 
1107 	return true;
1108 }
1109 
1110 
1111 static int
1112 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 	struct age_softc *sc = ifp->if_softc;
1115 	int s, error;
1116 
1117 	s = splnet();
1118 
1119 	error = ether_ioctl(ifp, cmd, data);
1120 	if (error == ENETRESET) {
1121 		if (ifp->if_flags & IFF_RUNNING)
1122 			age_rxfilter(sc);
1123 		error = 0;
1124 	}
1125 
1126 	splx(s);
1127 	return error;
1128 }
1129 
1130 static void
1131 age_mac_config(struct age_softc *sc)
1132 {
1133 	struct mii_data *mii;
1134 	uint32_t reg;
1135 
1136 	mii = &sc->sc_miibus;
1137 
1138 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1139 	reg &= ~MAC_CFG_FULL_DUPLEX;
1140 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1141 	reg &= ~MAC_CFG_SPEED_MASK;
1142 
1143 	/* Reprogram MAC with resolved speed/duplex. */
1144 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1145 	case IFM_10_T:
1146 	case IFM_100_TX:
1147 		reg |= MAC_CFG_SPEED_10_100;
1148 		break;
1149 	case IFM_1000_T:
1150 		reg |= MAC_CFG_SPEED_1000;
1151 		break;
1152 	}
1153 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1154 		reg |= MAC_CFG_FULL_DUPLEX;
1155 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1156 			reg |= MAC_CFG_TX_FC;
1157 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1158 			reg |= MAC_CFG_RX_FC;
1159 	}
1160 
1161 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1162 }
1163 
1164 static bool
1165 age_resume(device_t dv, const pmf_qual_t *qual)
1166 {
1167 	struct age_softc *sc = device_private(dv);
1168 	uint16_t cmd;
1169 
1170 	/*
1171 	 * Clear INTx emulation disable for hardware that
1172 	 * is set in resume event. From Linux.
1173 	 */
1174 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1175 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1176 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1177 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1178 		    PCI_COMMAND_STATUS_REG, cmd);
1179 	}
1180 
1181 	return true;
1182 }
1183 
1184 static int
1185 age_encap(struct age_softc *sc, struct mbuf **m_head)
1186 {
1187 	struct age_txdesc *txd, *txd_last;
1188 	struct tx_desc *desc;
1189 	struct mbuf *m;
1190 	bus_dmamap_t map;
1191 	uint32_t cflags, poff, vtag;
1192 	int error, i, nsegs, prod;
1193 #if NVLAN > 0
1194 	struct m_tag *mtag;
1195 #endif
1196 
1197 	m = *m_head;
1198 	cflags = vtag = 0;
1199 	poff = 0;
1200 
1201 	prod = sc->age_cdata.age_tx_prod;
1202 	txd = &sc->age_cdata.age_txdesc[prod];
1203 	txd_last = txd;
1204 	map = txd->tx_dmamap;
1205 
1206 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1207 
1208 	if (error == EFBIG) {
1209 		error = 0;
1210 
1211 		*m_head = m_pullup(*m_head, MHLEN);
1212 		if (*m_head == NULL) {
1213 			printf("%s: can't defrag TX mbuf\n",
1214 			    device_xname(sc->sc_dev));
1215 			return ENOBUFS;
1216 		}
1217 
1218 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1219 		  	    BUS_DMA_NOWAIT);
1220 
1221 		if (error != 0) {
1222 			printf("%s: could not load defragged TX mbuf\n",
1223 			    device_xname(sc->sc_dev));
1224 			m_freem(*m_head);
1225 			*m_head = NULL;
1226 			return error;
1227 		}
1228 	} else if (error) {
1229 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1230 		return error;
1231 	}
1232 
1233 	nsegs = map->dm_nsegs;
1234 
1235 	if (nsegs == 0) {
1236 		m_freem(*m_head);
1237 		*m_head = NULL;
1238 		return EIO;
1239 	}
1240 
1241 	/* Check descriptor overrun. */
1242 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1243 		bus_dmamap_unload(sc->sc_dmat, map);
1244 		return ENOBUFS;
1245 	}
1246 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1247 	    BUS_DMASYNC_PREWRITE);
1248 
1249 	m = *m_head;
1250 	/* Configure Tx IP/TCP/UDP checksum offload. */
1251 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1252 		cflags |= AGE_TD_CSUM;
1253 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1254 			cflags |= AGE_TD_TCPCSUM;
1255 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1256 			cflags |= AGE_TD_UDPCSUM;
1257 		/* Set checksum start offset. */
1258 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1259 	}
1260 
1261 #if NVLAN > 0
1262 	/* Configure VLAN hardware tag insertion. */
1263 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1264 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1265 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1266 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1267 	}
1268 #endif
1269 
1270 	desc = NULL;
1271 	KASSERT(nsegs > 0);
1272 	for (i = 0; ; i++) {
1273 		desc = &sc->age_rdata.age_tx_ring[prod];
1274 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1275 		desc->len =
1276 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1277 		desc->flags = htole32(cflags);
1278 		sc->age_cdata.age_tx_cnt++;
1279 		if (i == (nsegs - 1))
1280 			break;
1281 
1282 		/* sync this descriptor and go to the next one */
1283 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1284 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1285 		    BUS_DMASYNC_PREWRITE);
1286 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1287 	}
1288 
1289 	/* Set EOP on the last descriptor and sync it. */
1290 	desc->flags |= htole32(AGE_TD_EOP);
1291 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1292 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1293 	    BUS_DMASYNC_PREWRITE);
1294 
1295 	if (nsegs > 1) {
1296 		/* Swap dmamap of the first and the last. */
1297 		txd = &sc->age_cdata.age_txdesc[prod];
1298 		map = txd_last->tx_dmamap;
1299 		txd_last->tx_dmamap = txd->tx_dmamap;
1300 		txd->tx_dmamap = map;
1301 		txd->tx_m = m;
1302 		KASSERT(txd_last->tx_m == NULL);
1303 	} else {
1304 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1305 		txd_last->tx_m = m;
1306 	}
1307 
1308 	/* Update producer index. */
1309 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1310 	sc->age_cdata.age_tx_prod = prod;
1311 
1312 	return 0;
1313 }
1314 
1315 static void
1316 age_txintr(struct age_softc *sc, int tpd_cons)
1317 {
1318 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1319 	struct age_txdesc *txd;
1320 	int cons, prog;
1321 
1322 
1323 	if (sc->age_cdata.age_tx_cnt <= 0) {
1324 		if (ifp->if_timer != 0)
1325 			printf("timer running without packets\n");
1326 		if (sc->age_cdata.age_tx_cnt)
1327 			printf("age_tx_cnt corrupted\n");
1328 	}
1329 
1330 	/*
1331 	 * Go through our Tx list and free mbufs for those
1332 	 * frames which have been transmitted.
1333 	 */
1334 	cons = sc->age_cdata.age_tx_cons;
1335 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1336 		if (sc->age_cdata.age_tx_cnt <= 0)
1337 			break;
1338 		prog++;
1339 		ifp->if_flags &= ~IFF_OACTIVE;
1340 		sc->age_cdata.age_tx_cnt--;
1341 		txd = &sc->age_cdata.age_txdesc[cons];
1342 		/*
1343 		 * Clear Tx descriptors, it's not required but would
1344 		 * help debugging in case of Tx issues.
1345 		 */
1346 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1347 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1348 		    BUS_DMASYNC_POSTWRITE);
1349 		txd->tx_desc->addr = 0;
1350 		txd->tx_desc->len = 0;
1351 		txd->tx_desc->flags = 0;
1352 
1353 		if (txd->tx_m == NULL)
1354 			continue;
1355 		/* Reclaim transmitted mbufs. */
1356 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1357 		m_freem(txd->tx_m);
1358 		txd->tx_m = NULL;
1359 	}
1360 
1361 	if (prog > 0) {
1362 		sc->age_cdata.age_tx_cons = cons;
1363 
1364 		/*
1365 		 * Unarm watchdog timer only when there are no pending
1366 		 * Tx descriptors in queue.
1367 		 */
1368 		if (sc->age_cdata.age_tx_cnt == 0)
1369 			ifp->if_timer = 0;
1370 	}
1371 }
1372 
1373 /* Receive a frame. */
1374 static void
1375 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1376 {
1377 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1378 	struct age_rxdesc *rxd;
1379 	struct rx_desc *desc;
1380 	struct mbuf *mp, *m;
1381 	uint32_t status, index;
1382 	int count, nsegs, pktlen;
1383 	int rx_cons;
1384 
1385 	status = le32toh(rxrd->flags);
1386 	index = le32toh(rxrd->index);
1387 	rx_cons = AGE_RX_CONS(index);
1388 	nsegs = AGE_RX_NSEGS(index);
1389 
1390 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1391 	if ((status & AGE_RRD_ERROR) != 0 &&
1392 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1393 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1394 		/*
1395 		 * We want to pass the following frames to upper
1396 		 * layer regardless of error status of Rx return
1397 		 * ring.
1398 		 *
1399 		 *  o IP/TCP/UDP checksum is bad.
1400 		 *  o frame length and protocol specific length
1401 		 *     does not match.
1402 		 */
1403 		sc->age_cdata.age_rx_cons += nsegs;
1404 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1405 		return;
1406 	}
1407 
1408 	pktlen = 0;
1409 	for (count = 0; count < nsegs; count++,
1410 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1411 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1412 		mp = rxd->rx_m;
1413 		desc = rxd->rx_desc;
1414 		/* Add a new receive buffer to the ring. */
1415 		if (age_newbuf(sc, rxd, 0) != 0) {
1416 			ifp->if_iqdrops++;
1417 			/* Reuse Rx buffers. */
1418 			if (sc->age_cdata.age_rxhead != NULL) {
1419 				m_freem(sc->age_cdata.age_rxhead);
1420 				AGE_RXCHAIN_RESET(sc);
1421 			}
1422 			break;
1423 		}
1424 
1425 		/* The length of the first mbuf is computed last. */
1426 		if (count != 0) {
1427 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1428 			pktlen += mp->m_len;
1429 		}
1430 
1431 		/* Chain received mbufs. */
1432 		if (sc->age_cdata.age_rxhead == NULL) {
1433 			sc->age_cdata.age_rxhead = mp;
1434 			sc->age_cdata.age_rxtail = mp;
1435 		} else {
1436 			mp->m_flags &= ~M_PKTHDR;
1437 			sc->age_cdata.age_rxprev_tail =
1438 			    sc->age_cdata.age_rxtail;
1439 			sc->age_cdata.age_rxtail->m_next = mp;
1440 			sc->age_cdata.age_rxtail = mp;
1441 		}
1442 
1443 		if (count == nsegs - 1) {
1444 			/*
1445 			 * It seems that L1 controller has no way
1446 			 * to tell hardware to strip CRC bytes.
1447 			 */
1448 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1449 			if (nsegs > 1) {
1450 				/* Remove the CRC bytes in chained mbufs. */
1451 				pktlen -= ETHER_CRC_LEN;
1452 				if (mp->m_len <= ETHER_CRC_LEN) {
1453 					sc->age_cdata.age_rxtail =
1454 					    sc->age_cdata.age_rxprev_tail;
1455 					sc->age_cdata.age_rxtail->m_len -=
1456 					    (ETHER_CRC_LEN - mp->m_len);
1457 					sc->age_cdata.age_rxtail->m_next = NULL;
1458 					m_freem(mp);
1459 				} else {
1460 					mp->m_len -= ETHER_CRC_LEN;
1461 				}
1462 			}
1463 
1464 			m = sc->age_cdata.age_rxhead;
1465 			m->m_flags |= M_PKTHDR;
1466 			m->m_pkthdr.rcvif = ifp;
1467 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1468 			/* Set the first mbuf length. */
1469 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1470 
1471 			/*
1472 			 * Set checksum information.
1473 			 * It seems that L1 controller can compute partial
1474 			 * checksum. The partial checksum value can be used
1475 			 * to accelerate checksum computation for fragmented
1476 			 * TCP/UDP packets. Upper network stack already
1477 			 * takes advantage of the partial checksum value in
1478 			 * IP reassembly stage. But I'm not sure the
1479 			 * correctness of the partial hardware checksum
1480 			 * assistance due to lack of data sheet. If it is
1481 			 * proven to work on L1 I'll enable it.
1482 			 */
1483 			if (status & AGE_RRD_IPV4) {
1484 				if (status & AGE_RRD_IPCSUM_NOK)
1485 					m->m_pkthdr.csum_flags |=
1486 					    M_CSUM_IPv4_BAD;
1487 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1488 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1489 					m->m_pkthdr.csum_flags |=
1490 					    M_CSUM_TCP_UDP_BAD;
1491 				}
1492 				/*
1493 				 * Don't mark bad checksum for TCP/UDP frames
1494 				 * as fragmented frames may always have set
1495 				 * bad checksummed bit of descriptor status.
1496 				 */
1497 			}
1498 #if NVLAN > 0
1499 			/* Check for VLAN tagged frames. */
1500 			if (status & AGE_RRD_VLAN) {
1501 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1502 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1503 					continue);
1504 			}
1505 #endif
1506 
1507 			bpf_mtap(ifp, m);
1508 			/* Pass it on. */
1509 			ether_input(ifp, m);
1510 
1511 			/* Reset mbuf chains. */
1512 			AGE_RXCHAIN_RESET(sc);
1513 		}
1514 	}
1515 
1516 	if (count != nsegs) {
1517 		sc->age_cdata.age_rx_cons += nsegs;
1518 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1519 	} else
1520 		sc->age_cdata.age_rx_cons = rx_cons;
1521 }
1522 
1523 static void
1524 age_rxintr(struct age_softc *sc, int rr_prod)
1525 {
1526 	struct rx_rdesc *rxrd;
1527 	int rr_cons, nsegs, pktlen, prog;
1528 
1529 	rr_cons = sc->age_cdata.age_rr_cons;
1530 	if (rr_cons == rr_prod)
1531 		return;
1532 
1533 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1534 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1535 	    BUS_DMASYNC_POSTREAD);
1536 
1537 	for (prog = 0; rr_cons != rr_prod; prog++) {
1538 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1539 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1540 		if (nsegs == 0)
1541 			break;
1542 		/*
1543 		 * Check number of segments against received bytes
1544 		 * Non-matching value would indicate that hardware
1545 		 * is still trying to update Rx return descriptors.
1546 		 * I'm not sure whether this check is really needed.
1547 		 */
1548 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1549 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1550 		    (MCLBYTES - ETHER_ALIGN)))
1551 			break;
1552 
1553 		/* Received a frame. */
1554 		age_rxeof(sc, rxrd);
1555 
1556 		/* Clear return ring. */
1557 		rxrd->index = 0;
1558 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1559 	}
1560 
1561 	if (prog > 0) {
1562 		/* Update the consumer index. */
1563 		sc->age_cdata.age_rr_cons = rr_cons;
1564 
1565 		/* Sync descriptors. */
1566 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1567 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1568 		    BUS_DMASYNC_PREWRITE);
1569 
1570 		/* Notify hardware availability of new Rx buffers. */
1571 		AGE_COMMIT_MBOX(sc);
1572 	}
1573 }
1574 
1575 static void
1576 age_tick(void *xsc)
1577 {
1578 	struct age_softc *sc = xsc;
1579 	struct mii_data *mii = &sc->sc_miibus;
1580 	int s;
1581 
1582 	s = splnet();
1583 	mii_tick(mii);
1584 	splx(s);
1585 
1586 	callout_schedule(&sc->sc_tick_ch, hz);
1587 }
1588 
1589 static void
1590 age_reset(struct age_softc *sc)
1591 {
1592 	uint32_t reg;
1593 	int i;
1594 
1595 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1596 	CSR_READ_4(sc, AGE_MASTER_CFG);
1597 	DELAY(1000);
1598 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1599 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1600 			break;
1601 		DELAY(10);
1602 	}
1603 
1604 	if (i == 0)
1605 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 		    reg);
1607 
1608 	/* Initialize PCIe module. From Linux. */
1609 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1610 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1611 }
1612 
1613 static int
1614 age_init(struct ifnet *ifp)
1615 {
1616 	struct age_softc *sc = ifp->if_softc;
1617 	struct mii_data *mii;
1618 	uint8_t eaddr[ETHER_ADDR_LEN];
1619 	bus_addr_t paddr;
1620 	uint32_t reg, fsize;
1621 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1622 	int error;
1623 
1624 	/*
1625 	 * Cancel any pending I/O.
1626 	 */
1627 	age_stop(ifp, 0);
1628 
1629 	/*
1630 	 * Reset the chip to a known state.
1631 	 */
1632 	age_reset(sc);
1633 
1634 	/* Initialize descriptors. */
1635 	error = age_init_rx_ring(sc);
1636         if (error != 0) {
1637 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1638 		age_stop(ifp, 0);
1639 		return error;
1640         }
1641 	age_init_rr_ring(sc);
1642 	age_init_tx_ring(sc);
1643 	age_init_cmb_block(sc);
1644 	age_init_smb_block(sc);
1645 
1646 	/* Reprogram the station address. */
1647 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1648 	CSR_WRITE_4(sc, AGE_PAR0,
1649 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1650 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1651 
1652 	/* Set descriptor base addresses. */
1653 	paddr = sc->age_rdata.age_tx_ring_paddr;
1654 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1655 	paddr = sc->age_rdata.age_rx_ring_paddr;
1656 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1657 	paddr = sc->age_rdata.age_rr_ring_paddr;
1658 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1659 	paddr = sc->age_rdata.age_tx_ring_paddr;
1660 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 	paddr = sc->age_rdata.age_cmb_block_paddr;
1662 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1663 	paddr = sc->age_rdata.age_smb_block_paddr;
1664 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1665 
1666 	/* Set Rx/Rx return descriptor counter. */
1667 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1668 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1669 	    DESC_RRD_CNT_MASK) |
1670 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1671 
1672 	/* Set Tx descriptor counter. */
1673 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1674 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1675 
1676 	/* Tell hardware that we're ready to load descriptors. */
1677 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1678 
1679         /*
1680 	 * Initialize mailbox register.
1681 	 * Updated producer/consumer index information is exchanged
1682 	 * through this mailbox register. However Tx producer and
1683 	 * Rx return consumer/Rx producer are all shared such that
1684 	 * it's hard to separate code path between Tx and Rx without
1685 	 * locking. If L1 hardware have a separate mail box register
1686 	 * for Tx and Rx consumer/producer management we could have
1687 	 * indepent Tx/Rx handler which in turn Rx handler could have
1688 	 * been run without any locking.
1689 	*/
1690 	AGE_COMMIT_MBOX(sc);
1691 
1692 	/* Configure IPG/IFG parameters. */
1693 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1694 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1695 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1696 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1697 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1698 
1699 	/* Set parameters for half-duplex media. */
1700 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1701 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1702 	    HDPX_CFG_LCOL_MASK) |
1703 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1704 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1705 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1706 	    HDPX_CFG_ABEBT_MASK) |
1707 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1708 	     HDPX_CFG_JAMIPG_MASK));
1709 
1710 	/* Configure interrupt moderation timer. */
1711 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1712 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1713 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1714 	reg &= ~MASTER_MTIMER_ENB;
1715 	if (AGE_USECS(sc->age_int_mod) == 0)
1716 		reg &= ~MASTER_ITIMER_ENB;
1717 	else
1718 		reg |= MASTER_ITIMER_ENB;
1719 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1720 	if (agedebug)
1721 		printf("%s: interrupt moderation is %d us.\n",
1722 		    device_xname(sc->sc_dev), sc->age_int_mod);
1723 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1724 
1725 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1726 	if (ifp->if_mtu < ETHERMTU)
1727 		sc->age_max_frame_size = ETHERMTU;
1728 	else
1729 		sc->age_max_frame_size = ifp->if_mtu;
1730 	sc->age_max_frame_size += ETHER_HDR_LEN +
1731 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1732 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1733 
1734 	/* Configure jumbo frame. */
1735 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1736 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1737 	    (((fsize / sizeof(uint64_t)) <<
1738 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1739 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1740 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1741 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1742 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1743 
1744 	/* Configure flow-control parameters. From Linux. */
1745 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1746 		/*
1747 		 * Magic workaround for old-L1.
1748 		 * Don't know which hw revision requires this magic.
1749 		 */
1750 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1751 		/*
1752 		 * Another magic workaround for flow-control mode
1753 		 * change. From Linux.
1754 		 */
1755 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1756 	}
1757 	/*
1758 	 * TODO
1759 	 *  Should understand pause parameter relationships between FIFO
1760 	 *  size and number of Rx descriptors and Rx return descriptors.
1761 	 *
1762 	 *  Magic parameters came from Linux.
1763 	 */
1764 	switch (sc->age_chip_rev) {
1765 	case 0x8001:
1766 	case 0x9001:
1767 	case 0x9002:
1768 	case 0x9003:
1769 		rxf_hi = AGE_RX_RING_CNT / 16;
1770 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1771 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1772 		rrd_lo = AGE_RR_RING_CNT / 16;
1773 		break;
1774 	default:
1775 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1776 		rxf_lo = reg / 16;
1777 		if (rxf_lo < 192)
1778 			rxf_lo = 192;
1779 		rxf_hi = (reg * 7) / 8;
1780 		if (rxf_hi < rxf_lo)
1781 			rxf_hi = rxf_lo + 16;
1782 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1783 		rrd_lo = reg / 8;
1784 		rrd_hi = (reg * 7) / 8;
1785 		if (rrd_lo < 2)
1786 			rrd_lo = 2;
1787 		if (rrd_hi < rrd_lo)
1788 			rrd_hi = rrd_lo + 3;
1789 		break;
1790 	}
1791 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1792 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1793 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1794 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1795 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1796 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1797 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1798 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1799 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1800 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1801 
1802 	/* Configure RxQ. */
1803 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1804 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1805 	    RXQ_CFG_RD_BURST_MASK) |
1806 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1807 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1808 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1809 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1810 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1811 
1812 	/* Configure TxQ. */
1813 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1814 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1815 	    TXQ_CFG_TPD_BURST_MASK) |
1816 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1817 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1818 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1819 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1820 	    TXQ_CFG_ENB);
1821 
1822 	/* Configure DMA parameters. */
1823 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1824 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1825 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1826 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1827 
1828 	/* Configure CMB DMA write threshold. */
1829 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1830 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1831 	    CMB_WR_THRESH_RRD_MASK) |
1832 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1833 	    CMB_WR_THRESH_TPD_MASK));
1834 
1835 	/* Set CMB/SMB timer and enable them. */
1836 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1837 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1838 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1839 
1840 	/* Request SMB updates for every seconds. */
1841 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1842 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1843 
1844 	/*
1845 	 * Disable all WOL bits as WOL can interfere normal Rx
1846 	 * operation.
1847 	 */
1848 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1849 
1850         /*
1851 	 * Configure Tx/Rx MACs.
1852 	 *  - Auto-padding for short frames.
1853 	 *  - Enable CRC generation.
1854 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1855 	 *  of MAC is followed after link establishment.
1856 	 */
1857 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1858 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1859 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1860 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1861 	    MAC_CFG_PREAMBLE_MASK));
1862 
1863 	/* Set up the receive filter. */
1864 	age_rxfilter(sc);
1865 	age_rxvlan(sc);
1866 
1867 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1868 	reg |= MAC_CFG_RXCSUM_ENB;
1869 
1870 	/* Ack all pending interrupts and clear it. */
1871 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1872 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1873 
1874 	/* Finally enable Tx/Rx MAC. */
1875 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1876 
1877 	sc->age_flags &= ~AGE_FLAG_LINK;
1878 
1879 	/* Switch to the current media. */
1880 	mii = &sc->sc_miibus;
1881 	mii_mediachg(mii);
1882 
1883 	callout_schedule(&sc->sc_tick_ch, hz);
1884 
1885 	ifp->if_flags |= IFF_RUNNING;
1886 	ifp->if_flags &= ~IFF_OACTIVE;
1887 
1888 	return 0;
1889 }
1890 
1891 static void
1892 age_stop(struct ifnet *ifp, int disable)
1893 {
1894 	struct age_softc *sc = ifp->if_softc;
1895 	struct age_txdesc *txd;
1896 	struct age_rxdesc *rxd;
1897 	uint32_t reg;
1898 	int i;
1899 
1900 	callout_stop(&sc->sc_tick_ch);
1901 
1902 	/*
1903 	 * Mark the interface down and cancel the watchdog timer.
1904 	 */
1905 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1906 	ifp->if_timer = 0;
1907 
1908 	sc->age_flags &= ~AGE_FLAG_LINK;
1909 
1910 	mii_down(&sc->sc_miibus);
1911 
1912 	/*
1913 	 * Disable interrupts.
1914 	 */
1915 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1916 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1917 
1918 	/* Stop CMB/SMB updates. */
1919 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1920 
1921 	/* Stop Rx/Tx MAC. */
1922 	age_stop_rxmac(sc);
1923 	age_stop_txmac(sc);
1924 
1925 	/* Stop DMA. */
1926 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1927 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1928 
1929 	/* Stop TxQ/RxQ. */
1930 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1931 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1932 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1933 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1934 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1935 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1936 			break;
1937 		DELAY(10);
1938 	}
1939 	if (i == 0)
1940 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1941 		    device_xname(sc->sc_dev), reg);
1942 
1943 	/* Reclaim Rx buffers that have been processed. */
1944 	if (sc->age_cdata.age_rxhead != NULL)
1945 		m_freem(sc->age_cdata.age_rxhead);
1946 	AGE_RXCHAIN_RESET(sc);
1947 
1948 	/*
1949 	 * Free RX and TX mbufs still in the queues.
1950 	 */
1951 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1952 		rxd = &sc->age_cdata.age_rxdesc[i];
1953 		if (rxd->rx_m != NULL) {
1954 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1955 			m_freem(rxd->rx_m);
1956 			rxd->rx_m = NULL;
1957 		}
1958 	}
1959 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1960 		txd = &sc->age_cdata.age_txdesc[i];
1961 		if (txd->tx_m != NULL) {
1962 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1963 			m_freem(txd->tx_m);
1964 			txd->tx_m = NULL;
1965 		}
1966 	}
1967 }
1968 
1969 static void
1970 age_stats_update(struct age_softc *sc)
1971 {
1972 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1973 	struct age_stats *stat;
1974 	struct smb *smb;
1975 
1976 	stat = &sc->age_stat;
1977 
1978 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1979 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1980 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1981 
1982 	smb = sc->age_rdata.age_smb_block;
1983 	if (smb->updated == 0)
1984 		return;
1985 
1986 	/* Rx stats. */
1987 	stat->rx_frames += smb->rx_frames;
1988 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1989 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1990 	stat->rx_pause_frames += smb->rx_pause_frames;
1991 	stat->rx_control_frames += smb->rx_control_frames;
1992 	stat->rx_crcerrs += smb->rx_crcerrs;
1993 	stat->rx_lenerrs += smb->rx_lenerrs;
1994 	stat->rx_bytes += smb->rx_bytes;
1995 	stat->rx_runts += smb->rx_runts;
1996 	stat->rx_fragments += smb->rx_fragments;
1997 	stat->rx_pkts_64 += smb->rx_pkts_64;
1998 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1999 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2000 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2001 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2002 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2003 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2004 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2005 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2006 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2007 	stat->rx_alignerrs += smb->rx_alignerrs;
2008 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2009 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2010 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2011 
2012 	/* Tx stats. */
2013 	stat->tx_frames += smb->tx_frames;
2014 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2015 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2016 	stat->tx_pause_frames += smb->tx_pause_frames;
2017 	stat->tx_excess_defer += smb->tx_excess_defer;
2018 	stat->tx_control_frames += smb->tx_control_frames;
2019 	stat->tx_deferred += smb->tx_deferred;
2020 	stat->tx_bytes += smb->tx_bytes;
2021 	stat->tx_pkts_64 += smb->tx_pkts_64;
2022 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2023 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2024 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2025 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2026 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2027 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2028 	stat->tx_single_colls += smb->tx_single_colls;
2029 	stat->tx_multi_colls += smb->tx_multi_colls;
2030 	stat->tx_late_colls += smb->tx_late_colls;
2031 	stat->tx_excess_colls += smb->tx_excess_colls;
2032 	stat->tx_underrun += smb->tx_underrun;
2033 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2034 	stat->tx_lenerrs += smb->tx_lenerrs;
2035 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2036 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2037 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2038 
2039 	/* Update counters in ifnet. */
2040 	ifp->if_opackets += smb->tx_frames;
2041 
2042 	ifp->if_collisions += smb->tx_single_colls +
2043 	    smb->tx_multi_colls + smb->tx_late_colls +
2044 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2045 
2046 	ifp->if_oerrors += smb->tx_excess_colls +
2047 	    smb->tx_late_colls + smb->tx_underrun +
2048 	    smb->tx_pkts_truncated;
2049 
2050 	ifp->if_ipackets += smb->rx_frames;
2051 
2052 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2053 	    smb->rx_runts + smb->rx_pkts_truncated +
2054 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2055 	    smb->rx_alignerrs;
2056 
2057 	/* Update done, clear. */
2058 	smb->updated = 0;
2059 
2060 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2061 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2062 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2063 }
2064 
2065 static void
2066 age_stop_txmac(struct age_softc *sc)
2067 {
2068 	uint32_t reg;
2069 	int i;
2070 
2071 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2072 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2073 		reg &= ~MAC_CFG_TX_ENB;
2074 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2075 	}
2076 	/* Stop Tx DMA engine. */
2077 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2078 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2079 		reg &= ~DMA_CFG_RD_ENB;
2080 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2081 	}
2082 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2083 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2084 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2085 			break;
2086 		DELAY(10);
2087 	}
2088 	if (i == 0)
2089 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2090 }
2091 
2092 static void
2093 age_stop_rxmac(struct age_softc *sc)
2094 {
2095 	uint32_t reg;
2096 	int i;
2097 
2098 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2099 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2100 		reg &= ~MAC_CFG_RX_ENB;
2101 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2102 	}
2103 	/* Stop Rx DMA engine. */
2104 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2105 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2106 		reg &= ~DMA_CFG_WR_ENB;
2107 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2108 	}
2109 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2110 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2111 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2112 			break;
2113 		DELAY(10);
2114 	}
2115 	if (i == 0)
2116 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2117 }
2118 
2119 static void
2120 age_init_tx_ring(struct age_softc *sc)
2121 {
2122 	struct age_ring_data *rd;
2123 	struct age_txdesc *txd;
2124 	int i;
2125 
2126 	sc->age_cdata.age_tx_prod = 0;
2127 	sc->age_cdata.age_tx_cons = 0;
2128 	sc->age_cdata.age_tx_cnt = 0;
2129 
2130 	rd = &sc->age_rdata;
2131 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2132 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2133 		txd = &sc->age_cdata.age_txdesc[i];
2134 		txd->tx_desc = &rd->age_tx_ring[i];
2135 		txd->tx_m = NULL;
2136 	}
2137 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2138 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 }
2140 
2141 static int
2142 age_init_rx_ring(struct age_softc *sc)
2143 {
2144 	struct age_ring_data *rd;
2145 	struct age_rxdesc *rxd;
2146 	int i;
2147 
2148 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2149 	rd = &sc->age_rdata;
2150 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2151 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2152 		rxd = &sc->age_cdata.age_rxdesc[i];
2153 		rxd->rx_m = NULL;
2154 		rxd->rx_desc = &rd->age_rx_ring[i];
2155 		if (age_newbuf(sc, rxd, 1) != 0)
2156 			return ENOBUFS;
2157 	}
2158 
2159 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2160 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161 
2162 	return 0;
2163 }
2164 
2165 static void
2166 age_init_rr_ring(struct age_softc *sc)
2167 {
2168 	struct age_ring_data *rd;
2169 
2170 	sc->age_cdata.age_rr_cons = 0;
2171 	AGE_RXCHAIN_RESET(sc);
2172 
2173 	rd = &sc->age_rdata;
2174 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2175 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2176 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2177 }
2178 
2179 static void
2180 age_init_cmb_block(struct age_softc *sc)
2181 {
2182 	struct age_ring_data *rd;
2183 
2184 	rd = &sc->age_rdata;
2185 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2186 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2187 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2188 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2189 }
2190 
2191 static void
2192 age_init_smb_block(struct age_softc *sc)
2193 {
2194 	struct age_ring_data *rd;
2195 
2196 	rd = &sc->age_rdata;
2197 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2198 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2199 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2200 }
2201 
2202 static int
2203 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2204 {
2205 	struct rx_desc *desc;
2206 	struct mbuf *m;
2207 	bus_dmamap_t map;
2208 	int error;
2209 
2210 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2211 	if (m == NULL)
2212 		return ENOBUFS;
2213 	MCLGET(m, M_DONTWAIT);
2214 	if (!(m->m_flags & M_EXT)) {
2215 		 m_freem(m);
2216 		 return ENOBUFS;
2217 	}
2218 
2219 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2220 	m_adj(m, ETHER_ALIGN);
2221 
2222 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2223 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2224 
2225 	if (error != 0) {
2226 		if (!error) {
2227 			bus_dmamap_unload(sc->sc_dmat,
2228 			    sc->age_cdata.age_rx_sparemap);
2229 			error = EFBIG;
2230 			printf("%s: too many segments?!\n",
2231 			    device_xname(sc->sc_dev));
2232 		}
2233 		m_freem(m);
2234 
2235 		if (init)
2236 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2237 		return error;
2238 	}
2239 
2240 	if (rxd->rx_m != NULL) {
2241 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2242 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2243 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2244 	}
2245 	map = rxd->rx_dmamap;
2246 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2247 	sc->age_cdata.age_rx_sparemap = map;
2248 	rxd->rx_m = m;
2249 
2250 	desc = rxd->rx_desc;
2251 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2252 	desc->len =
2253 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2254 	    AGE_RD_LEN_SHIFT);
2255 
2256 	return 0;
2257 }
2258 
2259 static void
2260 age_rxvlan(struct age_softc *sc)
2261 {
2262 	uint32_t reg;
2263 
2264 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2265 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2266 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2267 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2268 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2269 }
2270 
2271 static void
2272 age_rxfilter(struct age_softc *sc)
2273 {
2274 	struct ethercom *ec = &sc->sc_ec;
2275 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2276 	struct ether_multi *enm;
2277 	struct ether_multistep step;
2278 	uint32_t crc;
2279 	uint32_t mchash[2];
2280 	uint32_t rxcfg;
2281 
2282 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2283 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2284 	ifp->if_flags &= ~IFF_ALLMULTI;
2285 
2286 	/*
2287 	 * Always accept broadcast frames.
2288 	 */
2289 	rxcfg |= MAC_CFG_BCAST;
2290 
2291 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2292 		ifp->if_flags |= IFF_ALLMULTI;
2293 		if (ifp->if_flags & IFF_PROMISC)
2294 			rxcfg |= MAC_CFG_PROMISC;
2295 		else
2296 			rxcfg |= MAC_CFG_ALLMULTI;
2297 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2298 	} else {
2299 		/* Program new filter. */
2300 		memset(mchash, 0, sizeof(mchash));
2301 
2302 		ETHER_FIRST_MULTI(step, ec, enm);
2303 		while (enm != NULL) {
2304 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2305 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 			ETHER_NEXT_MULTI(step, enm);
2307 		}
2308 	}
2309 
2310 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2311 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2312 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2313 }
2314