xref: /netbsd-src/sys/dev/pci/if_age.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: if_age.c,v 1.44 2014/03/29 19:28:24 christos Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.44 2014/03/29 19:28:24 christos Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65 
66 #include <net/bpf.h>
67 
68 #include <sys/rnd.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76 
77 #include <dev/pci/if_agereg.h>
78 
79 static int	age_match(device_t, cfdata_t, void *);
80 static void	age_attach(device_t, device_t, void *);
81 static int	age_detach(device_t, int);
82 
83 static bool	age_resume(device_t, const pmf_qual_t *);
84 
85 static int	age_miibus_readreg(device_t, int, int);
86 static void	age_miibus_writereg(device_t, int, int, int);
87 static void	age_miibus_statchg(struct ifnet *);
88 
89 static int	age_init(struct ifnet *);
90 static int	age_ioctl(struct ifnet *, u_long, void *);
91 static void	age_start(struct ifnet *);
92 static void	age_watchdog(struct ifnet *);
93 static bool	age_shutdown(device_t, int);
94 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
95 static int	age_mediachange(struct ifnet *);
96 
97 static int	age_intr(void *);
98 static int	age_dma_alloc(struct age_softc *);
99 static void	age_dma_free(struct age_softc *);
100 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
101 static void	age_phy_reset(struct age_softc *);
102 
103 static int	age_encap(struct age_softc *, struct mbuf **);
104 static void	age_init_tx_ring(struct age_softc *);
105 static int	age_init_rx_ring(struct age_softc *);
106 static void	age_init_rr_ring(struct age_softc *);
107 static void	age_init_cmb_block(struct age_softc *);
108 static void	age_init_smb_block(struct age_softc *);
109 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
110 static void	age_mac_config(struct age_softc *);
111 static void	age_txintr(struct age_softc *, int);
112 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
113 static void	age_rxintr(struct age_softc *, int);
114 static void	age_tick(void *);
115 static void	age_reset(struct age_softc *);
116 static void	age_stop(struct ifnet *, int);
117 static void	age_stats_update(struct age_softc *);
118 static void	age_stop_txmac(struct age_softc *);
119 static void	age_stop_rxmac(struct age_softc *);
120 static void	age_rxvlan(struct age_softc *sc);
121 static void	age_rxfilter(struct age_softc *);
122 
123 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
124     age_match, age_attach, age_detach, NULL);
125 
126 int agedebug = 0;
127 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
128 
129 #define ETHER_ALIGN 2
130 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 
132 static int
133 age_match(device_t dev, cfdata_t match, void *aux)
134 {
135 	struct pci_attach_args *pa = aux;
136 
137 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
139 }
140 
141 static void
142 age_attach(device_t parent, device_t self, void *aux)
143 {
144 	struct age_softc *sc = device_private(self);
145 	struct pci_attach_args *pa = aux;
146 	pci_intr_handle_t ih;
147 	const char *intrstr;
148 	struct ifnet *ifp = &sc->sc_ec.ec_if;
149 	pcireg_t memtype;
150 	int error = 0;
151 	char intrbuf[PCI_INTRSTR_LEN];
152 
153 	aprint_naive("\n");
154 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
155 
156 	sc->sc_dev = self;
157 	sc->sc_dmat = pa->pa_dmat;
158 	sc->sc_pct = pa->pa_pc;
159 	sc->sc_pcitag = pa->pa_tag;
160 
161 	/*
162 	 * Allocate IO memory
163 	 */
164 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
165 	switch (memtype) {
166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
169 		break;
170         default:
171 		aprint_error_dev(self, "invalid base address register\n");
172 		break;
173 	}
174 
175 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
176 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
177 		aprint_error_dev(self, "could not map mem space\n");
178 		return;
179 	}
180 
181 	if (pci_intr_map(pa, &ih) != 0) {
182 		aprint_error_dev(self, "could not map interrupt\n");
183 		goto fail;
184 	}
185 
186 	/*
187 	 * Allocate IRQ
188 	 */
189 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
190 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
191 	    age_intr, sc);
192 	if (sc->sc_irq_handle == NULL) {
193 		aprint_error_dev(self, "could not establish interrupt");
194 		if (intrstr != NULL)
195 			aprint_error(" at %s", intrstr);
196 		aprint_error("\n");
197 		goto fail;
198 	}
199 	aprint_normal_dev(self, "%s\n", intrstr);
200 
201 	/* Set PHY address. */
202 	sc->age_phyaddr = AGE_PHY_ADDR;
203 
204 	/* Reset PHY. */
205 	age_phy_reset(sc);
206 
207 	/* Reset the ethernet controller. */
208 	age_reset(sc);
209 
210 	/* Get PCI and chip id/revision. */
211 	sc->age_rev = PCI_REVISION(pa->pa_class);
212 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
213 	    MASTER_CHIP_REV_SHIFT;
214 
215 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
216 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
217 
218 	if (agedebug) {
219 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
220 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
221 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
222 	}
223 
224 	/* Set max allowable DMA size. */
225 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
226 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
227 
228 	/* Allocate DMA stuffs */
229 	error = age_dma_alloc(sc);
230 	if (error)
231 		goto fail;
232 
233 	callout_init(&sc->sc_tick_ch, 0);
234 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
235 
236 	/* Load station address. */
237 	age_get_macaddr(sc, sc->sc_enaddr);
238 
239 	aprint_normal_dev(self, "Ethernet address %s\n",
240 	    ether_sprintf(sc->sc_enaddr));
241 
242 	ifp->if_softc = sc;
243 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
244 	ifp->if_init = age_init;
245 	ifp->if_ioctl = age_ioctl;
246 	ifp->if_start = age_start;
247 	ifp->if_stop = age_stop;
248 	ifp->if_watchdog = age_watchdog;
249 	ifp->if_baudrate = IF_Gbps(1);
250 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
251 	IFQ_SET_READY(&ifp->if_snd);
252 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
253 
254 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
255 
256 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
257 				IFCAP_CSUM_TCPv4_Rx |
258 				IFCAP_CSUM_UDPv4_Rx;
259 #ifdef AGE_CHECKSUM
260 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
261 				IFCAP_CSUM_TCPv4_Tx |
262 				IFCAP_CSUM_UDPv4_Tx;
263 #endif
264 
265 #if NVLAN > 0
266 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
267 #endif
268 
269 	/* Set up MII bus. */
270 	sc->sc_miibus.mii_ifp = ifp;
271 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
272 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
273 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
274 
275 	sc->sc_ec.ec_mii = &sc->sc_miibus;
276 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
277 	    age_mediastatus);
278 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
279 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
280 
281 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
282 		aprint_error_dev(self, "no PHY found!\n");
283 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
284 		    0, NULL);
285 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
286 	} else
287 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
288 
289 	if_attach(ifp);
290 	ether_ifattach(ifp, sc->sc_enaddr);
291 
292 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
293 		pmf_class_network_register(self, ifp);
294 	else
295 		aprint_error_dev(self, "couldn't establish power handler\n");
296 
297 	return;
298 
299 fail:
300 	age_dma_free(sc);
301 	if (sc->sc_irq_handle != NULL) {
302 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
303 		sc->sc_irq_handle = NULL;
304 	}
305 	if (sc->sc_mem_size) {
306 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
307 		sc->sc_mem_size = 0;
308 	}
309 }
310 
311 static int
312 age_detach(device_t self, int flags)
313 {
314 	struct age_softc *sc = device_private(self);
315 	struct ifnet *ifp = &sc->sc_ec.ec_if;
316 	int s;
317 
318 	pmf_device_deregister(self);
319 	s = splnet();
320 	age_stop(ifp, 0);
321 	splx(s);
322 
323 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
324 
325 	/* Delete all remaining media. */
326 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
327 
328 	ether_ifdetach(ifp);
329 	if_detach(ifp);
330 	age_dma_free(sc);
331 
332 	if (sc->sc_irq_handle != NULL) {
333 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
334 		sc->sc_irq_handle = NULL;
335 	}
336 	if (sc->sc_mem_size) {
337 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
338 		sc->sc_mem_size = 0;
339 	}
340 	return 0;
341 }
342 
343 /*
344  *	Read a PHY register on the MII of the L1.
345  */
346 static int
347 age_miibus_readreg(device_t dev, int phy, int reg)
348 {
349 	struct age_softc *sc = device_private(dev);
350 	uint32_t v;
351 	int i;
352 
353 	if (phy != sc->age_phyaddr)
354 		return 0;
355 
356 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
357 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
358 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
359 		DELAY(1);
360 		v = CSR_READ_4(sc, AGE_MDIO);
361 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
362 			break;
363 	}
364 
365 	if (i == 0) {
366 		printf("%s: phy read timeout: phy %d, reg %d\n",
367 			device_xname(sc->sc_dev), phy, reg);
368 		return 0;
369 	}
370 
371 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
372 }
373 
374 /*
375  * 	Write a PHY register on the MII of the L1.
376  */
377 static void
378 age_miibus_writereg(device_t dev, int phy, int reg, int val)
379 {
380 	struct age_softc *sc = device_private(dev);
381 	uint32_t v;
382 	int i;
383 
384 	if (phy != sc->age_phyaddr)
385 		return;
386 
387 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
388 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
389 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
390 
391 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
392 		DELAY(1);
393 		v = CSR_READ_4(sc, AGE_MDIO);
394 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
395 			break;
396 	}
397 
398 	if (i == 0) {
399 		printf("%s: phy write timeout: phy %d, reg %d\n",
400 		    device_xname(sc->sc_dev), phy, reg);
401 	}
402 }
403 
404 /*
405  *	Callback from MII layer when media changes.
406  */
407 static void
408 age_miibus_statchg(struct ifnet *ifp)
409 {
410 	struct age_softc *sc = ifp->if_softc;
411 	struct mii_data *mii = &sc->sc_miibus;
412 
413 	if ((ifp->if_flags & IFF_RUNNING) == 0)
414 		return;
415 
416 	sc->age_flags &= ~AGE_FLAG_LINK;
417 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
418 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
419 		case IFM_10_T:
420 		case IFM_100_TX:
421 		case IFM_1000_T:
422 			sc->age_flags |= AGE_FLAG_LINK;
423 			break;
424 		default:
425 			break;
426 		}
427 	}
428 
429 	/* Stop Rx/Tx MACs. */
430 	age_stop_rxmac(sc);
431 	age_stop_txmac(sc);
432 
433 	/* Program MACs with resolved speed/duplex/flow-control. */
434 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
435 		uint32_t reg;
436 
437 		age_mac_config(sc);
438 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
439 		/* Restart DMA engine and Tx/Rx MAC. */
440 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
441 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
442 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
443 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
444 	}
445 }
446 
447 /*
448  *	Get the current interface media status.
449  */
450 static void
451 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
452 {
453 	struct age_softc *sc = ifp->if_softc;
454 	struct mii_data *mii = &sc->sc_miibus;
455 
456 	mii_pollstat(mii);
457 	ifmr->ifm_status = mii->mii_media_status;
458 	ifmr->ifm_active = mii->mii_media_active;
459 }
460 
461 /*
462  *	Set hardware to newly-selected media.
463  */
464 static int
465 age_mediachange(struct ifnet *ifp)
466 {
467 	struct age_softc *sc = ifp->if_softc;
468 	struct mii_data *mii = &sc->sc_miibus;
469 	int error;
470 
471 	if (mii->mii_instance != 0) {
472 		struct mii_softc *miisc;
473 
474 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
475 			mii_phy_reset(miisc);
476 	}
477 	error = mii_mediachg(mii);
478 
479 	return error;
480 }
481 
482 static int
483 age_intr(void *arg)
484 {
485         struct age_softc *sc = arg;
486         struct ifnet *ifp = &sc->sc_ec.ec_if;
487 	struct cmb *cmb;
488         uint32_t status;
489 
490 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
491 	if (status == 0 || (status & AGE_INTRS) == 0)
492 		return 0;
493 
494 	cmb = sc->age_rdata.age_cmb_block;
495 	if (cmb == NULL) {
496 		/* Happens when bringing up the interface
497 		 * w/o having a carrier. Ack the interrupt.
498 		 */
499 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
500 		return 0;
501 	}
502 
503 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
504 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
505 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 	status = le32toh(cmb->intr_status);
507 	/* ACK/reenable interrupts */
508 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
509 	while ((status & AGE_INTRS) != 0) {
510 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
511 		    TPD_CONS_SHIFT;
512 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
513 		    RRD_PROD_SHIFT;
514 
515 		/* Let hardware know CMB was served. */
516 		cmb->intr_status = 0;
517 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
518 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
519 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
520 
521 		if (ifp->if_flags & IFF_RUNNING) {
522 			if (status & INTR_CMB_RX)
523 				age_rxintr(sc, sc->age_rr_prod);
524 
525 			if (status & INTR_CMB_TX)
526 				age_txintr(sc, sc->age_tpd_cons);
527 
528 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
529 				if (status & INTR_DMA_RD_TO_RST)
530 					printf("%s: DMA read error! -- "
531 					    "resetting\n",
532 					    device_xname(sc->sc_dev));
533 				if (status & INTR_DMA_WR_TO_RST)
534 					printf("%s: DMA write error! -- "
535 					    "resetting\n",
536 					    device_xname(sc->sc_dev));
537 				age_init(ifp);
538 			}
539 
540 			age_start(ifp);
541 
542 			if (status & INTR_SMB)
543 				age_stats_update(sc);
544 		}
545 		/* check if more interrupts did came in */
546 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
547 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
548 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
549 		status = le32toh(cmb->intr_status);
550 	}
551 
552 	return 1;
553 }
554 
555 static void
556 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
557 {
558 	uint32_t ea[2], reg;
559 	int i, vpdc;
560 
561 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
562 	if ((reg & SPI_VPD_ENB) != 0) {
563 		/* Get VPD stored in TWSI EEPROM. */
564 		reg &= ~SPI_VPD_ENB;
565 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
566 	}
567 
568 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
569 	    PCI_CAP_VPD, &vpdc, NULL)) {
570 		/*
571 		 * PCI VPD capability found, let TWSI reload EEPROM.
572 		 * This will set Ethernet address of controller.
573 		 */
574 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
575 		    TWSI_CTRL_SW_LD_START);
576 		for (i = 100; i > 0; i++) {
577 			DELAY(1000);
578 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
579 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
580 				break;
581 		}
582 		if (i == 0)
583 			printf("%s: reloading EEPROM timeout!\n",
584 			    device_xname(sc->sc_dev));
585 	} else {
586 		if (agedebug)
587 			printf("%s: PCI VPD capability not found!\n",
588 			    device_xname(sc->sc_dev));
589 	}
590 
591 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
592 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
593 
594 	eaddr[0] = (ea[1] >> 8) & 0xFF;
595 	eaddr[1] = (ea[1] >> 0) & 0xFF;
596 	eaddr[2] = (ea[0] >> 24) & 0xFF;
597 	eaddr[3] = (ea[0] >> 16) & 0xFF;
598 	eaddr[4] = (ea[0] >> 8) & 0xFF;
599 	eaddr[5] = (ea[0] >> 0) & 0xFF;
600 }
601 
602 static void
603 age_phy_reset(struct age_softc *sc)
604 {
605 	uint16_t reg, pn;
606 	int i, linkup;
607 
608 	/* Reset PHY. */
609 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
610 	DELAY(2000);
611 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
612 	DELAY(2000);
613 
614 #define ATPHY_DBG_ADDR		0x1D
615 #define ATPHY_DBG_DATA		0x1E
616 #define ATPHY_CDTC		0x16
617 #define PHY_CDTC_ENB		0x0001
618 #define PHY_CDTC_POFF		8
619 #define ATPHY_CDTS		0x1C
620 #define PHY_CDTS_STAT_OK	0x0000
621 #define PHY_CDTS_STAT_SHORT	0x0100
622 #define PHY_CDTS_STAT_OPEN	0x0200
623 #define PHY_CDTS_STAT_INVAL	0x0300
624 #define PHY_CDTS_STAT_MASK	0x0300
625 
626 	/* Check power saving mode. Magic from Linux. */
627 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
628 	for (linkup = 0, pn = 0; pn < 4; pn++) {
629 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
630 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
631 		for (i = 200; i > 0; i--) {
632 			DELAY(1000);
633 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
634 			    ATPHY_CDTC);
635 			if ((reg & PHY_CDTC_ENB) == 0)
636 				break;
637 		}
638 		DELAY(1000);
639 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
640 		    ATPHY_CDTS);
641 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
642 			linkup++;
643 			break;
644 		}
645 	}
646 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
647 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
648 	if (linkup == 0) {
649 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
650 		    ATPHY_DBG_ADDR, 0);
651 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
652 		    ATPHY_DBG_DATA, 0x124E);
653 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
654 		    ATPHY_DBG_ADDR, 1);
655 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
656 		    ATPHY_DBG_DATA);
657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 		    ATPHY_DBG_DATA, reg | 0x03);
659 		/* XXX */
660 		DELAY(1500 * 1000);
661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 		    ATPHY_DBG_ADDR, 0);
663 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
664 		    ATPHY_DBG_DATA, 0x024E);
665 	}
666 
667 #undef ATPHY_DBG_ADDR
668 #undef ATPHY_DBG_DATA
669 #undef ATPHY_CDTC
670 #undef PHY_CDTC_ENB
671 #undef PHY_CDTC_POFF
672 #undef ATPHY_CDTS
673 #undef PHY_CDTS_STAT_OK
674 #undef PHY_CDTS_STAT_SHORT
675 #undef PHY_CDTS_STAT_OPEN
676 #undef PHY_CDTS_STAT_INVAL
677 #undef PHY_CDTS_STAT_MASK
678 }
679 
680 static int
681 age_dma_alloc(struct age_softc *sc)
682 {
683 	struct age_txdesc *txd;
684 	struct age_rxdesc *rxd;
685 	int nsegs, error, i;
686 
687 	/*
688 	 * Create DMA stuffs for TX ring
689 	 */
690 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
691 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
692 	if (error) {
693 		sc->age_cdata.age_tx_ring_map = NULL;
694 		return ENOBUFS;
695 	}
696 
697 	/* Allocate DMA'able memory for TX ring */
698 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
699 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
700 	    &nsegs, BUS_DMA_NOWAIT);
701 	if (error) {
702 		printf("%s: could not allocate DMA'able memory for Tx ring, "
703 		    "error = %i\n", device_xname(sc->sc_dev), error);
704 		return error;
705 	}
706 
707 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
708 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
709 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
710 	if (error)
711 		return ENOBUFS;
712 
713 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
714 
715 	/*  Load the DMA map for Tx ring. */
716 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
717 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
718 	if (error) {
719 		printf("%s: could not load DMA'able memory for Tx ring, "
720 		    "error = %i\n", device_xname(sc->sc_dev), error);
721 		bus_dmamem_free(sc->sc_dmat,
722 		    &sc->age_rdata.age_tx_ring_seg, 1);
723 		return error;
724 	}
725 
726 	sc->age_rdata.age_tx_ring_paddr =
727 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
728 
729 	/*
730 	 * Create DMA stuffs for RX ring
731 	 */
732 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
733 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
734 	if (error) {
735 		sc->age_cdata.age_rx_ring_map = NULL;
736 		return ENOBUFS;
737 	}
738 
739 	/* Allocate DMA'able memory for RX ring */
740 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
741 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
742 	    &nsegs, BUS_DMA_NOWAIT);
743 	if (error) {
744 		printf("%s: could not allocate DMA'able memory for Rx ring, "
745 		    "error = %i.\n", device_xname(sc->sc_dev), error);
746 		return error;
747 	}
748 
749 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
750 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
751 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
752 	if (error)
753 		return ENOBUFS;
754 
755 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
756 
757 	/* Load the DMA map for Rx ring. */
758 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
759 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
760 	if (error) {
761 		printf("%s: could not load DMA'able memory for Rx ring, "
762 		    "error = %i.\n", device_xname(sc->sc_dev), error);
763 		bus_dmamem_free(sc->sc_dmat,
764 		    &sc->age_rdata.age_rx_ring_seg, 1);
765 		return error;
766 	}
767 
768 	sc->age_rdata.age_rx_ring_paddr =
769 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
770 
771 	/*
772 	 * Create DMA stuffs for RX return ring
773 	 */
774 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
775 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
776 	if (error) {
777 		sc->age_cdata.age_rr_ring_map = NULL;
778 		return ENOBUFS;
779 	}
780 
781 	/* Allocate DMA'able memory for RX return ring */
782 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
783 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
784 	    &nsegs, BUS_DMA_NOWAIT);
785 	if (error) {
786 		printf("%s: could not allocate DMA'able memory for Rx "
787 		    "return ring, error = %i.\n",
788 		    device_xname(sc->sc_dev), error);
789 		return error;
790 	}
791 
792 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
793 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
794 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
795 	if (error)
796 		return ENOBUFS;
797 
798 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
799 
800 	/*  Load the DMA map for Rx return ring. */
801 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
802 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
803 	if (error) {
804 		printf("%s: could not load DMA'able memory for Rx return ring, "
805 		    "error = %i\n", device_xname(sc->sc_dev), error);
806 		bus_dmamem_free(sc->sc_dmat,
807 		    &sc->age_rdata.age_rr_ring_seg, 1);
808 		return error;
809 	}
810 
811 	sc->age_rdata.age_rr_ring_paddr =
812 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
813 
814 	/*
815 	 * Create DMA stuffs for CMB block
816 	 */
817 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
818 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
819 	    &sc->age_cdata.age_cmb_block_map);
820 	if (error) {
821 		sc->age_cdata.age_cmb_block_map = NULL;
822 		return ENOBUFS;
823 	}
824 
825 	/* Allocate DMA'able memory for CMB block */
826 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
827 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
828 	    &nsegs, BUS_DMA_NOWAIT);
829 	if (error) {
830 		printf("%s: could not allocate DMA'able memory for "
831 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
832 		return error;
833 	}
834 
835 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
836 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
837 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
838 	if (error)
839 		return ENOBUFS;
840 
841 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
842 
843 	/*  Load the DMA map for CMB block. */
844 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
845 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
846 	    BUS_DMA_NOWAIT);
847 	if (error) {
848 		printf("%s: could not load DMA'able memory for CMB block, "
849 		    "error = %i\n", device_xname(sc->sc_dev), error);
850 		bus_dmamem_free(sc->sc_dmat,
851 		    &sc->age_rdata.age_cmb_block_seg, 1);
852 		return error;
853 	}
854 
855 	sc->age_rdata.age_cmb_block_paddr =
856 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
857 
858 	/*
859 	 * Create DMA stuffs for SMB block
860 	 */
861 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
862 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
863 	    &sc->age_cdata.age_smb_block_map);
864 	if (error) {
865 		sc->age_cdata.age_smb_block_map = NULL;
866 		return ENOBUFS;
867 	}
868 
869 	/* Allocate DMA'able memory for SMB block */
870 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
871 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
872 	    &nsegs, BUS_DMA_NOWAIT);
873 	if (error) {
874 		printf("%s: could not allocate DMA'able memory for "
875 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
876 		return error;
877 	}
878 
879 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
880 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
881 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
882 	if (error)
883 		return ENOBUFS;
884 
885 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
886 
887 	/*  Load the DMA map for SMB block */
888 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
889 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
890 	    BUS_DMA_NOWAIT);
891 	if (error) {
892 		printf("%s: could not load DMA'able memory for SMB block, "
893 		    "error = %i\n", device_xname(sc->sc_dev), error);
894 		bus_dmamem_free(sc->sc_dmat,
895 		    &sc->age_rdata.age_smb_block_seg, 1);
896 		return error;
897 	}
898 
899 	sc->age_rdata.age_smb_block_paddr =
900 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
901 
902 	/* Create DMA maps for Tx buffers. */
903 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
904 		txd = &sc->age_cdata.age_txdesc[i];
905 		txd->tx_m = NULL;
906 		txd->tx_dmamap = NULL;
907 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
908 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
909 		    &txd->tx_dmamap);
910 		if (error) {
911 			txd->tx_dmamap = NULL;
912 			printf("%s: could not create Tx dmamap, error = %i.\n",
913 			    device_xname(sc->sc_dev), error);
914 			return error;
915 		}
916 	}
917 
918 	/* Create DMA maps for Rx buffers. */
919 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
920 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
921 	if (error) {
922 		sc->age_cdata.age_rx_sparemap = NULL;
923 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
924 		    device_xname(sc->sc_dev), error);
925 		return error;
926 	}
927 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
928 		rxd = &sc->age_cdata.age_rxdesc[i];
929 		rxd->rx_m = NULL;
930 		rxd->rx_dmamap = NULL;
931 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
932 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
933 		if (error) {
934 			rxd->rx_dmamap = NULL;
935 			printf("%s: could not create Rx dmamap, error = %i.\n",
936 			    device_xname(sc->sc_dev), error);
937 			return error;
938 		}
939 	}
940 
941 	return 0;
942 }
943 
944 static void
945 age_dma_free(struct age_softc *sc)
946 {
947 	struct age_txdesc *txd;
948 	struct age_rxdesc *rxd;
949 	int i;
950 
951 	/* Tx buffers */
952 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
953 		txd = &sc->age_cdata.age_txdesc[i];
954 		if (txd->tx_dmamap != NULL) {
955 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
956 			txd->tx_dmamap = NULL;
957 		}
958 	}
959 	/* Rx buffers */
960 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
961 		rxd = &sc->age_cdata.age_rxdesc[i];
962 		if (rxd->rx_dmamap != NULL) {
963 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
964 			rxd->rx_dmamap = NULL;
965 		}
966 	}
967 	if (sc->age_cdata.age_rx_sparemap != NULL) {
968 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
969 		sc->age_cdata.age_rx_sparemap = NULL;
970 	}
971 
972 	/* Tx ring. */
973 	if (sc->age_cdata.age_tx_ring_map != NULL)
974 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
975 	if (sc->age_cdata.age_tx_ring_map != NULL &&
976 	    sc->age_rdata.age_tx_ring != NULL)
977 		bus_dmamem_free(sc->sc_dmat,
978 		    &sc->age_rdata.age_tx_ring_seg, 1);
979 	sc->age_rdata.age_tx_ring = NULL;
980 	sc->age_cdata.age_tx_ring_map = NULL;
981 
982 	/* Rx ring. */
983 	if (sc->age_cdata.age_rx_ring_map != NULL)
984 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
985 	if (sc->age_cdata.age_rx_ring_map != NULL &&
986 	    sc->age_rdata.age_rx_ring != NULL)
987 		bus_dmamem_free(sc->sc_dmat,
988 		    &sc->age_rdata.age_rx_ring_seg, 1);
989 	sc->age_rdata.age_rx_ring = NULL;
990 	sc->age_cdata.age_rx_ring_map = NULL;
991 
992 	/* Rx return ring. */
993 	if (sc->age_cdata.age_rr_ring_map != NULL)
994 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
995 	if (sc->age_cdata.age_rr_ring_map != NULL &&
996 	    sc->age_rdata.age_rr_ring != NULL)
997 		bus_dmamem_free(sc->sc_dmat,
998 		    &sc->age_rdata.age_rr_ring_seg, 1);
999 	sc->age_rdata.age_rr_ring = NULL;
1000 	sc->age_cdata.age_rr_ring_map = NULL;
1001 
1002 	/* CMB block */
1003 	if (sc->age_cdata.age_cmb_block_map != NULL)
1004 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1005 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1006 	    sc->age_rdata.age_cmb_block != NULL)
1007 		bus_dmamem_free(sc->sc_dmat,
1008 		    &sc->age_rdata.age_cmb_block_seg, 1);
1009 	sc->age_rdata.age_cmb_block = NULL;
1010 	sc->age_cdata.age_cmb_block_map = NULL;
1011 
1012 	/* SMB block */
1013 	if (sc->age_cdata.age_smb_block_map != NULL)
1014 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1015 	if (sc->age_cdata.age_smb_block_map != NULL &&
1016 	    sc->age_rdata.age_smb_block != NULL)
1017 		bus_dmamem_free(sc->sc_dmat,
1018 		    &sc->age_rdata.age_smb_block_seg, 1);
1019 	sc->age_rdata.age_smb_block = NULL;
1020 	sc->age_cdata.age_smb_block_map = NULL;
1021 }
1022 
1023 static void
1024 age_start(struct ifnet *ifp)
1025 {
1026         struct age_softc *sc = ifp->if_softc;
1027         struct mbuf *m_head;
1028 	int enq;
1029 
1030 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1031 		return;
1032 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1033 		return;
1034 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1035 		return;
1036 
1037 	enq = 0;
1038 	for (;;) {
1039 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1040 		if (m_head == NULL)
1041 			break;
1042 
1043 		/*
1044 		 * Pack the data into the transmit ring. If we
1045 		 * don't have room, set the OACTIVE flag and wait
1046 		 * for the NIC to drain the ring.
1047 		 */
1048 		if (age_encap(sc, &m_head)) {
1049 			if (m_head == NULL)
1050 				break;
1051 			IF_PREPEND(&ifp->if_snd, m_head);
1052 			ifp->if_flags |= IFF_OACTIVE;
1053 			break;
1054 		}
1055 		enq = 1;
1056 
1057 		/*
1058 		 * If there's a BPF listener, bounce a copy of this frame
1059 		 * to him.
1060 		 */
1061 		bpf_mtap(ifp, m_head);
1062 	}
1063 
1064 	if (enq) {
1065 		/* Update mbox. */
1066 		AGE_COMMIT_MBOX(sc);
1067 		/* Set a timeout in case the chip goes out to lunch. */
1068 		ifp->if_timer = AGE_TX_TIMEOUT;
1069 	}
1070 }
1071 
1072 static void
1073 age_watchdog(struct ifnet *ifp)
1074 {
1075 	struct age_softc *sc = ifp->if_softc;
1076 
1077 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1078 		printf("%s: watchdog timeout (missed link)\n",
1079 		    device_xname(sc->sc_dev));
1080 		ifp->if_oerrors++;
1081 		age_init(ifp);
1082 		return;
1083 	}
1084 
1085 	if (sc->age_cdata.age_tx_cnt == 0) {
1086 		printf("%s: watchdog timeout (missed Tx interrupts) "
1087 		    "-- recovering\n", device_xname(sc->sc_dev));
1088 		age_start(ifp);
1089 		return;
1090 	}
1091 
1092 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1093 	ifp->if_oerrors++;
1094 	age_init(ifp);
1095 	age_start(ifp);
1096 }
1097 
1098 static bool
1099 age_shutdown(device_t self, int howto)
1100 {
1101 	struct age_softc *sc;
1102 	struct ifnet *ifp;
1103 
1104 	sc = device_private(self);
1105 	ifp = &sc->sc_ec.ec_if;
1106 	age_stop(ifp, 1);
1107 
1108 	return true;
1109 }
1110 
1111 
1112 static int
1113 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 	struct age_softc *sc = ifp->if_softc;
1116 	int s, error;
1117 
1118 	s = splnet();
1119 
1120 	error = ether_ioctl(ifp, cmd, data);
1121 	if (error == ENETRESET) {
1122 		if (ifp->if_flags & IFF_RUNNING)
1123 			age_rxfilter(sc);
1124 		error = 0;
1125 	}
1126 
1127 	splx(s);
1128 	return error;
1129 }
1130 
1131 static void
1132 age_mac_config(struct age_softc *sc)
1133 {
1134 	struct mii_data *mii;
1135 	uint32_t reg;
1136 
1137 	mii = &sc->sc_miibus;
1138 
1139 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1140 	reg &= ~MAC_CFG_FULL_DUPLEX;
1141 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1142 	reg &= ~MAC_CFG_SPEED_MASK;
1143 
1144 	/* Reprogram MAC with resolved speed/duplex. */
1145 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1146 	case IFM_10_T:
1147 	case IFM_100_TX:
1148 		reg |= MAC_CFG_SPEED_10_100;
1149 		break;
1150 	case IFM_1000_T:
1151 		reg |= MAC_CFG_SPEED_1000;
1152 		break;
1153 	}
1154 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1155 		reg |= MAC_CFG_FULL_DUPLEX;
1156 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1157 			reg |= MAC_CFG_TX_FC;
1158 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1159 			reg |= MAC_CFG_RX_FC;
1160 	}
1161 
1162 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1163 }
1164 
1165 static bool
1166 age_resume(device_t dv, const pmf_qual_t *qual)
1167 {
1168 	struct age_softc *sc = device_private(dv);
1169 	uint16_t cmd;
1170 
1171 	/*
1172 	 * Clear INTx emulation disable for hardware that
1173 	 * is set in resume event. From Linux.
1174 	 */
1175 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1176 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1177 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1178 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1179 		    PCI_COMMAND_STATUS_REG, cmd);
1180 	}
1181 
1182 	return true;
1183 }
1184 
1185 static int
1186 age_encap(struct age_softc *sc, struct mbuf **m_head)
1187 {
1188 	struct age_txdesc *txd, *txd_last;
1189 	struct tx_desc *desc;
1190 	struct mbuf *m;
1191 	bus_dmamap_t map;
1192 	uint32_t cflags, poff, vtag;
1193 	int error, i, nsegs, prod;
1194 #if NVLAN > 0
1195 	struct m_tag *mtag;
1196 #endif
1197 
1198 	m = *m_head;
1199 	cflags = vtag = 0;
1200 	poff = 0;
1201 
1202 	prod = sc->age_cdata.age_tx_prod;
1203 	txd = &sc->age_cdata.age_txdesc[prod];
1204 	txd_last = txd;
1205 	map = txd->tx_dmamap;
1206 
1207 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1208 
1209 	if (error == EFBIG) {
1210 		error = 0;
1211 
1212 		*m_head = m_pullup(*m_head, MHLEN);
1213 		if (*m_head == NULL) {
1214 			printf("%s: can't defrag TX mbuf\n",
1215 			    device_xname(sc->sc_dev));
1216 			return ENOBUFS;
1217 		}
1218 
1219 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1220 		  	    BUS_DMA_NOWAIT);
1221 
1222 		if (error != 0) {
1223 			printf("%s: could not load defragged TX mbuf\n",
1224 			    device_xname(sc->sc_dev));
1225 			m_freem(*m_head);
1226 			*m_head = NULL;
1227 			return error;
1228 		}
1229 	} else if (error) {
1230 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1231 		return error;
1232 	}
1233 
1234 	nsegs = map->dm_nsegs;
1235 
1236 	if (nsegs == 0) {
1237 		m_freem(*m_head);
1238 		*m_head = NULL;
1239 		return EIO;
1240 	}
1241 
1242 	/* Check descriptor overrun. */
1243 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1244 		bus_dmamap_unload(sc->sc_dmat, map);
1245 		return ENOBUFS;
1246 	}
1247 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1248 	    BUS_DMASYNC_PREWRITE);
1249 
1250 	m = *m_head;
1251 	/* Configure Tx IP/TCP/UDP checksum offload. */
1252 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1253 		cflags |= AGE_TD_CSUM;
1254 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1255 			cflags |= AGE_TD_TCPCSUM;
1256 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1257 			cflags |= AGE_TD_UDPCSUM;
1258 		/* Set checksum start offset. */
1259 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1260 	}
1261 
1262 #if NVLAN > 0
1263 	/* Configure VLAN hardware tag insertion. */
1264 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1265 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1266 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1267 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1268 	}
1269 #endif
1270 
1271 	desc = NULL;
1272 	KASSERT(nsegs > 0);
1273 	for (i = 0; ; i++) {
1274 		desc = &sc->age_rdata.age_tx_ring[prod];
1275 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1276 		desc->len =
1277 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1278 		desc->flags = htole32(cflags);
1279 		sc->age_cdata.age_tx_cnt++;
1280 		if (i == (nsegs - 1))
1281 			break;
1282 
1283 		/* sync this descriptor and go to the next one */
1284 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1285 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1286 		    BUS_DMASYNC_PREWRITE);
1287 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1288 	}
1289 
1290 	/* Set EOP on the last descriptor and sync it. */
1291 	desc->flags |= htole32(AGE_TD_EOP);
1292 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1293 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1294 	    BUS_DMASYNC_PREWRITE);
1295 
1296 	if (nsegs > 1) {
1297 		/* Swap dmamap of the first and the last. */
1298 		txd = &sc->age_cdata.age_txdesc[prod];
1299 		map = txd_last->tx_dmamap;
1300 		txd_last->tx_dmamap = txd->tx_dmamap;
1301 		txd->tx_dmamap = map;
1302 		txd->tx_m = m;
1303 		KASSERT(txd_last->tx_m == NULL);
1304 	} else {
1305 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1306 		txd_last->tx_m = m;
1307 	}
1308 
1309 	/* Update producer index. */
1310 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1311 	sc->age_cdata.age_tx_prod = prod;
1312 
1313 	return 0;
1314 }
1315 
1316 static void
1317 age_txintr(struct age_softc *sc, int tpd_cons)
1318 {
1319 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1320 	struct age_txdesc *txd;
1321 	int cons, prog;
1322 
1323 
1324 	if (sc->age_cdata.age_tx_cnt <= 0) {
1325 		if (ifp->if_timer != 0)
1326 			printf("timer running without packets\n");
1327 		if (sc->age_cdata.age_tx_cnt)
1328 			printf("age_tx_cnt corrupted\n");
1329 	}
1330 
1331 	/*
1332 	 * Go through our Tx list and free mbufs for those
1333 	 * frames which have been transmitted.
1334 	 */
1335 	cons = sc->age_cdata.age_tx_cons;
1336 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1337 		if (sc->age_cdata.age_tx_cnt <= 0)
1338 			break;
1339 		prog++;
1340 		ifp->if_flags &= ~IFF_OACTIVE;
1341 		sc->age_cdata.age_tx_cnt--;
1342 		txd = &sc->age_cdata.age_txdesc[cons];
1343 		/*
1344 		 * Clear Tx descriptors, it's not required but would
1345 		 * help debugging in case of Tx issues.
1346 		 */
1347 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1348 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1349 		    BUS_DMASYNC_POSTWRITE);
1350 		txd->tx_desc->addr = 0;
1351 		txd->tx_desc->len = 0;
1352 		txd->tx_desc->flags = 0;
1353 
1354 		if (txd->tx_m == NULL)
1355 			continue;
1356 		/* Reclaim transmitted mbufs. */
1357 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1358 		m_freem(txd->tx_m);
1359 		txd->tx_m = NULL;
1360 	}
1361 
1362 	if (prog > 0) {
1363 		sc->age_cdata.age_tx_cons = cons;
1364 
1365 		/*
1366 		 * Unarm watchdog timer only when there are no pending
1367 		 * Tx descriptors in queue.
1368 		 */
1369 		if (sc->age_cdata.age_tx_cnt == 0)
1370 			ifp->if_timer = 0;
1371 	}
1372 }
1373 
1374 /* Receive a frame. */
1375 static void
1376 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1377 {
1378 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1379 	struct age_rxdesc *rxd;
1380 	struct rx_desc *desc;
1381 	struct mbuf *mp, *m;
1382 	uint32_t status, index;
1383 	int count, nsegs, pktlen;
1384 	int rx_cons;
1385 
1386 	status = le32toh(rxrd->flags);
1387 	index = le32toh(rxrd->index);
1388 	rx_cons = AGE_RX_CONS(index);
1389 	nsegs = AGE_RX_NSEGS(index);
1390 
1391 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1392 	if ((status & AGE_RRD_ERROR) != 0 &&
1393 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1394 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1395 		/*
1396 		 * We want to pass the following frames to upper
1397 		 * layer regardless of error status of Rx return
1398 		 * ring.
1399 		 *
1400 		 *  o IP/TCP/UDP checksum is bad.
1401 		 *  o frame length and protocol specific length
1402 		 *     does not match.
1403 		 */
1404 		sc->age_cdata.age_rx_cons += nsegs;
1405 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1406 		return;
1407 	}
1408 
1409 	pktlen = 0;
1410 	for (count = 0; count < nsegs; count++,
1411 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1412 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1413 		mp = rxd->rx_m;
1414 		desc = rxd->rx_desc;
1415 		/* Add a new receive buffer to the ring. */
1416 		if (age_newbuf(sc, rxd, 0) != 0) {
1417 			ifp->if_iqdrops++;
1418 			/* Reuse Rx buffers. */
1419 			if (sc->age_cdata.age_rxhead != NULL) {
1420 				m_freem(sc->age_cdata.age_rxhead);
1421 				AGE_RXCHAIN_RESET(sc);
1422 			}
1423 			break;
1424 		}
1425 
1426 		/* The length of the first mbuf is computed last. */
1427 		if (count != 0) {
1428 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1429 			pktlen += mp->m_len;
1430 		}
1431 
1432 		/* Chain received mbufs. */
1433 		if (sc->age_cdata.age_rxhead == NULL) {
1434 			sc->age_cdata.age_rxhead = mp;
1435 			sc->age_cdata.age_rxtail = mp;
1436 		} else {
1437 			mp->m_flags &= ~M_PKTHDR;
1438 			sc->age_cdata.age_rxprev_tail =
1439 			    sc->age_cdata.age_rxtail;
1440 			sc->age_cdata.age_rxtail->m_next = mp;
1441 			sc->age_cdata.age_rxtail = mp;
1442 		}
1443 
1444 		if (count == nsegs - 1) {
1445 			/*
1446 			 * It seems that L1 controller has no way
1447 			 * to tell hardware to strip CRC bytes.
1448 			 */
1449 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1450 			if (nsegs > 1) {
1451 				/* Remove the CRC bytes in chained mbufs. */
1452 				pktlen -= ETHER_CRC_LEN;
1453 				if (mp->m_len <= ETHER_CRC_LEN) {
1454 					sc->age_cdata.age_rxtail =
1455 					    sc->age_cdata.age_rxprev_tail;
1456 					sc->age_cdata.age_rxtail->m_len -=
1457 					    (ETHER_CRC_LEN - mp->m_len);
1458 					sc->age_cdata.age_rxtail->m_next = NULL;
1459 					m_freem(mp);
1460 				} else {
1461 					mp->m_len -= ETHER_CRC_LEN;
1462 				}
1463 			}
1464 
1465 			m = sc->age_cdata.age_rxhead;
1466 			m->m_flags |= M_PKTHDR;
1467 			m->m_pkthdr.rcvif = ifp;
1468 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1469 			/* Set the first mbuf length. */
1470 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1471 
1472 			/*
1473 			 * Set checksum information.
1474 			 * It seems that L1 controller can compute partial
1475 			 * checksum. The partial checksum value can be used
1476 			 * to accelerate checksum computation for fragmented
1477 			 * TCP/UDP packets. Upper network stack already
1478 			 * takes advantage of the partial checksum value in
1479 			 * IP reassembly stage. But I'm not sure the
1480 			 * correctness of the partial hardware checksum
1481 			 * assistance due to lack of data sheet. If it is
1482 			 * proven to work on L1 I'll enable it.
1483 			 */
1484 			if (status & AGE_RRD_IPV4) {
1485 				if (status & AGE_RRD_IPCSUM_NOK)
1486 					m->m_pkthdr.csum_flags |=
1487 					    M_CSUM_IPv4_BAD;
1488 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1489 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1490 					m->m_pkthdr.csum_flags |=
1491 					    M_CSUM_TCP_UDP_BAD;
1492 				}
1493 				/*
1494 				 * Don't mark bad checksum for TCP/UDP frames
1495 				 * as fragmented frames may always have set
1496 				 * bad checksummed bit of descriptor status.
1497 				 */
1498 			}
1499 #if NVLAN > 0
1500 			/* Check for VLAN tagged frames. */
1501 			if (status & AGE_RRD_VLAN) {
1502 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1503 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1504 					continue);
1505 			}
1506 #endif
1507 
1508 			bpf_mtap(ifp, m);
1509 			/* Pass it on. */
1510 			(*ifp->if_input)(ifp, m);
1511 
1512 			/* Reset mbuf chains. */
1513 			AGE_RXCHAIN_RESET(sc);
1514 		}
1515 	}
1516 
1517 	if (count != nsegs) {
1518 		sc->age_cdata.age_rx_cons += nsegs;
1519 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1520 	} else
1521 		sc->age_cdata.age_rx_cons = rx_cons;
1522 }
1523 
1524 static void
1525 age_rxintr(struct age_softc *sc, int rr_prod)
1526 {
1527 	struct rx_rdesc *rxrd;
1528 	int rr_cons, nsegs, pktlen, prog;
1529 
1530 	rr_cons = sc->age_cdata.age_rr_cons;
1531 	if (rr_cons == rr_prod)
1532 		return;
1533 
1534 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1535 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1536 	    BUS_DMASYNC_POSTREAD);
1537 
1538 	for (prog = 0; rr_cons != rr_prod; prog++) {
1539 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1540 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1541 		if (nsegs == 0)
1542 			break;
1543 		/*
1544 		 * Check number of segments against received bytes
1545 		 * Non-matching value would indicate that hardware
1546 		 * is still trying to update Rx return descriptors.
1547 		 * I'm not sure whether this check is really needed.
1548 		 */
1549 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1550 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1551 		    (MCLBYTES - ETHER_ALIGN)))
1552 			break;
1553 
1554 		/* Received a frame. */
1555 		age_rxeof(sc, rxrd);
1556 
1557 		/* Clear return ring. */
1558 		rxrd->index = 0;
1559 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1560 	}
1561 
1562 	if (prog > 0) {
1563 		/* Update the consumer index. */
1564 		sc->age_cdata.age_rr_cons = rr_cons;
1565 
1566 		/* Sync descriptors. */
1567 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1568 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1569 		    BUS_DMASYNC_PREWRITE);
1570 
1571 		/* Notify hardware availability of new Rx buffers. */
1572 		AGE_COMMIT_MBOX(sc);
1573 	}
1574 }
1575 
1576 static void
1577 age_tick(void *xsc)
1578 {
1579 	struct age_softc *sc = xsc;
1580 	struct mii_data *mii = &sc->sc_miibus;
1581 	int s;
1582 
1583 	s = splnet();
1584 	mii_tick(mii);
1585 	splx(s);
1586 
1587 	callout_schedule(&sc->sc_tick_ch, hz);
1588 }
1589 
1590 static void
1591 age_reset(struct age_softc *sc)
1592 {
1593 	uint32_t reg;
1594 	int i;
1595 
1596 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1597 	CSR_READ_4(sc, AGE_MASTER_CFG);
1598 	DELAY(1000);
1599 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1600 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1601 			break;
1602 		DELAY(10);
1603 	}
1604 
1605 	if (i == 0)
1606 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1607 		    reg);
1608 
1609 	/* Initialize PCIe module. From Linux. */
1610 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1611 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1612 }
1613 
1614 static int
1615 age_init(struct ifnet *ifp)
1616 {
1617 	struct age_softc *sc = ifp->if_softc;
1618 	struct mii_data *mii;
1619 	uint8_t eaddr[ETHER_ADDR_LEN];
1620 	bus_addr_t paddr;
1621 	uint32_t reg, fsize;
1622 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1623 	int error;
1624 
1625 	/*
1626 	 * Cancel any pending I/O.
1627 	 */
1628 	age_stop(ifp, 0);
1629 
1630 	/*
1631 	 * Reset the chip to a known state.
1632 	 */
1633 	age_reset(sc);
1634 
1635 	/* Initialize descriptors. */
1636 	error = age_init_rx_ring(sc);
1637         if (error != 0) {
1638 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1639 		age_stop(ifp, 0);
1640 		return error;
1641         }
1642 	age_init_rr_ring(sc);
1643 	age_init_tx_ring(sc);
1644 	age_init_cmb_block(sc);
1645 	age_init_smb_block(sc);
1646 
1647 	/* Reprogram the station address. */
1648 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1649 	CSR_WRITE_4(sc, AGE_PAR0,
1650 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1651 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1652 
1653 	/* Set descriptor base addresses. */
1654 	paddr = sc->age_rdata.age_tx_ring_paddr;
1655 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1656 	paddr = sc->age_rdata.age_rx_ring_paddr;
1657 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1658 	paddr = sc->age_rdata.age_rr_ring_paddr;
1659 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1660 	paddr = sc->age_rdata.age_tx_ring_paddr;
1661 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1662 	paddr = sc->age_rdata.age_cmb_block_paddr;
1663 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1664 	paddr = sc->age_rdata.age_smb_block_paddr;
1665 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1666 
1667 	/* Set Rx/Rx return descriptor counter. */
1668 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1669 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1670 	    DESC_RRD_CNT_MASK) |
1671 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1672 
1673 	/* Set Tx descriptor counter. */
1674 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1675 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1676 
1677 	/* Tell hardware that we're ready to load descriptors. */
1678 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1679 
1680         /*
1681 	 * Initialize mailbox register.
1682 	 * Updated producer/consumer index information is exchanged
1683 	 * through this mailbox register. However Tx producer and
1684 	 * Rx return consumer/Rx producer are all shared such that
1685 	 * it's hard to separate code path between Tx and Rx without
1686 	 * locking. If L1 hardware have a separate mail box register
1687 	 * for Tx and Rx consumer/producer management we could have
1688 	 * indepent Tx/Rx handler which in turn Rx handler could have
1689 	 * been run without any locking.
1690 	*/
1691 	AGE_COMMIT_MBOX(sc);
1692 
1693 	/* Configure IPG/IFG parameters. */
1694 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1695 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1696 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1697 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1698 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1699 
1700 	/* Set parameters for half-duplex media. */
1701 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1702 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1703 	    HDPX_CFG_LCOL_MASK) |
1704 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1705 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1706 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1707 	    HDPX_CFG_ABEBT_MASK) |
1708 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1709 	     HDPX_CFG_JAMIPG_MASK));
1710 
1711 	/* Configure interrupt moderation timer. */
1712 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1713 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1714 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1715 	reg &= ~MASTER_MTIMER_ENB;
1716 	if (AGE_USECS(sc->age_int_mod) == 0)
1717 		reg &= ~MASTER_ITIMER_ENB;
1718 	else
1719 		reg |= MASTER_ITIMER_ENB;
1720 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1721 	if (agedebug)
1722 		printf("%s: interrupt moderation is %d us.\n",
1723 		    device_xname(sc->sc_dev), sc->age_int_mod);
1724 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1725 
1726 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1727 	if (ifp->if_mtu < ETHERMTU)
1728 		sc->age_max_frame_size = ETHERMTU;
1729 	else
1730 		sc->age_max_frame_size = ifp->if_mtu;
1731 	sc->age_max_frame_size += ETHER_HDR_LEN +
1732 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1733 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1734 
1735 	/* Configure jumbo frame. */
1736 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1737 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1738 	    (((fsize / sizeof(uint64_t)) <<
1739 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1740 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1741 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1742 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1743 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1744 
1745 	/* Configure flow-control parameters. From Linux. */
1746 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1747 		/*
1748 		 * Magic workaround for old-L1.
1749 		 * Don't know which hw revision requires this magic.
1750 		 */
1751 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1752 		/*
1753 		 * Another magic workaround for flow-control mode
1754 		 * change. From Linux.
1755 		 */
1756 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1757 	}
1758 	/*
1759 	 * TODO
1760 	 *  Should understand pause parameter relationships between FIFO
1761 	 *  size and number of Rx descriptors and Rx return descriptors.
1762 	 *
1763 	 *  Magic parameters came from Linux.
1764 	 */
1765 	switch (sc->age_chip_rev) {
1766 	case 0x8001:
1767 	case 0x9001:
1768 	case 0x9002:
1769 	case 0x9003:
1770 		rxf_hi = AGE_RX_RING_CNT / 16;
1771 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1772 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1773 		rrd_lo = AGE_RR_RING_CNT / 16;
1774 		break;
1775 	default:
1776 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1777 		rxf_lo = reg / 16;
1778 		if (rxf_lo < 192)
1779 			rxf_lo = 192;
1780 		rxf_hi = (reg * 7) / 8;
1781 		if (rxf_hi < rxf_lo)
1782 			rxf_hi = rxf_lo + 16;
1783 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1784 		rrd_lo = reg / 8;
1785 		rrd_hi = (reg * 7) / 8;
1786 		if (rrd_lo < 2)
1787 			rrd_lo = 2;
1788 		if (rrd_hi < rrd_lo)
1789 			rrd_hi = rrd_lo + 3;
1790 		break;
1791 	}
1792 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1793 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1794 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1795 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1796 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1797 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1798 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1799 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1800 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1801 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1802 
1803 	/* Configure RxQ. */
1804 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1805 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1806 	    RXQ_CFG_RD_BURST_MASK) |
1807 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1808 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1809 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1810 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1811 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1812 
1813 	/* Configure TxQ. */
1814 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1815 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1816 	    TXQ_CFG_TPD_BURST_MASK) |
1817 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1818 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1819 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1820 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1821 	    TXQ_CFG_ENB);
1822 
1823 	/* Configure DMA parameters. */
1824 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1825 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1826 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1827 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1828 
1829 	/* Configure CMB DMA write threshold. */
1830 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1831 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1832 	    CMB_WR_THRESH_RRD_MASK) |
1833 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1834 	    CMB_WR_THRESH_TPD_MASK));
1835 
1836 	/* Set CMB/SMB timer and enable them. */
1837 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1838 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1839 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1840 
1841 	/* Request SMB updates for every seconds. */
1842 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1843 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1844 
1845 	/*
1846 	 * Disable all WOL bits as WOL can interfere normal Rx
1847 	 * operation.
1848 	 */
1849 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1850 
1851         /*
1852 	 * Configure Tx/Rx MACs.
1853 	 *  - Auto-padding for short frames.
1854 	 *  - Enable CRC generation.
1855 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1856 	 *  of MAC is followed after link establishment.
1857 	 */
1858 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1859 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1860 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1861 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1862 	    MAC_CFG_PREAMBLE_MASK));
1863 
1864 	/* Set up the receive filter. */
1865 	age_rxfilter(sc);
1866 	age_rxvlan(sc);
1867 
1868 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1869 	reg |= MAC_CFG_RXCSUM_ENB;
1870 
1871 	/* Ack all pending interrupts and clear it. */
1872 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1873 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1874 
1875 	/* Finally enable Tx/Rx MAC. */
1876 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1877 
1878 	sc->age_flags &= ~AGE_FLAG_LINK;
1879 
1880 	/* Switch to the current media. */
1881 	mii = &sc->sc_miibus;
1882 	mii_mediachg(mii);
1883 
1884 	callout_schedule(&sc->sc_tick_ch, hz);
1885 
1886 	ifp->if_flags |= IFF_RUNNING;
1887 	ifp->if_flags &= ~IFF_OACTIVE;
1888 
1889 	return 0;
1890 }
1891 
1892 static void
1893 age_stop(struct ifnet *ifp, int disable)
1894 {
1895 	struct age_softc *sc = ifp->if_softc;
1896 	struct age_txdesc *txd;
1897 	struct age_rxdesc *rxd;
1898 	uint32_t reg;
1899 	int i;
1900 
1901 	callout_stop(&sc->sc_tick_ch);
1902 
1903 	/*
1904 	 * Mark the interface down and cancel the watchdog timer.
1905 	 */
1906 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 	ifp->if_timer = 0;
1908 
1909 	sc->age_flags &= ~AGE_FLAG_LINK;
1910 
1911 	mii_down(&sc->sc_miibus);
1912 
1913 	/*
1914 	 * Disable interrupts.
1915 	 */
1916 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1917 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1918 
1919 	/* Stop CMB/SMB updates. */
1920 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1921 
1922 	/* Stop Rx/Tx MAC. */
1923 	age_stop_rxmac(sc);
1924 	age_stop_txmac(sc);
1925 
1926 	/* Stop DMA. */
1927 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1928 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1929 
1930 	/* Stop TxQ/RxQ. */
1931 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1932 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1933 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1934 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1935 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1936 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1937 			break;
1938 		DELAY(10);
1939 	}
1940 	if (i == 0)
1941 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1942 		    device_xname(sc->sc_dev), reg);
1943 
1944 	/* Reclaim Rx buffers that have been processed. */
1945 	if (sc->age_cdata.age_rxhead != NULL)
1946 		m_freem(sc->age_cdata.age_rxhead);
1947 	AGE_RXCHAIN_RESET(sc);
1948 
1949 	/*
1950 	 * Free RX and TX mbufs still in the queues.
1951 	 */
1952 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1953 		rxd = &sc->age_cdata.age_rxdesc[i];
1954 		if (rxd->rx_m != NULL) {
1955 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1956 			m_freem(rxd->rx_m);
1957 			rxd->rx_m = NULL;
1958 		}
1959 	}
1960 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1961 		txd = &sc->age_cdata.age_txdesc[i];
1962 		if (txd->tx_m != NULL) {
1963 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1964 			m_freem(txd->tx_m);
1965 			txd->tx_m = NULL;
1966 		}
1967 	}
1968 }
1969 
1970 static void
1971 age_stats_update(struct age_softc *sc)
1972 {
1973 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1974 	struct age_stats *stat;
1975 	struct smb *smb;
1976 
1977 	stat = &sc->age_stat;
1978 
1979 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1980 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1981 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1982 
1983 	smb = sc->age_rdata.age_smb_block;
1984 	if (smb->updated == 0)
1985 		return;
1986 
1987 	/* Rx stats. */
1988 	stat->rx_frames += smb->rx_frames;
1989 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1990 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1991 	stat->rx_pause_frames += smb->rx_pause_frames;
1992 	stat->rx_control_frames += smb->rx_control_frames;
1993 	stat->rx_crcerrs += smb->rx_crcerrs;
1994 	stat->rx_lenerrs += smb->rx_lenerrs;
1995 	stat->rx_bytes += smb->rx_bytes;
1996 	stat->rx_runts += smb->rx_runts;
1997 	stat->rx_fragments += smb->rx_fragments;
1998 	stat->rx_pkts_64 += smb->rx_pkts_64;
1999 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2000 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2001 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2002 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2003 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2004 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2005 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2006 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2007 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2008 	stat->rx_alignerrs += smb->rx_alignerrs;
2009 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2010 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2011 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2012 
2013 	/* Tx stats. */
2014 	stat->tx_frames += smb->tx_frames;
2015 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2016 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2017 	stat->tx_pause_frames += smb->tx_pause_frames;
2018 	stat->tx_excess_defer += smb->tx_excess_defer;
2019 	stat->tx_control_frames += smb->tx_control_frames;
2020 	stat->tx_deferred += smb->tx_deferred;
2021 	stat->tx_bytes += smb->tx_bytes;
2022 	stat->tx_pkts_64 += smb->tx_pkts_64;
2023 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2024 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2025 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2026 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2027 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2028 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2029 	stat->tx_single_colls += smb->tx_single_colls;
2030 	stat->tx_multi_colls += smb->tx_multi_colls;
2031 	stat->tx_late_colls += smb->tx_late_colls;
2032 	stat->tx_excess_colls += smb->tx_excess_colls;
2033 	stat->tx_underrun += smb->tx_underrun;
2034 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2035 	stat->tx_lenerrs += smb->tx_lenerrs;
2036 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2037 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2038 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2039 
2040 	/* Update counters in ifnet. */
2041 	ifp->if_opackets += smb->tx_frames;
2042 
2043 	ifp->if_collisions += smb->tx_single_colls +
2044 	    smb->tx_multi_colls + smb->tx_late_colls +
2045 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2046 
2047 	ifp->if_oerrors += smb->tx_excess_colls +
2048 	    smb->tx_late_colls + smb->tx_underrun +
2049 	    smb->tx_pkts_truncated;
2050 
2051 	ifp->if_ipackets += smb->rx_frames;
2052 
2053 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2054 	    smb->rx_runts + smb->rx_pkts_truncated +
2055 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2056 	    smb->rx_alignerrs;
2057 
2058 	/* Update done, clear. */
2059 	smb->updated = 0;
2060 
2061 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2062 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2063 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2064 }
2065 
2066 static void
2067 age_stop_txmac(struct age_softc *sc)
2068 {
2069 	uint32_t reg;
2070 	int i;
2071 
2072 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2073 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2074 		reg &= ~MAC_CFG_TX_ENB;
2075 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2076 	}
2077 	/* Stop Tx DMA engine. */
2078 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2079 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2080 		reg &= ~DMA_CFG_RD_ENB;
2081 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2082 	}
2083 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2084 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2085 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2086 			break;
2087 		DELAY(10);
2088 	}
2089 	if (i == 0)
2090 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2091 }
2092 
2093 static void
2094 age_stop_rxmac(struct age_softc *sc)
2095 {
2096 	uint32_t reg;
2097 	int i;
2098 
2099 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2100 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2101 		reg &= ~MAC_CFG_RX_ENB;
2102 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2103 	}
2104 	/* Stop Rx DMA engine. */
2105 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2106 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2107 		reg &= ~DMA_CFG_WR_ENB;
2108 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2109 	}
2110 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2111 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2112 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2113 			break;
2114 		DELAY(10);
2115 	}
2116 	if (i == 0)
2117 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2118 }
2119 
2120 static void
2121 age_init_tx_ring(struct age_softc *sc)
2122 {
2123 	struct age_ring_data *rd;
2124 	struct age_txdesc *txd;
2125 	int i;
2126 
2127 	sc->age_cdata.age_tx_prod = 0;
2128 	sc->age_cdata.age_tx_cons = 0;
2129 	sc->age_cdata.age_tx_cnt = 0;
2130 
2131 	rd = &sc->age_rdata;
2132 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2133 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2134 		txd = &sc->age_cdata.age_txdesc[i];
2135 		txd->tx_desc = &rd->age_tx_ring[i];
2136 		txd->tx_m = NULL;
2137 	}
2138 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2139 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2140 }
2141 
2142 static int
2143 age_init_rx_ring(struct age_softc *sc)
2144 {
2145 	struct age_ring_data *rd;
2146 	struct age_rxdesc *rxd;
2147 	int i;
2148 
2149 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2150 	rd = &sc->age_rdata;
2151 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2152 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2153 		rxd = &sc->age_cdata.age_rxdesc[i];
2154 		rxd->rx_m = NULL;
2155 		rxd->rx_desc = &rd->age_rx_ring[i];
2156 		if (age_newbuf(sc, rxd, 1) != 0)
2157 			return ENOBUFS;
2158 	}
2159 
2160 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2161 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2162 
2163 	return 0;
2164 }
2165 
2166 static void
2167 age_init_rr_ring(struct age_softc *sc)
2168 {
2169 	struct age_ring_data *rd;
2170 
2171 	sc->age_cdata.age_rr_cons = 0;
2172 	AGE_RXCHAIN_RESET(sc);
2173 
2174 	rd = &sc->age_rdata;
2175 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2176 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2177 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2178 }
2179 
2180 static void
2181 age_init_cmb_block(struct age_softc *sc)
2182 {
2183 	struct age_ring_data *rd;
2184 
2185 	rd = &sc->age_rdata;
2186 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2187 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2188 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2189 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2190 }
2191 
2192 static void
2193 age_init_smb_block(struct age_softc *sc)
2194 {
2195 	struct age_ring_data *rd;
2196 
2197 	rd = &sc->age_rdata;
2198 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2199 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2200 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2201 }
2202 
2203 static int
2204 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2205 {
2206 	struct rx_desc *desc;
2207 	struct mbuf *m;
2208 	bus_dmamap_t map;
2209 	int error;
2210 
2211 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2212 	if (m == NULL)
2213 		return ENOBUFS;
2214 	MCLGET(m, M_DONTWAIT);
2215 	if (!(m->m_flags & M_EXT)) {
2216 		 m_freem(m);
2217 		 return ENOBUFS;
2218 	}
2219 
2220 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2221 	m_adj(m, ETHER_ALIGN);
2222 
2223 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2224 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2225 
2226 	if (error != 0) {
2227 		if (!error) {
2228 			bus_dmamap_unload(sc->sc_dmat,
2229 			    sc->age_cdata.age_rx_sparemap);
2230 			error = EFBIG;
2231 			printf("%s: too many segments?!\n",
2232 			    device_xname(sc->sc_dev));
2233 		}
2234 		m_freem(m);
2235 
2236 		if (init)
2237 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2238 		return error;
2239 	}
2240 
2241 	if (rxd->rx_m != NULL) {
2242 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2243 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2244 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2245 	}
2246 	map = rxd->rx_dmamap;
2247 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2248 	sc->age_cdata.age_rx_sparemap = map;
2249 	rxd->rx_m = m;
2250 
2251 	desc = rxd->rx_desc;
2252 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2253 	desc->len =
2254 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2255 	    AGE_RD_LEN_SHIFT);
2256 
2257 	return 0;
2258 }
2259 
2260 static void
2261 age_rxvlan(struct age_softc *sc)
2262 {
2263 	uint32_t reg;
2264 
2265 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2266 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2267 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2268 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2269 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2270 }
2271 
2272 static void
2273 age_rxfilter(struct age_softc *sc)
2274 {
2275 	struct ethercom *ec = &sc->sc_ec;
2276 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2277 	struct ether_multi *enm;
2278 	struct ether_multistep step;
2279 	uint32_t crc;
2280 	uint32_t mchash[2];
2281 	uint32_t rxcfg;
2282 
2283 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2284 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2285 	ifp->if_flags &= ~IFF_ALLMULTI;
2286 
2287 	/*
2288 	 * Always accept broadcast frames.
2289 	 */
2290 	rxcfg |= MAC_CFG_BCAST;
2291 
2292 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2293 		ifp->if_flags |= IFF_ALLMULTI;
2294 		if (ifp->if_flags & IFF_PROMISC)
2295 			rxcfg |= MAC_CFG_PROMISC;
2296 		else
2297 			rxcfg |= MAC_CFG_ALLMULTI;
2298 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2299 	} else {
2300 		/* Program new filter. */
2301 		memset(mchash, 0, sizeof(mchash));
2302 
2303 		ETHER_FIRST_MULTI(step, ec, enm);
2304 		while (enm != NULL) {
2305 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2306 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2307 			ETHER_NEXT_MULTI(step, enm);
2308 		}
2309 	}
2310 
2311 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2312 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2313 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2314 }
2315