1 /* $NetBSD: if_age.c,v 1.40 2011/10/25 21:47:38 bouyer Exp $ */ 2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */ 3 4 /*- 5 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.40 2011/10/25 21:47:38 bouyer Exp $"); 35 36 #include "vlan.h" 37 38 #include <sys/param.h> 39 #include <sys/proc.h> 40 #include <sys/endian.h> 41 #include <sys/systm.h> 42 #include <sys/types.h> 43 #include <sys/sockio.h> 44 #include <sys/mbuf.h> 45 #include <sys/queue.h> 46 #include <sys/kernel.h> 47 #include <sys/device.h> 48 #include <sys/callout.h> 49 #include <sys/socket.h> 50 51 #include <net/if.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_ether.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 #endif 62 63 #include <net/if_types.h> 64 #include <net/if_vlanvar.h> 65 66 #include <net/bpf.h> 67 68 #include <sys/rnd.h> 69 70 #include <dev/mii/mii.h> 71 #include <dev/mii/miivar.h> 72 73 #include <dev/pci/pcireg.h> 74 #include <dev/pci/pcivar.h> 75 #include <dev/pci/pcidevs.h> 76 77 #include <dev/pci/if_agereg.h> 78 79 static int age_match(device_t, cfdata_t, void *); 80 static void age_attach(device_t, device_t, void *); 81 static int age_detach(device_t, int); 82 83 static bool age_resume(device_t, const pmf_qual_t *); 84 85 static int age_miibus_readreg(device_t, int, int); 86 static void age_miibus_writereg(device_t, int, int, int); 87 static void age_miibus_statchg(device_t); 88 89 static int age_init(struct ifnet *); 90 static int age_ioctl(struct ifnet *, u_long, void *); 91 static void age_start(struct ifnet *); 92 static void age_watchdog(struct ifnet *); 93 static bool age_shutdown(device_t, int); 94 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 95 static int age_mediachange(struct ifnet *); 96 97 static int age_intr(void *); 98 static int age_dma_alloc(struct age_softc *); 99 static void age_dma_free(struct age_softc *); 100 static void age_get_macaddr(struct age_softc *, uint8_t[]); 101 static void age_phy_reset(struct age_softc *); 102 103 static int age_encap(struct age_softc *, struct mbuf **); 104 static void age_init_tx_ring(struct age_softc *); 105 static int age_init_rx_ring(struct age_softc *); 106 static void age_init_rr_ring(struct age_softc *); 107 static void age_init_cmb_block(struct age_softc *); 108 static void age_init_smb_block(struct age_softc *); 109 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int); 110 static void age_mac_config(struct age_softc *); 111 static void age_txintr(struct age_softc *, int); 112 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 113 static void age_rxintr(struct age_softc *, int); 114 static void age_tick(void *); 115 static void age_reset(struct age_softc *); 116 static void age_stop(struct ifnet *, int); 117 static void age_stats_update(struct age_softc *); 118 static void age_stop_txmac(struct age_softc *); 119 static void age_stop_rxmac(struct age_softc *); 120 static void age_rxvlan(struct age_softc *sc); 121 static void age_rxfilter(struct age_softc *); 122 123 CFATTACH_DECL_NEW(age, sizeof(struct age_softc), 124 age_match, age_attach, age_detach, NULL); 125 126 int agedebug = 0; 127 #define DPRINTF(x) do { if (agedebug) printf x; } while (0) 128 129 #define ETHER_ALIGN 2 130 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4) 131 132 static int 133 age_match(device_t dev, cfdata_t match, void *aux) 134 { 135 struct pci_attach_args *pa = aux; 136 137 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC && 138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA); 139 } 140 141 static void 142 age_attach(device_t parent, device_t self, void *aux) 143 { 144 struct age_softc *sc = device_private(self); 145 struct pci_attach_args *pa = aux; 146 pci_intr_handle_t ih; 147 const char *intrstr; 148 struct ifnet *ifp = &sc->sc_ec.ec_if; 149 pcireg_t memtype; 150 int error = 0; 151 152 aprint_naive("\n"); 153 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n"); 154 155 sc->sc_dev = self; 156 sc->sc_dmat = pa->pa_dmat; 157 sc->sc_pct = pa->pa_pc; 158 sc->sc_pcitag = pa->pa_tag; 159 160 /* 161 * Allocate IO memory 162 */ 163 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR); 164 switch (memtype) { 165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M: 167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 168 break; 169 default: 170 aprint_error_dev(self, "invalid base address register\n"); 171 break; 172 } 173 174 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, 175 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) { 176 aprint_error_dev(self, "could not map mem space\n"); 177 return; 178 } 179 180 if (pci_intr_map(pa, &ih) != 0) { 181 aprint_error_dev(self, "could not map interrupt\n"); 182 goto fail; 183 } 184 185 /* 186 * Allocate IRQ 187 */ 188 intrstr = pci_intr_string(sc->sc_pct, ih); 189 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET, 190 age_intr, sc); 191 if (sc->sc_irq_handle == NULL) { 192 aprint_error_dev(self, "could not establish interrupt"); 193 if (intrstr != NULL) 194 aprint_error(" at %s", intrstr); 195 aprint_error("\n"); 196 goto fail; 197 } 198 aprint_normal_dev(self, "%s\n", intrstr); 199 200 /* Set PHY address. */ 201 sc->age_phyaddr = AGE_PHY_ADDR; 202 203 /* Reset PHY. */ 204 age_phy_reset(sc); 205 206 /* Reset the ethernet controller. */ 207 age_reset(sc); 208 209 /* Get PCI and chip id/revision. */ 210 sc->age_rev = PCI_REVISION(pa->pa_class); 211 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 212 MASTER_CHIP_REV_SHIFT; 213 214 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev); 215 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev); 216 217 if (agedebug) { 218 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n", 219 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 220 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 221 } 222 223 /* Set max allowable DMA size. */ 224 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 225 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 226 227 /* Allocate DMA stuffs */ 228 error = age_dma_alloc(sc); 229 if (error) 230 goto fail; 231 232 callout_init(&sc->sc_tick_ch, 0); 233 callout_setfunc(&sc->sc_tick_ch, age_tick, sc); 234 235 /* Load station address. */ 236 age_get_macaddr(sc, sc->sc_enaddr); 237 238 aprint_normal_dev(self, "Ethernet address %s\n", 239 ether_sprintf(sc->sc_enaddr)); 240 241 ifp->if_softc = sc; 242 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 243 ifp->if_init = age_init; 244 ifp->if_ioctl = age_ioctl; 245 ifp->if_start = age_start; 246 ifp->if_stop = age_stop; 247 ifp->if_watchdog = age_watchdog; 248 ifp->if_baudrate = IF_Gbps(1); 249 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1); 250 IFQ_SET_READY(&ifp->if_snd); 251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 252 253 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU; 254 255 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx | 256 IFCAP_CSUM_TCPv4_Rx | 257 IFCAP_CSUM_UDPv4_Rx; 258 #ifdef AGE_CHECKSUM 259 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | 260 IFCAP_CSUM_TCPv4_Tx | 261 IFCAP_CSUM_UDPv4_Tx; 262 #endif 263 264 #if NVLAN > 0 265 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; 266 #endif 267 268 /* Set up MII bus. */ 269 sc->sc_miibus.mii_ifp = ifp; 270 sc->sc_miibus.mii_readreg = age_miibus_readreg; 271 sc->sc_miibus.mii_writereg = age_miibus_writereg; 272 sc->sc_miibus.mii_statchg = age_miibus_statchg; 273 274 sc->sc_ec.ec_mii = &sc->sc_miibus; 275 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange, 276 age_mediastatus); 277 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, 278 MII_OFFSET_ANY, MIIF_DOPAUSE); 279 280 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { 281 aprint_error_dev(self, "no PHY found!\n"); 282 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 283 0, NULL); 284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); 285 } else 286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); 287 288 if_attach(ifp); 289 ether_ifattach(ifp, sc->sc_enaddr); 290 291 if (pmf_device_register1(self, NULL, age_resume, age_shutdown)) 292 pmf_class_network_register(self, ifp); 293 else 294 aprint_error_dev(self, "couldn't establish power handler\n"); 295 296 return; 297 298 fail: 299 age_dma_free(sc); 300 if (sc->sc_irq_handle != NULL) { 301 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 302 sc->sc_irq_handle = NULL; 303 } 304 if (sc->sc_mem_size) { 305 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 306 sc->sc_mem_size = 0; 307 } 308 } 309 310 static int 311 age_detach(device_t self, int flags) 312 { 313 struct age_softc *sc = device_private(self); 314 struct ifnet *ifp = &sc->sc_ec.ec_if; 315 int s; 316 317 pmf_device_deregister(self); 318 s = splnet(); 319 age_stop(ifp, 0); 320 splx(s); 321 322 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); 323 324 /* Delete all remaining media. */ 325 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); 326 327 ether_ifdetach(ifp); 328 if_detach(ifp); 329 age_dma_free(sc); 330 331 if (sc->sc_irq_handle != NULL) { 332 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 333 sc->sc_irq_handle = NULL; 334 } 335 if (sc->sc_mem_size) { 336 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 337 sc->sc_mem_size = 0; 338 } 339 return 0; 340 } 341 342 /* 343 * Read a PHY register on the MII of the L1. 344 */ 345 static int 346 age_miibus_readreg(device_t dev, int phy, int reg) 347 { 348 struct age_softc *sc = device_private(dev); 349 uint32_t v; 350 int i; 351 352 if (phy != sc->age_phyaddr) 353 return 0; 354 355 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 356 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 357 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 358 DELAY(1); 359 v = CSR_READ_4(sc, AGE_MDIO); 360 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 361 break; 362 } 363 364 if (i == 0) { 365 printf("%s: phy read timeout: phy %d, reg %d\n", 366 device_xname(sc->sc_dev), phy, reg); 367 return 0; 368 } 369 370 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 371 } 372 373 /* 374 * Write a PHY register on the MII of the L1. 375 */ 376 static void 377 age_miibus_writereg(device_t dev, int phy, int reg, int val) 378 { 379 struct age_softc *sc = device_private(dev); 380 uint32_t v; 381 int i; 382 383 if (phy != sc->age_phyaddr) 384 return; 385 386 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 387 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 388 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 389 390 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 391 DELAY(1); 392 v = CSR_READ_4(sc, AGE_MDIO); 393 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 394 break; 395 } 396 397 if (i == 0) { 398 printf("%s: phy write timeout: phy %d, reg %d\n", 399 device_xname(sc->sc_dev), phy, reg); 400 } 401 } 402 403 /* 404 * Callback from MII layer when media changes. 405 */ 406 static void 407 age_miibus_statchg(device_t dev) 408 { 409 struct age_softc *sc = device_private(dev); 410 struct ifnet *ifp = &sc->sc_ec.ec_if; 411 struct mii_data *mii; 412 413 if ((ifp->if_flags & IFF_RUNNING) == 0) 414 return; 415 416 mii = &sc->sc_miibus; 417 418 sc->age_flags &= ~AGE_FLAG_LINK; 419 if ((mii->mii_media_status & IFM_AVALID) != 0) { 420 switch (IFM_SUBTYPE(mii->mii_media_active)) { 421 case IFM_10_T: 422 case IFM_100_TX: 423 case IFM_1000_T: 424 sc->age_flags |= AGE_FLAG_LINK; 425 break; 426 default: 427 break; 428 } 429 } 430 431 /* Stop Rx/Tx MACs. */ 432 age_stop_rxmac(sc); 433 age_stop_txmac(sc); 434 435 /* Program MACs with resolved speed/duplex/flow-control. */ 436 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 437 uint32_t reg; 438 439 age_mac_config(sc); 440 reg = CSR_READ_4(sc, AGE_MAC_CFG); 441 /* Restart DMA engine and Tx/Rx MAC. */ 442 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 443 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 444 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 445 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 446 } 447 } 448 449 /* 450 * Get the current interface media status. 451 */ 452 static void 453 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 454 { 455 struct age_softc *sc = ifp->if_softc; 456 struct mii_data *mii = &sc->sc_miibus; 457 458 mii_pollstat(mii); 459 ifmr->ifm_status = mii->mii_media_status; 460 ifmr->ifm_active = mii->mii_media_active; 461 } 462 463 /* 464 * Set hardware to newly-selected media. 465 */ 466 static int 467 age_mediachange(struct ifnet *ifp) 468 { 469 struct age_softc *sc = ifp->if_softc; 470 struct mii_data *mii = &sc->sc_miibus; 471 int error; 472 473 if (mii->mii_instance != 0) { 474 struct mii_softc *miisc; 475 476 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 477 mii_phy_reset(miisc); 478 } 479 error = mii_mediachg(mii); 480 481 return error; 482 } 483 484 static int 485 age_intr(void *arg) 486 { 487 struct age_softc *sc = arg; 488 struct ifnet *ifp = &sc->sc_ec.ec_if; 489 struct cmb *cmb; 490 uint32_t status; 491 492 status = CSR_READ_4(sc, AGE_INTR_STATUS); 493 if (status == 0 || (status & AGE_INTRS) == 0) 494 return 0; 495 496 cmb = sc->age_rdata.age_cmb_block; 497 if (cmb == NULL) { 498 /* Happens when bringing up the interface 499 * w/o having a carrier. Ack the interrupt. 500 */ 501 CSR_WRITE_4(sc, AGE_INTR_STATUS, status); 502 return 0; 503 } 504 505 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 506 sc->age_cdata.age_cmb_block_map->dm_mapsize, 507 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 508 status = le32toh(cmb->intr_status); 509 /* ACK/reenable interrupts */ 510 CSR_WRITE_4(sc, AGE_INTR_STATUS, status); 511 while ((status & AGE_INTRS) != 0) { 512 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 513 TPD_CONS_SHIFT; 514 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 515 RRD_PROD_SHIFT; 516 517 /* Let hardware know CMB was served. */ 518 cmb->intr_status = 0; 519 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 520 sc->age_cdata.age_cmb_block_map->dm_mapsize, 521 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 522 523 if (ifp->if_flags & IFF_RUNNING) { 524 if (status & INTR_CMB_RX) 525 age_rxintr(sc, sc->age_rr_prod); 526 527 if (status & INTR_CMB_TX) 528 age_txintr(sc, sc->age_tpd_cons); 529 530 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) { 531 if (status & INTR_DMA_RD_TO_RST) 532 printf("%s: DMA read error! -- " 533 "resetting\n", 534 device_xname(sc->sc_dev)); 535 if (status & INTR_DMA_WR_TO_RST) 536 printf("%s: DMA write error! -- " 537 "resetting\n", 538 device_xname(sc->sc_dev)); 539 age_init(ifp); 540 } 541 542 age_start(ifp); 543 544 if (status & INTR_SMB) 545 age_stats_update(sc); 546 } 547 /* check if more interrupts did came in */ 548 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 549 sc->age_cdata.age_cmb_block_map->dm_mapsize, 550 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 551 status = le32toh(cmb->intr_status); 552 } 553 554 return 1; 555 } 556 557 static void 558 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[]) 559 { 560 uint32_t ea[2], reg; 561 int i, vpdc; 562 563 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 564 if ((reg & SPI_VPD_ENB) != 0) { 565 /* Get VPD stored in TWSI EEPROM. */ 566 reg &= ~SPI_VPD_ENB; 567 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 568 } 569 570 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, 571 PCI_CAP_VPD, &vpdc, NULL)) { 572 /* 573 * PCI VPD capability found, let TWSI reload EEPROM. 574 * This will set Ethernet address of controller. 575 */ 576 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 577 TWSI_CTRL_SW_LD_START); 578 for (i = 100; i > 0; i++) { 579 DELAY(1000); 580 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 581 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 582 break; 583 } 584 if (i == 0) 585 printf("%s: reloading EEPROM timeout!\n", 586 device_xname(sc->sc_dev)); 587 } else { 588 if (agedebug) 589 printf("%s: PCI VPD capability not found!\n", 590 device_xname(sc->sc_dev)); 591 } 592 593 ea[0] = CSR_READ_4(sc, AGE_PAR0); 594 ea[1] = CSR_READ_4(sc, AGE_PAR1); 595 596 eaddr[0] = (ea[1] >> 8) & 0xFF; 597 eaddr[1] = (ea[1] >> 0) & 0xFF; 598 eaddr[2] = (ea[0] >> 24) & 0xFF; 599 eaddr[3] = (ea[0] >> 16) & 0xFF; 600 eaddr[4] = (ea[0] >> 8) & 0xFF; 601 eaddr[5] = (ea[0] >> 0) & 0xFF; 602 } 603 604 static void 605 age_phy_reset(struct age_softc *sc) 606 { 607 uint16_t reg, pn; 608 int i, linkup; 609 610 /* Reset PHY. */ 611 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 612 DELAY(2000); 613 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 614 DELAY(2000); 615 616 #define ATPHY_DBG_ADDR 0x1D 617 #define ATPHY_DBG_DATA 0x1E 618 #define ATPHY_CDTC 0x16 619 #define PHY_CDTC_ENB 0x0001 620 #define PHY_CDTC_POFF 8 621 #define ATPHY_CDTS 0x1C 622 #define PHY_CDTS_STAT_OK 0x0000 623 #define PHY_CDTS_STAT_SHORT 0x0100 624 #define PHY_CDTS_STAT_OPEN 0x0200 625 #define PHY_CDTS_STAT_INVAL 0x0300 626 #define PHY_CDTS_STAT_MASK 0x0300 627 628 /* Check power saving mode. Magic from Linux. */ 629 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 630 for (linkup = 0, pn = 0; pn < 4; pn++) { 631 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC, 632 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 633 for (i = 200; i > 0; i--) { 634 DELAY(1000); 635 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 636 ATPHY_CDTC); 637 if ((reg & PHY_CDTC_ENB) == 0) 638 break; 639 } 640 DELAY(1000); 641 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 642 ATPHY_CDTS); 643 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 644 linkup++; 645 break; 646 } 647 } 648 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, 649 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 650 if (linkup == 0) { 651 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 652 ATPHY_DBG_ADDR, 0); 653 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 654 ATPHY_DBG_DATA, 0x124E); 655 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 656 ATPHY_DBG_ADDR, 1); 657 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 658 ATPHY_DBG_DATA); 659 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 660 ATPHY_DBG_DATA, reg | 0x03); 661 /* XXX */ 662 DELAY(1500 * 1000); 663 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 664 ATPHY_DBG_ADDR, 0); 665 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 666 ATPHY_DBG_DATA, 0x024E); 667 } 668 669 #undef ATPHY_DBG_ADDR 670 #undef ATPHY_DBG_DATA 671 #undef ATPHY_CDTC 672 #undef PHY_CDTC_ENB 673 #undef PHY_CDTC_POFF 674 #undef ATPHY_CDTS 675 #undef PHY_CDTS_STAT_OK 676 #undef PHY_CDTS_STAT_SHORT 677 #undef PHY_CDTS_STAT_OPEN 678 #undef PHY_CDTS_STAT_INVAL 679 #undef PHY_CDTS_STAT_MASK 680 } 681 682 static int 683 age_dma_alloc(struct age_softc *sc) 684 { 685 struct age_txdesc *txd; 686 struct age_rxdesc *rxd; 687 int nsegs, error, i; 688 689 /* 690 * Create DMA stuffs for TX ring 691 */ 692 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1, 693 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map); 694 if (error) { 695 sc->age_cdata.age_tx_ring_map = NULL; 696 return ENOBUFS; 697 } 698 699 /* Allocate DMA'able memory for TX ring */ 700 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ, 701 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1, 702 &nsegs, BUS_DMA_NOWAIT); 703 if (error) { 704 printf("%s: could not allocate DMA'able memory for Tx ring, " 705 "error = %i\n", device_xname(sc->sc_dev), error); 706 return error; 707 } 708 709 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg, 710 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring, 711 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 712 if (error) 713 return ENOBUFS; 714 715 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ); 716 717 /* Load the DMA map for Tx ring. */ 718 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 719 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT); 720 if (error) { 721 printf("%s: could not load DMA'able memory for Tx ring, " 722 "error = %i\n", device_xname(sc->sc_dev), error); 723 bus_dmamem_free(sc->sc_dmat, 724 &sc->age_rdata.age_tx_ring_seg, 1); 725 return error; 726 } 727 728 sc->age_rdata.age_tx_ring_paddr = 729 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr; 730 731 /* 732 * Create DMA stuffs for RX ring 733 */ 734 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1, 735 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map); 736 if (error) { 737 sc->age_cdata.age_rx_ring_map = NULL; 738 return ENOBUFS; 739 } 740 741 /* Allocate DMA'able memory for RX ring */ 742 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ, 743 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1, 744 &nsegs, BUS_DMA_NOWAIT); 745 if (error) { 746 printf("%s: could not allocate DMA'able memory for Rx ring, " 747 "error = %i.\n", device_xname(sc->sc_dev), error); 748 return error; 749 } 750 751 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg, 752 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring, 753 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 754 if (error) 755 return ENOBUFS; 756 757 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ); 758 759 /* Load the DMA map for Rx ring. */ 760 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 761 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT); 762 if (error) { 763 printf("%s: could not load DMA'able memory for Rx ring, " 764 "error = %i.\n", device_xname(sc->sc_dev), error); 765 bus_dmamem_free(sc->sc_dmat, 766 &sc->age_rdata.age_rx_ring_seg, 1); 767 return error; 768 } 769 770 sc->age_rdata.age_rx_ring_paddr = 771 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr; 772 773 /* 774 * Create DMA stuffs for RX return ring 775 */ 776 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1, 777 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map); 778 if (error) { 779 sc->age_cdata.age_rr_ring_map = NULL; 780 return ENOBUFS; 781 } 782 783 /* Allocate DMA'able memory for RX return ring */ 784 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ, 785 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1, 786 &nsegs, BUS_DMA_NOWAIT); 787 if (error) { 788 printf("%s: could not allocate DMA'able memory for Rx " 789 "return ring, error = %i.\n", 790 device_xname(sc->sc_dev), error); 791 return error; 792 } 793 794 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg, 795 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring, 796 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 797 if (error) 798 return ENOBUFS; 799 800 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ); 801 802 /* Load the DMA map for Rx return ring. */ 803 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 804 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT); 805 if (error) { 806 printf("%s: could not load DMA'able memory for Rx return ring, " 807 "error = %i\n", device_xname(sc->sc_dev), error); 808 bus_dmamem_free(sc->sc_dmat, 809 &sc->age_rdata.age_rr_ring_seg, 1); 810 return error; 811 } 812 813 sc->age_rdata.age_rr_ring_paddr = 814 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr; 815 816 /* 817 * Create DMA stuffs for CMB block 818 */ 819 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1, 820 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, 821 &sc->age_cdata.age_cmb_block_map); 822 if (error) { 823 sc->age_cdata.age_cmb_block_map = NULL; 824 return ENOBUFS; 825 } 826 827 /* Allocate DMA'able memory for CMB block */ 828 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 829 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1, 830 &nsegs, BUS_DMA_NOWAIT); 831 if (error) { 832 printf("%s: could not allocate DMA'able memory for " 833 "CMB block, error = %i\n", device_xname(sc->sc_dev), error); 834 return error; 835 } 836 837 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg, 838 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block, 839 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 840 if (error) 841 return ENOBUFS; 842 843 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ); 844 845 /* Load the DMA map for CMB block. */ 846 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 847 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL, 848 BUS_DMA_NOWAIT); 849 if (error) { 850 printf("%s: could not load DMA'able memory for CMB block, " 851 "error = %i\n", device_xname(sc->sc_dev), error); 852 bus_dmamem_free(sc->sc_dmat, 853 &sc->age_rdata.age_cmb_block_seg, 1); 854 return error; 855 } 856 857 sc->age_rdata.age_cmb_block_paddr = 858 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr; 859 860 /* 861 * Create DMA stuffs for SMB block 862 */ 863 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1, 864 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, 865 &sc->age_cdata.age_smb_block_map); 866 if (error) { 867 sc->age_cdata.age_smb_block_map = NULL; 868 return ENOBUFS; 869 } 870 871 /* Allocate DMA'able memory for SMB block */ 872 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 873 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1, 874 &nsegs, BUS_DMA_NOWAIT); 875 if (error) { 876 printf("%s: could not allocate DMA'able memory for " 877 "SMB block, error = %i\n", device_xname(sc->sc_dev), error); 878 return error; 879 } 880 881 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg, 882 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block, 883 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 884 if (error) 885 return ENOBUFS; 886 887 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ); 888 889 /* Load the DMA map for SMB block */ 890 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 891 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL, 892 BUS_DMA_NOWAIT); 893 if (error) { 894 printf("%s: could not load DMA'able memory for SMB block, " 895 "error = %i\n", device_xname(sc->sc_dev), error); 896 bus_dmamem_free(sc->sc_dmat, 897 &sc->age_rdata.age_smb_block_seg, 1); 898 return error; 899 } 900 901 sc->age_rdata.age_smb_block_paddr = 902 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr; 903 904 /* Create DMA maps for Tx buffers. */ 905 for (i = 0; i < AGE_TX_RING_CNT; i++) { 906 txd = &sc->age_cdata.age_txdesc[i]; 907 txd->tx_m = NULL; 908 txd->tx_dmamap = NULL; 909 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE, 910 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, 911 &txd->tx_dmamap); 912 if (error) { 913 txd->tx_dmamap = NULL; 914 printf("%s: could not create Tx dmamap, error = %i.\n", 915 device_xname(sc->sc_dev), error); 916 return error; 917 } 918 } 919 920 /* Create DMA maps for Rx buffers. */ 921 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 922 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap); 923 if (error) { 924 sc->age_cdata.age_rx_sparemap = NULL; 925 printf("%s: could not create spare Rx dmamap, error = %i.\n", 926 device_xname(sc->sc_dev), error); 927 return error; 928 } 929 for (i = 0; i < AGE_RX_RING_CNT; i++) { 930 rxd = &sc->age_cdata.age_rxdesc[i]; 931 rxd->rx_m = NULL; 932 rxd->rx_dmamap = NULL; 933 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 934 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap); 935 if (error) { 936 rxd->rx_dmamap = NULL; 937 printf("%s: could not create Rx dmamap, error = %i.\n", 938 device_xname(sc->sc_dev), error); 939 return error; 940 } 941 } 942 943 return 0; 944 } 945 946 static void 947 age_dma_free(struct age_softc *sc) 948 { 949 struct age_txdesc *txd; 950 struct age_rxdesc *rxd; 951 int i; 952 953 /* Tx buffers */ 954 for (i = 0; i < AGE_TX_RING_CNT; i++) { 955 txd = &sc->age_cdata.age_txdesc[i]; 956 if (txd->tx_dmamap != NULL) { 957 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); 958 txd->tx_dmamap = NULL; 959 } 960 } 961 /* Rx buffers */ 962 for (i = 0; i < AGE_RX_RING_CNT; i++) { 963 rxd = &sc->age_cdata.age_rxdesc[i]; 964 if (rxd->rx_dmamap != NULL) { 965 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap); 966 rxd->rx_dmamap = NULL; 967 } 968 } 969 if (sc->age_cdata.age_rx_sparemap != NULL) { 970 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap); 971 sc->age_cdata.age_rx_sparemap = NULL; 972 } 973 974 /* Tx ring. */ 975 if (sc->age_cdata.age_tx_ring_map != NULL) 976 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map); 977 if (sc->age_cdata.age_tx_ring_map != NULL && 978 sc->age_rdata.age_tx_ring != NULL) 979 bus_dmamem_free(sc->sc_dmat, 980 &sc->age_rdata.age_tx_ring_seg, 1); 981 sc->age_rdata.age_tx_ring = NULL; 982 sc->age_cdata.age_tx_ring_map = NULL; 983 984 /* Rx ring. */ 985 if (sc->age_cdata.age_rx_ring_map != NULL) 986 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map); 987 if (sc->age_cdata.age_rx_ring_map != NULL && 988 sc->age_rdata.age_rx_ring != NULL) 989 bus_dmamem_free(sc->sc_dmat, 990 &sc->age_rdata.age_rx_ring_seg, 1); 991 sc->age_rdata.age_rx_ring = NULL; 992 sc->age_cdata.age_rx_ring_map = NULL; 993 994 /* Rx return ring. */ 995 if (sc->age_cdata.age_rr_ring_map != NULL) 996 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map); 997 if (sc->age_cdata.age_rr_ring_map != NULL && 998 sc->age_rdata.age_rr_ring != NULL) 999 bus_dmamem_free(sc->sc_dmat, 1000 &sc->age_rdata.age_rr_ring_seg, 1); 1001 sc->age_rdata.age_rr_ring = NULL; 1002 sc->age_cdata.age_rr_ring_map = NULL; 1003 1004 /* CMB block */ 1005 if (sc->age_cdata.age_cmb_block_map != NULL) 1006 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map); 1007 if (sc->age_cdata.age_cmb_block_map != NULL && 1008 sc->age_rdata.age_cmb_block != NULL) 1009 bus_dmamem_free(sc->sc_dmat, 1010 &sc->age_rdata.age_cmb_block_seg, 1); 1011 sc->age_rdata.age_cmb_block = NULL; 1012 sc->age_cdata.age_cmb_block_map = NULL; 1013 1014 /* SMB block */ 1015 if (sc->age_cdata.age_smb_block_map != NULL) 1016 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map); 1017 if (sc->age_cdata.age_smb_block_map != NULL && 1018 sc->age_rdata.age_smb_block != NULL) 1019 bus_dmamem_free(sc->sc_dmat, 1020 &sc->age_rdata.age_smb_block_seg, 1); 1021 sc->age_rdata.age_smb_block = NULL; 1022 sc->age_cdata.age_smb_block_map = NULL; 1023 } 1024 1025 static void 1026 age_start(struct ifnet *ifp) 1027 { 1028 struct age_softc *sc = ifp->if_softc; 1029 struct mbuf *m_head; 1030 int enq; 1031 1032 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1033 return; 1034 if ((sc->age_flags & AGE_FLAG_LINK) == 0) 1035 return; 1036 if (IFQ_IS_EMPTY(&ifp->if_snd)) 1037 return; 1038 1039 enq = 0; 1040 for (;;) { 1041 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1042 if (m_head == NULL) 1043 break; 1044 1045 /* 1046 * Pack the data into the transmit ring. If we 1047 * don't have room, set the OACTIVE flag and wait 1048 * for the NIC to drain the ring. 1049 */ 1050 if (age_encap(sc, &m_head)) { 1051 if (m_head == NULL) 1052 break; 1053 IF_PREPEND(&ifp->if_snd, m_head); 1054 ifp->if_flags |= IFF_OACTIVE; 1055 break; 1056 } 1057 enq = 1; 1058 1059 /* 1060 * If there's a BPF listener, bounce a copy of this frame 1061 * to him. 1062 */ 1063 bpf_mtap(ifp, m_head); 1064 } 1065 1066 if (enq) { 1067 /* Update mbox. */ 1068 AGE_COMMIT_MBOX(sc); 1069 /* Set a timeout in case the chip goes out to lunch. */ 1070 ifp->if_timer = AGE_TX_TIMEOUT; 1071 } 1072 } 1073 1074 static void 1075 age_watchdog(struct ifnet *ifp) 1076 { 1077 struct age_softc *sc = ifp->if_softc; 1078 1079 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1080 printf("%s: watchdog timeout (missed link)\n", 1081 device_xname(sc->sc_dev)); 1082 ifp->if_oerrors++; 1083 age_init(ifp); 1084 return; 1085 } 1086 1087 if (sc->age_cdata.age_tx_cnt == 0) { 1088 printf("%s: watchdog timeout (missed Tx interrupts) " 1089 "-- recovering\n", device_xname(sc->sc_dev)); 1090 age_start(ifp); 1091 return; 1092 } 1093 1094 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); 1095 ifp->if_oerrors++; 1096 age_init(ifp); 1097 age_start(ifp); 1098 } 1099 1100 static bool 1101 age_shutdown(device_t self, int howto) 1102 { 1103 struct age_softc *sc; 1104 struct ifnet *ifp; 1105 1106 sc = device_private(self); 1107 ifp = &sc->sc_ec.ec_if; 1108 age_stop(ifp, 1); 1109 1110 return true; 1111 } 1112 1113 1114 static int 1115 age_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1116 { 1117 struct age_softc *sc = ifp->if_softc; 1118 int s, error; 1119 1120 s = splnet(); 1121 1122 error = ether_ioctl(ifp, cmd, data); 1123 if (error == ENETRESET) { 1124 if (ifp->if_flags & IFF_RUNNING) 1125 age_rxfilter(sc); 1126 error = 0; 1127 } 1128 1129 splx(s); 1130 return error; 1131 } 1132 1133 static void 1134 age_mac_config(struct age_softc *sc) 1135 { 1136 struct mii_data *mii; 1137 uint32_t reg; 1138 1139 mii = &sc->sc_miibus; 1140 1141 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1142 reg &= ~MAC_CFG_FULL_DUPLEX; 1143 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1144 reg &= ~MAC_CFG_SPEED_MASK; 1145 1146 /* Reprogram MAC with resolved speed/duplex. */ 1147 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1148 case IFM_10_T: 1149 case IFM_100_TX: 1150 reg |= MAC_CFG_SPEED_10_100; 1151 break; 1152 case IFM_1000_T: 1153 reg |= MAC_CFG_SPEED_1000; 1154 break; 1155 } 1156 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1157 reg |= MAC_CFG_FULL_DUPLEX; 1158 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1159 reg |= MAC_CFG_TX_FC; 1160 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1161 reg |= MAC_CFG_RX_FC; 1162 } 1163 1164 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1165 } 1166 1167 static bool 1168 age_resume(device_t dv, const pmf_qual_t *qual) 1169 { 1170 struct age_softc *sc = device_private(dv); 1171 uint16_t cmd; 1172 1173 /* 1174 * Clear INTx emulation disable for hardware that 1175 * is set in resume event. From Linux. 1176 */ 1177 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 1178 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) { 1179 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE; 1180 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 1181 PCI_COMMAND_STATUS_REG, cmd); 1182 } 1183 1184 return true; 1185 } 1186 1187 static int 1188 age_encap(struct age_softc *sc, struct mbuf **m_head) 1189 { 1190 struct age_txdesc *txd, *txd_last; 1191 struct tx_desc *desc; 1192 struct mbuf *m; 1193 bus_dmamap_t map; 1194 uint32_t cflags, poff, vtag; 1195 int error, i, nsegs, prod; 1196 #if NVLAN > 0 1197 struct m_tag *mtag; 1198 #endif 1199 1200 m = *m_head; 1201 cflags = vtag = 0; 1202 poff = 0; 1203 1204 prod = sc->age_cdata.age_tx_prod; 1205 txd = &sc->age_cdata.age_txdesc[prod]; 1206 txd_last = txd; 1207 map = txd->tx_dmamap; 1208 1209 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); 1210 1211 if (error == EFBIG) { 1212 error = 0; 1213 1214 *m_head = m_pullup(*m_head, MHLEN); 1215 if (*m_head == NULL) { 1216 printf("%s: can't defrag TX mbuf\n", 1217 device_xname(sc->sc_dev)); 1218 return ENOBUFS; 1219 } 1220 1221 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, 1222 BUS_DMA_NOWAIT); 1223 1224 if (error != 0) { 1225 printf("%s: could not load defragged TX mbuf\n", 1226 device_xname(sc->sc_dev)); 1227 m_freem(*m_head); 1228 *m_head = NULL; 1229 return error; 1230 } 1231 } else if (error) { 1232 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev)); 1233 return error; 1234 } 1235 1236 nsegs = map->dm_nsegs; 1237 1238 if (nsegs == 0) { 1239 m_freem(*m_head); 1240 *m_head = NULL; 1241 return EIO; 1242 } 1243 1244 /* Check descriptor overrun. */ 1245 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1246 bus_dmamap_unload(sc->sc_dmat, map); 1247 return ENOBUFS; 1248 } 1249 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1250 BUS_DMASYNC_PREWRITE); 1251 1252 m = *m_head; 1253 /* Configure Tx IP/TCP/UDP checksum offload. */ 1254 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1255 cflags |= AGE_TD_CSUM; 1256 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0) 1257 cflags |= AGE_TD_TCPCSUM; 1258 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 1259 cflags |= AGE_TD_UDPCSUM; 1260 /* Set checksum start offset. */ 1261 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1262 } 1263 1264 #if NVLAN > 0 1265 /* Configure VLAN hardware tag insertion. */ 1266 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) { 1267 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag))); 1268 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1269 cflags |= AGE_TD_INSERT_VLAN_TAG; 1270 } 1271 #endif 1272 1273 desc = NULL; 1274 KASSERT(nsegs > 0); 1275 for (i = 0; ; i++) { 1276 desc = &sc->age_rdata.age_tx_ring[prod]; 1277 desc->addr = htole64(map->dm_segs[i].ds_addr); 1278 desc->len = 1279 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag); 1280 desc->flags = htole32(cflags); 1281 sc->age_cdata.age_tx_cnt++; 1282 if (i == (nsegs - 1)) 1283 break; 1284 1285 /* sync this descriptor and go to the next one */ 1286 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 1287 prod * sizeof(struct tx_desc), sizeof(struct tx_desc), 1288 BUS_DMASYNC_PREWRITE); 1289 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1290 } 1291 1292 /* Set EOP on the last descriptor and sync it. */ 1293 desc->flags |= htole32(AGE_TD_EOP); 1294 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 1295 prod * sizeof(struct tx_desc), sizeof(struct tx_desc), 1296 BUS_DMASYNC_PREWRITE); 1297 1298 if (nsegs > 1) { 1299 /* Swap dmamap of the first and the last. */ 1300 txd = &sc->age_cdata.age_txdesc[prod]; 1301 map = txd_last->tx_dmamap; 1302 txd_last->tx_dmamap = txd->tx_dmamap; 1303 txd->tx_dmamap = map; 1304 txd->tx_m = m; 1305 KASSERT(txd_last->tx_m == NULL); 1306 } else { 1307 KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]); 1308 txd_last->tx_m = m; 1309 } 1310 1311 /* Update producer index. */ 1312 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1313 sc->age_cdata.age_tx_prod = prod; 1314 1315 return 0; 1316 } 1317 1318 static void 1319 age_txintr(struct age_softc *sc, int tpd_cons) 1320 { 1321 struct ifnet *ifp = &sc->sc_ec.ec_if; 1322 struct age_txdesc *txd; 1323 int cons, prog; 1324 1325 1326 if (sc->age_cdata.age_tx_cnt <= 0) { 1327 if (ifp->if_timer != 0) 1328 printf("timer running without packets\n"); 1329 if (sc->age_cdata.age_tx_cnt) 1330 printf("age_tx_cnt corrupted\n"); 1331 } 1332 1333 /* 1334 * Go through our Tx list and free mbufs for those 1335 * frames which have been transmitted. 1336 */ 1337 cons = sc->age_cdata.age_tx_cons; 1338 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 1339 if (sc->age_cdata.age_tx_cnt <= 0) 1340 break; 1341 prog++; 1342 ifp->if_flags &= ~IFF_OACTIVE; 1343 sc->age_cdata.age_tx_cnt--; 1344 txd = &sc->age_cdata.age_txdesc[cons]; 1345 /* 1346 * Clear Tx descriptors, it's not required but would 1347 * help debugging in case of Tx issues. 1348 */ 1349 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 1350 cons * sizeof(struct tx_desc), sizeof(struct tx_desc), 1351 BUS_DMASYNC_POSTWRITE); 1352 txd->tx_desc->addr = 0; 1353 txd->tx_desc->len = 0; 1354 txd->tx_desc->flags = 0; 1355 1356 if (txd->tx_m == NULL) 1357 continue; 1358 /* Reclaim transmitted mbufs. */ 1359 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 1360 m_freem(txd->tx_m); 1361 txd->tx_m = NULL; 1362 } 1363 1364 if (prog > 0) { 1365 sc->age_cdata.age_tx_cons = cons; 1366 1367 /* 1368 * Unarm watchdog timer only when there are no pending 1369 * Tx descriptors in queue. 1370 */ 1371 if (sc->age_cdata.age_tx_cnt == 0) 1372 ifp->if_timer = 0; 1373 } 1374 } 1375 1376 /* Receive a frame. */ 1377 static void 1378 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 1379 { 1380 struct ifnet *ifp = &sc->sc_ec.ec_if; 1381 struct age_rxdesc *rxd; 1382 struct rx_desc *desc; 1383 struct mbuf *mp, *m; 1384 uint32_t status, index; 1385 int count, nsegs, pktlen; 1386 int rx_cons; 1387 1388 status = le32toh(rxrd->flags); 1389 index = le32toh(rxrd->index); 1390 rx_cons = AGE_RX_CONS(index); 1391 nsegs = AGE_RX_NSEGS(index); 1392 1393 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 1394 if ((status & AGE_RRD_ERROR) != 0 && 1395 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 1396 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { 1397 /* 1398 * We want to pass the following frames to upper 1399 * layer regardless of error status of Rx return 1400 * ring. 1401 * 1402 * o IP/TCP/UDP checksum is bad. 1403 * o frame length and protocol specific length 1404 * does not match. 1405 */ 1406 sc->age_cdata.age_rx_cons += nsegs; 1407 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 1408 return; 1409 } 1410 1411 pktlen = 0; 1412 for (count = 0; count < nsegs; count++, 1413 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 1414 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 1415 mp = rxd->rx_m; 1416 desc = rxd->rx_desc; 1417 /* Add a new receive buffer to the ring. */ 1418 if (age_newbuf(sc, rxd, 0) != 0) { 1419 ifp->if_iqdrops++; 1420 /* Reuse Rx buffers. */ 1421 if (sc->age_cdata.age_rxhead != NULL) { 1422 m_freem(sc->age_cdata.age_rxhead); 1423 AGE_RXCHAIN_RESET(sc); 1424 } 1425 break; 1426 } 1427 1428 /* The length of the first mbuf is computed last. */ 1429 if (count != 0) { 1430 mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); 1431 pktlen += mp->m_len; 1432 } 1433 1434 /* Chain received mbufs. */ 1435 if (sc->age_cdata.age_rxhead == NULL) { 1436 sc->age_cdata.age_rxhead = mp; 1437 sc->age_cdata.age_rxtail = mp; 1438 } else { 1439 mp->m_flags &= ~M_PKTHDR; 1440 sc->age_cdata.age_rxprev_tail = 1441 sc->age_cdata.age_rxtail; 1442 sc->age_cdata.age_rxtail->m_next = mp; 1443 sc->age_cdata.age_rxtail = mp; 1444 } 1445 1446 if (count == nsegs - 1) { 1447 /* 1448 * It seems that L1 controller has no way 1449 * to tell hardware to strip CRC bytes. 1450 */ 1451 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; 1452 if (nsegs > 1) { 1453 /* Remove the CRC bytes in chained mbufs. */ 1454 pktlen -= ETHER_CRC_LEN; 1455 if (mp->m_len <= ETHER_CRC_LEN) { 1456 sc->age_cdata.age_rxtail = 1457 sc->age_cdata.age_rxprev_tail; 1458 sc->age_cdata.age_rxtail->m_len -= 1459 (ETHER_CRC_LEN - mp->m_len); 1460 sc->age_cdata.age_rxtail->m_next = NULL; 1461 m_freem(mp); 1462 } else { 1463 mp->m_len -= ETHER_CRC_LEN; 1464 } 1465 } 1466 1467 m = sc->age_cdata.age_rxhead; 1468 m->m_flags |= M_PKTHDR; 1469 m->m_pkthdr.rcvif = ifp; 1470 m->m_pkthdr.len = sc->age_cdata.age_rxlen; 1471 /* Set the first mbuf length. */ 1472 m->m_len = sc->age_cdata.age_rxlen - pktlen; 1473 1474 /* 1475 * Set checksum information. 1476 * It seems that L1 controller can compute partial 1477 * checksum. The partial checksum value can be used 1478 * to accelerate checksum computation for fragmented 1479 * TCP/UDP packets. Upper network stack already 1480 * takes advantage of the partial checksum value in 1481 * IP reassembly stage. But I'm not sure the 1482 * correctness of the partial hardware checksum 1483 * assistance due to lack of data sheet. If it is 1484 * proven to work on L1 I'll enable it. 1485 */ 1486 if (status & AGE_RRD_IPV4) { 1487 if (status & AGE_RRD_IPCSUM_NOK) 1488 m->m_pkthdr.csum_flags |= 1489 M_CSUM_IPv4_BAD; 1490 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 1491 (status & AGE_RRD_TCP_UDPCSUM_NOK)) { 1492 m->m_pkthdr.csum_flags |= 1493 M_CSUM_TCP_UDP_BAD; 1494 } 1495 /* 1496 * Don't mark bad checksum for TCP/UDP frames 1497 * as fragmented frames may always have set 1498 * bad checksummed bit of descriptor status. 1499 */ 1500 } 1501 #if NVLAN > 0 1502 /* Check for VLAN tagged frames. */ 1503 if (status & AGE_RRD_VLAN) { 1504 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 1505 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag), 1506 continue); 1507 } 1508 #endif 1509 1510 bpf_mtap(ifp, m); 1511 /* Pass it on. */ 1512 ether_input(ifp, m); 1513 1514 /* Reset mbuf chains. */ 1515 AGE_RXCHAIN_RESET(sc); 1516 } 1517 } 1518 1519 if (count != nsegs) { 1520 sc->age_cdata.age_rx_cons += nsegs; 1521 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 1522 } else 1523 sc->age_cdata.age_rx_cons = rx_cons; 1524 } 1525 1526 static void 1527 age_rxintr(struct age_softc *sc, int rr_prod) 1528 { 1529 struct rx_rdesc *rxrd; 1530 int rr_cons, nsegs, pktlen, prog; 1531 1532 rr_cons = sc->age_cdata.age_rr_cons; 1533 if (rr_cons == rr_prod) 1534 return; 1535 1536 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 1537 sc->age_cdata.age_rr_ring_map->dm_mapsize, 1538 BUS_DMASYNC_POSTREAD); 1539 1540 for (prog = 0; rr_cons != rr_prod; prog++) { 1541 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 1542 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 1543 if (nsegs == 0) 1544 break; 1545 /* 1546 * Check number of segments against received bytes 1547 * Non-matching value would indicate that hardware 1548 * is still trying to update Rx return descriptors. 1549 * I'm not sure whether this check is really needed. 1550 */ 1551 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 1552 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / 1553 (MCLBYTES - ETHER_ALIGN))) 1554 break; 1555 1556 /* Received a frame. */ 1557 age_rxeof(sc, rxrd); 1558 1559 /* Clear return ring. */ 1560 rxrd->index = 0; 1561 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 1562 } 1563 1564 if (prog > 0) { 1565 /* Update the consumer index. */ 1566 sc->age_cdata.age_rr_cons = rr_cons; 1567 1568 /* Sync descriptors. */ 1569 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 1570 sc->age_cdata.age_rr_ring_map->dm_mapsize, 1571 BUS_DMASYNC_PREWRITE); 1572 1573 /* Notify hardware availability of new Rx buffers. */ 1574 AGE_COMMIT_MBOX(sc); 1575 } 1576 } 1577 1578 static void 1579 age_tick(void *xsc) 1580 { 1581 struct age_softc *sc = xsc; 1582 struct mii_data *mii = &sc->sc_miibus; 1583 int s; 1584 1585 s = splnet(); 1586 mii_tick(mii); 1587 splx(s); 1588 1589 callout_schedule(&sc->sc_tick_ch, hz); 1590 } 1591 1592 static void 1593 age_reset(struct age_softc *sc) 1594 { 1595 uint32_t reg; 1596 int i; 1597 1598 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 1599 CSR_READ_4(sc, AGE_MASTER_CFG); 1600 DELAY(1000); 1601 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 1602 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 1603 break; 1604 DELAY(10); 1605 } 1606 1607 if (i == 0) 1608 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev), 1609 reg); 1610 1611 /* Initialize PCIe module. From Linux. */ 1612 CSR_WRITE_4(sc, 0x12FC, 0x6500); 1613 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 1614 } 1615 1616 static int 1617 age_init(struct ifnet *ifp) 1618 { 1619 struct age_softc *sc = ifp->if_softc; 1620 struct mii_data *mii; 1621 uint8_t eaddr[ETHER_ADDR_LEN]; 1622 bus_addr_t paddr; 1623 uint32_t reg, fsize; 1624 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 1625 int error; 1626 1627 /* 1628 * Cancel any pending I/O. 1629 */ 1630 age_stop(ifp, 0); 1631 1632 /* 1633 * Reset the chip to a known state. 1634 */ 1635 age_reset(sc); 1636 1637 /* Initialize descriptors. */ 1638 error = age_init_rx_ring(sc); 1639 if (error != 0) { 1640 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev)); 1641 age_stop(ifp, 0); 1642 return error; 1643 } 1644 age_init_rr_ring(sc); 1645 age_init_tx_ring(sc); 1646 age_init_cmb_block(sc); 1647 age_init_smb_block(sc); 1648 1649 /* Reprogram the station address. */ 1650 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); 1651 CSR_WRITE_4(sc, AGE_PAR0, 1652 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 1653 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 1654 1655 /* Set descriptor base addresses. */ 1656 paddr = sc->age_rdata.age_tx_ring_paddr; 1657 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 1658 paddr = sc->age_rdata.age_rx_ring_paddr; 1659 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 1660 paddr = sc->age_rdata.age_rr_ring_paddr; 1661 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 1662 paddr = sc->age_rdata.age_tx_ring_paddr; 1663 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 1664 paddr = sc->age_rdata.age_cmb_block_paddr; 1665 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 1666 paddr = sc->age_rdata.age_smb_block_paddr; 1667 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 1668 1669 /* Set Rx/Rx return descriptor counter. */ 1670 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 1671 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 1672 DESC_RRD_CNT_MASK) | 1673 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 1674 1675 /* Set Tx descriptor counter. */ 1676 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 1677 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 1678 1679 /* Tell hardware that we're ready to load descriptors. */ 1680 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 1681 1682 /* 1683 * Initialize mailbox register. 1684 * Updated producer/consumer index information is exchanged 1685 * through this mailbox register. However Tx producer and 1686 * Rx return consumer/Rx producer are all shared such that 1687 * it's hard to separate code path between Tx and Rx without 1688 * locking. If L1 hardware have a separate mail box register 1689 * for Tx and Rx consumer/producer management we could have 1690 * indepent Tx/Rx handler which in turn Rx handler could have 1691 * been run without any locking. 1692 */ 1693 AGE_COMMIT_MBOX(sc); 1694 1695 /* Configure IPG/IFG parameters. */ 1696 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 1697 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 1698 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 1699 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 1700 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 1701 1702 /* Set parameters for half-duplex media. */ 1703 CSR_WRITE_4(sc, AGE_HDPX_CFG, 1704 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 1705 HDPX_CFG_LCOL_MASK) | 1706 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 1707 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 1708 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 1709 HDPX_CFG_ABEBT_MASK) | 1710 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 1711 HDPX_CFG_JAMIPG_MASK)); 1712 1713 /* Configure interrupt moderation timer. */ 1714 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 1715 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 1716 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 1717 reg &= ~MASTER_MTIMER_ENB; 1718 if (AGE_USECS(sc->age_int_mod) == 0) 1719 reg &= ~MASTER_ITIMER_ENB; 1720 else 1721 reg |= MASTER_ITIMER_ENB; 1722 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 1723 if (agedebug) 1724 printf("%s: interrupt moderation is %d us.\n", 1725 device_xname(sc->sc_dev), sc->age_int_mod); 1726 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 1727 1728 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 1729 if (ifp->if_mtu < ETHERMTU) 1730 sc->age_max_frame_size = ETHERMTU; 1731 else 1732 sc->age_max_frame_size = ifp->if_mtu; 1733 sc->age_max_frame_size += ETHER_HDR_LEN + 1734 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 1735 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 1736 1737 /* Configure jumbo frame. */ 1738 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 1739 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 1740 (((fsize / sizeof(uint64_t)) << 1741 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 1742 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 1743 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 1744 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 1745 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 1746 1747 /* Configure flow-control parameters. From Linux. */ 1748 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 1749 /* 1750 * Magic workaround for old-L1. 1751 * Don't know which hw revision requires this magic. 1752 */ 1753 CSR_WRITE_4(sc, 0x12FC, 0x6500); 1754 /* 1755 * Another magic workaround for flow-control mode 1756 * change. From Linux. 1757 */ 1758 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 1759 } 1760 /* 1761 * TODO 1762 * Should understand pause parameter relationships between FIFO 1763 * size and number of Rx descriptors and Rx return descriptors. 1764 * 1765 * Magic parameters came from Linux. 1766 */ 1767 switch (sc->age_chip_rev) { 1768 case 0x8001: 1769 case 0x9001: 1770 case 0x9002: 1771 case 0x9003: 1772 rxf_hi = AGE_RX_RING_CNT / 16; 1773 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 1774 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 1775 rrd_lo = AGE_RR_RING_CNT / 16; 1776 break; 1777 default: 1778 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 1779 rxf_lo = reg / 16; 1780 if (rxf_lo < 192) 1781 rxf_lo = 192; 1782 rxf_hi = (reg * 7) / 8; 1783 if (rxf_hi < rxf_lo) 1784 rxf_hi = rxf_lo + 16; 1785 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 1786 rrd_lo = reg / 8; 1787 rrd_hi = (reg * 7) / 8; 1788 if (rrd_lo < 2) 1789 rrd_lo = 2; 1790 if (rrd_hi < rrd_lo) 1791 rrd_hi = rrd_lo + 3; 1792 break; 1793 } 1794 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 1795 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 1796 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 1797 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 1798 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 1799 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 1800 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 1801 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 1802 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 1803 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 1804 1805 /* Configure RxQ. */ 1806 CSR_WRITE_4(sc, AGE_RXQ_CFG, 1807 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 1808 RXQ_CFG_RD_BURST_MASK) | 1809 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 1810 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 1811 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 1812 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 1813 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 1814 1815 /* Configure TxQ. */ 1816 CSR_WRITE_4(sc, AGE_TXQ_CFG, 1817 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 1818 TXQ_CFG_TPD_BURST_MASK) | 1819 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 1820 TXQ_CFG_TX_FIFO_BURST_MASK) | 1821 ((TXQ_CFG_TPD_FETCH_DEFAULT << 1822 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 1823 TXQ_CFG_ENB); 1824 1825 /* Configure DMA parameters. */ 1826 CSR_WRITE_4(sc, AGE_DMA_CFG, 1827 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 1828 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 1829 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 1830 1831 /* Configure CMB DMA write threshold. */ 1832 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 1833 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 1834 CMB_WR_THRESH_RRD_MASK) | 1835 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 1836 CMB_WR_THRESH_TPD_MASK)); 1837 1838 /* Set CMB/SMB timer and enable them. */ 1839 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 1840 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 1841 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 1842 1843 /* Request SMB updates for every seconds. */ 1844 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 1845 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 1846 1847 /* 1848 * Disable all WOL bits as WOL can interfere normal Rx 1849 * operation. 1850 */ 1851 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1852 1853 /* 1854 * Configure Tx/Rx MACs. 1855 * - Auto-padding for short frames. 1856 * - Enable CRC generation. 1857 * Start with full-duplex/1000Mbps media. Actual reconfiguration 1858 * of MAC is followed after link establishment. 1859 */ 1860 CSR_WRITE_4(sc, AGE_MAC_CFG, 1861 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 1862 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 1863 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 1864 MAC_CFG_PREAMBLE_MASK)); 1865 1866 /* Set up the receive filter. */ 1867 age_rxfilter(sc); 1868 age_rxvlan(sc); 1869 1870 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1871 reg |= MAC_CFG_RXCSUM_ENB; 1872 1873 /* Ack all pending interrupts and clear it. */ 1874 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 1875 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 1876 1877 /* Finally enable Tx/Rx MAC. */ 1878 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 1879 1880 sc->age_flags &= ~AGE_FLAG_LINK; 1881 1882 /* Switch to the current media. */ 1883 mii = &sc->sc_miibus; 1884 mii_mediachg(mii); 1885 1886 callout_schedule(&sc->sc_tick_ch, hz); 1887 1888 ifp->if_flags |= IFF_RUNNING; 1889 ifp->if_flags &= ~IFF_OACTIVE; 1890 1891 return 0; 1892 } 1893 1894 static void 1895 age_stop(struct ifnet *ifp, int disable) 1896 { 1897 struct age_softc *sc = ifp->if_softc; 1898 struct age_txdesc *txd; 1899 struct age_rxdesc *rxd; 1900 uint32_t reg; 1901 int i; 1902 1903 callout_stop(&sc->sc_tick_ch); 1904 1905 /* 1906 * Mark the interface down and cancel the watchdog timer. 1907 */ 1908 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1909 ifp->if_timer = 0; 1910 1911 sc->age_flags &= ~AGE_FLAG_LINK; 1912 1913 mii_down(&sc->sc_miibus); 1914 1915 /* 1916 * Disable interrupts. 1917 */ 1918 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 1919 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 1920 1921 /* Stop CMB/SMB updates. */ 1922 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 1923 1924 /* Stop Rx/Tx MAC. */ 1925 age_stop_rxmac(sc); 1926 age_stop_txmac(sc); 1927 1928 /* Stop DMA. */ 1929 CSR_WRITE_4(sc, AGE_DMA_CFG, 1930 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 1931 1932 /* Stop TxQ/RxQ. */ 1933 CSR_WRITE_4(sc, AGE_TXQ_CFG, 1934 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 1935 CSR_WRITE_4(sc, AGE_RXQ_CFG, 1936 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 1937 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 1938 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 1939 break; 1940 DELAY(10); 1941 } 1942 if (i == 0) 1943 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n", 1944 device_xname(sc->sc_dev), reg); 1945 1946 /* Reclaim Rx buffers that have been processed. */ 1947 if (sc->age_cdata.age_rxhead != NULL) 1948 m_freem(sc->age_cdata.age_rxhead); 1949 AGE_RXCHAIN_RESET(sc); 1950 1951 /* 1952 * Free RX and TX mbufs still in the queues. 1953 */ 1954 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1955 rxd = &sc->age_cdata.age_rxdesc[i]; 1956 if (rxd->rx_m != NULL) { 1957 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 1958 m_freem(rxd->rx_m); 1959 rxd->rx_m = NULL; 1960 } 1961 } 1962 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1963 txd = &sc->age_cdata.age_txdesc[i]; 1964 if (txd->tx_m != NULL) { 1965 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 1966 m_freem(txd->tx_m); 1967 txd->tx_m = NULL; 1968 } 1969 } 1970 } 1971 1972 static void 1973 age_stats_update(struct age_softc *sc) 1974 { 1975 struct ifnet *ifp = &sc->sc_ec.ec_if; 1976 struct age_stats *stat; 1977 struct smb *smb; 1978 1979 stat = &sc->age_stat; 1980 1981 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 1982 sc->age_cdata.age_smb_block_map->dm_mapsize, 1983 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1984 1985 smb = sc->age_rdata.age_smb_block; 1986 if (smb->updated == 0) 1987 return; 1988 1989 /* Rx stats. */ 1990 stat->rx_frames += smb->rx_frames; 1991 stat->rx_bcast_frames += smb->rx_bcast_frames; 1992 stat->rx_mcast_frames += smb->rx_mcast_frames; 1993 stat->rx_pause_frames += smb->rx_pause_frames; 1994 stat->rx_control_frames += smb->rx_control_frames; 1995 stat->rx_crcerrs += smb->rx_crcerrs; 1996 stat->rx_lenerrs += smb->rx_lenerrs; 1997 stat->rx_bytes += smb->rx_bytes; 1998 stat->rx_runts += smb->rx_runts; 1999 stat->rx_fragments += smb->rx_fragments; 2000 stat->rx_pkts_64 += smb->rx_pkts_64; 2001 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2002 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2003 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2004 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2005 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2006 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2007 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2008 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2009 stat->rx_desc_oflows += smb->rx_desc_oflows; 2010 stat->rx_alignerrs += smb->rx_alignerrs; 2011 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2012 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2013 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2014 2015 /* Tx stats. */ 2016 stat->tx_frames += smb->tx_frames; 2017 stat->tx_bcast_frames += smb->tx_bcast_frames; 2018 stat->tx_mcast_frames += smb->tx_mcast_frames; 2019 stat->tx_pause_frames += smb->tx_pause_frames; 2020 stat->tx_excess_defer += smb->tx_excess_defer; 2021 stat->tx_control_frames += smb->tx_control_frames; 2022 stat->tx_deferred += smb->tx_deferred; 2023 stat->tx_bytes += smb->tx_bytes; 2024 stat->tx_pkts_64 += smb->tx_pkts_64; 2025 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2026 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2027 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2028 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2029 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2030 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2031 stat->tx_single_colls += smb->tx_single_colls; 2032 stat->tx_multi_colls += smb->tx_multi_colls; 2033 stat->tx_late_colls += smb->tx_late_colls; 2034 stat->tx_excess_colls += smb->tx_excess_colls; 2035 stat->tx_underrun += smb->tx_underrun; 2036 stat->tx_desc_underrun += smb->tx_desc_underrun; 2037 stat->tx_lenerrs += smb->tx_lenerrs; 2038 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2039 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2040 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2041 2042 /* Update counters in ifnet. */ 2043 ifp->if_opackets += smb->tx_frames; 2044 2045 ifp->if_collisions += smb->tx_single_colls + 2046 smb->tx_multi_colls + smb->tx_late_colls + 2047 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2048 2049 ifp->if_oerrors += smb->tx_excess_colls + 2050 smb->tx_late_colls + smb->tx_underrun + 2051 smb->tx_pkts_truncated; 2052 2053 ifp->if_ipackets += smb->rx_frames; 2054 2055 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2056 smb->rx_runts + smb->rx_pkts_truncated + 2057 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2058 smb->rx_alignerrs; 2059 2060 /* Update done, clear. */ 2061 smb->updated = 0; 2062 2063 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 2064 sc->age_cdata.age_smb_block_map->dm_mapsize, 2065 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2066 } 2067 2068 static void 2069 age_stop_txmac(struct age_softc *sc) 2070 { 2071 uint32_t reg; 2072 int i; 2073 2074 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2075 if ((reg & MAC_CFG_TX_ENB) != 0) { 2076 reg &= ~MAC_CFG_TX_ENB; 2077 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2078 } 2079 /* Stop Tx DMA engine. */ 2080 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2081 if ((reg & DMA_CFG_RD_ENB) != 0) { 2082 reg &= ~DMA_CFG_RD_ENB; 2083 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2084 } 2085 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2086 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2087 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2088 break; 2089 DELAY(10); 2090 } 2091 if (i == 0) 2092 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev)); 2093 } 2094 2095 static void 2096 age_stop_rxmac(struct age_softc *sc) 2097 { 2098 uint32_t reg; 2099 int i; 2100 2101 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2102 if ((reg & MAC_CFG_RX_ENB) != 0) { 2103 reg &= ~MAC_CFG_RX_ENB; 2104 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2105 } 2106 /* Stop Rx DMA engine. */ 2107 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2108 if ((reg & DMA_CFG_WR_ENB) != 0) { 2109 reg &= ~DMA_CFG_WR_ENB; 2110 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2111 } 2112 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2113 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2114 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2115 break; 2116 DELAY(10); 2117 } 2118 if (i == 0) 2119 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev)); 2120 } 2121 2122 static void 2123 age_init_tx_ring(struct age_softc *sc) 2124 { 2125 struct age_ring_data *rd; 2126 struct age_txdesc *txd; 2127 int i; 2128 2129 sc->age_cdata.age_tx_prod = 0; 2130 sc->age_cdata.age_tx_cons = 0; 2131 sc->age_cdata.age_tx_cnt = 0; 2132 2133 rd = &sc->age_rdata; 2134 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ); 2135 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2136 txd = &sc->age_cdata.age_txdesc[i]; 2137 txd->tx_desc = &rd->age_tx_ring[i]; 2138 txd->tx_m = NULL; 2139 } 2140 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, 2141 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2142 } 2143 2144 static int 2145 age_init_rx_ring(struct age_softc *sc) 2146 { 2147 struct age_ring_data *rd; 2148 struct age_rxdesc *rxd; 2149 int i; 2150 2151 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 2152 rd = &sc->age_rdata; 2153 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ); 2154 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2155 rxd = &sc->age_cdata.age_rxdesc[i]; 2156 rxd->rx_m = NULL; 2157 rxd->rx_desc = &rd->age_rx_ring[i]; 2158 if (age_newbuf(sc, rxd, 1) != 0) 2159 return ENOBUFS; 2160 } 2161 2162 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0, 2163 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2164 2165 return 0; 2166 } 2167 2168 static void 2169 age_init_rr_ring(struct age_softc *sc) 2170 { 2171 struct age_ring_data *rd; 2172 2173 sc->age_cdata.age_rr_cons = 0; 2174 AGE_RXCHAIN_RESET(sc); 2175 2176 rd = &sc->age_rdata; 2177 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ); 2178 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 2179 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2180 } 2181 2182 static void 2183 age_init_cmb_block(struct age_softc *sc) 2184 { 2185 struct age_ring_data *rd; 2186 2187 rd = &sc->age_rdata; 2188 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ); 2189 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 2190 sc->age_cdata.age_cmb_block_map->dm_mapsize, 2191 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2192 } 2193 2194 static void 2195 age_init_smb_block(struct age_softc *sc) 2196 { 2197 struct age_ring_data *rd; 2198 2199 rd = &sc->age_rdata; 2200 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ); 2201 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 2202 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2203 } 2204 2205 static int 2206 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init) 2207 { 2208 struct rx_desc *desc; 2209 struct mbuf *m; 2210 bus_dmamap_t map; 2211 int error; 2212 2213 MGETHDR(m, M_DONTWAIT, MT_DATA); 2214 if (m == NULL) 2215 return ENOBUFS; 2216 MCLGET(m, M_DONTWAIT); 2217 if (!(m->m_flags & M_EXT)) { 2218 m_freem(m); 2219 return ENOBUFS; 2220 } 2221 2222 m->m_len = m->m_pkthdr.len = MCLBYTES; 2223 m_adj(m, ETHER_ALIGN); 2224 2225 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2226 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT); 2227 2228 if (error != 0) { 2229 if (!error) { 2230 bus_dmamap_unload(sc->sc_dmat, 2231 sc->age_cdata.age_rx_sparemap); 2232 error = EFBIG; 2233 printf("%s: too many segments?!\n", 2234 device_xname(sc->sc_dev)); 2235 } 2236 m_freem(m); 2237 2238 if (init) 2239 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev)); 2240 return error; 2241 } 2242 2243 if (rxd->rx_m != NULL) { 2244 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, 2245 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2246 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 2247 } 2248 map = rxd->rx_dmamap; 2249 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 2250 sc->age_cdata.age_rx_sparemap = map; 2251 rxd->rx_m = m; 2252 2253 desc = rxd->rx_desc; 2254 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr); 2255 desc->len = 2256 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) << 2257 AGE_RD_LEN_SHIFT); 2258 2259 return 0; 2260 } 2261 2262 static void 2263 age_rxvlan(struct age_softc *sc) 2264 { 2265 uint32_t reg; 2266 2267 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2268 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 2269 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING) 2270 reg |= MAC_CFG_VLAN_TAG_STRIP; 2271 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2272 } 2273 2274 static void 2275 age_rxfilter(struct age_softc *sc) 2276 { 2277 struct ethercom *ec = &sc->sc_ec; 2278 struct ifnet *ifp = &sc->sc_ec.ec_if; 2279 struct ether_multi *enm; 2280 struct ether_multistep step; 2281 uint32_t crc; 2282 uint32_t mchash[2]; 2283 uint32_t rxcfg; 2284 2285 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 2286 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 2287 ifp->if_flags &= ~IFF_ALLMULTI; 2288 2289 /* 2290 * Always accept broadcast frames. 2291 */ 2292 rxcfg |= MAC_CFG_BCAST; 2293 2294 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) { 2295 ifp->if_flags |= IFF_ALLMULTI; 2296 if (ifp->if_flags & IFF_PROMISC) 2297 rxcfg |= MAC_CFG_PROMISC; 2298 else 2299 rxcfg |= MAC_CFG_ALLMULTI; 2300 mchash[0] = mchash[1] = 0xFFFFFFFF; 2301 } else { 2302 /* Program new filter. */ 2303 memset(mchash, 0, sizeof(mchash)); 2304 2305 ETHER_FIRST_MULTI(step, ec, enm); 2306 while (enm != NULL) { 2307 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2308 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2309 ETHER_NEXT_MULTI(step, enm); 2310 } 2311 } 2312 2313 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 2314 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 2315 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 2316 } 2317