xref: /netbsd-src/sys/dev/pci/if_age.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_age.c,v 1.45 2015/04/13 16:33:25 riastradh Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.45 2015/04/13 16:33:25 riastradh Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/endian.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43 #include <sys/sockio.h>
44 #include <sys/mbuf.h>
45 #include <sys/queue.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <sys/callout.h>
49 #include <sys/socket.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65 
66 #include <net/bpf.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcidevs.h>
74 
75 #include <dev/pci/if_agereg.h>
76 
77 static int	age_match(device_t, cfdata_t, void *);
78 static void	age_attach(device_t, device_t, void *);
79 static int	age_detach(device_t, int);
80 
81 static bool	age_resume(device_t, const pmf_qual_t *);
82 
83 static int	age_miibus_readreg(device_t, int, int);
84 static void	age_miibus_writereg(device_t, int, int, int);
85 static void	age_miibus_statchg(struct ifnet *);
86 
87 static int	age_init(struct ifnet *);
88 static int	age_ioctl(struct ifnet *, u_long, void *);
89 static void	age_start(struct ifnet *);
90 static void	age_watchdog(struct ifnet *);
91 static bool	age_shutdown(device_t, int);
92 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
93 static int	age_mediachange(struct ifnet *);
94 
95 static int	age_intr(void *);
96 static int	age_dma_alloc(struct age_softc *);
97 static void	age_dma_free(struct age_softc *);
98 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
99 static void	age_phy_reset(struct age_softc *);
100 
101 static int	age_encap(struct age_softc *, struct mbuf **);
102 static void	age_init_tx_ring(struct age_softc *);
103 static int	age_init_rx_ring(struct age_softc *);
104 static void	age_init_rr_ring(struct age_softc *);
105 static void	age_init_cmb_block(struct age_softc *);
106 static void	age_init_smb_block(struct age_softc *);
107 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 static void	age_mac_config(struct age_softc *);
109 static void	age_txintr(struct age_softc *, int);
110 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 static void	age_rxintr(struct age_softc *, int);
112 static void	age_tick(void *);
113 static void	age_reset(struct age_softc *);
114 static void	age_stop(struct ifnet *, int);
115 static void	age_stats_update(struct age_softc *);
116 static void	age_stop_txmac(struct age_softc *);
117 static void	age_stop_rxmac(struct age_softc *);
118 static void	age_rxvlan(struct age_softc *sc);
119 static void	age_rxfilter(struct age_softc *);
120 
121 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
122     age_match, age_attach, age_detach, NULL);
123 
124 int agedebug = 0;
125 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
126 
127 #define ETHER_ALIGN 2
128 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
129 
130 static int
131 age_match(device_t dev, cfdata_t match, void *aux)
132 {
133 	struct pci_attach_args *pa = aux;
134 
135 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
136 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
137 }
138 
139 static void
140 age_attach(device_t parent, device_t self, void *aux)
141 {
142 	struct age_softc *sc = device_private(self);
143 	struct pci_attach_args *pa = aux;
144 	pci_intr_handle_t ih;
145 	const char *intrstr;
146 	struct ifnet *ifp = &sc->sc_ec.ec_if;
147 	pcireg_t memtype;
148 	int error = 0;
149 	char intrbuf[PCI_INTRSTR_LEN];
150 
151 	aprint_naive("\n");
152 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
153 
154 	sc->sc_dev = self;
155 	sc->sc_dmat = pa->pa_dmat;
156 	sc->sc_pct = pa->pa_pc;
157 	sc->sc_pcitag = pa->pa_tag;
158 
159 	/*
160 	 * Allocate IO memory
161 	 */
162 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
163 	switch (memtype) {
164         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
165         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
166         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
167 		break;
168         default:
169 		aprint_error_dev(self, "invalid base address register\n");
170 		break;
171 	}
172 
173 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
174 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
175 		aprint_error_dev(self, "could not map mem space\n");
176 		return;
177 	}
178 
179 	if (pci_intr_map(pa, &ih) != 0) {
180 		aprint_error_dev(self, "could not map interrupt\n");
181 		goto fail;
182 	}
183 
184 	/*
185 	 * Allocate IRQ
186 	 */
187 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
188 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
189 	    age_intr, sc);
190 	if (sc->sc_irq_handle == NULL) {
191 		aprint_error_dev(self, "could not establish interrupt");
192 		if (intrstr != NULL)
193 			aprint_error(" at %s", intrstr);
194 		aprint_error("\n");
195 		goto fail;
196 	}
197 	aprint_normal_dev(self, "%s\n", intrstr);
198 
199 	/* Set PHY address. */
200 	sc->age_phyaddr = AGE_PHY_ADDR;
201 
202 	/* Reset PHY. */
203 	age_phy_reset(sc);
204 
205 	/* Reset the ethernet controller. */
206 	age_reset(sc);
207 
208 	/* Get PCI and chip id/revision. */
209 	sc->age_rev = PCI_REVISION(pa->pa_class);
210 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
211 	    MASTER_CHIP_REV_SHIFT;
212 
213 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
214 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
215 
216 	if (agedebug) {
217 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
218 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
219 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
220 	}
221 
222 	/* Set max allowable DMA size. */
223 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
224 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
225 
226 	/* Allocate DMA stuffs */
227 	error = age_dma_alloc(sc);
228 	if (error)
229 		goto fail;
230 
231 	callout_init(&sc->sc_tick_ch, 0);
232 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
233 
234 	/* Load station address. */
235 	age_get_macaddr(sc, sc->sc_enaddr);
236 
237 	aprint_normal_dev(self, "Ethernet address %s\n",
238 	    ether_sprintf(sc->sc_enaddr));
239 
240 	ifp->if_softc = sc;
241 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
242 	ifp->if_init = age_init;
243 	ifp->if_ioctl = age_ioctl;
244 	ifp->if_start = age_start;
245 	ifp->if_stop = age_stop;
246 	ifp->if_watchdog = age_watchdog;
247 	ifp->if_baudrate = IF_Gbps(1);
248 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
249 	IFQ_SET_READY(&ifp->if_snd);
250 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
251 
252 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
253 
254 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
255 				IFCAP_CSUM_TCPv4_Rx |
256 				IFCAP_CSUM_UDPv4_Rx;
257 #ifdef AGE_CHECKSUM
258 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
259 				IFCAP_CSUM_TCPv4_Tx |
260 				IFCAP_CSUM_UDPv4_Tx;
261 #endif
262 
263 #if NVLAN > 0
264 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 #endif
266 
267 	/* Set up MII bus. */
268 	sc->sc_miibus.mii_ifp = ifp;
269 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
272 
273 	sc->sc_ec.ec_mii = &sc->sc_miibus;
274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
275 	    age_mediastatus);
276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
278 
279 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
280 		aprint_error_dev(self, "no PHY found!\n");
281 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
282 		    0, NULL);
283 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
284 	} else
285 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
286 
287 	if_attach(ifp);
288 	ether_ifattach(ifp, sc->sc_enaddr);
289 
290 	if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
291 		pmf_class_network_register(self, ifp);
292 	else
293 		aprint_error_dev(self, "couldn't establish power handler\n");
294 
295 	return;
296 
297 fail:
298 	age_dma_free(sc);
299 	if (sc->sc_irq_handle != NULL) {
300 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
301 		sc->sc_irq_handle = NULL;
302 	}
303 	if (sc->sc_mem_size) {
304 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
305 		sc->sc_mem_size = 0;
306 	}
307 }
308 
309 static int
310 age_detach(device_t self, int flags)
311 {
312 	struct age_softc *sc = device_private(self);
313 	struct ifnet *ifp = &sc->sc_ec.ec_if;
314 	int s;
315 
316 	pmf_device_deregister(self);
317 	s = splnet();
318 	age_stop(ifp, 0);
319 	splx(s);
320 
321 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
322 
323 	/* Delete all remaining media. */
324 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
325 
326 	ether_ifdetach(ifp);
327 	if_detach(ifp);
328 	age_dma_free(sc);
329 
330 	if (sc->sc_irq_handle != NULL) {
331 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
332 		sc->sc_irq_handle = NULL;
333 	}
334 	if (sc->sc_mem_size) {
335 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
336 		sc->sc_mem_size = 0;
337 	}
338 	return 0;
339 }
340 
341 /*
342  *	Read a PHY register on the MII of the L1.
343  */
344 static int
345 age_miibus_readreg(device_t dev, int phy, int reg)
346 {
347 	struct age_softc *sc = device_private(dev);
348 	uint32_t v;
349 	int i;
350 
351 	if (phy != sc->age_phyaddr)
352 		return 0;
353 
354 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
355 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
356 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
357 		DELAY(1);
358 		v = CSR_READ_4(sc, AGE_MDIO);
359 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
360 			break;
361 	}
362 
363 	if (i == 0) {
364 		printf("%s: phy read timeout: phy %d, reg %d\n",
365 			device_xname(sc->sc_dev), phy, reg);
366 		return 0;
367 	}
368 
369 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
370 }
371 
372 /*
373  * 	Write a PHY register on the MII of the L1.
374  */
375 static void
376 age_miibus_writereg(device_t dev, int phy, int reg, int val)
377 {
378 	struct age_softc *sc = device_private(dev);
379 	uint32_t v;
380 	int i;
381 
382 	if (phy != sc->age_phyaddr)
383 		return;
384 
385 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
386 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
387 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
388 
389 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
390 		DELAY(1);
391 		v = CSR_READ_4(sc, AGE_MDIO);
392 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
393 			break;
394 	}
395 
396 	if (i == 0) {
397 		printf("%s: phy write timeout: phy %d, reg %d\n",
398 		    device_xname(sc->sc_dev), phy, reg);
399 	}
400 }
401 
402 /*
403  *	Callback from MII layer when media changes.
404  */
405 static void
406 age_miibus_statchg(struct ifnet *ifp)
407 {
408 	struct age_softc *sc = ifp->if_softc;
409 	struct mii_data *mii = &sc->sc_miibus;
410 
411 	if ((ifp->if_flags & IFF_RUNNING) == 0)
412 		return;
413 
414 	sc->age_flags &= ~AGE_FLAG_LINK;
415 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
416 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
417 		case IFM_10_T:
418 		case IFM_100_TX:
419 		case IFM_1000_T:
420 			sc->age_flags |= AGE_FLAG_LINK;
421 			break;
422 		default:
423 			break;
424 		}
425 	}
426 
427 	/* Stop Rx/Tx MACs. */
428 	age_stop_rxmac(sc);
429 	age_stop_txmac(sc);
430 
431 	/* Program MACs with resolved speed/duplex/flow-control. */
432 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
433 		uint32_t reg;
434 
435 		age_mac_config(sc);
436 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
437 		/* Restart DMA engine and Tx/Rx MAC. */
438 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
439 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
440 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
441 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
442 	}
443 }
444 
445 /*
446  *	Get the current interface media status.
447  */
448 static void
449 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
450 {
451 	struct age_softc *sc = ifp->if_softc;
452 	struct mii_data *mii = &sc->sc_miibus;
453 
454 	mii_pollstat(mii);
455 	ifmr->ifm_status = mii->mii_media_status;
456 	ifmr->ifm_active = mii->mii_media_active;
457 }
458 
459 /*
460  *	Set hardware to newly-selected media.
461  */
462 static int
463 age_mediachange(struct ifnet *ifp)
464 {
465 	struct age_softc *sc = ifp->if_softc;
466 	struct mii_data *mii = &sc->sc_miibus;
467 	int error;
468 
469 	if (mii->mii_instance != 0) {
470 		struct mii_softc *miisc;
471 
472 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
473 			mii_phy_reset(miisc);
474 	}
475 	error = mii_mediachg(mii);
476 
477 	return error;
478 }
479 
480 static int
481 age_intr(void *arg)
482 {
483         struct age_softc *sc = arg;
484         struct ifnet *ifp = &sc->sc_ec.ec_if;
485 	struct cmb *cmb;
486         uint32_t status;
487 
488 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
489 	if (status == 0 || (status & AGE_INTRS) == 0)
490 		return 0;
491 
492 	cmb = sc->age_rdata.age_cmb_block;
493 	if (cmb == NULL) {
494 		/* Happens when bringing up the interface
495 		 * w/o having a carrier. Ack the interrupt.
496 		 */
497 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
498 		return 0;
499 	}
500 
501 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
502 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
503 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
504 	status = le32toh(cmb->intr_status);
505 	/* ACK/reenable interrupts */
506 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
507 	while ((status & AGE_INTRS) != 0) {
508 		sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
509 		    TPD_CONS_SHIFT;
510 		sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
511 		    RRD_PROD_SHIFT;
512 
513 		/* Let hardware know CMB was served. */
514 		cmb->intr_status = 0;
515 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
516 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
517 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
518 
519 		if (ifp->if_flags & IFF_RUNNING) {
520 			if (status & INTR_CMB_RX)
521 				age_rxintr(sc, sc->age_rr_prod);
522 
523 			if (status & INTR_CMB_TX)
524 				age_txintr(sc, sc->age_tpd_cons);
525 
526 			if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
527 				if (status & INTR_DMA_RD_TO_RST)
528 					printf("%s: DMA read error! -- "
529 					    "resetting\n",
530 					    device_xname(sc->sc_dev));
531 				if (status & INTR_DMA_WR_TO_RST)
532 					printf("%s: DMA write error! -- "
533 					    "resetting\n",
534 					    device_xname(sc->sc_dev));
535 				age_init(ifp);
536 			}
537 
538 			age_start(ifp);
539 
540 			if (status & INTR_SMB)
541 				age_stats_update(sc);
542 		}
543 		/* check if more interrupts did came in */
544 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
545 		    sc->age_cdata.age_cmb_block_map->dm_mapsize,
546 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
547 		status = le32toh(cmb->intr_status);
548 	}
549 
550 	return 1;
551 }
552 
553 static void
554 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
555 {
556 	uint32_t ea[2], reg;
557 	int i, vpdc;
558 
559 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
560 	if ((reg & SPI_VPD_ENB) != 0) {
561 		/* Get VPD stored in TWSI EEPROM. */
562 		reg &= ~SPI_VPD_ENB;
563 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
564 	}
565 
566 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
567 	    PCI_CAP_VPD, &vpdc, NULL)) {
568 		/*
569 		 * PCI VPD capability found, let TWSI reload EEPROM.
570 		 * This will set Ethernet address of controller.
571 		 */
572 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
573 		    TWSI_CTRL_SW_LD_START);
574 		for (i = 100; i > 0; i++) {
575 			DELAY(1000);
576 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
577 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
578 				break;
579 		}
580 		if (i == 0)
581 			printf("%s: reloading EEPROM timeout!\n",
582 			    device_xname(sc->sc_dev));
583 	} else {
584 		if (agedebug)
585 			printf("%s: PCI VPD capability not found!\n",
586 			    device_xname(sc->sc_dev));
587 	}
588 
589 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
590 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
591 
592 	eaddr[0] = (ea[1] >> 8) & 0xFF;
593 	eaddr[1] = (ea[1] >> 0) & 0xFF;
594 	eaddr[2] = (ea[0] >> 24) & 0xFF;
595 	eaddr[3] = (ea[0] >> 16) & 0xFF;
596 	eaddr[4] = (ea[0] >> 8) & 0xFF;
597 	eaddr[5] = (ea[0] >> 0) & 0xFF;
598 }
599 
600 static void
601 age_phy_reset(struct age_softc *sc)
602 {
603 	uint16_t reg, pn;
604 	int i, linkup;
605 
606 	/* Reset PHY. */
607 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
608 	DELAY(2000);
609 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
610 	DELAY(2000);
611 
612 #define ATPHY_DBG_ADDR		0x1D
613 #define ATPHY_DBG_DATA		0x1E
614 #define ATPHY_CDTC		0x16
615 #define PHY_CDTC_ENB		0x0001
616 #define PHY_CDTC_POFF		8
617 #define ATPHY_CDTS		0x1C
618 #define PHY_CDTS_STAT_OK	0x0000
619 #define PHY_CDTS_STAT_SHORT	0x0100
620 #define PHY_CDTS_STAT_OPEN	0x0200
621 #define PHY_CDTS_STAT_INVAL	0x0300
622 #define PHY_CDTS_STAT_MASK	0x0300
623 
624 	/* Check power saving mode. Magic from Linux. */
625 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
626 	for (linkup = 0, pn = 0; pn < 4; pn++) {
627 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
628 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
629 		for (i = 200; i > 0; i--) {
630 			DELAY(1000);
631 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
632 			    ATPHY_CDTC);
633 			if ((reg & PHY_CDTC_ENB) == 0)
634 				break;
635 		}
636 		DELAY(1000);
637 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
638 		    ATPHY_CDTS);
639 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
640 			linkup++;
641 			break;
642 		}
643 	}
644 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
645 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
646 	if (linkup == 0) {
647 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
648 		    ATPHY_DBG_ADDR, 0);
649 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
650 		    ATPHY_DBG_DATA, 0x124E);
651 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
652 		    ATPHY_DBG_ADDR, 1);
653 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
654 		    ATPHY_DBG_DATA);
655 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
656 		    ATPHY_DBG_DATA, reg | 0x03);
657 		/* XXX */
658 		DELAY(1500 * 1000);
659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 		    ATPHY_DBG_ADDR, 0);
661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 		    ATPHY_DBG_DATA, 0x024E);
663 	}
664 
665 #undef ATPHY_DBG_ADDR
666 #undef ATPHY_DBG_DATA
667 #undef ATPHY_CDTC
668 #undef PHY_CDTC_ENB
669 #undef PHY_CDTC_POFF
670 #undef ATPHY_CDTS
671 #undef PHY_CDTS_STAT_OK
672 #undef PHY_CDTS_STAT_SHORT
673 #undef PHY_CDTS_STAT_OPEN
674 #undef PHY_CDTS_STAT_INVAL
675 #undef PHY_CDTS_STAT_MASK
676 }
677 
678 static int
679 age_dma_alloc(struct age_softc *sc)
680 {
681 	struct age_txdesc *txd;
682 	struct age_rxdesc *rxd;
683 	int nsegs, error, i;
684 
685 	/*
686 	 * Create DMA stuffs for TX ring
687 	 */
688 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
689 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
690 	if (error) {
691 		sc->age_cdata.age_tx_ring_map = NULL;
692 		return ENOBUFS;
693 	}
694 
695 	/* Allocate DMA'able memory for TX ring */
696 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
697 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
698 	    &nsegs, BUS_DMA_NOWAIT);
699 	if (error) {
700 		printf("%s: could not allocate DMA'able memory for Tx ring, "
701 		    "error = %i\n", device_xname(sc->sc_dev), error);
702 		return error;
703 	}
704 
705 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
706 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
707 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
708 	if (error)
709 		return ENOBUFS;
710 
711 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
712 
713 	/*  Load the DMA map for Tx ring. */
714 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
715 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
716 	if (error) {
717 		printf("%s: could not load DMA'able memory for Tx ring, "
718 		    "error = %i\n", device_xname(sc->sc_dev), error);
719 		bus_dmamem_free(sc->sc_dmat,
720 		    &sc->age_rdata.age_tx_ring_seg, 1);
721 		return error;
722 	}
723 
724 	sc->age_rdata.age_tx_ring_paddr =
725 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
726 
727 	/*
728 	 * Create DMA stuffs for RX ring
729 	 */
730 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
731 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
732 	if (error) {
733 		sc->age_cdata.age_rx_ring_map = NULL;
734 		return ENOBUFS;
735 	}
736 
737 	/* Allocate DMA'able memory for RX ring */
738 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
739 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
740 	    &nsegs, BUS_DMA_NOWAIT);
741 	if (error) {
742 		printf("%s: could not allocate DMA'able memory for Rx ring, "
743 		    "error = %i.\n", device_xname(sc->sc_dev), error);
744 		return error;
745 	}
746 
747 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
748 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
749 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
750 	if (error)
751 		return ENOBUFS;
752 
753 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
754 
755 	/* Load the DMA map for Rx ring. */
756 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
757 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
758 	if (error) {
759 		printf("%s: could not load DMA'able memory for Rx ring, "
760 		    "error = %i.\n", device_xname(sc->sc_dev), error);
761 		bus_dmamem_free(sc->sc_dmat,
762 		    &sc->age_rdata.age_rx_ring_seg, 1);
763 		return error;
764 	}
765 
766 	sc->age_rdata.age_rx_ring_paddr =
767 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
768 
769 	/*
770 	 * Create DMA stuffs for RX return ring
771 	 */
772 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
773 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
774 	if (error) {
775 		sc->age_cdata.age_rr_ring_map = NULL;
776 		return ENOBUFS;
777 	}
778 
779 	/* Allocate DMA'able memory for RX return ring */
780 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
781 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
782 	    &nsegs, BUS_DMA_NOWAIT);
783 	if (error) {
784 		printf("%s: could not allocate DMA'able memory for Rx "
785 		    "return ring, error = %i.\n",
786 		    device_xname(sc->sc_dev), error);
787 		return error;
788 	}
789 
790 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
791 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
792 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
793 	if (error)
794 		return ENOBUFS;
795 
796 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
797 
798 	/*  Load the DMA map for Rx return ring. */
799 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
800 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
801 	if (error) {
802 		printf("%s: could not load DMA'able memory for Rx return ring, "
803 		    "error = %i\n", device_xname(sc->sc_dev), error);
804 		bus_dmamem_free(sc->sc_dmat,
805 		    &sc->age_rdata.age_rr_ring_seg, 1);
806 		return error;
807 	}
808 
809 	sc->age_rdata.age_rr_ring_paddr =
810 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
811 
812 	/*
813 	 * Create DMA stuffs for CMB block
814 	 */
815 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
816 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
817 	    &sc->age_cdata.age_cmb_block_map);
818 	if (error) {
819 		sc->age_cdata.age_cmb_block_map = NULL;
820 		return ENOBUFS;
821 	}
822 
823 	/* Allocate DMA'able memory for CMB block */
824 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
825 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
826 	    &nsegs, BUS_DMA_NOWAIT);
827 	if (error) {
828 		printf("%s: could not allocate DMA'able memory for "
829 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
830 		return error;
831 	}
832 
833 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
834 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
835 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
836 	if (error)
837 		return ENOBUFS;
838 
839 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
840 
841 	/*  Load the DMA map for CMB block. */
842 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
843 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
844 	    BUS_DMA_NOWAIT);
845 	if (error) {
846 		printf("%s: could not load DMA'able memory for CMB block, "
847 		    "error = %i\n", device_xname(sc->sc_dev), error);
848 		bus_dmamem_free(sc->sc_dmat,
849 		    &sc->age_rdata.age_cmb_block_seg, 1);
850 		return error;
851 	}
852 
853 	sc->age_rdata.age_cmb_block_paddr =
854 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
855 
856 	/*
857 	 * Create DMA stuffs for SMB block
858 	 */
859 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
860 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
861 	    &sc->age_cdata.age_smb_block_map);
862 	if (error) {
863 		sc->age_cdata.age_smb_block_map = NULL;
864 		return ENOBUFS;
865 	}
866 
867 	/* Allocate DMA'able memory for SMB block */
868 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
869 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
870 	    &nsegs, BUS_DMA_NOWAIT);
871 	if (error) {
872 		printf("%s: could not allocate DMA'able memory for "
873 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
874 		return error;
875 	}
876 
877 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
878 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
879 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
880 	if (error)
881 		return ENOBUFS;
882 
883 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
884 
885 	/*  Load the DMA map for SMB block */
886 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
887 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
888 	    BUS_DMA_NOWAIT);
889 	if (error) {
890 		printf("%s: could not load DMA'able memory for SMB block, "
891 		    "error = %i\n", device_xname(sc->sc_dev), error);
892 		bus_dmamem_free(sc->sc_dmat,
893 		    &sc->age_rdata.age_smb_block_seg, 1);
894 		return error;
895 	}
896 
897 	sc->age_rdata.age_smb_block_paddr =
898 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
899 
900 	/* Create DMA maps for Tx buffers. */
901 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
902 		txd = &sc->age_cdata.age_txdesc[i];
903 		txd->tx_m = NULL;
904 		txd->tx_dmamap = NULL;
905 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
906 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
907 		    &txd->tx_dmamap);
908 		if (error) {
909 			txd->tx_dmamap = NULL;
910 			printf("%s: could not create Tx dmamap, error = %i.\n",
911 			    device_xname(sc->sc_dev), error);
912 			return error;
913 		}
914 	}
915 
916 	/* Create DMA maps for Rx buffers. */
917 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
918 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
919 	if (error) {
920 		sc->age_cdata.age_rx_sparemap = NULL;
921 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
922 		    device_xname(sc->sc_dev), error);
923 		return error;
924 	}
925 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
926 		rxd = &sc->age_cdata.age_rxdesc[i];
927 		rxd->rx_m = NULL;
928 		rxd->rx_dmamap = NULL;
929 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
930 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
931 		if (error) {
932 			rxd->rx_dmamap = NULL;
933 			printf("%s: could not create Rx dmamap, error = %i.\n",
934 			    device_xname(sc->sc_dev), error);
935 			return error;
936 		}
937 	}
938 
939 	return 0;
940 }
941 
942 static void
943 age_dma_free(struct age_softc *sc)
944 {
945 	struct age_txdesc *txd;
946 	struct age_rxdesc *rxd;
947 	int i;
948 
949 	/* Tx buffers */
950 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
951 		txd = &sc->age_cdata.age_txdesc[i];
952 		if (txd->tx_dmamap != NULL) {
953 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
954 			txd->tx_dmamap = NULL;
955 		}
956 	}
957 	/* Rx buffers */
958 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
959 		rxd = &sc->age_cdata.age_rxdesc[i];
960 		if (rxd->rx_dmamap != NULL) {
961 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
962 			rxd->rx_dmamap = NULL;
963 		}
964 	}
965 	if (sc->age_cdata.age_rx_sparemap != NULL) {
966 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
967 		sc->age_cdata.age_rx_sparemap = NULL;
968 	}
969 
970 	/* Tx ring. */
971 	if (sc->age_cdata.age_tx_ring_map != NULL)
972 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
973 	if (sc->age_cdata.age_tx_ring_map != NULL &&
974 	    sc->age_rdata.age_tx_ring != NULL)
975 		bus_dmamem_free(sc->sc_dmat,
976 		    &sc->age_rdata.age_tx_ring_seg, 1);
977 	sc->age_rdata.age_tx_ring = NULL;
978 	sc->age_cdata.age_tx_ring_map = NULL;
979 
980 	/* Rx ring. */
981 	if (sc->age_cdata.age_rx_ring_map != NULL)
982 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
983 	if (sc->age_cdata.age_rx_ring_map != NULL &&
984 	    sc->age_rdata.age_rx_ring != NULL)
985 		bus_dmamem_free(sc->sc_dmat,
986 		    &sc->age_rdata.age_rx_ring_seg, 1);
987 	sc->age_rdata.age_rx_ring = NULL;
988 	sc->age_cdata.age_rx_ring_map = NULL;
989 
990 	/* Rx return ring. */
991 	if (sc->age_cdata.age_rr_ring_map != NULL)
992 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
993 	if (sc->age_cdata.age_rr_ring_map != NULL &&
994 	    sc->age_rdata.age_rr_ring != NULL)
995 		bus_dmamem_free(sc->sc_dmat,
996 		    &sc->age_rdata.age_rr_ring_seg, 1);
997 	sc->age_rdata.age_rr_ring = NULL;
998 	sc->age_cdata.age_rr_ring_map = NULL;
999 
1000 	/* CMB block */
1001 	if (sc->age_cdata.age_cmb_block_map != NULL)
1002 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1003 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1004 	    sc->age_rdata.age_cmb_block != NULL)
1005 		bus_dmamem_free(sc->sc_dmat,
1006 		    &sc->age_rdata.age_cmb_block_seg, 1);
1007 	sc->age_rdata.age_cmb_block = NULL;
1008 	sc->age_cdata.age_cmb_block_map = NULL;
1009 
1010 	/* SMB block */
1011 	if (sc->age_cdata.age_smb_block_map != NULL)
1012 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1013 	if (sc->age_cdata.age_smb_block_map != NULL &&
1014 	    sc->age_rdata.age_smb_block != NULL)
1015 		bus_dmamem_free(sc->sc_dmat,
1016 		    &sc->age_rdata.age_smb_block_seg, 1);
1017 	sc->age_rdata.age_smb_block = NULL;
1018 	sc->age_cdata.age_smb_block_map = NULL;
1019 }
1020 
1021 static void
1022 age_start(struct ifnet *ifp)
1023 {
1024         struct age_softc *sc = ifp->if_softc;
1025         struct mbuf *m_head;
1026 	int enq;
1027 
1028 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1029 		return;
1030 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
1031 		return;
1032 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1033 		return;
1034 
1035 	enq = 0;
1036 	for (;;) {
1037 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1038 		if (m_head == NULL)
1039 			break;
1040 
1041 		/*
1042 		 * Pack the data into the transmit ring. If we
1043 		 * don't have room, set the OACTIVE flag and wait
1044 		 * for the NIC to drain the ring.
1045 		 */
1046 		if (age_encap(sc, &m_head)) {
1047 			if (m_head == NULL)
1048 				break;
1049 			IF_PREPEND(&ifp->if_snd, m_head);
1050 			ifp->if_flags |= IFF_OACTIVE;
1051 			break;
1052 		}
1053 		enq = 1;
1054 
1055 		/*
1056 		 * If there's a BPF listener, bounce a copy of this frame
1057 		 * to him.
1058 		 */
1059 		bpf_mtap(ifp, m_head);
1060 	}
1061 
1062 	if (enq) {
1063 		/* Update mbox. */
1064 		AGE_COMMIT_MBOX(sc);
1065 		/* Set a timeout in case the chip goes out to lunch. */
1066 		ifp->if_timer = AGE_TX_TIMEOUT;
1067 	}
1068 }
1069 
1070 static void
1071 age_watchdog(struct ifnet *ifp)
1072 {
1073 	struct age_softc *sc = ifp->if_softc;
1074 
1075 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1076 		printf("%s: watchdog timeout (missed link)\n",
1077 		    device_xname(sc->sc_dev));
1078 		ifp->if_oerrors++;
1079 		age_init(ifp);
1080 		return;
1081 	}
1082 
1083 	if (sc->age_cdata.age_tx_cnt == 0) {
1084 		printf("%s: watchdog timeout (missed Tx interrupts) "
1085 		    "-- recovering\n", device_xname(sc->sc_dev));
1086 		age_start(ifp);
1087 		return;
1088 	}
1089 
1090 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1091 	ifp->if_oerrors++;
1092 	age_init(ifp);
1093 	age_start(ifp);
1094 }
1095 
1096 static bool
1097 age_shutdown(device_t self, int howto)
1098 {
1099 	struct age_softc *sc;
1100 	struct ifnet *ifp;
1101 
1102 	sc = device_private(self);
1103 	ifp = &sc->sc_ec.ec_if;
1104 	age_stop(ifp, 1);
1105 
1106 	return true;
1107 }
1108 
1109 
1110 static int
1111 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1112 {
1113 	struct age_softc *sc = ifp->if_softc;
1114 	int s, error;
1115 
1116 	s = splnet();
1117 
1118 	error = ether_ioctl(ifp, cmd, data);
1119 	if (error == ENETRESET) {
1120 		if (ifp->if_flags & IFF_RUNNING)
1121 			age_rxfilter(sc);
1122 		error = 0;
1123 	}
1124 
1125 	splx(s);
1126 	return error;
1127 }
1128 
1129 static void
1130 age_mac_config(struct age_softc *sc)
1131 {
1132 	struct mii_data *mii;
1133 	uint32_t reg;
1134 
1135 	mii = &sc->sc_miibus;
1136 
1137 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1138 	reg &= ~MAC_CFG_FULL_DUPLEX;
1139 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1140 	reg &= ~MAC_CFG_SPEED_MASK;
1141 
1142 	/* Reprogram MAC with resolved speed/duplex. */
1143 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1144 	case IFM_10_T:
1145 	case IFM_100_TX:
1146 		reg |= MAC_CFG_SPEED_10_100;
1147 		break;
1148 	case IFM_1000_T:
1149 		reg |= MAC_CFG_SPEED_1000;
1150 		break;
1151 	}
1152 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1153 		reg |= MAC_CFG_FULL_DUPLEX;
1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1155 			reg |= MAC_CFG_TX_FC;
1156 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1157 			reg |= MAC_CFG_RX_FC;
1158 	}
1159 
1160 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1161 }
1162 
1163 static bool
1164 age_resume(device_t dv, const pmf_qual_t *qual)
1165 {
1166 	struct age_softc *sc = device_private(dv);
1167 	uint16_t cmd;
1168 
1169 	/*
1170 	 * Clear INTx emulation disable for hardware that
1171 	 * is set in resume event. From Linux.
1172 	 */
1173 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1174 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1175 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1176 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1177 		    PCI_COMMAND_STATUS_REG, cmd);
1178 	}
1179 
1180 	return true;
1181 }
1182 
1183 static int
1184 age_encap(struct age_softc *sc, struct mbuf **m_head)
1185 {
1186 	struct age_txdesc *txd, *txd_last;
1187 	struct tx_desc *desc;
1188 	struct mbuf *m;
1189 	bus_dmamap_t map;
1190 	uint32_t cflags, poff, vtag;
1191 	int error, i, nsegs, prod;
1192 #if NVLAN > 0
1193 	struct m_tag *mtag;
1194 #endif
1195 
1196 	m = *m_head;
1197 	cflags = vtag = 0;
1198 	poff = 0;
1199 
1200 	prod = sc->age_cdata.age_tx_prod;
1201 	txd = &sc->age_cdata.age_txdesc[prod];
1202 	txd_last = txd;
1203 	map = txd->tx_dmamap;
1204 
1205 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1206 
1207 	if (error == EFBIG) {
1208 		error = 0;
1209 
1210 		*m_head = m_pullup(*m_head, MHLEN);
1211 		if (*m_head == NULL) {
1212 			printf("%s: can't defrag TX mbuf\n",
1213 			    device_xname(sc->sc_dev));
1214 			return ENOBUFS;
1215 		}
1216 
1217 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1218 		  	    BUS_DMA_NOWAIT);
1219 
1220 		if (error != 0) {
1221 			printf("%s: could not load defragged TX mbuf\n",
1222 			    device_xname(sc->sc_dev));
1223 			m_freem(*m_head);
1224 			*m_head = NULL;
1225 			return error;
1226 		}
1227 	} else if (error) {
1228 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1229 		return error;
1230 	}
1231 
1232 	nsegs = map->dm_nsegs;
1233 
1234 	if (nsegs == 0) {
1235 		m_freem(*m_head);
1236 		*m_head = NULL;
1237 		return EIO;
1238 	}
1239 
1240 	/* Check descriptor overrun. */
1241 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1242 		bus_dmamap_unload(sc->sc_dmat, map);
1243 		return ENOBUFS;
1244 	}
1245 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1246 	    BUS_DMASYNC_PREWRITE);
1247 
1248 	m = *m_head;
1249 	/* Configure Tx IP/TCP/UDP checksum offload. */
1250 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1251 		cflags |= AGE_TD_CSUM;
1252 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1253 			cflags |= AGE_TD_TCPCSUM;
1254 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1255 			cflags |= AGE_TD_UDPCSUM;
1256 		/* Set checksum start offset. */
1257 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1258 	}
1259 
1260 #if NVLAN > 0
1261 	/* Configure VLAN hardware tag insertion. */
1262 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1263 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1264 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1265 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1266 	}
1267 #endif
1268 
1269 	desc = NULL;
1270 	KASSERT(nsegs > 0);
1271 	for (i = 0; ; i++) {
1272 		desc = &sc->age_rdata.age_tx_ring[prod];
1273 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1274 		desc->len =
1275 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1276 		desc->flags = htole32(cflags);
1277 		sc->age_cdata.age_tx_cnt++;
1278 		if (i == (nsegs - 1))
1279 			break;
1280 
1281 		/* sync this descriptor and go to the next one */
1282 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1283 		    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1284 		    BUS_DMASYNC_PREWRITE);
1285 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1286 	}
1287 
1288 	/* Set EOP on the last descriptor and sync it. */
1289 	desc->flags |= htole32(AGE_TD_EOP);
1290 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1291 	    prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
1292 	    BUS_DMASYNC_PREWRITE);
1293 
1294 	if (nsegs > 1) {
1295 		/* Swap dmamap of the first and the last. */
1296 		txd = &sc->age_cdata.age_txdesc[prod];
1297 		map = txd_last->tx_dmamap;
1298 		txd_last->tx_dmamap = txd->tx_dmamap;
1299 		txd->tx_dmamap = map;
1300 		txd->tx_m = m;
1301 		KASSERT(txd_last->tx_m == NULL);
1302 	} else {
1303 		KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
1304 		txd_last->tx_m = m;
1305 	}
1306 
1307 	/* Update producer index. */
1308 	AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1309 	sc->age_cdata.age_tx_prod = prod;
1310 
1311 	return 0;
1312 }
1313 
1314 static void
1315 age_txintr(struct age_softc *sc, int tpd_cons)
1316 {
1317 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1318 	struct age_txdesc *txd;
1319 	int cons, prog;
1320 
1321 
1322 	if (sc->age_cdata.age_tx_cnt <= 0) {
1323 		if (ifp->if_timer != 0)
1324 			printf("timer running without packets\n");
1325 		if (sc->age_cdata.age_tx_cnt)
1326 			printf("age_tx_cnt corrupted\n");
1327 	}
1328 
1329 	/*
1330 	 * Go through our Tx list and free mbufs for those
1331 	 * frames which have been transmitted.
1332 	 */
1333 	cons = sc->age_cdata.age_tx_cons;
1334 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1335 		if (sc->age_cdata.age_tx_cnt <= 0)
1336 			break;
1337 		prog++;
1338 		ifp->if_flags &= ~IFF_OACTIVE;
1339 		sc->age_cdata.age_tx_cnt--;
1340 		txd = &sc->age_cdata.age_txdesc[cons];
1341 		/*
1342 		 * Clear Tx descriptors, it's not required but would
1343 		 * help debugging in case of Tx issues.
1344 		 */
1345 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
1346 		    cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
1347 		    BUS_DMASYNC_POSTWRITE);
1348 		txd->tx_desc->addr = 0;
1349 		txd->tx_desc->len = 0;
1350 		txd->tx_desc->flags = 0;
1351 
1352 		if (txd->tx_m == NULL)
1353 			continue;
1354 		/* Reclaim transmitted mbufs. */
1355 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1356 		m_freem(txd->tx_m);
1357 		txd->tx_m = NULL;
1358 	}
1359 
1360 	if (prog > 0) {
1361 		sc->age_cdata.age_tx_cons = cons;
1362 
1363 		/*
1364 		 * Unarm watchdog timer only when there are no pending
1365 		 * Tx descriptors in queue.
1366 		 */
1367 		if (sc->age_cdata.age_tx_cnt == 0)
1368 			ifp->if_timer = 0;
1369 	}
1370 }
1371 
1372 /* Receive a frame. */
1373 static void
1374 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1375 {
1376 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1377 	struct age_rxdesc *rxd;
1378 	struct rx_desc *desc;
1379 	struct mbuf *mp, *m;
1380 	uint32_t status, index;
1381 	int count, nsegs, pktlen;
1382 	int rx_cons;
1383 
1384 	status = le32toh(rxrd->flags);
1385 	index = le32toh(rxrd->index);
1386 	rx_cons = AGE_RX_CONS(index);
1387 	nsegs = AGE_RX_NSEGS(index);
1388 
1389 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1390 	if ((status & AGE_RRD_ERROR) != 0 &&
1391 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1392 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1393 		/*
1394 		 * We want to pass the following frames to upper
1395 		 * layer regardless of error status of Rx return
1396 		 * ring.
1397 		 *
1398 		 *  o IP/TCP/UDP checksum is bad.
1399 		 *  o frame length and protocol specific length
1400 		 *     does not match.
1401 		 */
1402 		sc->age_cdata.age_rx_cons += nsegs;
1403 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1404 		return;
1405 	}
1406 
1407 	pktlen = 0;
1408 	for (count = 0; count < nsegs; count++,
1409 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1410 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1411 		mp = rxd->rx_m;
1412 		desc = rxd->rx_desc;
1413 		/* Add a new receive buffer to the ring. */
1414 		if (age_newbuf(sc, rxd, 0) != 0) {
1415 			ifp->if_iqdrops++;
1416 			/* Reuse Rx buffers. */
1417 			if (sc->age_cdata.age_rxhead != NULL) {
1418 				m_freem(sc->age_cdata.age_rxhead);
1419 				AGE_RXCHAIN_RESET(sc);
1420 			}
1421 			break;
1422 		}
1423 
1424 		/* The length of the first mbuf is computed last. */
1425 		if (count != 0) {
1426 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1427 			pktlen += mp->m_len;
1428 		}
1429 
1430 		/* Chain received mbufs. */
1431 		if (sc->age_cdata.age_rxhead == NULL) {
1432 			sc->age_cdata.age_rxhead = mp;
1433 			sc->age_cdata.age_rxtail = mp;
1434 		} else {
1435 			mp->m_flags &= ~M_PKTHDR;
1436 			sc->age_cdata.age_rxprev_tail =
1437 			    sc->age_cdata.age_rxtail;
1438 			sc->age_cdata.age_rxtail->m_next = mp;
1439 			sc->age_cdata.age_rxtail = mp;
1440 		}
1441 
1442 		if (count == nsegs - 1) {
1443 			/*
1444 			 * It seems that L1 controller has no way
1445 			 * to tell hardware to strip CRC bytes.
1446 			 */
1447 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1448 			if (nsegs > 1) {
1449 				/* Remove the CRC bytes in chained mbufs. */
1450 				pktlen -= ETHER_CRC_LEN;
1451 				if (mp->m_len <= ETHER_CRC_LEN) {
1452 					sc->age_cdata.age_rxtail =
1453 					    sc->age_cdata.age_rxprev_tail;
1454 					sc->age_cdata.age_rxtail->m_len -=
1455 					    (ETHER_CRC_LEN - mp->m_len);
1456 					sc->age_cdata.age_rxtail->m_next = NULL;
1457 					m_freem(mp);
1458 				} else {
1459 					mp->m_len -= ETHER_CRC_LEN;
1460 				}
1461 			}
1462 
1463 			m = sc->age_cdata.age_rxhead;
1464 			m->m_flags |= M_PKTHDR;
1465 			m->m_pkthdr.rcvif = ifp;
1466 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1467 			/* Set the first mbuf length. */
1468 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1469 
1470 			/*
1471 			 * Set checksum information.
1472 			 * It seems that L1 controller can compute partial
1473 			 * checksum. The partial checksum value can be used
1474 			 * to accelerate checksum computation for fragmented
1475 			 * TCP/UDP packets. Upper network stack already
1476 			 * takes advantage of the partial checksum value in
1477 			 * IP reassembly stage. But I'm not sure the
1478 			 * correctness of the partial hardware checksum
1479 			 * assistance due to lack of data sheet. If it is
1480 			 * proven to work on L1 I'll enable it.
1481 			 */
1482 			if (status & AGE_RRD_IPV4) {
1483 				if (status & AGE_RRD_IPCSUM_NOK)
1484 					m->m_pkthdr.csum_flags |=
1485 					    M_CSUM_IPv4_BAD;
1486 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1487 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1488 					m->m_pkthdr.csum_flags |=
1489 					    M_CSUM_TCP_UDP_BAD;
1490 				}
1491 				/*
1492 				 * Don't mark bad checksum for TCP/UDP frames
1493 				 * as fragmented frames may always have set
1494 				 * bad checksummed bit of descriptor status.
1495 				 */
1496 			}
1497 #if NVLAN > 0
1498 			/* Check for VLAN tagged frames. */
1499 			if (status & AGE_RRD_VLAN) {
1500 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1501 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1502 					continue);
1503 			}
1504 #endif
1505 
1506 			bpf_mtap(ifp, m);
1507 			/* Pass it on. */
1508 			(*ifp->if_input)(ifp, m);
1509 
1510 			/* Reset mbuf chains. */
1511 			AGE_RXCHAIN_RESET(sc);
1512 		}
1513 	}
1514 
1515 	if (count != nsegs) {
1516 		sc->age_cdata.age_rx_cons += nsegs;
1517 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1518 	} else
1519 		sc->age_cdata.age_rx_cons = rx_cons;
1520 }
1521 
1522 static void
1523 age_rxintr(struct age_softc *sc, int rr_prod)
1524 {
1525 	struct rx_rdesc *rxrd;
1526 	int rr_cons, nsegs, pktlen, prog;
1527 
1528 	rr_cons = sc->age_cdata.age_rr_cons;
1529 	if (rr_cons == rr_prod)
1530 		return;
1531 
1532 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1533 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1534 	    BUS_DMASYNC_POSTREAD);
1535 
1536 	for (prog = 0; rr_cons != rr_prod; prog++) {
1537 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1538 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1539 		if (nsegs == 0)
1540 			break;
1541 		/*
1542 		 * Check number of segments against received bytes
1543 		 * Non-matching value would indicate that hardware
1544 		 * is still trying to update Rx return descriptors.
1545 		 * I'm not sure whether this check is really needed.
1546 		 */
1547 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1548 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1549 		    (MCLBYTES - ETHER_ALIGN)))
1550 			break;
1551 
1552 		/* Received a frame. */
1553 		age_rxeof(sc, rxrd);
1554 
1555 		/* Clear return ring. */
1556 		rxrd->index = 0;
1557 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1558 	}
1559 
1560 	if (prog > 0) {
1561 		/* Update the consumer index. */
1562 		sc->age_cdata.age_rr_cons = rr_cons;
1563 
1564 		/* Sync descriptors. */
1565 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1566 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1567 		    BUS_DMASYNC_PREWRITE);
1568 
1569 		/* Notify hardware availability of new Rx buffers. */
1570 		AGE_COMMIT_MBOX(sc);
1571 	}
1572 }
1573 
1574 static void
1575 age_tick(void *xsc)
1576 {
1577 	struct age_softc *sc = xsc;
1578 	struct mii_data *mii = &sc->sc_miibus;
1579 	int s;
1580 
1581 	s = splnet();
1582 	mii_tick(mii);
1583 	splx(s);
1584 
1585 	callout_schedule(&sc->sc_tick_ch, hz);
1586 }
1587 
1588 static void
1589 age_reset(struct age_softc *sc)
1590 {
1591 	uint32_t reg;
1592 	int i;
1593 
1594 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1595 	CSR_READ_4(sc, AGE_MASTER_CFG);
1596 	DELAY(1000);
1597 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1598 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1599 			break;
1600 		DELAY(10);
1601 	}
1602 
1603 	if (i == 0)
1604 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1605 		    reg);
1606 
1607 	/* Initialize PCIe module. From Linux. */
1608 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1609 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1610 }
1611 
1612 static int
1613 age_init(struct ifnet *ifp)
1614 {
1615 	struct age_softc *sc = ifp->if_softc;
1616 	struct mii_data *mii;
1617 	uint8_t eaddr[ETHER_ADDR_LEN];
1618 	bus_addr_t paddr;
1619 	uint32_t reg, fsize;
1620 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1621 	int error;
1622 
1623 	/*
1624 	 * Cancel any pending I/O.
1625 	 */
1626 	age_stop(ifp, 0);
1627 
1628 	/*
1629 	 * Reset the chip to a known state.
1630 	 */
1631 	age_reset(sc);
1632 
1633 	/* Initialize descriptors. */
1634 	error = age_init_rx_ring(sc);
1635         if (error != 0) {
1636 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1637 		age_stop(ifp, 0);
1638 		return error;
1639         }
1640 	age_init_rr_ring(sc);
1641 	age_init_tx_ring(sc);
1642 	age_init_cmb_block(sc);
1643 	age_init_smb_block(sc);
1644 
1645 	/* Reprogram the station address. */
1646 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1647 	CSR_WRITE_4(sc, AGE_PAR0,
1648 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1649 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1650 
1651 	/* Set descriptor base addresses. */
1652 	paddr = sc->age_rdata.age_tx_ring_paddr;
1653 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1654 	paddr = sc->age_rdata.age_rx_ring_paddr;
1655 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1656 	paddr = sc->age_rdata.age_rr_ring_paddr;
1657 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1658 	paddr = sc->age_rdata.age_tx_ring_paddr;
1659 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1660 	paddr = sc->age_rdata.age_cmb_block_paddr;
1661 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1662 	paddr = sc->age_rdata.age_smb_block_paddr;
1663 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1664 
1665 	/* Set Rx/Rx return descriptor counter. */
1666 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1667 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1668 	    DESC_RRD_CNT_MASK) |
1669 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1670 
1671 	/* Set Tx descriptor counter. */
1672 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1673 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1674 
1675 	/* Tell hardware that we're ready to load descriptors. */
1676 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677 
1678         /*
1679 	 * Initialize mailbox register.
1680 	 * Updated producer/consumer index information is exchanged
1681 	 * through this mailbox register. However Tx producer and
1682 	 * Rx return consumer/Rx producer are all shared such that
1683 	 * it's hard to separate code path between Tx and Rx without
1684 	 * locking. If L1 hardware have a separate mail box register
1685 	 * for Tx and Rx consumer/producer management we could have
1686 	 * indepent Tx/Rx handler which in turn Rx handler could have
1687 	 * been run without any locking.
1688 	*/
1689 	AGE_COMMIT_MBOX(sc);
1690 
1691 	/* Configure IPG/IFG parameters. */
1692 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1693 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1694 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1695 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1696 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1697 
1698 	/* Set parameters for half-duplex media. */
1699 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1700 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1701 	    HDPX_CFG_LCOL_MASK) |
1702 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1703 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1704 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1705 	    HDPX_CFG_ABEBT_MASK) |
1706 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1707 	     HDPX_CFG_JAMIPG_MASK));
1708 
1709 	/* Configure interrupt moderation timer. */
1710 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1711 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1712 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1713 	reg &= ~MASTER_MTIMER_ENB;
1714 	if (AGE_USECS(sc->age_int_mod) == 0)
1715 		reg &= ~MASTER_ITIMER_ENB;
1716 	else
1717 		reg |= MASTER_ITIMER_ENB;
1718 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1719 	if (agedebug)
1720 		printf("%s: interrupt moderation is %d us.\n",
1721 		    device_xname(sc->sc_dev), sc->age_int_mod);
1722 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1723 
1724 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1725 	if (ifp->if_mtu < ETHERMTU)
1726 		sc->age_max_frame_size = ETHERMTU;
1727 	else
1728 		sc->age_max_frame_size = ifp->if_mtu;
1729 	sc->age_max_frame_size += ETHER_HDR_LEN +
1730 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1731 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1732 
1733 	/* Configure jumbo frame. */
1734 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1735 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1736 	    (((fsize / sizeof(uint64_t)) <<
1737 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1738 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1739 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1740 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1741 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1742 
1743 	/* Configure flow-control parameters. From Linux. */
1744 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1745 		/*
1746 		 * Magic workaround for old-L1.
1747 		 * Don't know which hw revision requires this magic.
1748 		 */
1749 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1750 		/*
1751 		 * Another magic workaround for flow-control mode
1752 		 * change. From Linux.
1753 		 */
1754 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1755 	}
1756 	/*
1757 	 * TODO
1758 	 *  Should understand pause parameter relationships between FIFO
1759 	 *  size and number of Rx descriptors and Rx return descriptors.
1760 	 *
1761 	 *  Magic parameters came from Linux.
1762 	 */
1763 	switch (sc->age_chip_rev) {
1764 	case 0x8001:
1765 	case 0x9001:
1766 	case 0x9002:
1767 	case 0x9003:
1768 		rxf_hi = AGE_RX_RING_CNT / 16;
1769 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1770 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1771 		rrd_lo = AGE_RR_RING_CNT / 16;
1772 		break;
1773 	default:
1774 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1775 		rxf_lo = reg / 16;
1776 		if (rxf_lo < 192)
1777 			rxf_lo = 192;
1778 		rxf_hi = (reg * 7) / 8;
1779 		if (rxf_hi < rxf_lo)
1780 			rxf_hi = rxf_lo + 16;
1781 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1782 		rrd_lo = reg / 8;
1783 		rrd_hi = (reg * 7) / 8;
1784 		if (rrd_lo < 2)
1785 			rrd_lo = 2;
1786 		if (rrd_hi < rrd_lo)
1787 			rrd_hi = rrd_lo + 3;
1788 		break;
1789 	}
1790 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1791 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1792 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1793 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1794 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1795 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1796 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1797 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1798 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1799 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1800 
1801 	/* Configure RxQ. */
1802 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1803 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1804 	    RXQ_CFG_RD_BURST_MASK) |
1805 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1806 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1807 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1808 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1809 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1810 
1811 	/* Configure TxQ. */
1812 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1813 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1814 	    TXQ_CFG_TPD_BURST_MASK) |
1815 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1816 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1817 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1818 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1819 	    TXQ_CFG_ENB);
1820 
1821 	/* Configure DMA parameters. */
1822 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1823 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1824 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1825 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1826 
1827 	/* Configure CMB DMA write threshold. */
1828 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1829 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1830 	    CMB_WR_THRESH_RRD_MASK) |
1831 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1832 	    CMB_WR_THRESH_TPD_MASK));
1833 
1834 	/* Set CMB/SMB timer and enable them. */
1835 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1836 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1837 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1838 
1839 	/* Request SMB updates for every seconds. */
1840 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1841 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1842 
1843 	/*
1844 	 * Disable all WOL bits as WOL can interfere normal Rx
1845 	 * operation.
1846 	 */
1847 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1848 
1849         /*
1850 	 * Configure Tx/Rx MACs.
1851 	 *  - Auto-padding for short frames.
1852 	 *  - Enable CRC generation.
1853 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1854 	 *  of MAC is followed after link establishment.
1855 	 */
1856 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1857 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1858 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1859 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1860 	    MAC_CFG_PREAMBLE_MASK));
1861 
1862 	/* Set up the receive filter. */
1863 	age_rxfilter(sc);
1864 	age_rxvlan(sc);
1865 
1866 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1867 	reg |= MAC_CFG_RXCSUM_ENB;
1868 
1869 	/* Ack all pending interrupts and clear it. */
1870 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1871 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1872 
1873 	/* Finally enable Tx/Rx MAC. */
1874 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1875 
1876 	sc->age_flags &= ~AGE_FLAG_LINK;
1877 
1878 	/* Switch to the current media. */
1879 	mii = &sc->sc_miibus;
1880 	mii_mediachg(mii);
1881 
1882 	callout_schedule(&sc->sc_tick_ch, hz);
1883 
1884 	ifp->if_flags |= IFF_RUNNING;
1885 	ifp->if_flags &= ~IFF_OACTIVE;
1886 
1887 	return 0;
1888 }
1889 
1890 static void
1891 age_stop(struct ifnet *ifp, int disable)
1892 {
1893 	struct age_softc *sc = ifp->if_softc;
1894 	struct age_txdesc *txd;
1895 	struct age_rxdesc *rxd;
1896 	uint32_t reg;
1897 	int i;
1898 
1899 	callout_stop(&sc->sc_tick_ch);
1900 
1901 	/*
1902 	 * Mark the interface down and cancel the watchdog timer.
1903 	 */
1904 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1905 	ifp->if_timer = 0;
1906 
1907 	sc->age_flags &= ~AGE_FLAG_LINK;
1908 
1909 	mii_down(&sc->sc_miibus);
1910 
1911 	/*
1912 	 * Disable interrupts.
1913 	 */
1914 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1915 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1916 
1917 	/* Stop CMB/SMB updates. */
1918 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1919 
1920 	/* Stop Rx/Tx MAC. */
1921 	age_stop_rxmac(sc);
1922 	age_stop_txmac(sc);
1923 
1924 	/* Stop DMA. */
1925 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1926 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1927 
1928 	/* Stop TxQ/RxQ. */
1929 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1930 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1931 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1932 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1933 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1934 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1935 			break;
1936 		DELAY(10);
1937 	}
1938 	if (i == 0)
1939 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1940 		    device_xname(sc->sc_dev), reg);
1941 
1942 	/* Reclaim Rx buffers that have been processed. */
1943 	if (sc->age_cdata.age_rxhead != NULL)
1944 		m_freem(sc->age_cdata.age_rxhead);
1945 	AGE_RXCHAIN_RESET(sc);
1946 
1947 	/*
1948 	 * Free RX and TX mbufs still in the queues.
1949 	 */
1950 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1951 		rxd = &sc->age_cdata.age_rxdesc[i];
1952 		if (rxd->rx_m != NULL) {
1953 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1954 			m_freem(rxd->rx_m);
1955 			rxd->rx_m = NULL;
1956 		}
1957 	}
1958 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1959 		txd = &sc->age_cdata.age_txdesc[i];
1960 		if (txd->tx_m != NULL) {
1961 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1962 			m_freem(txd->tx_m);
1963 			txd->tx_m = NULL;
1964 		}
1965 	}
1966 }
1967 
1968 static void
1969 age_stats_update(struct age_softc *sc)
1970 {
1971 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1972 	struct age_stats *stat;
1973 	struct smb *smb;
1974 
1975 	stat = &sc->age_stat;
1976 
1977 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1978 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1979 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1980 
1981 	smb = sc->age_rdata.age_smb_block;
1982 	if (smb->updated == 0)
1983 		return;
1984 
1985 	/* Rx stats. */
1986 	stat->rx_frames += smb->rx_frames;
1987 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1988 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1989 	stat->rx_pause_frames += smb->rx_pause_frames;
1990 	stat->rx_control_frames += smb->rx_control_frames;
1991 	stat->rx_crcerrs += smb->rx_crcerrs;
1992 	stat->rx_lenerrs += smb->rx_lenerrs;
1993 	stat->rx_bytes += smb->rx_bytes;
1994 	stat->rx_runts += smb->rx_runts;
1995 	stat->rx_fragments += smb->rx_fragments;
1996 	stat->rx_pkts_64 += smb->rx_pkts_64;
1997 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1998 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1999 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2000 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2001 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2002 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2003 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2004 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2005 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2006 	stat->rx_alignerrs += smb->rx_alignerrs;
2007 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2008 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2009 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2010 
2011 	/* Tx stats. */
2012 	stat->tx_frames += smb->tx_frames;
2013 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2014 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2015 	stat->tx_pause_frames += smb->tx_pause_frames;
2016 	stat->tx_excess_defer += smb->tx_excess_defer;
2017 	stat->tx_control_frames += smb->tx_control_frames;
2018 	stat->tx_deferred += smb->tx_deferred;
2019 	stat->tx_bytes += smb->tx_bytes;
2020 	stat->tx_pkts_64 += smb->tx_pkts_64;
2021 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2022 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2023 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2024 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2025 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2026 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2027 	stat->tx_single_colls += smb->tx_single_colls;
2028 	stat->tx_multi_colls += smb->tx_multi_colls;
2029 	stat->tx_late_colls += smb->tx_late_colls;
2030 	stat->tx_excess_colls += smb->tx_excess_colls;
2031 	stat->tx_underrun += smb->tx_underrun;
2032 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2033 	stat->tx_lenerrs += smb->tx_lenerrs;
2034 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2035 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2036 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2037 
2038 	/* Update counters in ifnet. */
2039 	ifp->if_opackets += smb->tx_frames;
2040 
2041 	ifp->if_collisions += smb->tx_single_colls +
2042 	    smb->tx_multi_colls + smb->tx_late_colls +
2043 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2044 
2045 	ifp->if_oerrors += smb->tx_excess_colls +
2046 	    smb->tx_late_colls + smb->tx_underrun +
2047 	    smb->tx_pkts_truncated;
2048 
2049 	ifp->if_ipackets += smb->rx_frames;
2050 
2051 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2052 	    smb->rx_runts + smb->rx_pkts_truncated +
2053 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2054 	    smb->rx_alignerrs;
2055 
2056 	/* Update done, clear. */
2057 	smb->updated = 0;
2058 
2059 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2060 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2061 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2062 }
2063 
2064 static void
2065 age_stop_txmac(struct age_softc *sc)
2066 {
2067 	uint32_t reg;
2068 	int i;
2069 
2070 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2071 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2072 		reg &= ~MAC_CFG_TX_ENB;
2073 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2074 	}
2075 	/* Stop Tx DMA engine. */
2076 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2077 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2078 		reg &= ~DMA_CFG_RD_ENB;
2079 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2080 	}
2081 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2082 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2083 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2084 			break;
2085 		DELAY(10);
2086 	}
2087 	if (i == 0)
2088 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2089 }
2090 
2091 static void
2092 age_stop_rxmac(struct age_softc *sc)
2093 {
2094 	uint32_t reg;
2095 	int i;
2096 
2097 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2098 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2099 		reg &= ~MAC_CFG_RX_ENB;
2100 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2101 	}
2102 	/* Stop Rx DMA engine. */
2103 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2104 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2105 		reg &= ~DMA_CFG_WR_ENB;
2106 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2107 	}
2108 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2109 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2110 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2111 			break;
2112 		DELAY(10);
2113 	}
2114 	if (i == 0)
2115 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2116 }
2117 
2118 static void
2119 age_init_tx_ring(struct age_softc *sc)
2120 {
2121 	struct age_ring_data *rd;
2122 	struct age_txdesc *txd;
2123 	int i;
2124 
2125 	sc->age_cdata.age_tx_prod = 0;
2126 	sc->age_cdata.age_tx_cons = 0;
2127 	sc->age_cdata.age_tx_cnt = 0;
2128 
2129 	rd = &sc->age_rdata;
2130 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2131 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2132 		txd = &sc->age_cdata.age_txdesc[i];
2133 		txd->tx_desc = &rd->age_tx_ring[i];
2134 		txd->tx_m = NULL;
2135 	}
2136 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2137 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2138 }
2139 
2140 static int
2141 age_init_rx_ring(struct age_softc *sc)
2142 {
2143 	struct age_ring_data *rd;
2144 	struct age_rxdesc *rxd;
2145 	int i;
2146 
2147 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2148 	rd = &sc->age_rdata;
2149 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2150 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2151 		rxd = &sc->age_cdata.age_rxdesc[i];
2152 		rxd->rx_m = NULL;
2153 		rxd->rx_desc = &rd->age_rx_ring[i];
2154 		if (age_newbuf(sc, rxd, 1) != 0)
2155 			return ENOBUFS;
2156 	}
2157 
2158 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2159 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2160 
2161 	return 0;
2162 }
2163 
2164 static void
2165 age_init_rr_ring(struct age_softc *sc)
2166 {
2167 	struct age_ring_data *rd;
2168 
2169 	sc->age_cdata.age_rr_cons = 0;
2170 	AGE_RXCHAIN_RESET(sc);
2171 
2172 	rd = &sc->age_rdata;
2173 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2174 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2175 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2176 }
2177 
2178 static void
2179 age_init_cmb_block(struct age_softc *sc)
2180 {
2181 	struct age_ring_data *rd;
2182 
2183 	rd = &sc->age_rdata;
2184 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2185 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2186 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2187 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2188 }
2189 
2190 static void
2191 age_init_smb_block(struct age_softc *sc)
2192 {
2193 	struct age_ring_data *rd;
2194 
2195 	rd = &sc->age_rdata;
2196 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2197 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2198 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2199 }
2200 
2201 static int
2202 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2203 {
2204 	struct rx_desc *desc;
2205 	struct mbuf *m;
2206 	bus_dmamap_t map;
2207 	int error;
2208 
2209 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2210 	if (m == NULL)
2211 		return ENOBUFS;
2212 	MCLGET(m, M_DONTWAIT);
2213 	if (!(m->m_flags & M_EXT)) {
2214 		 m_freem(m);
2215 		 return ENOBUFS;
2216 	}
2217 
2218 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2219 	m_adj(m, ETHER_ALIGN);
2220 
2221 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2222 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2223 
2224 	if (error != 0) {
2225 		if (!error) {
2226 			bus_dmamap_unload(sc->sc_dmat,
2227 			    sc->age_cdata.age_rx_sparemap);
2228 			error = EFBIG;
2229 			printf("%s: too many segments?!\n",
2230 			    device_xname(sc->sc_dev));
2231 		}
2232 		m_freem(m);
2233 
2234 		if (init)
2235 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2236 		return error;
2237 	}
2238 
2239 	if (rxd->rx_m != NULL) {
2240 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2241 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2242 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2243 	}
2244 	map = rxd->rx_dmamap;
2245 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2246 	sc->age_cdata.age_rx_sparemap = map;
2247 	rxd->rx_m = m;
2248 
2249 	desc = rxd->rx_desc;
2250 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2251 	desc->len =
2252 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2253 	    AGE_RD_LEN_SHIFT);
2254 
2255 	return 0;
2256 }
2257 
2258 static void
2259 age_rxvlan(struct age_softc *sc)
2260 {
2261 	uint32_t reg;
2262 
2263 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2265 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2266 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2267 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2268 }
2269 
2270 static void
2271 age_rxfilter(struct age_softc *sc)
2272 {
2273 	struct ethercom *ec = &sc->sc_ec;
2274 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2275 	struct ether_multi *enm;
2276 	struct ether_multistep step;
2277 	uint32_t crc;
2278 	uint32_t mchash[2];
2279 	uint32_t rxcfg;
2280 
2281 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2282 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2283 	ifp->if_flags &= ~IFF_ALLMULTI;
2284 
2285 	/*
2286 	 * Always accept broadcast frames.
2287 	 */
2288 	rxcfg |= MAC_CFG_BCAST;
2289 
2290 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2291 		ifp->if_flags |= IFF_ALLMULTI;
2292 		if (ifp->if_flags & IFF_PROMISC)
2293 			rxcfg |= MAC_CFG_PROMISC;
2294 		else
2295 			rxcfg |= MAC_CFG_ALLMULTI;
2296 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2297 	} else {
2298 		/* Program new filter. */
2299 		memset(mchash, 0, sizeof(mchash));
2300 
2301 		ETHER_FIRST_MULTI(step, ec, enm);
2302 		while (enm != NULL) {
2303 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2304 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2305 			ETHER_NEXT_MULTI(step, enm);
2306 		}
2307 	}
2308 
2309 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2310 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2311 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2312 }
2313