1 /* $NetBSD: if_age.c,v 1.36 2010/01/19 22:07:00 pooka Exp $ */ 2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */ 3 4 /*- 5 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.36 2010/01/19 22:07:00 pooka Exp $"); 35 36 #include "vlan.h" 37 38 #include <sys/param.h> 39 #include <sys/proc.h> 40 #include <sys/endian.h> 41 #include <sys/systm.h> 42 #include <sys/types.h> 43 #include <sys/sockio.h> 44 #include <sys/mbuf.h> 45 #include <sys/queue.h> 46 #include <sys/kernel.h> 47 #include <sys/device.h> 48 #include <sys/callout.h> 49 #include <sys/socket.h> 50 51 #include <net/if.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_ether.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 #endif 62 63 #include <net/if_types.h> 64 #include <net/if_vlanvar.h> 65 66 #include <net/bpf.h> 67 68 #include <sys/rnd.h> 69 70 #include <dev/mii/mii.h> 71 #include <dev/mii/miivar.h> 72 73 #include <dev/pci/pcireg.h> 74 #include <dev/pci/pcivar.h> 75 #include <dev/pci/pcidevs.h> 76 77 #include <dev/pci/if_agereg.h> 78 79 static int age_match(device_t, cfdata_t, void *); 80 static void age_attach(device_t, device_t, void *); 81 static int age_detach(device_t, int); 82 83 static bool age_resume(device_t, pmf_qual_t); 84 85 static int age_miibus_readreg(device_t, int, int); 86 static void age_miibus_writereg(device_t, int, int, int); 87 static void age_miibus_statchg(device_t); 88 89 static int age_init(struct ifnet *); 90 static int age_ioctl(struct ifnet *, u_long, void *); 91 static void age_start(struct ifnet *); 92 static void age_watchdog(struct ifnet *); 93 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 94 static int age_mediachange(struct ifnet *); 95 96 static int age_intr(void *); 97 static int age_dma_alloc(struct age_softc *); 98 static void age_dma_free(struct age_softc *); 99 static void age_get_macaddr(struct age_softc *, uint8_t[]); 100 static void age_phy_reset(struct age_softc *); 101 102 static int age_encap(struct age_softc *, struct mbuf **); 103 static void age_init_tx_ring(struct age_softc *); 104 static int age_init_rx_ring(struct age_softc *); 105 static void age_init_rr_ring(struct age_softc *); 106 static void age_init_cmb_block(struct age_softc *); 107 static void age_init_smb_block(struct age_softc *); 108 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int); 109 static void age_mac_config(struct age_softc *); 110 static void age_txintr(struct age_softc *, int); 111 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 112 static void age_rxintr(struct age_softc *, int); 113 static void age_tick(void *); 114 static void age_reset(struct age_softc *); 115 static void age_stop(struct ifnet *, int); 116 static void age_stats_update(struct age_softc *); 117 static void age_stop_txmac(struct age_softc *); 118 static void age_stop_rxmac(struct age_softc *); 119 static void age_rxvlan(struct age_softc *sc); 120 static void age_rxfilter(struct age_softc *); 121 122 CFATTACH_DECL_NEW(age, sizeof(struct age_softc), 123 age_match, age_attach, age_detach, NULL); 124 125 int agedebug = 0; 126 #define DPRINTF(x) do { if (agedebug) printf x; } while (0) 127 128 #define ETHER_ALIGN 2 129 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4) 130 131 static int 132 age_match(device_t dev, cfdata_t match, void *aux) 133 { 134 struct pci_attach_args *pa = aux; 135 136 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC && 137 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA); 138 } 139 140 static void 141 age_attach(device_t parent, device_t self, void *aux) 142 { 143 struct age_softc *sc = device_private(self); 144 struct pci_attach_args *pa = aux; 145 pci_intr_handle_t ih; 146 const char *intrstr; 147 struct ifnet *ifp = &sc->sc_ec.ec_if; 148 pcireg_t memtype; 149 int error = 0; 150 151 aprint_naive("\n"); 152 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n"); 153 154 sc->sc_dev = self; 155 sc->sc_dmat = pa->pa_dmat; 156 sc->sc_pct = pa->pa_pc; 157 sc->sc_pcitag = pa->pa_tag; 158 159 /* 160 * Allocate IO memory 161 */ 162 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR); 163 switch (memtype) { 164 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 165 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M: 166 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 167 break; 168 default: 169 aprint_error_dev(self, "invalid base address register\n"); 170 break; 171 } 172 173 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, 174 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) { 175 aprint_error_dev(self, "could not map mem space\n"); 176 return; 177 } 178 179 if (pci_intr_map(pa, &ih) != 0) { 180 aprint_error_dev(self, "could not map interrupt\n"); 181 goto fail; 182 } 183 184 /* 185 * Allocate IRQ 186 */ 187 intrstr = pci_intr_string(sc->sc_pct, ih); 188 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET, 189 age_intr, sc); 190 if (sc->sc_irq_handle == NULL) { 191 aprint_error_dev(self, "could not establish interrupt"); 192 if (intrstr != NULL) 193 aprint_error(" at %s", intrstr); 194 aprint_error("\n"); 195 goto fail; 196 } 197 aprint_normal_dev(self, "%s\n", intrstr); 198 199 /* Set PHY address. */ 200 sc->age_phyaddr = AGE_PHY_ADDR; 201 202 /* Reset PHY. */ 203 age_phy_reset(sc); 204 205 /* Reset the ethernet controller. */ 206 age_reset(sc); 207 208 /* Get PCI and chip id/revision. */ 209 sc->age_rev = PCI_REVISION(pa->pa_class); 210 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 211 MASTER_CHIP_REV_SHIFT; 212 213 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev); 214 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev); 215 216 if (agedebug) { 217 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n", 218 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 219 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 220 } 221 222 /* Set max allowable DMA size. */ 223 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 224 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 225 226 /* Allocate DMA stuffs */ 227 error = age_dma_alloc(sc); 228 if (error) 229 goto fail; 230 231 callout_init(&sc->sc_tick_ch, 0); 232 callout_setfunc(&sc->sc_tick_ch, age_tick, sc); 233 234 /* Load station address. */ 235 age_get_macaddr(sc, sc->sc_enaddr); 236 237 aprint_normal_dev(self, "Ethernet address %s\n", 238 ether_sprintf(sc->sc_enaddr)); 239 240 ifp->if_softc = sc; 241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 242 ifp->if_init = age_init; 243 ifp->if_ioctl = age_ioctl; 244 ifp->if_start = age_start; 245 ifp->if_stop = age_stop; 246 ifp->if_watchdog = age_watchdog; 247 ifp->if_baudrate = IF_Gbps(1); 248 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1); 249 IFQ_SET_READY(&ifp->if_snd); 250 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 251 252 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU; 253 254 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx | 255 IFCAP_CSUM_TCPv4_Rx | 256 IFCAP_CSUM_UDPv4_Rx; 257 #ifdef AGE_CHECKSUM 258 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | 259 IFCAP_CSUM_TCPv4_Tx | 260 IFCAP_CSUM_UDPv4_Tx; 261 #endif 262 263 #if NVLAN > 0 264 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; 265 #endif 266 267 /* Set up MII bus. */ 268 sc->sc_miibus.mii_ifp = ifp; 269 sc->sc_miibus.mii_readreg = age_miibus_readreg; 270 sc->sc_miibus.mii_writereg = age_miibus_writereg; 271 sc->sc_miibus.mii_statchg = age_miibus_statchg; 272 273 sc->sc_ec.ec_mii = &sc->sc_miibus; 274 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange, 275 age_mediastatus); 276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, 277 MII_OFFSET_ANY, MIIF_DOPAUSE); 278 279 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { 280 aprint_error_dev(self, "no PHY found!\n"); 281 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 282 0, NULL); 283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); 284 } else 285 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); 286 287 if_attach(ifp); 288 ether_ifattach(ifp, sc->sc_enaddr); 289 290 if (pmf_device_register(self, NULL, age_resume)) 291 pmf_class_network_register(self, ifp); 292 else 293 aprint_error_dev(self, "couldn't establish power handler\n"); 294 295 return; 296 297 fail: 298 age_dma_free(sc); 299 if (sc->sc_irq_handle != NULL) { 300 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 301 sc->sc_irq_handle = NULL; 302 } 303 if (sc->sc_mem_size) { 304 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 305 sc->sc_mem_size = 0; 306 } 307 } 308 309 static int 310 age_detach(device_t self, int flags) 311 { 312 struct age_softc *sc = device_private(self); 313 struct ifnet *ifp = &sc->sc_ec.ec_if; 314 int s; 315 316 pmf_device_deregister(self); 317 s = splnet(); 318 age_stop(ifp, 0); 319 splx(s); 320 321 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); 322 323 /* Delete all remaining media. */ 324 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); 325 326 ether_ifdetach(ifp); 327 if_detach(ifp); 328 age_dma_free(sc); 329 330 if (sc->sc_irq_handle != NULL) { 331 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 332 sc->sc_irq_handle = NULL; 333 } 334 if (sc->sc_mem_size) { 335 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 336 sc->sc_mem_size = 0; 337 } 338 return 0; 339 } 340 341 /* 342 * Read a PHY register on the MII of the L1. 343 */ 344 static int 345 age_miibus_readreg(device_t dev, int phy, int reg) 346 { 347 struct age_softc *sc = device_private(dev); 348 uint32_t v; 349 int i; 350 351 if (phy != sc->age_phyaddr) 352 return 0; 353 354 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 355 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 356 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 357 DELAY(1); 358 v = CSR_READ_4(sc, AGE_MDIO); 359 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 360 break; 361 } 362 363 if (i == 0) { 364 printf("%s: phy read timeout: phy %d, reg %d\n", 365 device_xname(sc->sc_dev), phy, reg); 366 return 0; 367 } 368 369 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 370 } 371 372 /* 373 * Write a PHY register on the MII of the L1. 374 */ 375 static void 376 age_miibus_writereg(device_t dev, int phy, int reg, int val) 377 { 378 struct age_softc *sc = device_private(dev); 379 uint32_t v; 380 int i; 381 382 if (phy != sc->age_phyaddr) 383 return; 384 385 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 386 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 387 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 388 389 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 390 DELAY(1); 391 v = CSR_READ_4(sc, AGE_MDIO); 392 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 393 break; 394 } 395 396 if (i == 0) { 397 printf("%s: phy write timeout: phy %d, reg %d\n", 398 device_xname(sc->sc_dev), phy, reg); 399 } 400 } 401 402 /* 403 * Callback from MII layer when media changes. 404 */ 405 static void 406 age_miibus_statchg(device_t dev) 407 { 408 struct age_softc *sc = device_private(dev); 409 struct ifnet *ifp = &sc->sc_ec.ec_if; 410 struct mii_data *mii; 411 412 if ((ifp->if_flags & IFF_RUNNING) == 0) 413 return; 414 415 mii = &sc->sc_miibus; 416 417 sc->age_flags &= ~AGE_FLAG_LINK; 418 if ((mii->mii_media_status & IFM_AVALID) != 0) { 419 switch (IFM_SUBTYPE(mii->mii_media_active)) { 420 case IFM_10_T: 421 case IFM_100_TX: 422 case IFM_1000_T: 423 sc->age_flags |= AGE_FLAG_LINK; 424 break; 425 default: 426 break; 427 } 428 } 429 430 /* Stop Rx/Tx MACs. */ 431 age_stop_rxmac(sc); 432 age_stop_txmac(sc); 433 434 /* Program MACs with resolved speed/duplex/flow-control. */ 435 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 436 uint32_t reg; 437 438 age_mac_config(sc); 439 reg = CSR_READ_4(sc, AGE_MAC_CFG); 440 /* Restart DMA engine and Tx/Rx MAC. */ 441 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 442 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 443 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 444 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 445 } 446 } 447 448 /* 449 * Get the current interface media status. 450 */ 451 static void 452 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 453 { 454 struct age_softc *sc = ifp->if_softc; 455 struct mii_data *mii = &sc->sc_miibus; 456 457 mii_pollstat(mii); 458 ifmr->ifm_status = mii->mii_media_status; 459 ifmr->ifm_active = mii->mii_media_active; 460 } 461 462 /* 463 * Set hardware to newly-selected media. 464 */ 465 static int 466 age_mediachange(struct ifnet *ifp) 467 { 468 struct age_softc *sc = ifp->if_softc; 469 struct mii_data *mii = &sc->sc_miibus; 470 int error; 471 472 if (mii->mii_instance != 0) { 473 struct mii_softc *miisc; 474 475 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 476 mii_phy_reset(miisc); 477 } 478 error = mii_mediachg(mii); 479 480 return error; 481 } 482 483 static int 484 age_intr(void *arg) 485 { 486 struct age_softc *sc = arg; 487 struct ifnet *ifp = &sc->sc_ec.ec_if; 488 struct cmb *cmb; 489 uint32_t status; 490 491 status = CSR_READ_4(sc, AGE_INTR_STATUS); 492 if (status == 0 || (status & AGE_INTRS) == 0) 493 return 0; 494 495 cmb = sc->age_rdata.age_cmb_block; 496 if (cmb == NULL) { 497 /* Happens when bringing up the interface 498 * w/o having a carrier. Ack. the interrupt. 499 */ 500 CSR_WRITE_4(sc, AGE_INTR_STATUS, status); 501 return 0; 502 } 503 504 /* Disable interrupts. */ 505 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 506 507 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 508 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 509 status = le32toh(cmb->intr_status); 510 if ((status & AGE_INTRS) == 0) 511 goto back; 512 513 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 514 TPD_CONS_SHIFT; 515 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 516 RRD_PROD_SHIFT; 517 518 /* Let hardware know CMB was served. */ 519 cmb->intr_status = 0; 520 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 521 sc->age_cdata.age_cmb_block_map->dm_mapsize, 522 BUS_DMASYNC_PREWRITE); 523 524 if (ifp->if_flags & IFF_RUNNING) { 525 if (status & INTR_CMB_RX) 526 age_rxintr(sc, sc->age_rr_prod); 527 528 if (status & INTR_CMB_TX) 529 age_txintr(sc, sc->age_tpd_cons); 530 531 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) { 532 if (status & INTR_DMA_RD_TO_RST) 533 printf("%s: DMA read error! -- resetting\n", 534 device_xname(sc->sc_dev)); 535 if (status & INTR_DMA_WR_TO_RST) 536 printf("%s: DMA write error! -- resetting\n", 537 device_xname(sc->sc_dev)); 538 age_init(ifp); 539 } 540 541 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 542 age_start(ifp); 543 544 if (status & INTR_SMB) 545 age_stats_update(sc); 546 } 547 548 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ 549 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 550 sc->age_cdata.age_cmb_block_map->dm_mapsize, 551 BUS_DMASYNC_POSTREAD); 552 553 back: 554 /* Re-enable interrupts. */ 555 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 556 557 return 1; 558 } 559 560 static void 561 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[]) 562 { 563 uint32_t ea[2], reg; 564 int i, vpdc; 565 566 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 567 if ((reg & SPI_VPD_ENB) != 0) { 568 /* Get VPD stored in TWSI EEPROM. */ 569 reg &= ~SPI_VPD_ENB; 570 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 571 } 572 573 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, 574 PCI_CAP_VPD, &vpdc, NULL)) { 575 /* 576 * PCI VPD capability found, let TWSI reload EEPROM. 577 * This will set Ethernet address of controller. 578 */ 579 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 580 TWSI_CTRL_SW_LD_START); 581 for (i = 100; i > 0; i++) { 582 DELAY(1000); 583 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 584 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 585 break; 586 } 587 if (i == 0) 588 printf("%s: reloading EEPROM timeout!\n", 589 device_xname(sc->sc_dev)); 590 } else { 591 if (agedebug) 592 printf("%s: PCI VPD capability not found!\n", 593 device_xname(sc->sc_dev)); 594 } 595 596 ea[0] = CSR_READ_4(sc, AGE_PAR0); 597 ea[1] = CSR_READ_4(sc, AGE_PAR1); 598 599 eaddr[0] = (ea[1] >> 8) & 0xFF; 600 eaddr[1] = (ea[1] >> 0) & 0xFF; 601 eaddr[2] = (ea[0] >> 24) & 0xFF; 602 eaddr[3] = (ea[0] >> 16) & 0xFF; 603 eaddr[4] = (ea[0] >> 8) & 0xFF; 604 eaddr[5] = (ea[0] >> 0) & 0xFF; 605 } 606 607 static void 608 age_phy_reset(struct age_softc *sc) 609 { 610 uint16_t reg, pn; 611 int i, linkup; 612 613 /* Reset PHY. */ 614 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 615 DELAY(2000); 616 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 617 DELAY(2000); 618 619 #define ATPHY_DBG_ADDR 0x1D 620 #define ATPHY_DBG_DATA 0x1E 621 #define ATPHY_CDTC 0x16 622 #define PHY_CDTC_ENB 0x0001 623 #define PHY_CDTC_POFF 8 624 #define ATPHY_CDTS 0x1C 625 #define PHY_CDTS_STAT_OK 0x0000 626 #define PHY_CDTS_STAT_SHORT 0x0100 627 #define PHY_CDTS_STAT_OPEN 0x0200 628 #define PHY_CDTS_STAT_INVAL 0x0300 629 #define PHY_CDTS_STAT_MASK 0x0300 630 631 /* Check power saving mode. Magic from Linux. */ 632 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 633 for (linkup = 0, pn = 0; pn < 4; pn++) { 634 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC, 635 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 636 for (i = 200; i > 0; i--) { 637 DELAY(1000); 638 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 639 ATPHY_CDTC); 640 if ((reg & PHY_CDTC_ENB) == 0) 641 break; 642 } 643 DELAY(1000); 644 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 645 ATPHY_CDTS); 646 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 647 linkup++; 648 break; 649 } 650 } 651 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, 652 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 653 if (linkup == 0) { 654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 655 ATPHY_DBG_ADDR, 0); 656 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 657 ATPHY_DBG_DATA, 0x124E); 658 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 659 ATPHY_DBG_ADDR, 1); 660 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr, 661 ATPHY_DBG_DATA); 662 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 663 ATPHY_DBG_DATA, reg | 0x03); 664 /* XXX */ 665 DELAY(1500 * 1000); 666 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 667 ATPHY_DBG_ADDR, 0); 668 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, 669 ATPHY_DBG_DATA, 0x024E); 670 } 671 672 #undef ATPHY_DBG_ADDR 673 #undef ATPHY_DBG_DATA 674 #undef ATPHY_CDTC 675 #undef PHY_CDTC_ENB 676 #undef PHY_CDTC_POFF 677 #undef ATPHY_CDTS 678 #undef PHY_CDTS_STAT_OK 679 #undef PHY_CDTS_STAT_SHORT 680 #undef PHY_CDTS_STAT_OPEN 681 #undef PHY_CDTS_STAT_INVAL 682 #undef PHY_CDTS_STAT_MASK 683 } 684 685 static int 686 age_dma_alloc(struct age_softc *sc) 687 { 688 struct age_txdesc *txd; 689 struct age_rxdesc *rxd; 690 int nsegs, error, i; 691 692 /* 693 * Create DMA stuffs for TX ring 694 */ 695 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1, 696 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map); 697 if (error) { 698 sc->age_cdata.age_tx_ring_map = NULL; 699 return ENOBUFS; 700 } 701 702 /* Allocate DMA'able memory for TX ring */ 703 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ, 704 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1, 705 &nsegs, BUS_DMA_WAITOK); 706 if (error) { 707 printf("%s: could not allocate DMA'able memory for Tx ring, " 708 "error = %i\n", device_xname(sc->sc_dev), error); 709 return error; 710 } 711 712 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg, 713 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring, 714 BUS_DMA_NOWAIT); 715 if (error) 716 return ENOBUFS; 717 718 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ); 719 720 /* Load the DMA map for Tx ring. */ 721 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 722 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK); 723 if (error) { 724 printf("%s: could not load DMA'able memory for Tx ring, " 725 "error = %i\n", device_xname(sc->sc_dev), error); 726 bus_dmamem_free(sc->sc_dmat, 727 &sc->age_rdata.age_tx_ring_seg, 1); 728 return error; 729 } 730 731 sc->age_rdata.age_tx_ring_paddr = 732 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr; 733 734 /* 735 * Create DMA stuffs for RX ring 736 */ 737 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1, 738 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map); 739 if (error) { 740 sc->age_cdata.age_rx_ring_map = NULL; 741 return ENOBUFS; 742 } 743 744 /* Allocate DMA'able memory for RX ring */ 745 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ, 746 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1, 747 &nsegs, BUS_DMA_WAITOK); 748 if (error) { 749 printf("%s: could not allocate DMA'able memory for Rx ring, " 750 "error = %i.\n", device_xname(sc->sc_dev), error); 751 return error; 752 } 753 754 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg, 755 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring, 756 BUS_DMA_NOWAIT); 757 if (error) 758 return ENOBUFS; 759 760 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ); 761 762 /* Load the DMA map for Rx ring. */ 763 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 764 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK); 765 if (error) { 766 printf("%s: could not load DMA'able memory for Rx ring, " 767 "error = %i.\n", device_xname(sc->sc_dev), error); 768 bus_dmamem_free(sc->sc_dmat, 769 &sc->age_rdata.age_rx_ring_seg, 1); 770 return error; 771 } 772 773 sc->age_rdata.age_rx_ring_paddr = 774 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr; 775 776 /* 777 * Create DMA stuffs for RX return ring 778 */ 779 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1, 780 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map); 781 if (error) { 782 sc->age_cdata.age_rr_ring_map = NULL; 783 return ENOBUFS; 784 } 785 786 /* Allocate DMA'able memory for RX return ring */ 787 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ, 788 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1, 789 &nsegs, BUS_DMA_WAITOK); 790 if (error) { 791 printf("%s: could not allocate DMA'able memory for Rx " 792 "return ring, error = %i.\n", 793 device_xname(sc->sc_dev), error); 794 return error; 795 } 796 797 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg, 798 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring, 799 BUS_DMA_NOWAIT); 800 if (error) 801 return ENOBUFS; 802 803 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ); 804 805 /* Load the DMA map for Rx return ring. */ 806 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 807 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK); 808 if (error) { 809 printf("%s: could not load DMA'able memory for Rx return ring, " 810 "error = %i\n", device_xname(sc->sc_dev), error); 811 bus_dmamem_free(sc->sc_dmat, 812 &sc->age_rdata.age_rr_ring_seg, 1); 813 return error; 814 } 815 816 sc->age_rdata.age_rr_ring_paddr = 817 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr; 818 819 /* 820 * Create DMA stuffs for CMB block 821 */ 822 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1, 823 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, 824 &sc->age_cdata.age_cmb_block_map); 825 if (error) { 826 sc->age_cdata.age_cmb_block_map = NULL; 827 return ENOBUFS; 828 } 829 830 /* Allocate DMA'able memory for CMB block */ 831 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 832 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1, 833 &nsegs, BUS_DMA_WAITOK); 834 if (error) { 835 printf("%s: could not allocate DMA'able memory for " 836 "CMB block, error = %i\n", device_xname(sc->sc_dev), error); 837 return error; 838 } 839 840 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg, 841 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block, 842 BUS_DMA_NOWAIT); 843 if (error) 844 return ENOBUFS; 845 846 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ); 847 848 /* Load the DMA map for CMB block. */ 849 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 850 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL, 851 BUS_DMA_WAITOK); 852 if (error) { 853 printf("%s: could not load DMA'able memory for CMB block, " 854 "error = %i\n", device_xname(sc->sc_dev), error); 855 bus_dmamem_free(sc->sc_dmat, 856 &sc->age_rdata.age_cmb_block_seg, 1); 857 return error; 858 } 859 860 sc->age_rdata.age_cmb_block_paddr = 861 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr; 862 863 /* 864 * Create DMA stuffs for SMB block 865 */ 866 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1, 867 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, 868 &sc->age_cdata.age_smb_block_map); 869 if (error) { 870 sc->age_cdata.age_smb_block_map = NULL; 871 return ENOBUFS; 872 } 873 874 /* Allocate DMA'able memory for SMB block */ 875 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 876 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1, 877 &nsegs, BUS_DMA_WAITOK); 878 if (error) { 879 printf("%s: could not allocate DMA'able memory for " 880 "SMB block, error = %i\n", device_xname(sc->sc_dev), error); 881 return error; 882 } 883 884 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg, 885 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block, 886 BUS_DMA_NOWAIT); 887 if (error) 888 return ENOBUFS; 889 890 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ); 891 892 /* Load the DMA map for SMB block */ 893 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 894 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL, 895 BUS_DMA_WAITOK); 896 if (error) { 897 printf("%s: could not load DMA'able memory for SMB block, " 898 "error = %i\n", device_xname(sc->sc_dev), error); 899 bus_dmamem_free(sc->sc_dmat, 900 &sc->age_rdata.age_smb_block_seg, 1); 901 return error; 902 } 903 904 sc->age_rdata.age_smb_block_paddr = 905 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr; 906 907 /* Create DMA maps for Tx buffers. */ 908 for (i = 0; i < AGE_TX_RING_CNT; i++) { 909 txd = &sc->age_cdata.age_txdesc[i]; 910 txd->tx_m = NULL; 911 txd->tx_dmamap = NULL; 912 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE, 913 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, 914 &txd->tx_dmamap); 915 if (error) { 916 txd->tx_dmamap = NULL; 917 printf("%s: could not create Tx dmamap, error = %i.\n", 918 device_xname(sc->sc_dev), error); 919 return error; 920 } 921 } 922 923 /* Create DMA maps for Rx buffers. */ 924 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 925 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap); 926 if (error) { 927 sc->age_cdata.age_rx_sparemap = NULL; 928 printf("%s: could not create spare Rx dmamap, error = %i.\n", 929 device_xname(sc->sc_dev), error); 930 return error; 931 } 932 for (i = 0; i < AGE_RX_RING_CNT; i++) { 933 rxd = &sc->age_cdata.age_rxdesc[i]; 934 rxd->rx_m = NULL; 935 rxd->rx_dmamap = NULL; 936 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 937 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap); 938 if (error) { 939 rxd->rx_dmamap = NULL; 940 printf("%s: could not create Rx dmamap, error = %i.\n", 941 device_xname(sc->sc_dev), error); 942 return error; 943 } 944 } 945 946 return 0; 947 } 948 949 static void 950 age_dma_free(struct age_softc *sc) 951 { 952 struct age_txdesc *txd; 953 struct age_rxdesc *rxd; 954 int i; 955 956 /* Tx buffers */ 957 for (i = 0; i < AGE_TX_RING_CNT; i++) { 958 txd = &sc->age_cdata.age_txdesc[i]; 959 if (txd->tx_dmamap != NULL) { 960 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); 961 txd->tx_dmamap = NULL; 962 } 963 } 964 /* Rx buffers */ 965 for (i = 0; i < AGE_RX_RING_CNT; i++) { 966 rxd = &sc->age_cdata.age_rxdesc[i]; 967 if (rxd->rx_dmamap != NULL) { 968 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap); 969 rxd->rx_dmamap = NULL; 970 } 971 } 972 if (sc->age_cdata.age_rx_sparemap != NULL) { 973 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap); 974 sc->age_cdata.age_rx_sparemap = NULL; 975 } 976 977 /* Tx ring. */ 978 if (sc->age_cdata.age_tx_ring_map != NULL) 979 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map); 980 if (sc->age_cdata.age_tx_ring_map != NULL && 981 sc->age_rdata.age_tx_ring != NULL) 982 bus_dmamem_free(sc->sc_dmat, 983 &sc->age_rdata.age_tx_ring_seg, 1); 984 sc->age_rdata.age_tx_ring = NULL; 985 sc->age_cdata.age_tx_ring_map = NULL; 986 987 /* Rx ring. */ 988 if (sc->age_cdata.age_rx_ring_map != NULL) 989 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map); 990 if (sc->age_cdata.age_rx_ring_map != NULL && 991 sc->age_rdata.age_rx_ring != NULL) 992 bus_dmamem_free(sc->sc_dmat, 993 &sc->age_rdata.age_rx_ring_seg, 1); 994 sc->age_rdata.age_rx_ring = NULL; 995 sc->age_cdata.age_rx_ring_map = NULL; 996 997 /* Rx return ring. */ 998 if (sc->age_cdata.age_rr_ring_map != NULL) 999 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map); 1000 if (sc->age_cdata.age_rr_ring_map != NULL && 1001 sc->age_rdata.age_rr_ring != NULL) 1002 bus_dmamem_free(sc->sc_dmat, 1003 &sc->age_rdata.age_rr_ring_seg, 1); 1004 sc->age_rdata.age_rr_ring = NULL; 1005 sc->age_cdata.age_rr_ring_map = NULL; 1006 1007 /* CMB block */ 1008 if (sc->age_cdata.age_cmb_block_map != NULL) 1009 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map); 1010 if (sc->age_cdata.age_cmb_block_map != NULL && 1011 sc->age_rdata.age_cmb_block != NULL) 1012 bus_dmamem_free(sc->sc_dmat, 1013 &sc->age_rdata.age_cmb_block_seg, 1); 1014 sc->age_rdata.age_cmb_block = NULL; 1015 sc->age_cdata.age_cmb_block_map = NULL; 1016 1017 /* SMB block */ 1018 if (sc->age_cdata.age_smb_block_map != NULL) 1019 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map); 1020 if (sc->age_cdata.age_smb_block_map != NULL && 1021 sc->age_rdata.age_smb_block != NULL) 1022 bus_dmamem_free(sc->sc_dmat, 1023 &sc->age_rdata.age_smb_block_seg, 1); 1024 sc->age_rdata.age_smb_block = NULL; 1025 sc->age_cdata.age_smb_block_map = NULL; 1026 } 1027 1028 static void 1029 age_start(struct ifnet *ifp) 1030 { 1031 struct age_softc *sc = ifp->if_softc; 1032 struct mbuf *m_head; 1033 int enq; 1034 1035 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1036 return; 1037 1038 enq = 0; 1039 for (;;) { 1040 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1041 if (m_head == NULL) 1042 break; 1043 1044 /* 1045 * Pack the data into the transmit ring. If we 1046 * don't have room, set the OACTIVE flag and wait 1047 * for the NIC to drain the ring. 1048 */ 1049 if (age_encap(sc, &m_head)) { 1050 if (m_head == NULL) 1051 break; 1052 IF_PREPEND(&ifp->if_snd, m_head); 1053 ifp->if_flags |= IFF_OACTIVE; 1054 break; 1055 } 1056 enq = 1; 1057 1058 /* 1059 * If there's a BPF listener, bounce a copy of this frame 1060 * to him. 1061 */ 1062 if (ifp->if_bpf != NULL) 1063 bpf_ops->bpf_mtap(ifp->if_bpf, m_head); 1064 } 1065 1066 if (enq) { 1067 /* Update mbox. */ 1068 AGE_COMMIT_MBOX(sc); 1069 /* Set a timeout in case the chip goes out to lunch. */ 1070 ifp->if_timer = AGE_TX_TIMEOUT; 1071 } 1072 } 1073 1074 static void 1075 age_watchdog(struct ifnet *ifp) 1076 { 1077 struct age_softc *sc = ifp->if_softc; 1078 1079 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1080 printf("%s: watchdog timeout (missed link)\n", 1081 device_xname(sc->sc_dev)); 1082 ifp->if_oerrors++; 1083 age_init(ifp); 1084 return; 1085 } 1086 1087 if (sc->age_cdata.age_tx_cnt == 0) { 1088 printf("%s: watchdog timeout (missed Tx interrupts) " 1089 "-- recovering\n", device_xname(sc->sc_dev)); 1090 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 1091 age_start(ifp); 1092 return; 1093 } 1094 1095 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); 1096 ifp->if_oerrors++; 1097 age_init(ifp); 1098 1099 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 1100 age_start(ifp); 1101 } 1102 1103 static int 1104 age_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1105 { 1106 struct age_softc *sc = ifp->if_softc; 1107 int s, error; 1108 1109 s = splnet(); 1110 1111 error = ether_ioctl(ifp, cmd, data); 1112 if (error == ENETRESET) { 1113 if (ifp->if_flags & IFF_RUNNING) 1114 age_rxfilter(sc); 1115 error = 0; 1116 } 1117 1118 splx(s); 1119 return error; 1120 } 1121 1122 static void 1123 age_mac_config(struct age_softc *sc) 1124 { 1125 struct mii_data *mii; 1126 uint32_t reg; 1127 1128 mii = &sc->sc_miibus; 1129 1130 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1131 reg &= ~MAC_CFG_FULL_DUPLEX; 1132 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1133 reg &= ~MAC_CFG_SPEED_MASK; 1134 1135 /* Reprogram MAC with resolved speed/duplex. */ 1136 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1137 case IFM_10_T: 1138 case IFM_100_TX: 1139 reg |= MAC_CFG_SPEED_10_100; 1140 break; 1141 case IFM_1000_T: 1142 reg |= MAC_CFG_SPEED_1000; 1143 break; 1144 } 1145 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1146 reg |= MAC_CFG_FULL_DUPLEX; 1147 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1148 reg |= MAC_CFG_TX_FC; 1149 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1150 reg |= MAC_CFG_RX_FC; 1151 } 1152 1153 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1154 } 1155 1156 static bool 1157 age_resume(device_t dv, pmf_qual_t qual) 1158 { 1159 struct age_softc *sc = device_private(dv); 1160 uint16_t cmd; 1161 1162 /* 1163 * Clear INTx emulation disable for hardware that 1164 * is set in resume event. From Linux. 1165 */ 1166 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 1167 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) { 1168 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE; 1169 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 1170 PCI_COMMAND_STATUS_REG, cmd); 1171 } 1172 1173 return true; 1174 } 1175 1176 static int 1177 age_encap(struct age_softc *sc, struct mbuf **m_head) 1178 { 1179 struct age_txdesc *txd, *txd_last; 1180 struct tx_desc *desc; 1181 struct mbuf *m; 1182 bus_dmamap_t map; 1183 uint32_t cflags, poff, vtag; 1184 int error, i, nsegs, prod; 1185 #if NVLAN > 0 1186 struct m_tag *mtag; 1187 #endif 1188 1189 m = *m_head; 1190 cflags = vtag = 0; 1191 poff = 0; 1192 1193 prod = sc->age_cdata.age_tx_prod; 1194 txd = &sc->age_cdata.age_txdesc[prod]; 1195 txd_last = txd; 1196 map = txd->tx_dmamap; 1197 1198 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); 1199 1200 if (error == EFBIG) { 1201 error = 0; 1202 1203 *m_head = m_pullup(*m_head, MHLEN); 1204 if (*m_head == NULL) { 1205 printf("%s: can't defrag TX mbuf\n", 1206 device_xname(sc->sc_dev)); 1207 return ENOBUFS; 1208 } 1209 1210 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, 1211 BUS_DMA_NOWAIT); 1212 1213 if (error != 0) { 1214 printf("%s: could not load defragged TX mbuf\n", 1215 device_xname(sc->sc_dev)); 1216 m_freem(*m_head); 1217 *m_head = NULL; 1218 return error; 1219 } 1220 } else if (error) { 1221 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev)); 1222 return error; 1223 } 1224 1225 nsegs = map->dm_nsegs; 1226 1227 if (nsegs == 0) { 1228 m_freem(*m_head); 1229 *m_head = NULL; 1230 return EIO; 1231 } 1232 1233 /* Check descriptor overrun. */ 1234 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1235 bus_dmamap_unload(sc->sc_dmat, map); 1236 return ENOBUFS; 1237 } 1238 1239 m = *m_head; 1240 /* Configure Tx IP/TCP/UDP checksum offload. */ 1241 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1242 cflags |= AGE_TD_CSUM; 1243 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0) 1244 cflags |= AGE_TD_TCPCSUM; 1245 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 1246 cflags |= AGE_TD_UDPCSUM; 1247 /* Set checksum start offset. */ 1248 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1249 } 1250 1251 #if NVLAN > 0 1252 /* Configure VLAN hardware tag insertion. */ 1253 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) { 1254 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag))); 1255 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1256 cflags |= AGE_TD_INSERT_VLAN_TAG; 1257 } 1258 #endif 1259 1260 desc = NULL; 1261 for (i = 0; i < nsegs; i++) { 1262 desc = &sc->age_rdata.age_tx_ring[prod]; 1263 desc->addr = htole64(map->dm_segs[i].ds_addr); 1264 desc->len = 1265 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag); 1266 desc->flags = htole32(cflags); 1267 sc->age_cdata.age_tx_cnt++; 1268 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1269 } 1270 1271 /* Update producer index. */ 1272 sc->age_cdata.age_tx_prod = prod; 1273 1274 /* Set EOP on the last descriptor. */ 1275 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; 1276 desc = &sc->age_rdata.age_tx_ring[prod]; 1277 desc->flags |= htole32(AGE_TD_EOP); 1278 1279 /* Swap dmamap of the first and the last. */ 1280 txd = &sc->age_cdata.age_txdesc[prod]; 1281 map = txd_last->tx_dmamap; 1282 txd_last->tx_dmamap = txd->tx_dmamap; 1283 txd->tx_dmamap = map; 1284 txd->tx_m = m; 1285 1286 /* Sync descriptors. */ 1287 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1288 BUS_DMASYNC_PREWRITE); 1289 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, 1290 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 1291 1292 return 0; 1293 } 1294 1295 static void 1296 age_txintr(struct age_softc *sc, int tpd_cons) 1297 { 1298 struct ifnet *ifp = &sc->sc_ec.ec_if; 1299 struct age_txdesc *txd; 1300 int cons, prog; 1301 1302 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, 1303 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1304 1305 /* 1306 * Go through our Tx list and free mbufs for those 1307 * frames which have been transmitted. 1308 */ 1309 cons = sc->age_cdata.age_tx_cons; 1310 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 1311 if (sc->age_cdata.age_tx_cnt <= 0) 1312 break; 1313 prog++; 1314 ifp->if_flags &= ~IFF_OACTIVE; 1315 sc->age_cdata.age_tx_cnt--; 1316 txd = &sc->age_cdata.age_txdesc[cons]; 1317 /* 1318 * Clear Tx descriptors, it's not required but would 1319 * help debugging in case of Tx issues. 1320 */ 1321 txd->tx_desc->addr = 0; 1322 txd->tx_desc->len = 0; 1323 txd->tx_desc->flags = 0; 1324 1325 if (txd->tx_m == NULL) 1326 continue; 1327 /* Reclaim transmitted mbufs. */ 1328 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 1329 m_freem(txd->tx_m); 1330 txd->tx_m = NULL; 1331 } 1332 1333 if (prog > 0) { 1334 sc->age_cdata.age_tx_cons = cons; 1335 1336 /* 1337 * Unarm watchdog timer only when there are no pending 1338 * Tx descriptors in queue. 1339 */ 1340 if (sc->age_cdata.age_tx_cnt == 0) 1341 ifp->if_timer = 0; 1342 1343 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, 1344 sc->age_cdata.age_tx_ring_map->dm_mapsize, 1345 BUS_DMASYNC_PREWRITE); 1346 } 1347 } 1348 1349 /* Receive a frame. */ 1350 static void 1351 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 1352 { 1353 struct ifnet *ifp = &sc->sc_ec.ec_if; 1354 struct age_rxdesc *rxd; 1355 struct rx_desc *desc; 1356 struct mbuf *mp, *m; 1357 uint32_t status, index; 1358 int count, nsegs, pktlen; 1359 int rx_cons; 1360 1361 status = le32toh(rxrd->flags); 1362 index = le32toh(rxrd->index); 1363 rx_cons = AGE_RX_CONS(index); 1364 nsegs = AGE_RX_NSEGS(index); 1365 1366 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 1367 if ((status & AGE_RRD_ERROR) != 0 && 1368 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 1369 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { 1370 /* 1371 * We want to pass the following frames to upper 1372 * layer regardless of error status of Rx return 1373 * ring. 1374 * 1375 * o IP/TCP/UDP checksum is bad. 1376 * o frame length and protocol specific length 1377 * does not match. 1378 */ 1379 sc->age_cdata.age_rx_cons += nsegs; 1380 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 1381 return; 1382 } 1383 1384 pktlen = 0; 1385 for (count = 0; count < nsegs; count++, 1386 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 1387 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 1388 mp = rxd->rx_m; 1389 desc = rxd->rx_desc; 1390 /* Add a new receive buffer to the ring. */ 1391 if (age_newbuf(sc, rxd, 0) != 0) { 1392 ifp->if_iqdrops++; 1393 /* Reuse Rx buffers. */ 1394 if (sc->age_cdata.age_rxhead != NULL) { 1395 m_freem(sc->age_cdata.age_rxhead); 1396 AGE_RXCHAIN_RESET(sc); 1397 } 1398 break; 1399 } 1400 1401 /* The length of the first mbuf is computed last. */ 1402 if (count != 0) { 1403 mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); 1404 pktlen += mp->m_len; 1405 } 1406 1407 /* Chain received mbufs. */ 1408 if (sc->age_cdata.age_rxhead == NULL) { 1409 sc->age_cdata.age_rxhead = mp; 1410 sc->age_cdata.age_rxtail = mp; 1411 } else { 1412 mp->m_flags &= ~M_PKTHDR; 1413 sc->age_cdata.age_rxprev_tail = 1414 sc->age_cdata.age_rxtail; 1415 sc->age_cdata.age_rxtail->m_next = mp; 1416 sc->age_cdata.age_rxtail = mp; 1417 } 1418 1419 if (count == nsegs - 1) { 1420 /* 1421 * It seems that L1 controller has no way 1422 * to tell hardware to strip CRC bytes. 1423 */ 1424 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; 1425 if (nsegs > 1) { 1426 /* Remove the CRC bytes in chained mbufs. */ 1427 pktlen -= ETHER_CRC_LEN; 1428 if (mp->m_len <= ETHER_CRC_LEN) { 1429 sc->age_cdata.age_rxtail = 1430 sc->age_cdata.age_rxprev_tail; 1431 sc->age_cdata.age_rxtail->m_len -= 1432 (ETHER_CRC_LEN - mp->m_len); 1433 sc->age_cdata.age_rxtail->m_next = NULL; 1434 m_freem(mp); 1435 } else { 1436 mp->m_len -= ETHER_CRC_LEN; 1437 } 1438 } 1439 1440 m = sc->age_cdata.age_rxhead; 1441 m->m_flags |= M_PKTHDR; 1442 m->m_pkthdr.rcvif = ifp; 1443 m->m_pkthdr.len = sc->age_cdata.age_rxlen; 1444 /* Set the first mbuf length. */ 1445 m->m_len = sc->age_cdata.age_rxlen - pktlen; 1446 1447 /* 1448 * Set checksum information. 1449 * It seems that L1 controller can compute partial 1450 * checksum. The partial checksum value can be used 1451 * to accelerate checksum computation for fragmented 1452 * TCP/UDP packets. Upper network stack already 1453 * takes advantage of the partial checksum value in 1454 * IP reassembly stage. But I'm not sure the 1455 * correctness of the partial hardware checksum 1456 * assistance due to lack of data sheet. If it is 1457 * proven to work on L1 I'll enable it. 1458 */ 1459 if (status & AGE_RRD_IPV4) { 1460 if (status & AGE_RRD_IPCSUM_NOK) 1461 m->m_pkthdr.csum_flags |= 1462 M_CSUM_IPv4_BAD; 1463 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 1464 (status & AGE_RRD_TCP_UDPCSUM_NOK)) { 1465 m->m_pkthdr.csum_flags |= 1466 M_CSUM_TCP_UDP_BAD; 1467 } 1468 /* 1469 * Don't mark bad checksum for TCP/UDP frames 1470 * as fragmented frames may always have set 1471 * bad checksummed bit of descriptor status. 1472 */ 1473 } 1474 #if NVLAN > 0 1475 /* Check for VLAN tagged frames. */ 1476 if (status & AGE_RRD_VLAN) { 1477 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 1478 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag), 1479 continue); 1480 } 1481 #endif 1482 1483 if (ifp->if_bpf) 1484 bpf_ops->bpf_mtap(ifp->if_bpf, m); 1485 /* Pass it on. */ 1486 ether_input(ifp, m); 1487 1488 /* Reset mbuf chains. */ 1489 AGE_RXCHAIN_RESET(sc); 1490 } 1491 } 1492 1493 if (count != nsegs) { 1494 sc->age_cdata.age_rx_cons += nsegs; 1495 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 1496 } else 1497 sc->age_cdata.age_rx_cons = rx_cons; 1498 } 1499 1500 static void 1501 age_rxintr(struct age_softc *sc, int rr_prod) 1502 { 1503 struct rx_rdesc *rxrd; 1504 int rr_cons, nsegs, pktlen, prog; 1505 1506 rr_cons = sc->age_cdata.age_rr_cons; 1507 if (rr_cons == rr_prod) 1508 return; 1509 1510 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 1511 sc->age_cdata.age_rr_ring_map->dm_mapsize, 1512 BUS_DMASYNC_POSTREAD); 1513 1514 for (prog = 0; rr_cons != rr_prod; prog++) { 1515 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 1516 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 1517 if (nsegs == 0) 1518 break; 1519 /* 1520 * Check number of segments against received bytes 1521 * Non-matching value would indicate that hardware 1522 * is still trying to update Rx return descriptors. 1523 * I'm not sure whether this check is really needed. 1524 */ 1525 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 1526 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / 1527 (MCLBYTES - ETHER_ALIGN))) 1528 break; 1529 1530 /* Received a frame. */ 1531 age_rxeof(sc, rxrd); 1532 1533 /* Clear return ring. */ 1534 rxrd->index = 0; 1535 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 1536 } 1537 1538 if (prog > 0) { 1539 /* Update the consumer index. */ 1540 sc->age_cdata.age_rr_cons = rr_cons; 1541 1542 /* Sync descriptors. */ 1543 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 1544 sc->age_cdata.age_rr_ring_map->dm_mapsize, 1545 BUS_DMASYNC_PREWRITE); 1546 1547 /* Notify hardware availability of new Rx buffers. */ 1548 AGE_COMMIT_MBOX(sc); 1549 } 1550 } 1551 1552 static void 1553 age_tick(void *xsc) 1554 { 1555 struct age_softc *sc = xsc; 1556 struct mii_data *mii = &sc->sc_miibus; 1557 int s; 1558 1559 s = splnet(); 1560 mii_tick(mii); 1561 splx(s); 1562 1563 callout_schedule(&sc->sc_tick_ch, hz); 1564 } 1565 1566 static void 1567 age_reset(struct age_softc *sc) 1568 { 1569 uint32_t reg; 1570 int i; 1571 1572 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 1573 CSR_READ_4(sc, AGE_MASTER_CFG); 1574 DELAY(1000); 1575 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 1576 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 1577 break; 1578 DELAY(10); 1579 } 1580 1581 if (i == 0) 1582 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev), 1583 reg); 1584 1585 /* Initialize PCIe module. From Linux. */ 1586 CSR_WRITE_4(sc, 0x12FC, 0x6500); 1587 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 1588 } 1589 1590 static int 1591 age_init(struct ifnet *ifp) 1592 { 1593 struct age_softc *sc = ifp->if_softc; 1594 struct mii_data *mii; 1595 uint8_t eaddr[ETHER_ADDR_LEN]; 1596 bus_addr_t paddr; 1597 uint32_t reg, fsize; 1598 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 1599 int error; 1600 1601 /* 1602 * Cancel any pending I/O. 1603 */ 1604 age_stop(ifp, 0); 1605 1606 /* 1607 * Reset the chip to a known state. 1608 */ 1609 age_reset(sc); 1610 1611 /* Initialize descriptors. */ 1612 error = age_init_rx_ring(sc); 1613 if (error != 0) { 1614 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev)); 1615 age_stop(ifp, 0); 1616 return error; 1617 } 1618 age_init_rr_ring(sc); 1619 age_init_tx_ring(sc); 1620 age_init_cmb_block(sc); 1621 age_init_smb_block(sc); 1622 1623 /* Reprogram the station address. */ 1624 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); 1625 CSR_WRITE_4(sc, AGE_PAR0, 1626 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 1627 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 1628 1629 /* Set descriptor base addresses. */ 1630 paddr = sc->age_rdata.age_tx_ring_paddr; 1631 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 1632 paddr = sc->age_rdata.age_rx_ring_paddr; 1633 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 1634 paddr = sc->age_rdata.age_rr_ring_paddr; 1635 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 1636 paddr = sc->age_rdata.age_tx_ring_paddr; 1637 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 1638 paddr = sc->age_rdata.age_cmb_block_paddr; 1639 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 1640 paddr = sc->age_rdata.age_smb_block_paddr; 1641 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 1642 1643 /* Set Rx/Rx return descriptor counter. */ 1644 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 1645 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 1646 DESC_RRD_CNT_MASK) | 1647 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 1648 1649 /* Set Tx descriptor counter. */ 1650 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 1651 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 1652 1653 /* Tell hardware that we're ready to load descriptors. */ 1654 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 1655 1656 /* 1657 * Initialize mailbox register. 1658 * Updated producer/consumer index information is exchanged 1659 * through this mailbox register. However Tx producer and 1660 * Rx return consumer/Rx producer are all shared such that 1661 * it's hard to separate code path between Tx and Rx without 1662 * locking. If L1 hardware have a separate mail box register 1663 * for Tx and Rx consumer/producer management we could have 1664 * indepent Tx/Rx handler which in turn Rx handler could have 1665 * been run without any locking. 1666 */ 1667 AGE_COMMIT_MBOX(sc); 1668 1669 /* Configure IPG/IFG parameters. */ 1670 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 1671 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 1672 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 1673 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 1674 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 1675 1676 /* Set parameters for half-duplex media. */ 1677 CSR_WRITE_4(sc, AGE_HDPX_CFG, 1678 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 1679 HDPX_CFG_LCOL_MASK) | 1680 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 1681 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 1682 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 1683 HDPX_CFG_ABEBT_MASK) | 1684 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 1685 HDPX_CFG_JAMIPG_MASK)); 1686 1687 /* Configure interrupt moderation timer. */ 1688 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 1689 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 1690 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 1691 reg &= ~MASTER_MTIMER_ENB; 1692 if (AGE_USECS(sc->age_int_mod) == 0) 1693 reg &= ~MASTER_ITIMER_ENB; 1694 else 1695 reg |= MASTER_ITIMER_ENB; 1696 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 1697 if (agedebug) 1698 printf("%s: interrupt moderation is %d us.\n", 1699 device_xname(sc->sc_dev), sc->age_int_mod); 1700 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 1701 1702 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 1703 if (ifp->if_mtu < ETHERMTU) 1704 sc->age_max_frame_size = ETHERMTU; 1705 else 1706 sc->age_max_frame_size = ifp->if_mtu; 1707 sc->age_max_frame_size += ETHER_HDR_LEN + 1708 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 1709 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 1710 1711 /* Configure jumbo frame. */ 1712 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 1713 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 1714 (((fsize / sizeof(uint64_t)) << 1715 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 1716 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 1717 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 1718 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 1719 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 1720 1721 /* Configure flow-control parameters. From Linux. */ 1722 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 1723 /* 1724 * Magic workaround for old-L1. 1725 * Don't know which hw revision requires this magic. 1726 */ 1727 CSR_WRITE_4(sc, 0x12FC, 0x6500); 1728 /* 1729 * Another magic workaround for flow-control mode 1730 * change. From Linux. 1731 */ 1732 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 1733 } 1734 /* 1735 * TODO 1736 * Should understand pause parameter relationships between FIFO 1737 * size and number of Rx descriptors and Rx return descriptors. 1738 * 1739 * Magic parameters came from Linux. 1740 */ 1741 switch (sc->age_chip_rev) { 1742 case 0x8001: 1743 case 0x9001: 1744 case 0x9002: 1745 case 0x9003: 1746 rxf_hi = AGE_RX_RING_CNT / 16; 1747 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 1748 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 1749 rrd_lo = AGE_RR_RING_CNT / 16; 1750 break; 1751 default: 1752 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 1753 rxf_lo = reg / 16; 1754 if (rxf_lo < 192) 1755 rxf_lo = 192; 1756 rxf_hi = (reg * 7) / 8; 1757 if (rxf_hi < rxf_lo) 1758 rxf_hi = rxf_lo + 16; 1759 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 1760 rrd_lo = reg / 8; 1761 rrd_hi = (reg * 7) / 8; 1762 if (rrd_lo < 2) 1763 rrd_lo = 2; 1764 if (rrd_hi < rrd_lo) 1765 rrd_hi = rrd_lo + 3; 1766 break; 1767 } 1768 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 1769 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 1770 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 1771 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 1772 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 1773 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 1774 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 1775 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 1776 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 1777 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 1778 1779 /* Configure RxQ. */ 1780 CSR_WRITE_4(sc, AGE_RXQ_CFG, 1781 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 1782 RXQ_CFG_RD_BURST_MASK) | 1783 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 1784 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 1785 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 1786 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 1787 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 1788 1789 /* Configure TxQ. */ 1790 CSR_WRITE_4(sc, AGE_TXQ_CFG, 1791 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 1792 TXQ_CFG_TPD_BURST_MASK) | 1793 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 1794 TXQ_CFG_TX_FIFO_BURST_MASK) | 1795 ((TXQ_CFG_TPD_FETCH_DEFAULT << 1796 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 1797 TXQ_CFG_ENB); 1798 1799 /* Configure DMA parameters. */ 1800 CSR_WRITE_4(sc, AGE_DMA_CFG, 1801 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 1802 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 1803 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 1804 1805 /* Configure CMB DMA write threshold. */ 1806 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 1807 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 1808 CMB_WR_THRESH_RRD_MASK) | 1809 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 1810 CMB_WR_THRESH_TPD_MASK)); 1811 1812 /* Set CMB/SMB timer and enable them. */ 1813 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 1814 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 1815 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 1816 1817 /* Request SMB updates for every seconds. */ 1818 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 1819 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 1820 1821 /* 1822 * Disable all WOL bits as WOL can interfere normal Rx 1823 * operation. 1824 */ 1825 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1826 1827 /* 1828 * Configure Tx/Rx MACs. 1829 * - Auto-padding for short frames. 1830 * - Enable CRC generation. 1831 * Start with full-duplex/1000Mbps media. Actual reconfiguration 1832 * of MAC is followed after link establishment. 1833 */ 1834 CSR_WRITE_4(sc, AGE_MAC_CFG, 1835 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 1836 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 1837 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 1838 MAC_CFG_PREAMBLE_MASK)); 1839 1840 /* Set up the receive filter. */ 1841 age_rxfilter(sc); 1842 age_rxvlan(sc); 1843 1844 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1845 reg |= MAC_CFG_RXCSUM_ENB; 1846 1847 /* Ack all pending interrupts and clear it. */ 1848 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 1849 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 1850 1851 /* Finally enable Tx/Rx MAC. */ 1852 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 1853 1854 sc->age_flags &= ~AGE_FLAG_LINK; 1855 1856 /* Switch to the current media. */ 1857 mii = &sc->sc_miibus; 1858 mii_mediachg(mii); 1859 1860 callout_schedule(&sc->sc_tick_ch, hz); 1861 1862 ifp->if_flags |= IFF_RUNNING; 1863 ifp->if_flags &= ~IFF_OACTIVE; 1864 1865 return 0; 1866 } 1867 1868 static void 1869 age_stop(struct ifnet *ifp, int disable) 1870 { 1871 struct age_softc *sc = ifp->if_softc; 1872 struct age_txdesc *txd; 1873 struct age_rxdesc *rxd; 1874 uint32_t reg; 1875 int i; 1876 1877 callout_stop(&sc->sc_tick_ch); 1878 1879 /* 1880 * Mark the interface down and cancel the watchdog timer. 1881 */ 1882 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1883 ifp->if_timer = 0; 1884 1885 sc->age_flags &= ~AGE_FLAG_LINK; 1886 1887 mii_down(&sc->sc_miibus); 1888 1889 /* 1890 * Disable interrupts. 1891 */ 1892 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 1893 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 1894 1895 /* Stop CMB/SMB updates. */ 1896 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 1897 1898 /* Stop Rx/Tx MAC. */ 1899 age_stop_rxmac(sc); 1900 age_stop_txmac(sc); 1901 1902 /* Stop DMA. */ 1903 CSR_WRITE_4(sc, AGE_DMA_CFG, 1904 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 1905 1906 /* Stop TxQ/RxQ. */ 1907 CSR_WRITE_4(sc, AGE_TXQ_CFG, 1908 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 1909 CSR_WRITE_4(sc, AGE_RXQ_CFG, 1910 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 1911 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 1912 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 1913 break; 1914 DELAY(10); 1915 } 1916 if (i == 0) 1917 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n", 1918 device_xname(sc->sc_dev), reg); 1919 1920 /* Reclaim Rx buffers that have been processed. */ 1921 if (sc->age_cdata.age_rxhead != NULL) 1922 m_freem(sc->age_cdata.age_rxhead); 1923 AGE_RXCHAIN_RESET(sc); 1924 1925 /* 1926 * Free RX and TX mbufs still in the queues. 1927 */ 1928 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1929 rxd = &sc->age_cdata.age_rxdesc[i]; 1930 if (rxd->rx_m != NULL) { 1931 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 1932 m_freem(rxd->rx_m); 1933 rxd->rx_m = NULL; 1934 } 1935 } 1936 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1937 txd = &sc->age_cdata.age_txdesc[i]; 1938 if (txd->tx_m != NULL) { 1939 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 1940 m_freem(txd->tx_m); 1941 txd->tx_m = NULL; 1942 } 1943 } 1944 } 1945 1946 static void 1947 age_stats_update(struct age_softc *sc) 1948 { 1949 struct ifnet *ifp = &sc->sc_ec.ec_if; 1950 struct age_stats *stat; 1951 struct smb *smb; 1952 1953 stat = &sc->age_stat; 1954 1955 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 1956 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1957 1958 smb = sc->age_rdata.age_smb_block; 1959 if (smb->updated == 0) 1960 return; 1961 1962 /* Rx stats. */ 1963 stat->rx_frames += smb->rx_frames; 1964 stat->rx_bcast_frames += smb->rx_bcast_frames; 1965 stat->rx_mcast_frames += smb->rx_mcast_frames; 1966 stat->rx_pause_frames += smb->rx_pause_frames; 1967 stat->rx_control_frames += smb->rx_control_frames; 1968 stat->rx_crcerrs += smb->rx_crcerrs; 1969 stat->rx_lenerrs += smb->rx_lenerrs; 1970 stat->rx_bytes += smb->rx_bytes; 1971 stat->rx_runts += smb->rx_runts; 1972 stat->rx_fragments += smb->rx_fragments; 1973 stat->rx_pkts_64 += smb->rx_pkts_64; 1974 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 1975 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 1976 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 1977 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 1978 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 1979 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 1980 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 1981 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 1982 stat->rx_desc_oflows += smb->rx_desc_oflows; 1983 stat->rx_alignerrs += smb->rx_alignerrs; 1984 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 1985 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 1986 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 1987 1988 /* Tx stats. */ 1989 stat->tx_frames += smb->tx_frames; 1990 stat->tx_bcast_frames += smb->tx_bcast_frames; 1991 stat->tx_mcast_frames += smb->tx_mcast_frames; 1992 stat->tx_pause_frames += smb->tx_pause_frames; 1993 stat->tx_excess_defer += smb->tx_excess_defer; 1994 stat->tx_control_frames += smb->tx_control_frames; 1995 stat->tx_deferred += smb->tx_deferred; 1996 stat->tx_bytes += smb->tx_bytes; 1997 stat->tx_pkts_64 += smb->tx_pkts_64; 1998 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 1999 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2000 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2001 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2002 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2003 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2004 stat->tx_single_colls += smb->tx_single_colls; 2005 stat->tx_multi_colls += smb->tx_multi_colls; 2006 stat->tx_late_colls += smb->tx_late_colls; 2007 stat->tx_excess_colls += smb->tx_excess_colls; 2008 stat->tx_underrun += smb->tx_underrun; 2009 stat->tx_desc_underrun += smb->tx_desc_underrun; 2010 stat->tx_lenerrs += smb->tx_lenerrs; 2011 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2012 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2013 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2014 2015 /* Update counters in ifnet. */ 2016 ifp->if_opackets += smb->tx_frames; 2017 2018 ifp->if_collisions += smb->tx_single_colls + 2019 smb->tx_multi_colls + smb->tx_late_colls + 2020 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2021 2022 ifp->if_oerrors += smb->tx_excess_colls + 2023 smb->tx_late_colls + smb->tx_underrun + 2024 smb->tx_pkts_truncated; 2025 2026 ifp->if_ipackets += smb->rx_frames; 2027 2028 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2029 smb->rx_runts + smb->rx_pkts_truncated + 2030 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2031 smb->rx_alignerrs; 2032 2033 /* Update done, clear. */ 2034 smb->updated = 0; 2035 2036 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 2037 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2038 } 2039 2040 static void 2041 age_stop_txmac(struct age_softc *sc) 2042 { 2043 uint32_t reg; 2044 int i; 2045 2046 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2047 if ((reg & MAC_CFG_TX_ENB) != 0) { 2048 reg &= ~MAC_CFG_TX_ENB; 2049 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2050 } 2051 /* Stop Tx DMA engine. */ 2052 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2053 if ((reg & DMA_CFG_RD_ENB) != 0) { 2054 reg &= ~DMA_CFG_RD_ENB; 2055 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2056 } 2057 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2058 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2059 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2060 break; 2061 DELAY(10); 2062 } 2063 if (i == 0) 2064 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev)); 2065 } 2066 2067 static void 2068 age_stop_rxmac(struct age_softc *sc) 2069 { 2070 uint32_t reg; 2071 int i; 2072 2073 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2074 if ((reg & MAC_CFG_RX_ENB) != 0) { 2075 reg &= ~MAC_CFG_RX_ENB; 2076 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2077 } 2078 /* Stop Rx DMA engine. */ 2079 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2080 if ((reg & DMA_CFG_WR_ENB) != 0) { 2081 reg &= ~DMA_CFG_WR_ENB; 2082 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2083 } 2084 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2085 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2086 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2087 break; 2088 DELAY(10); 2089 } 2090 if (i == 0) 2091 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev)); 2092 } 2093 2094 static void 2095 age_init_tx_ring(struct age_softc *sc) 2096 { 2097 struct age_ring_data *rd; 2098 struct age_txdesc *txd; 2099 int i; 2100 2101 sc->age_cdata.age_tx_prod = 0; 2102 sc->age_cdata.age_tx_cons = 0; 2103 sc->age_cdata.age_tx_cnt = 0; 2104 2105 rd = &sc->age_rdata; 2106 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ); 2107 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2108 txd = &sc->age_cdata.age_txdesc[i]; 2109 txd->tx_desc = &rd->age_tx_ring[i]; 2110 txd->tx_m = NULL; 2111 } 2112 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, 2113 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2114 } 2115 2116 static int 2117 age_init_rx_ring(struct age_softc *sc) 2118 { 2119 struct age_ring_data *rd; 2120 struct age_rxdesc *rxd; 2121 int i; 2122 2123 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 2124 rd = &sc->age_rdata; 2125 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ); 2126 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2127 rxd = &sc->age_cdata.age_rxdesc[i]; 2128 rxd->rx_m = NULL; 2129 rxd->rx_desc = &rd->age_rx_ring[i]; 2130 if (age_newbuf(sc, rxd, 1) != 0) 2131 return ENOBUFS; 2132 } 2133 2134 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0, 2135 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2136 2137 return 0; 2138 } 2139 2140 static void 2141 age_init_rr_ring(struct age_softc *sc) 2142 { 2143 struct age_ring_data *rd; 2144 2145 sc->age_cdata.age_rr_cons = 0; 2146 AGE_RXCHAIN_RESET(sc); 2147 2148 rd = &sc->age_rdata; 2149 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ); 2150 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, 2151 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2152 } 2153 2154 static void 2155 age_init_cmb_block(struct age_softc *sc) 2156 { 2157 struct age_ring_data *rd; 2158 2159 rd = &sc->age_rdata; 2160 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ); 2161 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, 2162 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2163 } 2164 2165 static void 2166 age_init_smb_block(struct age_softc *sc) 2167 { 2168 struct age_ring_data *rd; 2169 2170 rd = &sc->age_rdata; 2171 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ); 2172 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, 2173 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2174 } 2175 2176 static int 2177 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init) 2178 { 2179 struct rx_desc *desc; 2180 struct mbuf *m; 2181 bus_dmamap_t map; 2182 int error; 2183 2184 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA); 2185 if (m == NULL) 2186 return ENOBUFS; 2187 MCLGET(m, init ? M_WAITOK : M_DONTWAIT); 2188 if (!(m->m_flags & M_EXT)) { 2189 m_freem(m); 2190 return ENOBUFS; 2191 } 2192 2193 m->m_len = m->m_pkthdr.len = MCLBYTES; 2194 m_adj(m, ETHER_ALIGN); 2195 2196 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2197 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT); 2198 2199 if (error != 0) { 2200 if (!error) { 2201 bus_dmamap_unload(sc->sc_dmat, 2202 sc->age_cdata.age_rx_sparemap); 2203 error = EFBIG; 2204 printf("%s: too many segments?!\n", 2205 device_xname(sc->sc_dev)); 2206 } 2207 m_freem(m); 2208 2209 if (init) 2210 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev)); 2211 return error; 2212 } 2213 2214 if (rxd->rx_m != NULL) { 2215 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, 2216 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2217 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 2218 } 2219 map = rxd->rx_dmamap; 2220 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 2221 sc->age_cdata.age_rx_sparemap = map; 2222 rxd->rx_m = m; 2223 2224 desc = rxd->rx_desc; 2225 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr); 2226 desc->len = 2227 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) << 2228 AGE_RD_LEN_SHIFT); 2229 2230 return 0; 2231 } 2232 2233 static void 2234 age_rxvlan(struct age_softc *sc) 2235 { 2236 uint32_t reg; 2237 2238 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2239 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 2240 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING) 2241 reg |= MAC_CFG_VLAN_TAG_STRIP; 2242 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2243 } 2244 2245 static void 2246 age_rxfilter(struct age_softc *sc) 2247 { 2248 struct ethercom *ec = &sc->sc_ec; 2249 struct ifnet *ifp = &sc->sc_ec.ec_if; 2250 struct ether_multi *enm; 2251 struct ether_multistep step; 2252 uint32_t crc; 2253 uint32_t mchash[2]; 2254 uint32_t rxcfg; 2255 2256 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 2257 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 2258 ifp->if_flags &= ~IFF_ALLMULTI; 2259 2260 /* 2261 * Always accept broadcast frames. 2262 */ 2263 rxcfg |= MAC_CFG_BCAST; 2264 2265 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) { 2266 ifp->if_flags |= IFF_ALLMULTI; 2267 if (ifp->if_flags & IFF_PROMISC) 2268 rxcfg |= MAC_CFG_PROMISC; 2269 else 2270 rxcfg |= MAC_CFG_ALLMULTI; 2271 mchash[0] = mchash[1] = 0xFFFFFFFF; 2272 } else { 2273 /* Program new filter. */ 2274 memset(mchash, 0, sizeof(mchash)); 2275 2276 ETHER_FIRST_MULTI(step, ec, enm); 2277 while (enm != NULL) { 2278 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2279 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2280 ETHER_NEXT_MULTI(step, enm); 2281 } 2282 } 2283 2284 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 2285 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 2286 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 2287 } 2288