xref: /netbsd-src/sys/dev/pci/if_age.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_age.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $ */
2 /*	$OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $	*/
3 
4 /*-
5  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $");
35 
36 #include "bpfilter.h"
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_agereg.h>
81 
82 static int	age_match(device_t, cfdata_t, void *);
83 static void	age_attach(device_t, device_t, void *);
84 static int	age_detach(device_t, int);
85 
86 static bool	age_resume(device_t, pmf_qual_t);
87 
88 static int	age_miibus_readreg(device_t, int, int);
89 static void	age_miibus_writereg(device_t, int, int, int);
90 static void	age_miibus_statchg(device_t);
91 
92 static int	age_init(struct ifnet *);
93 static int	age_ioctl(struct ifnet *, u_long, void *);
94 static void	age_start(struct ifnet *);
95 static void	age_watchdog(struct ifnet *);
96 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int	age_mediachange(struct ifnet *);
98 
99 static int	age_intr(void *);
100 static int	age_dma_alloc(struct age_softc *);
101 static void	age_dma_free(struct age_softc *);
102 static void	age_get_macaddr(struct age_softc *, uint8_t[]);
103 static void	age_phy_reset(struct age_softc *);
104 
105 static int	age_encap(struct age_softc *, struct mbuf **);
106 static void	age_init_tx_ring(struct age_softc *);
107 static int	age_init_rx_ring(struct age_softc *);
108 static void	age_init_rr_ring(struct age_softc *);
109 static void	age_init_cmb_block(struct age_softc *);
110 static void	age_init_smb_block(struct age_softc *);
111 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
112 static void	age_mac_config(struct age_softc *);
113 static void	age_txintr(struct age_softc *, int);
114 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
115 static void	age_rxintr(struct age_softc *, int);
116 static void	age_tick(void *);
117 static void	age_reset(struct age_softc *);
118 static void	age_stop(struct ifnet *, int);
119 static void	age_stats_update(struct age_softc *);
120 static void	age_stop_txmac(struct age_softc *);
121 static void	age_stop_rxmac(struct age_softc *);
122 static void	age_rxvlan(struct age_softc *sc);
123 static void	age_rxfilter(struct age_softc *);
124 
125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
126     age_match, age_attach, age_detach, NULL);
127 
128 int agedebug = 0;
129 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
130 
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
133 
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
136 {
137 	struct pci_attach_args *pa = aux;
138 
139 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
141 }
142 
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
145 {
146 	struct age_softc *sc = device_private(self);
147 	struct pci_attach_args *pa = aux;
148 	pci_intr_handle_t ih;
149 	const char *intrstr;
150 	struct ifnet *ifp = &sc->sc_ec.ec_if;
151 	pcireg_t memtype;
152 	int error = 0;
153 
154 	aprint_naive("\n");
155 	aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
156 
157 	sc->sc_dev = self;
158 	sc->sc_dmat = pa->pa_dmat;
159 	sc->sc_pct = pa->pa_pc;
160 	sc->sc_pcitag = pa->pa_tag;
161 
162 	/*
163 	 * Allocate IO memory
164 	 */
165 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 	switch (memtype) {
167         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 		break;
171         default:
172 		aprint_error_dev(self, "invalid base address register\n");
173 		break;
174 	}
175 
176 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 		aprint_error_dev(self, "could not map mem space\n");
179 		return;
180 	}
181 
182 	if (pci_intr_map(pa, &ih) != 0) {
183 		aprint_error_dev(self, "could not map interrupt\n");
184 		goto fail;
185 	}
186 
187 	/*
188 	 * Allocate IRQ
189 	 */
190 	intrstr = pci_intr_string(sc->sc_pct, ih);
191 	sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 	    age_intr, sc);
193 	if (sc->sc_irq_handle == NULL) {
194 		aprint_error_dev(self, "could not establish interrupt");
195 		if (intrstr != NULL)
196 			aprint_error(" at %s", intrstr);
197 		aprint_error("\n");
198 		goto fail;
199 	}
200 	aprint_normal_dev(self, "%s\n", intrstr);
201 
202 	/* Set PHY address. */
203 	sc->age_phyaddr = AGE_PHY_ADDR;
204 
205 	/* Reset PHY. */
206 	age_phy_reset(sc);
207 
208 	/* Reset the ethernet controller. */
209 	age_reset(sc);
210 
211 	/* Get PCI and chip id/revision. */
212 	sc->age_rev = PCI_REVISION(pa->pa_class);
213 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 	    MASTER_CHIP_REV_SHIFT;
215 
216 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
218 
219 	if (agedebug) {
220 		aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
223 	}
224 
225 	/* Set max allowable DMA size. */
226 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
228 
229 	/* Allocate DMA stuffs */
230 	error = age_dma_alloc(sc);
231 	if (error)
232 		goto fail;
233 
234 	callout_init(&sc->sc_tick_ch, 0);
235 	callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
236 
237 	/* Load station address. */
238 	age_get_macaddr(sc, sc->sc_enaddr);
239 
240 	aprint_normal_dev(self, "Ethernet address %s\n",
241 	    ether_sprintf(sc->sc_enaddr));
242 
243 	ifp->if_softc = sc;
244 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 	ifp->if_init = age_init;
246 	ifp->if_ioctl = age_ioctl;
247 	ifp->if_start = age_start;
248 	ifp->if_stop = age_stop;
249 	ifp->if_watchdog = age_watchdog;
250 	ifp->if_baudrate = IF_Gbps(1);
251 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 	IFQ_SET_READY(&ifp->if_snd);
253 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254 
255 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256 
257 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
258 				IFCAP_CSUM_TCPv4_Rx |
259 				IFCAP_CSUM_UDPv4_Rx;
260 #ifdef AGE_CHECKSUM
261 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
262 				IFCAP_CSUM_TCPv4_Tx |
263 				IFCAP_CSUM_UDPv4_Tx;
264 #endif
265 
266 #if NVLAN > 0
267 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
268 #endif
269 
270 	/* Set up MII bus. */
271 	sc->sc_miibus.mii_ifp = ifp;
272 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
273 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
274 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
275 
276 	sc->sc_ec.ec_mii = &sc->sc_miibus;
277 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
278 	    age_mediastatus);
279 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
280 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
281 
282 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
283 		aprint_error_dev(self, "no PHY found!\n");
284 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
285 		    0, NULL);
286 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
287 	} else
288 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
289 
290 	if_attach(ifp);
291 	ether_ifattach(ifp, sc->sc_enaddr);
292 
293 	if (pmf_device_register(self, NULL, age_resume))
294 		pmf_class_network_register(self, ifp);
295 	else
296 		aprint_error_dev(self, "couldn't establish power handler\n");
297 
298 	return;
299 
300 fail:
301 	age_dma_free(sc);
302 	if (sc->sc_irq_handle != NULL) {
303 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 		sc->sc_irq_handle = NULL;
305 	}
306 	if (sc->sc_mem_size) {
307 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 		sc->sc_mem_size = 0;
309 	}
310 }
311 
312 static int
313 age_detach(device_t self, int flags)
314 {
315 	struct age_softc *sc = device_private(self);
316 	struct ifnet *ifp = &sc->sc_ec.ec_if;
317 	int s;
318 
319 	pmf_device_deregister(self);
320 	s = splnet();
321 	age_stop(ifp, 0);
322 	splx(s);
323 
324 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
325 
326 	/* Delete all remaining media. */
327 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
328 
329 	ether_ifdetach(ifp);
330 	if_detach(ifp);
331 	age_dma_free(sc);
332 
333 	if (sc->sc_irq_handle != NULL) {
334 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 		sc->sc_irq_handle = NULL;
336 	}
337 	if (sc->sc_mem_size) {
338 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
339 		sc->sc_mem_size = 0;
340 	}
341 	return 0;
342 }
343 
344 /*
345  *	Read a PHY register on the MII of the L1.
346  */
347 static int
348 age_miibus_readreg(device_t dev, int phy, int reg)
349 {
350 	struct age_softc *sc = device_private(dev);
351 	uint32_t v;
352 	int i;
353 
354 	if (phy != sc->age_phyaddr)
355 		return 0;
356 
357 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
358 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
359 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
360 		DELAY(1);
361 		v = CSR_READ_4(sc, AGE_MDIO);
362 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
363 			break;
364 	}
365 
366 	if (i == 0) {
367 		printf("%s: phy read timeout: phy %d, reg %d\n",
368 			device_xname(sc->sc_dev), phy, reg);
369 		return 0;
370 	}
371 
372 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
373 }
374 
375 /*
376  * 	Write a PHY register on the MII of the L1.
377  */
378 static void
379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
380 {
381 	struct age_softc *sc = device_private(dev);
382 	uint32_t v;
383 	int i;
384 
385 	if (phy != sc->age_phyaddr)
386 		return;
387 
388 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
389 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
390 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
391 
392 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
393 		DELAY(1);
394 		v = CSR_READ_4(sc, AGE_MDIO);
395 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
396 			break;
397 	}
398 
399 	if (i == 0) {
400 		printf("%s: phy write timeout: phy %d, reg %d\n",
401 		    device_xname(sc->sc_dev), phy, reg);
402 	}
403 }
404 
405 /*
406  *	Callback from MII layer when media changes.
407  */
408 static void
409 age_miibus_statchg(device_t dev)
410 {
411 	struct age_softc *sc = device_private(dev);
412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
413 	struct mii_data *mii;
414 
415 	if ((ifp->if_flags & IFF_RUNNING) == 0)
416 		return;
417 
418 	mii = &sc->sc_miibus;
419 
420 	sc->age_flags &= ~AGE_FLAG_LINK;
421 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 		case IFM_10_T:
424 		case IFM_100_TX:
425 		case IFM_1000_T:
426 			sc->age_flags |= AGE_FLAG_LINK;
427 			break;
428 		default:
429 			break;
430 		}
431 	}
432 
433 	/* Stop Rx/Tx MACs. */
434 	age_stop_rxmac(sc);
435 	age_stop_txmac(sc);
436 
437 	/* Program MACs with resolved speed/duplex/flow-control. */
438 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
439 		uint32_t reg;
440 
441 		age_mac_config(sc);
442 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
443 		/* Restart DMA engine and Tx/Rx MAC. */
444 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
445 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
446 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
447 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
448 	}
449 }
450 
451 /*
452  *	Get the current interface media status.
453  */
454 static void
455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
456 {
457 	struct age_softc *sc = ifp->if_softc;
458 	struct mii_data *mii = &sc->sc_miibus;
459 
460 	mii_pollstat(mii);
461 	ifmr->ifm_status = mii->mii_media_status;
462 	ifmr->ifm_active = mii->mii_media_active;
463 }
464 
465 /*
466  *	Set hardware to newly-selected media.
467  */
468 static int
469 age_mediachange(struct ifnet *ifp)
470 {
471 	struct age_softc *sc = ifp->if_softc;
472 	struct mii_data *mii = &sc->sc_miibus;
473 	int error;
474 
475 	if (mii->mii_instance != 0) {
476 		struct mii_softc *miisc;
477 
478 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
479 			mii_phy_reset(miisc);
480 	}
481 	error = mii_mediachg(mii);
482 
483 	return error;
484 }
485 
486 static int
487 age_intr(void *arg)
488 {
489         struct age_softc *sc = arg;
490         struct ifnet *ifp = &sc->sc_ec.ec_if;
491 	struct cmb *cmb;
492         uint32_t status;
493 
494 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
495 	if (status == 0 || (status & AGE_INTRS) == 0)
496 		return 0;
497 
498 	cmb = sc->age_rdata.age_cmb_block;
499 	if (cmb == NULL) {
500 		/* Happens when bringing up the interface
501 		 * w/o having a carrier. Ack. the interrupt.
502 		 */
503 		CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
504 		return 0;
505 	}
506 
507 	/* Disable interrupts. */
508 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
509 
510 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
511 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
512 	status = le32toh(cmb->intr_status);
513 	if ((status & AGE_INTRS) == 0)
514 		goto back;
515 
516 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 	    TPD_CONS_SHIFT;
518 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 	    RRD_PROD_SHIFT;
520 
521 	/* Let hardware know CMB was served. */
522 	cmb->intr_status = 0;
523 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 	    BUS_DMASYNC_PREWRITE);
526 
527 	if (ifp->if_flags & IFF_RUNNING) {
528 		if (status & INTR_CMB_RX)
529 			age_rxintr(sc, sc->age_rr_prod);
530 
531 		if (status & INTR_CMB_TX)
532 			age_txintr(sc, sc->age_tpd_cons);
533 
534 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 			if (status & INTR_DMA_RD_TO_RST)
536 				printf("%s: DMA read error! -- resetting\n",
537 				    device_xname(sc->sc_dev));
538 			if (status & INTR_DMA_WR_TO_RST)
539 				printf("%s: DMA write error! -- resetting\n",
540 				    device_xname(sc->sc_dev));
541 			age_init(ifp);
542 		}
543 
544 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
545 			age_start(ifp);
546 
547 		if (status & INTR_SMB)
548 			age_stats_update(sc);
549 	}
550 
551 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
552 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 	    BUS_DMASYNC_POSTREAD);
555 
556 back:
557 	/* Re-enable interrupts. */
558 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
559 
560 	return 1;
561 }
562 
563 static void
564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
565 {
566 	uint32_t ea[2], reg;
567 	int i, vpdc;
568 
569 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
570 	if ((reg & SPI_VPD_ENB) != 0) {
571 		/* Get VPD stored in TWSI EEPROM. */
572 		reg &= ~SPI_VPD_ENB;
573 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
574 	}
575 
576 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
577 	    PCI_CAP_VPD, &vpdc, NULL)) {
578 		/*
579 		 * PCI VPD capability found, let TWSI reload EEPROM.
580 		 * This will set Ethernet address of controller.
581 		 */
582 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
583 		    TWSI_CTRL_SW_LD_START);
584 		for (i = 100; i > 0; i++) {
585 			DELAY(1000);
586 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
587 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
588 				break;
589 		}
590 		if (i == 0)
591 			printf("%s: reloading EEPROM timeout!\n",
592 			    device_xname(sc->sc_dev));
593 	} else {
594 		if (agedebug)
595 			printf("%s: PCI VPD capability not found!\n",
596 			    device_xname(sc->sc_dev));
597 	}
598 
599 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
600 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
601 
602 	eaddr[0] = (ea[1] >> 8) & 0xFF;
603 	eaddr[1] = (ea[1] >> 0) & 0xFF;
604 	eaddr[2] = (ea[0] >> 24) & 0xFF;
605 	eaddr[3] = (ea[0] >> 16) & 0xFF;
606 	eaddr[4] = (ea[0] >> 8) & 0xFF;
607 	eaddr[5] = (ea[0] >> 0) & 0xFF;
608 }
609 
610 static void
611 age_phy_reset(struct age_softc *sc)
612 {
613 	uint16_t reg, pn;
614 	int i, linkup;
615 
616 	/* Reset PHY. */
617 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
618 	DELAY(2000);
619 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
620 	DELAY(2000);
621 
622 #define ATPHY_DBG_ADDR		0x1D
623 #define ATPHY_DBG_DATA		0x1E
624 #define ATPHY_CDTC		0x16
625 #define PHY_CDTC_ENB		0x0001
626 #define PHY_CDTC_POFF		8
627 #define ATPHY_CDTS		0x1C
628 #define PHY_CDTS_STAT_OK	0x0000
629 #define PHY_CDTS_STAT_SHORT	0x0100
630 #define PHY_CDTS_STAT_OPEN	0x0200
631 #define PHY_CDTS_STAT_INVAL	0x0300
632 #define PHY_CDTS_STAT_MASK	0x0300
633 
634 	/* Check power saving mode. Magic from Linux. */
635 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
636 	for (linkup = 0, pn = 0; pn < 4; pn++) {
637 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
638 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
639 		for (i = 200; i > 0; i--) {
640 			DELAY(1000);
641 			reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
642 			    ATPHY_CDTC);
643 			if ((reg & PHY_CDTC_ENB) == 0)
644 				break;
645 		}
646 		DELAY(1000);
647 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
648 		    ATPHY_CDTS);
649 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
650 			linkup++;
651 			break;
652 		}
653 	}
654 	age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
655 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
656 	if (linkup == 0) {
657 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 		    ATPHY_DBG_ADDR, 0);
659 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 		    ATPHY_DBG_DATA, 0x124E);
661 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 		    ATPHY_DBG_ADDR, 1);
663 		reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
664 		    ATPHY_DBG_DATA);
665 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
666 		    ATPHY_DBG_DATA, reg | 0x03);
667 		/* XXX */
668 		DELAY(1500 * 1000);
669 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 		    ATPHY_DBG_ADDR, 0);
671 		age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
672 		    ATPHY_DBG_DATA, 0x024E);
673 	}
674 
675 #undef ATPHY_DBG_ADDR
676 #undef ATPHY_DBG_DATA
677 #undef ATPHY_CDTC
678 #undef PHY_CDTC_ENB
679 #undef PHY_CDTC_POFF
680 #undef ATPHY_CDTS
681 #undef PHY_CDTS_STAT_OK
682 #undef PHY_CDTS_STAT_SHORT
683 #undef PHY_CDTS_STAT_OPEN
684 #undef PHY_CDTS_STAT_INVAL
685 #undef PHY_CDTS_STAT_MASK
686 }
687 
688 static int
689 age_dma_alloc(struct age_softc *sc)
690 {
691 	struct age_txdesc *txd;
692 	struct age_rxdesc *rxd;
693 	int nsegs, error, i;
694 
695 	/*
696 	 * Create DMA stuffs for TX ring
697 	 */
698 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
699 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
700 	if (error) {
701 		sc->age_cdata.age_tx_ring_map = NULL;
702 		return ENOBUFS;
703 	}
704 
705 	/* Allocate DMA'able memory for TX ring */
706 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
707 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
708 	    &nsegs, BUS_DMA_WAITOK);
709 	if (error) {
710 		printf("%s: could not allocate DMA'able memory for Tx ring, "
711 		    "error = %i\n", device_xname(sc->sc_dev), error);
712 		return error;
713 	}
714 
715 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
716 	    nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
717 	    BUS_DMA_NOWAIT);
718 	if (error)
719 		return ENOBUFS;
720 
721 	memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
722 
723 	/*  Load the DMA map for Tx ring. */
724 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
725 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
726 	if (error) {
727 		printf("%s: could not load DMA'able memory for Tx ring, "
728 		    "error = %i\n", device_xname(sc->sc_dev), error);
729 		bus_dmamem_free(sc->sc_dmat,
730 		    &sc->age_rdata.age_tx_ring_seg, 1);
731 		return error;
732 	}
733 
734 	sc->age_rdata.age_tx_ring_paddr =
735 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
736 
737 	/*
738 	 * Create DMA stuffs for RX ring
739 	 */
740 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
741 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
742 	if (error) {
743 		sc->age_cdata.age_rx_ring_map = NULL;
744 		return ENOBUFS;
745 	}
746 
747 	/* Allocate DMA'able memory for RX ring */
748 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 	    &nsegs, BUS_DMA_WAITOK);
751 	if (error) {
752 		printf("%s: could not allocate DMA'able memory for Rx ring, "
753 		    "error = %i.\n", device_xname(sc->sc_dev), error);
754 		return error;
755 	}
756 
757 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 	    nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 	    BUS_DMA_NOWAIT);
760 	if (error)
761 		return ENOBUFS;
762 
763 	memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
764 
765 	/* Load the DMA map for Rx ring. */
766 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 	if (error) {
769 		printf("%s: could not load DMA'able memory for Rx ring, "
770 		    "error = %i.\n", device_xname(sc->sc_dev), error);
771 		bus_dmamem_free(sc->sc_dmat,
772 		    &sc->age_rdata.age_rx_ring_seg, 1);
773 		return error;
774 	}
775 
776 	sc->age_rdata.age_rx_ring_paddr =
777 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
778 
779 	/*
780 	 * Create DMA stuffs for RX return ring
781 	 */
782 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 	if (error) {
785 		sc->age_cdata.age_rr_ring_map = NULL;
786 		return ENOBUFS;
787 	}
788 
789 	/* Allocate DMA'able memory for RX return ring */
790 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
791 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
792 	    &nsegs, BUS_DMA_WAITOK);
793 	if (error) {
794 		printf("%s: could not allocate DMA'able memory for Rx "
795 		    "return ring, error = %i.\n",
796 		    device_xname(sc->sc_dev), error);
797 		return error;
798 	}
799 
800 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
801 	    nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
802 	    BUS_DMA_NOWAIT);
803 	if (error)
804 		return ENOBUFS;
805 
806 	memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
807 
808 	/*  Load the DMA map for Rx return ring. */
809 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
810 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
811 	if (error) {
812 		printf("%s: could not load DMA'able memory for Rx return ring, "
813 		    "error = %i\n", device_xname(sc->sc_dev), error);
814 		bus_dmamem_free(sc->sc_dmat,
815 		    &sc->age_rdata.age_rr_ring_seg, 1);
816 		return error;
817 	}
818 
819 	sc->age_rdata.age_rr_ring_paddr =
820 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
821 
822 	/*
823 	 * Create DMA stuffs for CMB block
824 	 */
825 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
826 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
827 	    &sc->age_cdata.age_cmb_block_map);
828 	if (error) {
829 		sc->age_cdata.age_cmb_block_map = NULL;
830 		return ENOBUFS;
831 	}
832 
833 	/* Allocate DMA'able memory for CMB block */
834 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
835 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
836 	    &nsegs, BUS_DMA_WAITOK);
837 	if (error) {
838 		printf("%s: could not allocate DMA'able memory for "
839 		    "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
840 		return error;
841 	}
842 
843 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
844 	    nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
845 	    BUS_DMA_NOWAIT);
846 	if (error)
847 		return ENOBUFS;
848 
849 	memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
850 
851 	/*  Load the DMA map for CMB block. */
852 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
853 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
854 	    BUS_DMA_WAITOK);
855 	if (error) {
856 		printf("%s: could not load DMA'able memory for CMB block, "
857 		    "error = %i\n", device_xname(sc->sc_dev), error);
858 		bus_dmamem_free(sc->sc_dmat,
859 		    &sc->age_rdata.age_cmb_block_seg, 1);
860 		return error;
861 	}
862 
863 	sc->age_rdata.age_cmb_block_paddr =
864 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
865 
866 	/*
867 	 * Create DMA stuffs for SMB block
868 	 */
869 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
870 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
871 	    &sc->age_cdata.age_smb_block_map);
872 	if (error) {
873 		sc->age_cdata.age_smb_block_map = NULL;
874 		return ENOBUFS;
875 	}
876 
877 	/* Allocate DMA'able memory for SMB block */
878 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
879 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
880 	    &nsegs, BUS_DMA_WAITOK);
881 	if (error) {
882 		printf("%s: could not allocate DMA'able memory for "
883 		    "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
884 		return error;
885 	}
886 
887 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
888 	    nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
889 	    BUS_DMA_NOWAIT);
890 	if (error)
891 		return ENOBUFS;
892 
893 	memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
894 
895 	/*  Load the DMA map for SMB block */
896 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
897 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
898 	    BUS_DMA_WAITOK);
899 	if (error) {
900 		printf("%s: could not load DMA'able memory for SMB block, "
901 		    "error = %i\n", device_xname(sc->sc_dev), error);
902 		bus_dmamem_free(sc->sc_dmat,
903 		    &sc->age_rdata.age_smb_block_seg, 1);
904 		return error;
905 	}
906 
907 	sc->age_rdata.age_smb_block_paddr =
908 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
909 
910 	/* Create DMA maps for Tx buffers. */
911 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
912 		txd = &sc->age_cdata.age_txdesc[i];
913 		txd->tx_m = NULL;
914 		txd->tx_dmamap = NULL;
915 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
916 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
917 		    &txd->tx_dmamap);
918 		if (error) {
919 			txd->tx_dmamap = NULL;
920 			printf("%s: could not create Tx dmamap, error = %i.\n",
921 			    device_xname(sc->sc_dev), error);
922 			return error;
923 		}
924 	}
925 
926 	/* Create DMA maps for Rx buffers. */
927 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
928 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
929 	if (error) {
930 		sc->age_cdata.age_rx_sparemap = NULL;
931 		printf("%s: could not create spare Rx dmamap, error = %i.\n",
932 		    device_xname(sc->sc_dev), error);
933 		return error;
934 	}
935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
936 		rxd = &sc->age_cdata.age_rxdesc[i];
937 		rxd->rx_m = NULL;
938 		rxd->rx_dmamap = NULL;
939 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
940 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
941 		if (error) {
942 			rxd->rx_dmamap = NULL;
943 			printf("%s: could not create Rx dmamap, error = %i.\n",
944 			    device_xname(sc->sc_dev), error);
945 			return error;
946 		}
947 	}
948 
949 	return 0;
950 }
951 
952 static void
953 age_dma_free(struct age_softc *sc)
954 {
955 	struct age_txdesc *txd;
956 	struct age_rxdesc *rxd;
957 	int i;
958 
959 	/* Tx buffers */
960 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
961 		txd = &sc->age_cdata.age_txdesc[i];
962 		if (txd->tx_dmamap != NULL) {
963 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
964 			txd->tx_dmamap = NULL;
965 		}
966 	}
967 	/* Rx buffers */
968 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
969 		rxd = &sc->age_cdata.age_rxdesc[i];
970 		if (rxd->rx_dmamap != NULL) {
971 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
972 			rxd->rx_dmamap = NULL;
973 		}
974 	}
975 	if (sc->age_cdata.age_rx_sparemap != NULL) {
976 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
977 		sc->age_cdata.age_rx_sparemap = NULL;
978 	}
979 
980 	/* Tx ring. */
981 	if (sc->age_cdata.age_tx_ring_map != NULL)
982 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
983 	if (sc->age_cdata.age_tx_ring_map != NULL &&
984 	    sc->age_rdata.age_tx_ring != NULL)
985 		bus_dmamem_free(sc->sc_dmat,
986 		    &sc->age_rdata.age_tx_ring_seg, 1);
987 	sc->age_rdata.age_tx_ring = NULL;
988 	sc->age_cdata.age_tx_ring_map = NULL;
989 
990 	/* Rx ring. */
991 	if (sc->age_cdata.age_rx_ring_map != NULL)
992 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
993 	if (sc->age_cdata.age_rx_ring_map != NULL &&
994 	    sc->age_rdata.age_rx_ring != NULL)
995 		bus_dmamem_free(sc->sc_dmat,
996 		    &sc->age_rdata.age_rx_ring_seg, 1);
997 	sc->age_rdata.age_rx_ring = NULL;
998 	sc->age_cdata.age_rx_ring_map = NULL;
999 
1000 	/* Rx return ring. */
1001 	if (sc->age_cdata.age_rr_ring_map != NULL)
1002 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1003 	if (sc->age_cdata.age_rr_ring_map != NULL &&
1004 	    sc->age_rdata.age_rr_ring != NULL)
1005 		bus_dmamem_free(sc->sc_dmat,
1006 		    &sc->age_rdata.age_rr_ring_seg, 1);
1007 	sc->age_rdata.age_rr_ring = NULL;
1008 	sc->age_cdata.age_rr_ring_map = NULL;
1009 
1010 	/* CMB block */
1011 	if (sc->age_cdata.age_cmb_block_map != NULL)
1012 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1013 	if (sc->age_cdata.age_cmb_block_map != NULL &&
1014 	    sc->age_rdata.age_cmb_block != NULL)
1015 		bus_dmamem_free(sc->sc_dmat,
1016 		    &sc->age_rdata.age_cmb_block_seg, 1);
1017 	sc->age_rdata.age_cmb_block = NULL;
1018 	sc->age_cdata.age_cmb_block_map = NULL;
1019 
1020 	/* SMB block */
1021 	if (sc->age_cdata.age_smb_block_map != NULL)
1022 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1023 	if (sc->age_cdata.age_smb_block_map != NULL &&
1024 	    sc->age_rdata.age_smb_block != NULL)
1025 		bus_dmamem_free(sc->sc_dmat,
1026 		    &sc->age_rdata.age_smb_block_seg, 1);
1027 	sc->age_rdata.age_smb_block = NULL;
1028 	sc->age_cdata.age_smb_block_map = NULL;
1029 }
1030 
1031 static void
1032 age_start(struct ifnet *ifp)
1033 {
1034         struct age_softc *sc = ifp->if_softc;
1035         struct mbuf *m_head;
1036 	int enq;
1037 
1038 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1039 		return;
1040 
1041 	enq = 0;
1042 	for (;;) {
1043 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1044 		if (m_head == NULL)
1045 			break;
1046 
1047 		/*
1048 		 * Pack the data into the transmit ring. If we
1049 		 * don't have room, set the OACTIVE flag and wait
1050 		 * for the NIC to drain the ring.
1051 		 */
1052 		if (age_encap(sc, &m_head)) {
1053 			if (m_head == NULL)
1054 				break;
1055 			IF_PREPEND(&ifp->if_snd, m_head);
1056 			ifp->if_flags |= IFF_OACTIVE;
1057 			break;
1058 		}
1059 		enq = 1;
1060 
1061 #if NBPFILTER > 0
1062 		/*
1063 		 * If there's a BPF listener, bounce a copy of this frame
1064 		 * to him.
1065 		 */
1066 		if (ifp->if_bpf != NULL)
1067 			bpf_mtap(ifp->if_bpf, m_head);
1068 #endif
1069 	}
1070 
1071 	if (enq) {
1072 		/* Update mbox. */
1073 		AGE_COMMIT_MBOX(sc);
1074 		/* Set a timeout in case the chip goes out to lunch. */
1075 		ifp->if_timer = AGE_TX_TIMEOUT;
1076 	}
1077 }
1078 
1079 static void
1080 age_watchdog(struct ifnet *ifp)
1081 {
1082 	struct age_softc *sc = ifp->if_softc;
1083 
1084 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1085 		printf("%s: watchdog timeout (missed link)\n",
1086 		    device_xname(sc->sc_dev));
1087 		ifp->if_oerrors++;
1088 		age_init(ifp);
1089 		return;
1090 	}
1091 
1092 	if (sc->age_cdata.age_tx_cnt == 0) {
1093 		printf("%s: watchdog timeout (missed Tx interrupts) "
1094 		    "-- recovering\n", device_xname(sc->sc_dev));
1095 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1096 			age_start(ifp);
1097 		return;
1098 	}
1099 
1100 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1101 	ifp->if_oerrors++;
1102 	age_init(ifp);
1103 
1104 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1105 		age_start(ifp);
1106 }
1107 
1108 static int
1109 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1110 {
1111 	struct age_softc *sc = ifp->if_softc;
1112 	int s, error;
1113 
1114 	s = splnet();
1115 
1116 	error = ether_ioctl(ifp, cmd, data);
1117 	if (error == ENETRESET) {
1118 		if (ifp->if_flags & IFF_RUNNING)
1119 			age_rxfilter(sc);
1120 		error = 0;
1121 	}
1122 
1123 	splx(s);
1124 	return error;
1125 }
1126 
1127 static void
1128 age_mac_config(struct age_softc *sc)
1129 {
1130 	struct mii_data *mii;
1131 	uint32_t reg;
1132 
1133 	mii = &sc->sc_miibus;
1134 
1135 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1136 	reg &= ~MAC_CFG_FULL_DUPLEX;
1137 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1138 	reg &= ~MAC_CFG_SPEED_MASK;
1139 
1140 	/* Reprogram MAC with resolved speed/duplex. */
1141 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1142 	case IFM_10_T:
1143 	case IFM_100_TX:
1144 		reg |= MAC_CFG_SPEED_10_100;
1145 		break;
1146 	case IFM_1000_T:
1147 		reg |= MAC_CFG_SPEED_1000;
1148 		break;
1149 	}
1150 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1151 		reg |= MAC_CFG_FULL_DUPLEX;
1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1153 			reg |= MAC_CFG_TX_FC;
1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1155 			reg |= MAC_CFG_RX_FC;
1156 	}
1157 
1158 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1159 }
1160 
1161 static bool
1162 age_resume(device_t dv, pmf_qual_t qual)
1163 {
1164 	struct age_softc *sc = device_private(dv);
1165 	uint16_t cmd;
1166 
1167 	/*
1168 	 * Clear INTx emulation disable for hardware that
1169 	 * is set in resume event. From Linux.
1170 	 */
1171 	cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1172 	if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1173 		cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1174 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1175 		    PCI_COMMAND_STATUS_REG, cmd);
1176 	}
1177 
1178 	return true;
1179 }
1180 
1181 static int
1182 age_encap(struct age_softc *sc, struct mbuf **m_head)
1183 {
1184 	struct age_txdesc *txd, *txd_last;
1185 	struct tx_desc *desc;
1186 	struct mbuf *m;
1187 	bus_dmamap_t map;
1188 	uint32_t cflags, poff, vtag;
1189 	int error, i, nsegs, prod;
1190 #if NVLAN > 0
1191 	struct m_tag *mtag;
1192 #endif
1193 
1194 	m = *m_head;
1195 	cflags = vtag = 0;
1196 	poff = 0;
1197 
1198 	prod = sc->age_cdata.age_tx_prod;
1199 	txd = &sc->age_cdata.age_txdesc[prod];
1200 	txd_last = txd;
1201 	map = txd->tx_dmamap;
1202 
1203 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1204 
1205 	if (error == EFBIG) {
1206 		error = 0;
1207 
1208 		*m_head = m_pullup(*m_head, MHLEN);
1209 		if (*m_head == NULL) {
1210 			printf("%s: can't defrag TX mbuf\n",
1211 			    device_xname(sc->sc_dev));
1212 			return ENOBUFS;
1213 		}
1214 
1215 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1216 		  	    BUS_DMA_NOWAIT);
1217 
1218 		if (error != 0) {
1219 			printf("%s: could not load defragged TX mbuf\n",
1220 			    device_xname(sc->sc_dev));
1221 			m_freem(*m_head);
1222 			*m_head = NULL;
1223 			return error;
1224 		}
1225 	} else if (error) {
1226 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1227 		return error;
1228 	}
1229 
1230 	nsegs = map->dm_nsegs;
1231 
1232 	if (nsegs == 0) {
1233 		m_freem(*m_head);
1234 		*m_head = NULL;
1235 		return EIO;
1236 	}
1237 
1238 	/* Check descriptor overrun. */
1239 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1240 		bus_dmamap_unload(sc->sc_dmat, map);
1241 		return ENOBUFS;
1242 	}
1243 
1244 	m = *m_head;
1245 	/* Configure Tx IP/TCP/UDP checksum offload. */
1246 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1247 		cflags |= AGE_TD_CSUM;
1248 		if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1249 			cflags |= AGE_TD_TCPCSUM;
1250 		if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1251 			cflags |= AGE_TD_UDPCSUM;
1252 		/* Set checksum start offset. */
1253 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1254 	}
1255 
1256 #if NVLAN > 0
1257 	/* Configure VLAN hardware tag insertion. */
1258 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1259 		vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1260 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1261 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1262 	}
1263 #endif
1264 
1265 	desc = NULL;
1266 	for (i = 0; i < nsegs; i++) {
1267 		desc = &sc->age_rdata.age_tx_ring[prod];
1268 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1269 		desc->len =
1270 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1271 		desc->flags = htole32(cflags);
1272 		sc->age_cdata.age_tx_cnt++;
1273 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1274 	}
1275 
1276 	/* Update producer index. */
1277 	sc->age_cdata.age_tx_prod = prod;
1278 
1279 	/* Set EOP on the last descriptor. */
1280 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1281 	desc = &sc->age_rdata.age_tx_ring[prod];
1282 	desc->flags |= htole32(AGE_TD_EOP);
1283 
1284 	/* Swap dmamap of the first and the last. */
1285 	txd = &sc->age_cdata.age_txdesc[prod];
1286 	map = txd_last->tx_dmamap;
1287 	txd_last->tx_dmamap = txd->tx_dmamap;
1288 	txd->tx_dmamap = map;
1289 	txd->tx_m = m;
1290 
1291 	/* Sync descriptors. */
1292 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1293 	    BUS_DMASYNC_PREWRITE);
1294 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1295 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1296 
1297 	return 0;
1298 }
1299 
1300 static void
1301 age_txintr(struct age_softc *sc, int tpd_cons)
1302 {
1303 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1304 	struct age_txdesc *txd;
1305 	int cons, prog;
1306 
1307 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1308 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1309 
1310 	/*
1311 	 * Go through our Tx list and free mbufs for those
1312 	 * frames which have been transmitted.
1313 	 */
1314 	cons = sc->age_cdata.age_tx_cons;
1315 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1316 		if (sc->age_cdata.age_tx_cnt <= 0)
1317 			break;
1318 		prog++;
1319 		ifp->if_flags &= ~IFF_OACTIVE;
1320 		sc->age_cdata.age_tx_cnt--;
1321 		txd = &sc->age_cdata.age_txdesc[cons];
1322 		/*
1323 		 * Clear Tx descriptors, it's not required but would
1324 		 * help debugging in case of Tx issues.
1325 		 */
1326 		txd->tx_desc->addr = 0;
1327 		txd->tx_desc->len = 0;
1328 		txd->tx_desc->flags = 0;
1329 
1330 		if (txd->tx_m == NULL)
1331 			continue;
1332 		/* Reclaim transmitted mbufs. */
1333 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1334 		m_freem(txd->tx_m);
1335 		txd->tx_m = NULL;
1336 	}
1337 
1338 	if (prog > 0) {
1339 		sc->age_cdata.age_tx_cons = cons;
1340 
1341 		/*
1342 		 * Unarm watchdog timer only when there are no pending
1343 		 * Tx descriptors in queue.
1344 		 */
1345 		if (sc->age_cdata.age_tx_cnt == 0)
1346 			ifp->if_timer = 0;
1347 
1348 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1349 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1350 		    BUS_DMASYNC_PREWRITE);
1351 	}
1352 }
1353 
1354 /* Receive a frame. */
1355 static void
1356 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1357 {
1358 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1359 	struct age_rxdesc *rxd;
1360 	struct rx_desc *desc;
1361 	struct mbuf *mp, *m;
1362 	uint32_t status, index;
1363 	int count, nsegs, pktlen;
1364 	int rx_cons;
1365 
1366 	status = le32toh(rxrd->flags);
1367 	index = le32toh(rxrd->index);
1368 	rx_cons = AGE_RX_CONS(index);
1369 	nsegs = AGE_RX_NSEGS(index);
1370 
1371 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1372 	if ((status & AGE_RRD_ERROR) != 0 &&
1373 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1374 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1375 		/*
1376 		 * We want to pass the following frames to upper
1377 		 * layer regardless of error status of Rx return
1378 		 * ring.
1379 		 *
1380 		 *  o IP/TCP/UDP checksum is bad.
1381 		 *  o frame length and protocol specific length
1382 		 *     does not match.
1383 		 */
1384 		sc->age_cdata.age_rx_cons += nsegs;
1385 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1386 		return;
1387 	}
1388 
1389 	pktlen = 0;
1390 	for (count = 0; count < nsegs; count++,
1391 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1392 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1393 		mp = rxd->rx_m;
1394 		desc = rxd->rx_desc;
1395 		/* Add a new receive buffer to the ring. */
1396 		if (age_newbuf(sc, rxd, 0) != 0) {
1397 			ifp->if_iqdrops++;
1398 			/* Reuse Rx buffers. */
1399 			if (sc->age_cdata.age_rxhead != NULL) {
1400 				m_freem(sc->age_cdata.age_rxhead);
1401 				AGE_RXCHAIN_RESET(sc);
1402 			}
1403 			break;
1404 		}
1405 
1406 		/* The length of the first mbuf is computed last. */
1407 		if (count != 0) {
1408 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1409 			pktlen += mp->m_len;
1410 		}
1411 
1412 		/* Chain received mbufs. */
1413 		if (sc->age_cdata.age_rxhead == NULL) {
1414 			sc->age_cdata.age_rxhead = mp;
1415 			sc->age_cdata.age_rxtail = mp;
1416 		} else {
1417 			mp->m_flags &= ~M_PKTHDR;
1418 			sc->age_cdata.age_rxprev_tail =
1419 			    sc->age_cdata.age_rxtail;
1420 			sc->age_cdata.age_rxtail->m_next = mp;
1421 			sc->age_cdata.age_rxtail = mp;
1422 		}
1423 
1424 		if (count == nsegs - 1) {
1425 			/*
1426 			 * It seems that L1 controller has no way
1427 			 * to tell hardware to strip CRC bytes.
1428 			 */
1429 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1430 			if (nsegs > 1) {
1431 				/* Remove the CRC bytes in chained mbufs. */
1432 				pktlen -= ETHER_CRC_LEN;
1433 				if (mp->m_len <= ETHER_CRC_LEN) {
1434 					sc->age_cdata.age_rxtail =
1435 					    sc->age_cdata.age_rxprev_tail;
1436 					sc->age_cdata.age_rxtail->m_len -=
1437 					    (ETHER_CRC_LEN - mp->m_len);
1438 					sc->age_cdata.age_rxtail->m_next = NULL;
1439 					m_freem(mp);
1440 				} else {
1441 					mp->m_len -= ETHER_CRC_LEN;
1442 				}
1443 			}
1444 
1445 			m = sc->age_cdata.age_rxhead;
1446 			m->m_flags |= M_PKTHDR;
1447 			m->m_pkthdr.rcvif = ifp;
1448 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1449 			/* Set the first mbuf length. */
1450 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1451 
1452 			/*
1453 			 * Set checksum information.
1454 			 * It seems that L1 controller can compute partial
1455 			 * checksum. The partial checksum value can be used
1456 			 * to accelerate checksum computation for fragmented
1457 			 * TCP/UDP packets. Upper network stack already
1458 			 * takes advantage of the partial checksum value in
1459 			 * IP reassembly stage. But I'm not sure the
1460 			 * correctness of the partial hardware checksum
1461 			 * assistance due to lack of data sheet. If it is
1462 			 * proven to work on L1 I'll enable it.
1463 			 */
1464 			if (status & AGE_RRD_IPV4) {
1465 				if (status & AGE_RRD_IPCSUM_NOK)
1466 					m->m_pkthdr.csum_flags |=
1467 					    M_CSUM_IPv4_BAD;
1468 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1469 				    (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1470 					m->m_pkthdr.csum_flags |=
1471 					    M_CSUM_TCP_UDP_BAD;
1472 				}
1473 				/*
1474 				 * Don't mark bad checksum for TCP/UDP frames
1475 				 * as fragmented frames may always have set
1476 				 * bad checksummed bit of descriptor status.
1477 				 */
1478 			}
1479 #if NVLAN > 0
1480 			/* Check for VLAN tagged frames. */
1481 			if (status & AGE_RRD_VLAN) {
1482 				uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1483 				VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1484 					continue);
1485 			}
1486 #endif
1487 
1488 #if NBPFILTER > 0
1489 			if (ifp->if_bpf)
1490 				bpf_mtap(ifp->if_bpf, m);
1491 #endif
1492 			/* Pass it on. */
1493 			ether_input(ifp, m);
1494 
1495 			/* Reset mbuf chains. */
1496 			AGE_RXCHAIN_RESET(sc);
1497 		}
1498 	}
1499 
1500 	if (count != nsegs) {
1501 		sc->age_cdata.age_rx_cons += nsegs;
1502 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1503 	} else
1504 		sc->age_cdata.age_rx_cons = rx_cons;
1505 }
1506 
1507 static void
1508 age_rxintr(struct age_softc *sc, int rr_prod)
1509 {
1510 	struct rx_rdesc *rxrd;
1511 	int rr_cons, nsegs, pktlen, prog;
1512 
1513 	rr_cons = sc->age_cdata.age_rr_cons;
1514 	if (rr_cons == rr_prod)
1515 		return;
1516 
1517 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1518 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1519 	    BUS_DMASYNC_POSTREAD);
1520 
1521 	for (prog = 0; rr_cons != rr_prod; prog++) {
1522 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1523 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1524 		if (nsegs == 0)
1525 			break;
1526 		/*
1527 		 * Check number of segments against received bytes
1528 		 * Non-matching value would indicate that hardware
1529 		 * is still trying to update Rx return descriptors.
1530 		 * I'm not sure whether this check is really needed.
1531 		 */
1532 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1533 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1534 		    (MCLBYTES - ETHER_ALIGN)))
1535 			break;
1536 
1537 		/* Received a frame. */
1538 		age_rxeof(sc, rxrd);
1539 
1540 		/* Clear return ring. */
1541 		rxrd->index = 0;
1542 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1543 	}
1544 
1545 	if (prog > 0) {
1546 		/* Update the consumer index. */
1547 		sc->age_cdata.age_rr_cons = rr_cons;
1548 
1549 		/* Sync descriptors. */
1550 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1551 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1552 		    BUS_DMASYNC_PREWRITE);
1553 
1554 		/* Notify hardware availability of new Rx buffers. */
1555 		AGE_COMMIT_MBOX(sc);
1556 	}
1557 }
1558 
1559 static void
1560 age_tick(void *xsc)
1561 {
1562 	struct age_softc *sc = xsc;
1563 	struct mii_data *mii = &sc->sc_miibus;
1564 	int s;
1565 
1566 	s = splnet();
1567 	mii_tick(mii);
1568 	splx(s);
1569 
1570 	callout_schedule(&sc->sc_tick_ch, hz);
1571 }
1572 
1573 static void
1574 age_reset(struct age_softc *sc)
1575 {
1576 	uint32_t reg;
1577 	int i;
1578 
1579 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1580 	CSR_READ_4(sc, AGE_MASTER_CFG);
1581 	DELAY(1000);
1582 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1583 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1584 			break;
1585 		DELAY(10);
1586 	}
1587 
1588 	if (i == 0)
1589 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1590 		    reg);
1591 
1592 	/* Initialize PCIe module. From Linux. */
1593 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1594 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1595 }
1596 
1597 static int
1598 age_init(struct ifnet *ifp)
1599 {
1600 	struct age_softc *sc = ifp->if_softc;
1601 	struct mii_data *mii;
1602 	uint8_t eaddr[ETHER_ADDR_LEN];
1603 	bus_addr_t paddr;
1604 	uint32_t reg, fsize;
1605 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1606 	int error;
1607 
1608 	/*
1609 	 * Cancel any pending I/O.
1610 	 */
1611 	age_stop(ifp, 0);
1612 
1613 	/*
1614 	 * Reset the chip to a known state.
1615 	 */
1616 	age_reset(sc);
1617 
1618 	/* Initialize descriptors. */
1619 	error = age_init_rx_ring(sc);
1620         if (error != 0) {
1621 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1622 		age_stop(ifp, 0);
1623 		return error;
1624         }
1625 	age_init_rr_ring(sc);
1626 	age_init_tx_ring(sc);
1627 	age_init_cmb_block(sc);
1628 	age_init_smb_block(sc);
1629 
1630 	/* Reprogram the station address. */
1631 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1632 	CSR_WRITE_4(sc, AGE_PAR0,
1633 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1634 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1635 
1636 	/* Set descriptor base addresses. */
1637 	paddr = sc->age_rdata.age_tx_ring_paddr;
1638 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1639 	paddr = sc->age_rdata.age_rx_ring_paddr;
1640 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1641 	paddr = sc->age_rdata.age_rr_ring_paddr;
1642 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1643 	paddr = sc->age_rdata.age_tx_ring_paddr;
1644 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1645 	paddr = sc->age_rdata.age_cmb_block_paddr;
1646 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1647 	paddr = sc->age_rdata.age_smb_block_paddr;
1648 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1649 
1650 	/* Set Rx/Rx return descriptor counter. */
1651 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1652 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1653 	    DESC_RRD_CNT_MASK) |
1654 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1655 
1656 	/* Set Tx descriptor counter. */
1657 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1658 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1659 
1660 	/* Tell hardware that we're ready to load descriptors. */
1661 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1662 
1663         /*
1664 	 * Initialize mailbox register.
1665 	 * Updated producer/consumer index information is exchanged
1666 	 * through this mailbox register. However Tx producer and
1667 	 * Rx return consumer/Rx producer are all shared such that
1668 	 * it's hard to separate code path between Tx and Rx without
1669 	 * locking. If L1 hardware have a separate mail box register
1670 	 * for Tx and Rx consumer/producer management we could have
1671 	 * indepent Tx/Rx handler which in turn Rx handler could have
1672 	 * been run without any locking.
1673 	*/
1674 	AGE_COMMIT_MBOX(sc);
1675 
1676 	/* Configure IPG/IFG parameters. */
1677 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1678 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1679 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1680 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1681 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1682 
1683 	/* Set parameters for half-duplex media. */
1684 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1685 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1686 	    HDPX_CFG_LCOL_MASK) |
1687 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1688 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1689 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1690 	    HDPX_CFG_ABEBT_MASK) |
1691 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1692 	     HDPX_CFG_JAMIPG_MASK));
1693 
1694 	/* Configure interrupt moderation timer. */
1695 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1696 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1697 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1698 	reg &= ~MASTER_MTIMER_ENB;
1699 	if (AGE_USECS(sc->age_int_mod) == 0)
1700 		reg &= ~MASTER_ITIMER_ENB;
1701 	else
1702 		reg |= MASTER_ITIMER_ENB;
1703 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1704 	if (agedebug)
1705 		printf("%s: interrupt moderation is %d us.\n",
1706 		    device_xname(sc->sc_dev), sc->age_int_mod);
1707 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1708 
1709 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1710 	if (ifp->if_mtu < ETHERMTU)
1711 		sc->age_max_frame_size = ETHERMTU;
1712 	else
1713 		sc->age_max_frame_size = ifp->if_mtu;
1714 	sc->age_max_frame_size += ETHER_HDR_LEN +
1715 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1716 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1717 
1718 	/* Configure jumbo frame. */
1719 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1720 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1721 	    (((fsize / sizeof(uint64_t)) <<
1722 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1723 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1724 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1725 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1726 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1727 
1728 	/* Configure flow-control parameters. From Linux. */
1729 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1730 		/*
1731 		 * Magic workaround for old-L1.
1732 		 * Don't know which hw revision requires this magic.
1733 		 */
1734 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1735 		/*
1736 		 * Another magic workaround for flow-control mode
1737 		 * change. From Linux.
1738 		 */
1739 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1740 	}
1741 	/*
1742 	 * TODO
1743 	 *  Should understand pause parameter relationships between FIFO
1744 	 *  size and number of Rx descriptors and Rx return descriptors.
1745 	 *
1746 	 *  Magic parameters came from Linux.
1747 	 */
1748 	switch (sc->age_chip_rev) {
1749 	case 0x8001:
1750 	case 0x9001:
1751 	case 0x9002:
1752 	case 0x9003:
1753 		rxf_hi = AGE_RX_RING_CNT / 16;
1754 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1755 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1756 		rrd_lo = AGE_RR_RING_CNT / 16;
1757 		break;
1758 	default:
1759 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1760 		rxf_lo = reg / 16;
1761 		if (rxf_lo < 192)
1762 			rxf_lo = 192;
1763 		rxf_hi = (reg * 7) / 8;
1764 		if (rxf_hi < rxf_lo)
1765 			rxf_hi = rxf_lo + 16;
1766 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1767 		rrd_lo = reg / 8;
1768 		rrd_hi = (reg * 7) / 8;
1769 		if (rrd_lo < 2)
1770 			rrd_lo = 2;
1771 		if (rrd_hi < rrd_lo)
1772 			rrd_hi = rrd_lo + 3;
1773 		break;
1774 	}
1775 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1776 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1777 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1778 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1779 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1780 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1781 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1782 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1783 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1784 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1785 
1786 	/* Configure RxQ. */
1787 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1788 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1789 	    RXQ_CFG_RD_BURST_MASK) |
1790 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1791 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1792 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1793 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1794 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1795 
1796 	/* Configure TxQ. */
1797 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1798 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1799 	    TXQ_CFG_TPD_BURST_MASK) |
1800 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1801 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1802 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1803 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1804 	    TXQ_CFG_ENB);
1805 
1806 	/* Configure DMA parameters. */
1807 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1808 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1809 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1810 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1811 
1812 	/* Configure CMB DMA write threshold. */
1813 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1814 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1815 	    CMB_WR_THRESH_RRD_MASK) |
1816 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1817 	    CMB_WR_THRESH_TPD_MASK));
1818 
1819 	/* Set CMB/SMB timer and enable them. */
1820 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1821 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1822 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1823 
1824 	/* Request SMB updates for every seconds. */
1825 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1826 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1827 
1828 	/*
1829 	 * Disable all WOL bits as WOL can interfere normal Rx
1830 	 * operation.
1831 	 */
1832 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1833 
1834         /*
1835 	 * Configure Tx/Rx MACs.
1836 	 *  - Auto-padding for short frames.
1837 	 *  - Enable CRC generation.
1838 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1839 	 *  of MAC is followed after link establishment.
1840 	 */
1841 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1842 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1843 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1844 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1845 	    MAC_CFG_PREAMBLE_MASK));
1846 
1847 	/* Set up the receive filter. */
1848 	age_rxfilter(sc);
1849 	age_rxvlan(sc);
1850 
1851 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1852 	reg |= MAC_CFG_RXCSUM_ENB;
1853 
1854 	/* Ack all pending interrupts and clear it. */
1855 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1856 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1857 
1858 	/* Finally enable Tx/Rx MAC. */
1859 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1860 
1861 	sc->age_flags &= ~AGE_FLAG_LINK;
1862 
1863 	/* Switch to the current media. */
1864 	mii = &sc->sc_miibus;
1865 	mii_mediachg(mii);
1866 
1867 	callout_schedule(&sc->sc_tick_ch, hz);
1868 
1869 	ifp->if_flags |= IFF_RUNNING;
1870 	ifp->if_flags &= ~IFF_OACTIVE;
1871 
1872 	return 0;
1873 }
1874 
1875 static void
1876 age_stop(struct ifnet *ifp, int disable)
1877 {
1878 	struct age_softc *sc = ifp->if_softc;
1879 	struct age_txdesc *txd;
1880 	struct age_rxdesc *rxd;
1881 	uint32_t reg;
1882 	int i;
1883 
1884 	callout_stop(&sc->sc_tick_ch);
1885 
1886 	/*
1887 	 * Mark the interface down and cancel the watchdog timer.
1888 	 */
1889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1890 	ifp->if_timer = 0;
1891 
1892 	sc->age_flags &= ~AGE_FLAG_LINK;
1893 
1894 	mii_down(&sc->sc_miibus);
1895 
1896 	/*
1897 	 * Disable interrupts.
1898 	 */
1899 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1900 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1901 
1902 	/* Stop CMB/SMB updates. */
1903 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1904 
1905 	/* Stop Rx/Tx MAC. */
1906 	age_stop_rxmac(sc);
1907 	age_stop_txmac(sc);
1908 
1909 	/* Stop DMA. */
1910 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1911 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1912 
1913 	/* Stop TxQ/RxQ. */
1914 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1915 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1916 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1917 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1918 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1919 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1920 			break;
1921 		DELAY(10);
1922 	}
1923 	if (i == 0)
1924 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1925 		    device_xname(sc->sc_dev), reg);
1926 
1927 	/* Reclaim Rx buffers that have been processed. */
1928 	if (sc->age_cdata.age_rxhead != NULL)
1929 		m_freem(sc->age_cdata.age_rxhead);
1930 	AGE_RXCHAIN_RESET(sc);
1931 
1932 	/*
1933 	 * Free RX and TX mbufs still in the queues.
1934 	 */
1935 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1936 		rxd = &sc->age_cdata.age_rxdesc[i];
1937 		if (rxd->rx_m != NULL) {
1938 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1939 			m_freem(rxd->rx_m);
1940 			rxd->rx_m = NULL;
1941 		}
1942 	}
1943 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1944 		txd = &sc->age_cdata.age_txdesc[i];
1945 		if (txd->tx_m != NULL) {
1946 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1947 			m_freem(txd->tx_m);
1948 			txd->tx_m = NULL;
1949 		}
1950 	}
1951 }
1952 
1953 static void
1954 age_stats_update(struct age_softc *sc)
1955 {
1956 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1957 	struct age_stats *stat;
1958 	struct smb *smb;
1959 
1960 	stat = &sc->age_stat;
1961 
1962 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1963 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1964 
1965 	smb = sc->age_rdata.age_smb_block;
1966 	if (smb->updated == 0)
1967 		return;
1968 
1969 	/* Rx stats. */
1970 	stat->rx_frames += smb->rx_frames;
1971 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1972 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1973 	stat->rx_pause_frames += smb->rx_pause_frames;
1974 	stat->rx_control_frames += smb->rx_control_frames;
1975 	stat->rx_crcerrs += smb->rx_crcerrs;
1976 	stat->rx_lenerrs += smb->rx_lenerrs;
1977 	stat->rx_bytes += smb->rx_bytes;
1978 	stat->rx_runts += smb->rx_runts;
1979 	stat->rx_fragments += smb->rx_fragments;
1980 	stat->rx_pkts_64 += smb->rx_pkts_64;
1981 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1982 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1983 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1984 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1985 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1986 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1987 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1988 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1989 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1990 	stat->rx_alignerrs += smb->rx_alignerrs;
1991 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1992 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1993 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1994 
1995 	/* Tx stats. */
1996 	stat->tx_frames += smb->tx_frames;
1997 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1998 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1999 	stat->tx_pause_frames += smb->tx_pause_frames;
2000 	stat->tx_excess_defer += smb->tx_excess_defer;
2001 	stat->tx_control_frames += smb->tx_control_frames;
2002 	stat->tx_deferred += smb->tx_deferred;
2003 	stat->tx_bytes += smb->tx_bytes;
2004 	stat->tx_pkts_64 += smb->tx_pkts_64;
2005 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2006 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2007 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2008 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2009 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2010 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2011 	stat->tx_single_colls += smb->tx_single_colls;
2012 	stat->tx_multi_colls += smb->tx_multi_colls;
2013 	stat->tx_late_colls += smb->tx_late_colls;
2014 	stat->tx_excess_colls += smb->tx_excess_colls;
2015 	stat->tx_underrun += smb->tx_underrun;
2016 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2017 	stat->tx_lenerrs += smb->tx_lenerrs;
2018 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2019 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2020 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2021 
2022 	/* Update counters in ifnet. */
2023 	ifp->if_opackets += smb->tx_frames;
2024 
2025 	ifp->if_collisions += smb->tx_single_colls +
2026 	    smb->tx_multi_colls + smb->tx_late_colls +
2027 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2028 
2029 	ifp->if_oerrors += smb->tx_excess_colls +
2030 	    smb->tx_late_colls + smb->tx_underrun +
2031 	    smb->tx_pkts_truncated;
2032 
2033 	ifp->if_ipackets += smb->rx_frames;
2034 
2035 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2036 	    smb->rx_runts + smb->rx_pkts_truncated +
2037 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2038 	    smb->rx_alignerrs;
2039 
2040 	/* Update done, clear. */
2041 	smb->updated = 0;
2042 
2043 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2044 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2045 }
2046 
2047 static void
2048 age_stop_txmac(struct age_softc *sc)
2049 {
2050 	uint32_t reg;
2051 	int i;
2052 
2053 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2054 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2055 		reg &= ~MAC_CFG_TX_ENB;
2056 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2057 	}
2058 	/* Stop Tx DMA engine. */
2059 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2060 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2061 		reg &= ~DMA_CFG_RD_ENB;
2062 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2063 	}
2064 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2065 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2066 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2067 			break;
2068 		DELAY(10);
2069 	}
2070 	if (i == 0)
2071 		printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2072 }
2073 
2074 static void
2075 age_stop_rxmac(struct age_softc *sc)
2076 {
2077 	uint32_t reg;
2078 	int i;
2079 
2080 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2081 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2082 		reg &= ~MAC_CFG_RX_ENB;
2083 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2084 	}
2085 	/* Stop Rx DMA engine. */
2086 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2087 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2088 		reg &= ~DMA_CFG_WR_ENB;
2089 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2090 	}
2091 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2092 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2093 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2094 			break;
2095 		DELAY(10);
2096 	}
2097 	if (i == 0)
2098 		printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2099 }
2100 
2101 static void
2102 age_init_tx_ring(struct age_softc *sc)
2103 {
2104 	struct age_ring_data *rd;
2105 	struct age_txdesc *txd;
2106 	int i;
2107 
2108 	sc->age_cdata.age_tx_prod = 0;
2109 	sc->age_cdata.age_tx_cons = 0;
2110 	sc->age_cdata.age_tx_cnt = 0;
2111 
2112 	rd = &sc->age_rdata;
2113 	memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2114 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2115 		txd = &sc->age_cdata.age_txdesc[i];
2116 		txd->tx_desc = &rd->age_tx_ring[i];
2117 		txd->tx_m = NULL;
2118 	}
2119 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2120 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2121 }
2122 
2123 static int
2124 age_init_rx_ring(struct age_softc *sc)
2125 {
2126 	struct age_ring_data *rd;
2127 	struct age_rxdesc *rxd;
2128 	int i;
2129 
2130 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2131 	rd = &sc->age_rdata;
2132 	memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2133 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2134 		rxd = &sc->age_cdata.age_rxdesc[i];
2135 		rxd->rx_m = NULL;
2136 		rxd->rx_desc = &rd->age_rx_ring[i];
2137 		if (age_newbuf(sc, rxd, 1) != 0)
2138 			return ENOBUFS;
2139 	}
2140 
2141 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2142 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2143 
2144 	return 0;
2145 }
2146 
2147 static void
2148 age_init_rr_ring(struct age_softc *sc)
2149 {
2150 	struct age_ring_data *rd;
2151 
2152 	sc->age_cdata.age_rr_cons = 0;
2153 	AGE_RXCHAIN_RESET(sc);
2154 
2155 	rd = &sc->age_rdata;
2156 	memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2157 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2158 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2159 }
2160 
2161 static void
2162 age_init_cmb_block(struct age_softc *sc)
2163 {
2164 	struct age_ring_data *rd;
2165 
2166 	rd = &sc->age_rdata;
2167 	memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2168 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2169 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2170 }
2171 
2172 static void
2173 age_init_smb_block(struct age_softc *sc)
2174 {
2175 	struct age_ring_data *rd;
2176 
2177 	rd = &sc->age_rdata;
2178 	memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2179 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2180 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2181 }
2182 
2183 static int
2184 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2185 {
2186 	struct rx_desc *desc;
2187 	struct mbuf *m;
2188 	bus_dmamap_t map;
2189 	int error;
2190 
2191 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2192 	if (m == NULL)
2193 		return ENOBUFS;
2194 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2195 	if (!(m->m_flags & M_EXT)) {
2196 		 m_freem(m);
2197 		 return ENOBUFS;
2198 	}
2199 
2200 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2201 	m_adj(m, ETHER_ALIGN);
2202 
2203 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2204 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2205 
2206 	if (error != 0) {
2207 		if (!error) {
2208 			bus_dmamap_unload(sc->sc_dmat,
2209 			    sc->age_cdata.age_rx_sparemap);
2210 			error = EFBIG;
2211 			printf("%s: too many segments?!\n",
2212 			    device_xname(sc->sc_dev));
2213 		}
2214 		m_freem(m);
2215 
2216 		if (init)
2217 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2218 		return error;
2219 	}
2220 
2221 	if (rxd->rx_m != NULL) {
2222 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2223 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2224 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2225 	}
2226 	map = rxd->rx_dmamap;
2227 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2228 	sc->age_cdata.age_rx_sparemap = map;
2229 	rxd->rx_m = m;
2230 
2231 	desc = rxd->rx_desc;
2232 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2233 	desc->len =
2234 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2235 	    AGE_RD_LEN_SHIFT);
2236 
2237 	return 0;
2238 }
2239 
2240 static void
2241 age_rxvlan(struct age_softc *sc)
2242 {
2243 	uint32_t reg;
2244 
2245 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2246 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2247 	if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2248 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2249 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2250 }
2251 
2252 static void
2253 age_rxfilter(struct age_softc *sc)
2254 {
2255 	struct ethercom *ec = &sc->sc_ec;
2256 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2257 	struct ether_multi *enm;
2258 	struct ether_multistep step;
2259 	uint32_t crc;
2260 	uint32_t mchash[2];
2261 	uint32_t rxcfg;
2262 
2263 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2265 	ifp->if_flags &= ~IFF_ALLMULTI;
2266 
2267 	/*
2268 	 * Always accept broadcast frames.
2269 	 */
2270 	rxcfg |= MAC_CFG_BCAST;
2271 
2272 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2273 		ifp->if_flags |= IFF_ALLMULTI;
2274 		if (ifp->if_flags & IFF_PROMISC)
2275 			rxcfg |= MAC_CFG_PROMISC;
2276 		else
2277 			rxcfg |= MAC_CFG_ALLMULTI;
2278 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2279 	} else {
2280 		/* Program new filter. */
2281 		memset(mchash, 0, sizeof(mchash));
2282 
2283 		ETHER_FIRST_MULTI(step, ec, enm);
2284 		while (enm != NULL) {
2285 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2286 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2287 			ETHER_NEXT_MULTI(step, enm);
2288 		}
2289 	}
2290 
2291 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2292 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2293 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2294 }
2295