xref: /netbsd-src/sys/dev/pci/eso.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: eso.c,v 1.31 2003/02/05 00:07:34 kleink Exp $	*/
2 
3 /*
4  * Copyright (c) 1999, 2000 Klaus J. Klein
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.31 2003/02/05 00:07:34 kleink Exp $");
37 
38 #include "mpu.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46 
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49 
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53 
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56 
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70 
71 struct eso_dma {
72 	bus_dma_tag_t		ed_dmat;
73 	bus_dmamap_t		ed_map;
74 	caddr_t			ed_addr;
75 	bus_dma_segment_t	ed_segs[1];
76 	int			ed_nsegs;
77 	size_t			ed_size;
78 	struct eso_dma *	ed_next;
79 };
80 
81 #define KVADDR(dma)	((void *)(dma)->ed_addr)
82 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
83 
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89 
90 CFATTACH_DECL(eso, sizeof (struct eso_softc),
91     eso_match, eso_attach, NULL, NULL);
92 
93 /* PCI interface */
94 static int eso_intr __P((void *));
95 
96 /* MI audio layer interface */
97 static int	eso_open __P((void *, int));
98 static void	eso_close __P((void *));
99 static int	eso_query_encoding __P((void *, struct audio_encoding *));
100 static int	eso_set_params __P((void *, int, int, struct audio_params *,
101 		    struct audio_params *));
102 static int	eso_round_blocksize __P((void *, int));
103 static int	eso_halt_output __P((void *));
104 static int	eso_halt_input __P((void *));
105 static int	eso_getdev __P((void *, struct audio_device *));
106 static int	eso_set_port __P((void *, mixer_ctrl_t *));
107 static int	eso_get_port __P((void *, mixer_ctrl_t *));
108 static int	eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void *	eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
110 static void	eso_freem __P((void *, void *, struct malloc_type *));
111 static size_t	eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t	eso_mappage __P((void *, void *, off_t, int));
113 static int	eso_get_props __P((void *));
114 static int	eso_trigger_output __P((void *, void *, void *, int,
115 		    void (*)(void *), void *, struct audio_params *));
116 static int	eso_trigger_input __P((void *, void *, void *, int,
117 		    void (*)(void *), void *, struct audio_params *));
118 
119 static struct audio_hw_if eso_hw_if = {
120 	eso_open,
121 	eso_close,
122 	NULL,			/* drain */
123 	eso_query_encoding,
124 	eso_set_params,
125 	eso_round_blocksize,
126 	NULL,			/* commit_settings */
127 	NULL,			/* init_output */
128 	NULL,			/* init_input */
129 	NULL,			/* start_output */
130 	NULL,			/* start_input */
131 	eso_halt_output,
132 	eso_halt_input,
133 	NULL,			/* speaker_ctl */
134 	eso_getdev,
135 	NULL,			/* setfd */
136 	eso_set_port,
137 	eso_get_port,
138 	eso_query_devinfo,
139 	eso_allocm,
140 	eso_freem,
141 	eso_round_buffersize,
142 	eso_mappage,
143 	eso_get_props,
144 	eso_trigger_output,
145 	eso_trigger_input,
146 	NULL,			/* dev_ioctl */
147 };
148 
149 static const char * const eso_rev2model[] = {
150 	"ES1938",
151 	"ES1946",
152 	"ES1946 Revision E"
153 };
154 
155 
156 /*
157  * Utility routines
158  */
159 /* Register access etc. */
160 static uint8_t	eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t	eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t	eso_read_rdr __P((struct eso_softc *));
163 static void	eso_reload_master_vol __P((struct eso_softc *));
164 static int	eso_reset __P((struct eso_softc *));
165 static void	eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int	eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
167 static int	eso_set_recsrc __P((struct eso_softc *, unsigned int));
168 static void	eso_write_cmd __P((struct eso_softc *, uint8_t));
169 static void	eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
170 static void	eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
171 /* DMA memory allocation */
172 static int	eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
173 		    int, int, struct eso_dma *));
174 static void	eso_freemem __P((struct eso_dma *));
175 
176 
177 static int
178 eso_match(parent, match, aux)
179 	struct device *parent;
180 	struct cfdata *match;
181 	void *aux;
182 {
183 	struct pci_attach_args *pa = aux;
184 
185 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
186 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
187 		return (1);
188 
189 	return (0);
190 }
191 
192 static void
193 eso_attach(parent, self, aux)
194 	struct device *parent, *self;
195 	void *aux;
196 {
197 	struct eso_softc *sc = (struct eso_softc *)self;
198 	struct pci_attach_args *pa = aux;
199 	struct audio_attach_args aa;
200 	pci_intr_handle_t ih;
201 	bus_addr_t vcbase;
202 	const char *intrstring;
203 	int idx;
204 	uint8_t a2mode, mvctl;
205 
206 	aprint_naive(": Audio controller\n");
207 
208 	sc->sc_revision = PCI_REVISION(pa->pa_class);
209 
210 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
211 	if (sc->sc_revision <
212 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
213 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
214 	else
215 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
216 
217 	/* Map I/O registers. */
218 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
219 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
220 		aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
221 		return;
222 	}
223 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
224 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
225 		aprint_error("%s: can't map SB I/O space\n",
226 		    sc->sc_dev.dv_xname);
227 		return;
228 	}
229 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
230 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
231 		aprint_error("%s: can't map VC I/O space\n",
232 		    sc->sc_dev.dv_xname);
233 		/* Don't bail out yet: we can map it later, see below. */
234 		vcbase = 0;
235 		sc->sc_vcsize = 0x10; /* From the data sheet. */
236 	}
237 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
238 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
239 		aprint_error("%s: can't map MPU I/O space\n",
240 		    sc->sc_dev.dv_xname);
241 		return;
242 	}
243 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
244 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
245 		aprint_error("%s: can't map Game I/O space\n",
246 		    sc->sc_dev.dv_xname);
247 		return;
248 	}
249 
250 	sc->sc_dmat = pa->pa_dmat;
251 	sc->sc_dmas = NULL;
252 	sc->sc_dmac_configured = 0;
253 
254 	/* Enable bus mastering. */
255 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
256 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
257 	    PCI_COMMAND_MASTER_ENABLE);
258 
259 	/* Reset the device; bail out upon failure. */
260 	if (eso_reset(sc) != 0) {
261 		aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
262 		return;
263 	}
264 
265 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
266 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
267 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
268 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
269 
270 	/* Enable the relevant (DMA) interrupts. */
271 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
272 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
273 	    ESO_IO_IRQCTL_MPUIRQ);
274 
275 	/* Set up A1's sample rate generator for new-style parameters. */
276 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
277 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
278 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
279 
280 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
281 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
282 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
283 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
284 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
285 
286 	/* Set mixer regs to something reasonable, needs work. */
287 	sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
288 	sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
289 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
290 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
291 		int v;
292 
293 		switch (idx) {
294  		case ESO_MIC_PLAY_VOL:
295 		case ESO_LINE_PLAY_VOL:
296 		case ESO_CD_PLAY_VOL:
297 		case ESO_MONO_PLAY_VOL:
298 		case ESO_AUXB_PLAY_VOL:
299 		case ESO_DAC_REC_VOL:
300 		case ESO_LINE_REC_VOL:
301 		case ESO_SYNTH_REC_VOL:
302 		case ESO_CD_REC_VOL:
303 		case ESO_MONO_REC_VOL:
304 		case ESO_AUXB_REC_VOL:
305 		case ESO_SPATIALIZER:
306 			v = 0;
307 			break;
308 		case ESO_MASTER_VOL:
309 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
310 			break;
311 		default:
312 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
313 			break;
314 		}
315 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
316 		eso_set_gain(sc, idx);
317 	}
318 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
319 
320 	/* Map and establish the interrupt. */
321 	if (pci_intr_map(pa, &ih)) {
322 		aprint_error("%s: couldn't map interrupt\n",
323 		    sc->sc_dev.dv_xname);
324 		return;
325 	}
326 	intrstring = pci_intr_string(pa->pa_pc, ih);
327 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
328 	if (sc->sc_ih == NULL) {
329 		aprint_error("%s: couldn't establish interrupt",
330 		    sc->sc_dev.dv_xname);
331 		if (intrstring != NULL)
332 			aprint_normal(" at %s", intrstring);
333 		aprint_normal("\n");
334 		return;
335 	}
336 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
337 	    intrstring);
338 
339 	/*
340 	 * Set up the DDMA Control register; a suitable I/O region has been
341 	 * supposedly mapped in the VC base address register.
342 	 *
343 	 * The Solo-1 has an ... interesting silicon bug that causes it to
344 	 * not respond to I/O space accesses to the Audio 1 DMA controller
345 	 * if the latter's mapping base address is aligned on a 1K boundary.
346 	 * As a consequence, it is quite possible for the mapping provided
347 	 * in the VC BAR to be useless.  To work around this, we defer this
348 	 * part until all autoconfiguration on our parent bus is completed
349 	 * and then try to map it ourselves in fulfillment of the constraint.
350 	 *
351 	 * According to the register map we may write to the low 16 bits
352 	 * only, but experimenting has shown we're safe.
353 	 * -kjk
354 	 */
355 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
356 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
357 		    vcbase | ESO_PCI_DDMAC_DE);
358 		sc->sc_dmac_configured = 1;
359 
360 		aprint_normal(
361 		    "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
362 		    sc->sc_dev.dv_xname, (unsigned long)vcbase);
363 	} else {
364 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
365 		    sc->sc_dev.dv_xname, (unsigned long)vcbase));
366 		sc->sc_pa = *pa;
367 		config_defer(self, eso_defer);
368 	}
369 
370 	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
371 
372 	aa.type = AUDIODEV_TYPE_OPL;
373 	aa.hwif = NULL;
374 	aa.hdl = NULL;
375 	(void)config_found(&sc->sc_dev, &aa, audioprint);
376 
377 	aa.type = AUDIODEV_TYPE_MPU;
378 	aa.hwif = NULL;
379 	aa.hdl = NULL;
380 	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
381 	if (sc->sc_mpudev != NULL) {
382 		/* Unmask the MPU irq. */
383 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
384 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
385 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
386 	}
387 
388 	aa.type = AUDIODEV_TYPE_AUX;
389 	aa.hwif = NULL;
390 	aa.hdl = NULL;
391 	(void)config_found(&sc->sc_dev, &aa, eso_print);
392 }
393 
394 static void
395 eso_defer(self)
396 	struct device *self;
397 {
398 	struct eso_softc *sc = (struct eso_softc *)self;
399 	struct pci_attach_args *pa = &sc->sc_pa;
400 	bus_addr_t addr, start;
401 
402 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
403 
404 	/*
405 	 * This is outright ugly, but since we must not make assumptions
406 	 * on the underlying allocator's behaviour it's the most straight-
407 	 * forward way to implement it.  Note that we skip over the first
408 	 * 1K region, which is typically occupied by an attached ISA bus.
409 	 */
410 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
411 		if (bus_space_alloc(sc->sc_iot,
412 		    start + sc->sc_vcsize, start + 0x0400 - 1,
413 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
414 		    &sc->sc_dmac_ioh) != 0)
415 			continue;
416 
417 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
418 		    addr | ESO_PCI_DDMAC_DE);
419 		sc->sc_dmac_iot = sc->sc_iot;
420 		sc->sc_dmac_configured = 1;
421 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
422 		    (unsigned long)addr);
423 
424 		return;
425 	}
426 
427 	aprint_error("can't map Audio 1 DMA into I/O space\n");
428 }
429 
430 /* ARGSUSED */
431 static int
432 eso_print(aux, pnp)
433 	void *aux;
434 	const char *pnp;
435 {
436 
437 	/* Only joys can attach via this; easy. */
438 	if (pnp)
439 		aprint_normal("joy at %s:", pnp);
440 
441 	return (UNCONF);
442 }
443 
444 static void
445 eso_write_cmd(sc, cmd)
446 	struct eso_softc *sc;
447 	uint8_t cmd;
448 {
449 	int i;
450 
451 	/* Poll for busy indicator to become clear. */
452 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
453 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
454 		    & ESO_SB_RSR_BUSY) == 0) {
455 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
456 			    ESO_SB_WDR, cmd);
457 			return;
458 		} else {
459 			delay(10);
460 		}
461 	}
462 
463 	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
464 	return;
465 }
466 
467 /* Write to a controller register */
468 static void
469 eso_write_ctlreg(sc, reg, val)
470 	struct eso_softc *sc;
471 	uint8_t reg, val;
472 {
473 
474 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
475 
476 	eso_write_cmd(sc, reg);
477 	eso_write_cmd(sc, val);
478 }
479 
480 /* Read out the Read Data Register */
481 static uint8_t
482 eso_read_rdr(sc)
483 	struct eso_softc *sc;
484 {
485 	int i;
486 
487 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
488 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
489 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
490 			return (bus_space_read_1(sc->sc_sb_iot,
491 			    sc->sc_sb_ioh, ESO_SB_RDR));
492 		} else {
493 			delay(10);
494 		}
495 	}
496 
497 	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
498 	return (-1);
499 }
500 
501 
502 static uint8_t
503 eso_read_ctlreg(sc, reg)
504 	struct eso_softc *sc;
505 	uint8_t reg;
506 {
507 
508 	eso_write_cmd(sc, ESO_CMD_RCR);
509 	eso_write_cmd(sc, reg);
510 	return (eso_read_rdr(sc));
511 }
512 
513 static void
514 eso_write_mixreg(sc, reg, val)
515 	struct eso_softc *sc;
516 	uint8_t reg, val;
517 {
518 	int s;
519 
520 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
521 
522 	s = splaudio();
523 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
524 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
525 	splx(s);
526 }
527 
528 static uint8_t
529 eso_read_mixreg(sc, reg)
530 	struct eso_softc *sc;
531 	uint8_t reg;
532 {
533 	int s;
534 	uint8_t val;
535 
536 	s = splaudio();
537 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
538 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
539 	splx(s);
540 
541 	return (val);
542 }
543 
544 static int
545 eso_intr(hdl)
546 	void *hdl;
547 {
548 	struct eso_softc *sc = hdl;
549 	uint8_t irqctl;
550 
551 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
552 
553 	/* If it wasn't ours, that's all she wrote. */
554 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
555 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
556 		return (0);
557 
558 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
559 		/* Clear interrupt. */
560 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
561 		    ESO_SB_RBSR);
562 
563 		if (sc->sc_rintr)
564 			sc->sc_rintr(sc->sc_rarg);
565 		else
566 			wakeup(&sc->sc_rintr);
567 	}
568 
569 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
570 		/*
571 		 * Clear the A2 IRQ latch: the cached value reflects the
572 		 * current DAC settings with the IRQ latch bit not set.
573 		 */
574 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
575 
576 		if (sc->sc_pintr)
577 			sc->sc_pintr(sc->sc_parg);
578 		else
579 			wakeup(&sc->sc_pintr);
580 	}
581 
582 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
583 		/* Clear interrupt. */
584 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
585 
586 		/*
587 		 * Raise a flag to cause a lazy update of the in-softc gain
588 		 * values the next time the software mixer is read to keep
589 		 * interrupt service cost low.  ~0 cannot occur otherwise
590 		 * as the master volume has a precision of 6 bits only.
591 		 */
592 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
593 	}
594 
595 #if NMPU > 0
596 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
597 		mpu_intr(sc->sc_mpudev);
598 #endif
599 
600 	return (1);
601 }
602 
603 /* Perform a software reset, including DMA FIFOs. */
604 static int
605 eso_reset(sc)
606 	struct eso_softc *sc;
607 {
608 	int i;
609 
610 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
611 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
612 	/* `Delay' suggested in the data sheet. */
613 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
614 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
615 
616 	/* Wait for reset to take effect. */
617 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
618 		/* Poll for data to become available. */
619 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
620 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
621 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
622 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
623 
624 			/* Activate Solo-1 extension commands. */
625 			eso_write_cmd(sc, ESO_CMD_EXTENB);
626 			/* Reset mixer registers. */
627 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
628 			    ESO_MIXREG_RESET_RESET);
629 
630 			return (0);
631 		} else {
632 			delay(1000);
633 		}
634 	}
635 
636 	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
637 	return (-1);
638 }
639 
640 
641 /* ARGSUSED */
642 static int
643 eso_open(hdl, flags)
644 	void *hdl;
645 	int flags;
646 {
647 	struct eso_softc *sc = hdl;
648 
649 	DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
650 
651 	sc->sc_pintr = NULL;
652 	sc->sc_rintr = NULL;
653 
654 	return (0);
655 }
656 
657 static void
658 eso_close(hdl)
659 	void *hdl;
660 {
661 
662 	DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
663 }
664 
665 static int
666 eso_query_encoding(hdl, fp)
667 	void *hdl;
668 	struct audio_encoding *fp;
669 {
670 
671 	switch (fp->index) {
672 	case 0:
673 		strcpy(fp->name, AudioEulinear);
674 		fp->encoding = AUDIO_ENCODING_ULINEAR;
675 		fp->precision = 8;
676 		fp->flags = 0;
677 		break;
678 	case 1:
679 		strcpy(fp->name, AudioEmulaw);
680 		fp->encoding = AUDIO_ENCODING_ULAW;
681 		fp->precision = 8;
682 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
683 		break;
684 	case 2:
685 		strcpy(fp->name, AudioEalaw);
686 		fp->encoding = AUDIO_ENCODING_ALAW;
687 		fp->precision = 8;
688 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
689 		break;
690 	case 3:
691 		strcpy(fp->name, AudioEslinear);
692 		fp->encoding = AUDIO_ENCODING_SLINEAR;
693 		fp->precision = 8;
694 		fp->flags = 0;
695 		break;
696 	case 4:
697 		strcpy(fp->name, AudioEslinear_le);
698 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
699 		fp->precision = 16;
700 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
701 		break;
702 	case 5:
703 		strcpy(fp->name, AudioEulinear_le);
704 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
705 		fp->precision = 16;
706 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
707 		break;
708 	case 6:
709 		strcpy(fp->name, AudioEslinear_be);
710 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
711 		fp->precision = 16;
712 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
713 		break;
714 	case 7:
715 		strcpy(fp->name, AudioEulinear_be);
716 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
717 		fp->precision = 16;
718 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
719 		break;
720 	default:
721 		return (EINVAL);
722 	}
723 
724 	return (0);
725 }
726 
727 static int
728 eso_set_params(hdl, setmode, usemode, play, rec)
729 	void *hdl;
730 	int setmode, usemode;
731 	struct audio_params *play, *rec;
732 {
733 	struct eso_softc *sc = hdl;
734 	struct audio_params *p;
735 	int mode, r[2], rd[2], clk;
736 	unsigned int srg, fltdiv;
737 
738 	for (mode = AUMODE_RECORD; mode != -1;
739 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
740 		if ((setmode & mode) == 0)
741 			continue;
742 
743 		p = (mode == AUMODE_PLAY) ? play : rec;
744 
745 		if (p->sample_rate < ESO_MINRATE ||
746 		    p->sample_rate > ESO_MAXRATE ||
747 		    (p->precision != 8 && p->precision != 16) ||
748 		    (p->channels != 1 && p->channels != 2))
749 			return (EINVAL);
750 
751 		p->factor = 1;
752 		p->sw_code = NULL;
753 		switch (p->encoding) {
754 		case AUDIO_ENCODING_SLINEAR_BE:
755 		case AUDIO_ENCODING_ULINEAR_BE:
756 			if (mode == AUMODE_PLAY && p->precision == 16)
757 				p->sw_code = swap_bytes;
758 			break;
759 		case AUDIO_ENCODING_SLINEAR_LE:
760 		case AUDIO_ENCODING_ULINEAR_LE:
761 			if (mode == AUMODE_RECORD && p->precision == 16)
762 				p->sw_code = swap_bytes;
763 			break;
764 		case AUDIO_ENCODING_ULAW:
765 			if (mode == AUMODE_PLAY) {
766 				p->factor = 2;
767 				p->sw_code = mulaw_to_ulinear16_le;
768 			} else {
769 				p->sw_code = ulinear8_to_mulaw;
770 			}
771 			break;
772 		case AUDIO_ENCODING_ALAW:
773 			if (mode == AUMODE_PLAY) {
774 				p->factor = 2;
775 				p->sw_code = alaw_to_ulinear16_le;
776 			} else {
777 				p->sw_code = ulinear8_to_alaw;
778 			}
779 			break;
780 		default:
781 			return (EINVAL);
782 		}
783 
784 		/*
785 		 * We'll compute both possible sample rate dividers and pick
786 		 * the one with the least error.
787 		 */
788 #define ABS(x) ((x) < 0 ? -(x) : (x))
789 		r[0] = ESO_CLK0 /
790 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
791 		r[1] = ESO_CLK1 /
792 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
793 
794 		clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
795 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
796 
797 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
798 		fltdiv = 256 - 200279L / r[clk];
799 
800 		/* Update to reflect the possibly inexact rate. */
801 		p->sample_rate = r[clk];
802 
803 		if (mode == AUMODE_RECORD) {
804 			/* Audio 1 */
805 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
806 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
807 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
808 		} else {
809 			/* Audio 2 */
810 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
811 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
812 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
813 		}
814 #undef ABS
815 
816 	}
817 
818 	return (0);
819 }
820 
821 static int
822 eso_round_blocksize(hdl, blk)
823 	void *hdl;
824 	int blk;
825 {
826 
827 	return (blk & -32);	/* keep good alignment; at least 16 req'd */
828 }
829 
830 static int
831 eso_halt_output(hdl)
832 	void *hdl;
833 {
834 	struct eso_softc *sc = hdl;
835 	int error, s;
836 
837 	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
838 
839 	/*
840 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
841 	 * stop.  The interrupt callback pointer is cleared at this
842 	 * point so that an outstanding FIFO interrupt for the remaining data
843 	 * will be acknowledged without further processing.
844 	 *
845 	 * This does not immediately `abort' an operation in progress (c.f.
846 	 * audio(9)) but is the method to leave the FIFO behind in a clean
847 	 * state with the least hair.  (Besides, that item needs to be
848 	 * rephrased for trigger_*()-based DMA environments.)
849 	 */
850 	s = splaudio();
851 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
852 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
853 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
854 	    ESO_IO_A2DMAM_DMAENB);
855 
856 	sc->sc_pintr = NULL;
857 	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
858 	splx(s);
859 
860 	/* Shut down DMA completely. */
861 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
862 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
863 
864 	return (error == EWOULDBLOCK ? 0 : error);
865 }
866 
867 static int
868 eso_halt_input(hdl)
869 	void *hdl;
870 {
871 	struct eso_softc *sc = hdl;
872 	int error, s;
873 
874 	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
875 
876 	/* Just like eso_halt_output(), but for Audio 1. */
877 	s = splaudio();
878 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
879 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
880 	    ESO_CTLREG_A1C2_DMAENB);
881 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
882 	    DMA37MD_WRITE | DMA37MD_DEMAND);
883 
884 	sc->sc_rintr = NULL;
885 	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
886 	splx(s);
887 
888 	/* Shut down DMA completely. */
889 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
890 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
891 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
892 	    ESO_DMAC_MASK_MASK);
893 
894 	return (error == EWOULDBLOCK ? 0 : error);
895 }
896 
897 static int
898 eso_getdev(hdl, retp)
899 	void *hdl;
900 	struct audio_device *retp;
901 {
902 	struct eso_softc *sc = hdl;
903 
904 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
905 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
906 	    sc->sc_revision);
907 	if (sc->sc_revision <
908 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
909 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
910 		    sizeof (retp->config));
911 	else
912 		strncpy(retp->config, "unknown", sizeof (retp->config));
913 
914 	return (0);
915 }
916 
917 static int
918 eso_set_port(hdl, cp)
919 	void *hdl;
920 	mixer_ctrl_t *cp;
921 {
922 	struct eso_softc *sc = hdl;
923 	unsigned int lgain, rgain;
924 	uint8_t tmp;
925 
926 	switch (cp->dev) {
927 	case ESO_DAC_PLAY_VOL:
928 	case ESO_MIC_PLAY_VOL:
929 	case ESO_LINE_PLAY_VOL:
930 	case ESO_SYNTH_PLAY_VOL:
931 	case ESO_CD_PLAY_VOL:
932 	case ESO_AUXB_PLAY_VOL:
933 	case ESO_RECORD_VOL:
934 	case ESO_DAC_REC_VOL:
935 	case ESO_MIC_REC_VOL:
936 	case ESO_LINE_REC_VOL:
937 	case ESO_SYNTH_REC_VOL:
938 	case ESO_CD_REC_VOL:
939 	case ESO_AUXB_REC_VOL:
940 		if (cp->type != AUDIO_MIXER_VALUE)
941 			return (EINVAL);
942 
943 		/*
944 		 * Stereo-capable mixer ports: if we get a single-channel
945 		 * gain value passed in, then we duplicate it to both left
946 		 * and right channels.
947 		 */
948 		switch (cp->un.value.num_channels) {
949 		case 1:
950 			lgain = rgain = ESO_GAIN_TO_4BIT(
951 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
952 			break;
953 		case 2:
954 			lgain = ESO_GAIN_TO_4BIT(
955 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
956 			rgain = ESO_GAIN_TO_4BIT(
957 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
958 			break;
959 		default:
960 			return (EINVAL);
961 		}
962 
963 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
964 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
965 		eso_set_gain(sc, cp->dev);
966 		break;
967 
968 	case ESO_MASTER_VOL:
969 		if (cp->type != AUDIO_MIXER_VALUE)
970 			return (EINVAL);
971 
972 		/* Like above, but a precision of 6 bits. */
973 		switch (cp->un.value.num_channels) {
974 		case 1:
975 			lgain = rgain = ESO_GAIN_TO_6BIT(
976 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
977 			break;
978 		case 2:
979 			lgain = ESO_GAIN_TO_6BIT(
980 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
981 			rgain = ESO_GAIN_TO_6BIT(
982 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
983 			break;
984 		default:
985 			return (EINVAL);
986 		}
987 
988 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
989 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
990 		eso_set_gain(sc, cp->dev);
991 		break;
992 
993 	case ESO_SPATIALIZER:
994 		if (cp->type != AUDIO_MIXER_VALUE ||
995 		    cp->un.value.num_channels != 1)
996 			return (EINVAL);
997 
998 		sc->sc_gain[cp->dev][ESO_LEFT] =
999 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1000 		    ESO_GAIN_TO_6BIT(
1001 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1002 		eso_set_gain(sc, cp->dev);
1003 		break;
1004 
1005 	case ESO_MONO_PLAY_VOL:
1006 	case ESO_MONO_REC_VOL:
1007 		if (cp->type != AUDIO_MIXER_VALUE ||
1008 		    cp->un.value.num_channels != 1)
1009 			return (EINVAL);
1010 
1011 		sc->sc_gain[cp->dev][ESO_LEFT] =
1012 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1013 		    ESO_GAIN_TO_4BIT(
1014 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1015 		eso_set_gain(sc, cp->dev);
1016 		break;
1017 
1018 	case ESO_PCSPEAKER_VOL:
1019 		if (cp->type != AUDIO_MIXER_VALUE ||
1020 		    cp->un.value.num_channels != 1)
1021 			return (EINVAL);
1022 
1023 		sc->sc_gain[cp->dev][ESO_LEFT] =
1024 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1025 		    ESO_GAIN_TO_3BIT(
1026 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1027 		eso_set_gain(sc, cp->dev);
1028 		break;
1029 
1030 	case ESO_SPATIALIZER_ENABLE:
1031 		if (cp->type != AUDIO_MIXER_ENUM)
1032 			return (EINVAL);
1033 
1034 		sc->sc_spatializer = (cp->un.ord != 0);
1035 
1036 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1037 		if (sc->sc_spatializer)
1038 			tmp |= ESO_MIXREG_SPAT_ENB;
1039 		else
1040 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1041 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1042 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1043 		break;
1044 
1045 	case ESO_MASTER_MUTE:
1046 		if (cp->type != AUDIO_MIXER_ENUM)
1047 			return (EINVAL);
1048 
1049 		sc->sc_mvmute = (cp->un.ord != 0);
1050 
1051 		if (sc->sc_mvmute) {
1052 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1053 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1054 			    ESO_MIXREG_LMVM_MUTE);
1055 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1056 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1057 			    ESO_MIXREG_RMVM_MUTE);
1058 		} else {
1059 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1060 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1061 			    ~ESO_MIXREG_LMVM_MUTE);
1062 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1063 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1064 			    ~ESO_MIXREG_RMVM_MUTE);
1065 		}
1066 		break;
1067 
1068 	case ESO_MONOOUT_SOURCE:
1069 		if (cp->type != AUDIO_MIXER_ENUM)
1070 			return (EINVAL);
1071 
1072 		return (eso_set_monooutsrc(sc, cp->un.ord));
1073 
1074 	case ESO_RECORD_MONITOR:
1075 		if (cp->type != AUDIO_MIXER_ENUM)
1076 			return (EINVAL);
1077 
1078 		sc->sc_recmon = (cp->un.ord != 0);
1079 
1080 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1081 		if (sc->sc_recmon)
1082 			tmp |= ESO_CTLREG_ACTL_RECMON;
1083 		else
1084 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1085 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1086 		break;
1087 
1088 	case ESO_RECORD_SOURCE:
1089 		if (cp->type != AUDIO_MIXER_ENUM)
1090 			return (EINVAL);
1091 
1092 		return (eso_set_recsrc(sc, cp->un.ord));
1093 
1094 	case ESO_MIC_PREAMP:
1095 		if (cp->type != AUDIO_MIXER_ENUM)
1096 			return (EINVAL);
1097 
1098 		sc->sc_preamp = (cp->un.ord != 0);
1099 
1100 		tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1101 		tmp &= ~ESO_MIXREG_MPM_RESV0;
1102 		if (sc->sc_preamp)
1103 			tmp |= ESO_MIXREG_MPM_PREAMP;
1104 		else
1105 			tmp &= ~ESO_MIXREG_MPM_PREAMP;
1106 		eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1107 		break;
1108 
1109 	default:
1110 		return (EINVAL);
1111 	}
1112 
1113 	return (0);
1114 }
1115 
1116 static int
1117 eso_get_port(hdl, cp)
1118 	void *hdl;
1119 	mixer_ctrl_t *cp;
1120 {
1121 	struct eso_softc *sc = hdl;
1122 
1123 	switch (cp->dev) {
1124 	case ESO_MASTER_VOL:
1125 		/* Reload from mixer after hardware volume control use. */
1126 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1127 			eso_reload_master_vol(sc);
1128 		/* FALLTHROUGH */
1129 	case ESO_DAC_PLAY_VOL:
1130 	case ESO_MIC_PLAY_VOL:
1131 	case ESO_LINE_PLAY_VOL:
1132 	case ESO_SYNTH_PLAY_VOL:
1133 	case ESO_CD_PLAY_VOL:
1134 	case ESO_AUXB_PLAY_VOL:
1135 	case ESO_RECORD_VOL:
1136 	case ESO_DAC_REC_VOL:
1137 	case ESO_MIC_REC_VOL:
1138 	case ESO_LINE_REC_VOL:
1139 	case ESO_SYNTH_REC_VOL:
1140 	case ESO_CD_REC_VOL:
1141 	case ESO_AUXB_REC_VOL:
1142 		/*
1143 		 * Stereo-capable ports: if a single-channel query is made,
1144 		 * just return the left channel's value (since single-channel
1145 		 * settings themselves are applied to both channels).
1146 		 */
1147 		switch (cp->un.value.num_channels) {
1148 		case 1:
1149 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1150 			    sc->sc_gain[cp->dev][ESO_LEFT];
1151 			break;
1152 		case 2:
1153 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1154 			    sc->sc_gain[cp->dev][ESO_LEFT];
1155 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1156 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1157 			break;
1158 		default:
1159 			return (EINVAL);
1160 		}
1161 		break;
1162 
1163 	case ESO_MONO_PLAY_VOL:
1164 	case ESO_PCSPEAKER_VOL:
1165 	case ESO_MONO_REC_VOL:
1166 	case ESO_SPATIALIZER:
1167 		if (cp->un.value.num_channels != 1)
1168 			return (EINVAL);
1169 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1170 		    sc->sc_gain[cp->dev][ESO_LEFT];
1171 		break;
1172 
1173 	case ESO_RECORD_MONITOR:
1174 		cp->un.ord = sc->sc_recmon;
1175 		break;
1176 
1177 	case ESO_RECORD_SOURCE:
1178 		cp->un.ord = sc->sc_recsrc;
1179 		break;
1180 
1181 	case ESO_MONOOUT_SOURCE:
1182 		cp->un.ord = sc->sc_monooutsrc;
1183 		break;
1184 
1185 	case ESO_SPATIALIZER_ENABLE:
1186 		cp->un.ord = sc->sc_spatializer;
1187 		break;
1188 
1189 	case ESO_MIC_PREAMP:
1190 		cp->un.ord = sc->sc_preamp;
1191 		break;
1192 
1193 	case ESO_MASTER_MUTE:
1194 		/* Reload from mixer after hardware volume control use. */
1195 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1196 			eso_reload_master_vol(sc);
1197 		cp->un.ord = sc->sc_mvmute;
1198 		break;
1199 
1200 	default:
1201 		return (EINVAL);
1202 	}
1203 
1204 
1205 	return (0);
1206 
1207 }
1208 
1209 static int
1210 eso_query_devinfo(hdl, dip)
1211 	void *hdl;
1212 	mixer_devinfo_t *dip;
1213 {
1214 
1215 	switch (dip->index) {
1216 	case ESO_DAC_PLAY_VOL:
1217 		dip->mixer_class = ESO_INPUT_CLASS;
1218 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 		strcpy(dip->label.name, AudioNdac);
1220 		dip->type = AUDIO_MIXER_VALUE;
1221 		dip->un.v.num_channels = 2;
1222 		strcpy(dip->un.v.units.name, AudioNvolume);
1223 		break;
1224 	case ESO_MIC_PLAY_VOL:
1225 		dip->mixer_class = ESO_INPUT_CLASS;
1226 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 		strcpy(dip->label.name, AudioNmicrophone);
1228 		dip->type = AUDIO_MIXER_VALUE;
1229 		dip->un.v.num_channels = 2;
1230 		strcpy(dip->un.v.units.name, AudioNvolume);
1231 		break;
1232 	case ESO_LINE_PLAY_VOL:
1233 		dip->mixer_class = ESO_INPUT_CLASS;
1234 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 		strcpy(dip->label.name, AudioNline);
1236 		dip->type = AUDIO_MIXER_VALUE;
1237 		dip->un.v.num_channels = 2;
1238 		strcpy(dip->un.v.units.name, AudioNvolume);
1239 		break;
1240 	case ESO_SYNTH_PLAY_VOL:
1241 		dip->mixer_class = ESO_INPUT_CLASS;
1242 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1243 		strcpy(dip->label.name, AudioNfmsynth);
1244 		dip->type = AUDIO_MIXER_VALUE;
1245 		dip->un.v.num_channels = 2;
1246 		strcpy(dip->un.v.units.name, AudioNvolume);
1247 		break;
1248 	case ESO_MONO_PLAY_VOL:
1249 		dip->mixer_class = ESO_INPUT_CLASS;
1250 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1251 		strcpy(dip->label.name, "mono_in");
1252 		dip->type = AUDIO_MIXER_VALUE;
1253 		dip->un.v.num_channels = 1;
1254 		strcpy(dip->un.v.units.name, AudioNvolume);
1255 		break;
1256 	case ESO_CD_PLAY_VOL:
1257 		dip->mixer_class = ESO_INPUT_CLASS;
1258 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 		strcpy(dip->label.name, AudioNcd);
1260 		dip->type = AUDIO_MIXER_VALUE;
1261 		dip->un.v.num_channels = 2;
1262 		strcpy(dip->un.v.units.name, AudioNvolume);
1263 		break;
1264 	case ESO_AUXB_PLAY_VOL:
1265 		dip->mixer_class = ESO_INPUT_CLASS;
1266 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1267 		strcpy(dip->label.name, "auxb");
1268 		dip->type = AUDIO_MIXER_VALUE;
1269 		dip->un.v.num_channels = 2;
1270 		strcpy(dip->un.v.units.name, AudioNvolume);
1271 		break;
1272 
1273 	case ESO_MIC_PREAMP:
1274 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1275 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1276 		strcpy(dip->label.name, AudioNpreamp);
1277 		dip->type = AUDIO_MIXER_ENUM;
1278 		dip->un.e.num_mem = 2;
1279 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1280 		dip->un.e.member[0].ord = 0;
1281 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1282 		dip->un.e.member[1].ord = 1;
1283 		break;
1284 	case ESO_MICROPHONE_CLASS:
1285 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1286 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1287 		strcpy(dip->label.name, AudioNmicrophone);
1288 		dip->type = AUDIO_MIXER_CLASS;
1289 		break;
1290 
1291 	case ESO_INPUT_CLASS:
1292 		dip->mixer_class = ESO_INPUT_CLASS;
1293 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1294 		strcpy(dip->label.name, AudioCinputs);
1295 		dip->type = AUDIO_MIXER_CLASS;
1296 		break;
1297 
1298 	case ESO_MASTER_VOL:
1299 		dip->mixer_class = ESO_OUTPUT_CLASS;
1300 		dip->prev = AUDIO_MIXER_LAST;
1301 		dip->next = ESO_MASTER_MUTE;
1302 		strcpy(dip->label.name, AudioNmaster);
1303 		dip->type = AUDIO_MIXER_VALUE;
1304 		dip->un.v.num_channels = 2;
1305 		strcpy(dip->un.v.units.name, AudioNvolume);
1306 		break;
1307 	case ESO_MASTER_MUTE:
1308 		dip->mixer_class = ESO_OUTPUT_CLASS;
1309 		dip->prev = ESO_MASTER_VOL;
1310 		dip->next = AUDIO_MIXER_LAST;
1311 		strcpy(dip->label.name, AudioNmute);
1312 		dip->type = AUDIO_MIXER_ENUM;
1313 		dip->un.e.num_mem = 2;
1314 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1315 		dip->un.e.member[0].ord = 0;
1316 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1317 		dip->un.e.member[1].ord = 1;
1318 		break;
1319 
1320 	case ESO_PCSPEAKER_VOL:
1321 		dip->mixer_class = ESO_OUTPUT_CLASS;
1322 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1323 		strcpy(dip->label.name, "pc_speaker");
1324 		dip->type = AUDIO_MIXER_VALUE;
1325 		dip->un.v.num_channels = 1;
1326 		strcpy(dip->un.v.units.name, AudioNvolume);
1327 		break;
1328 	case ESO_MONOOUT_SOURCE:
1329 		dip->mixer_class = ESO_OUTPUT_CLASS;
1330 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1331 		strcpy(dip->label.name, "mono_out");
1332 		dip->type = AUDIO_MIXER_ENUM;
1333 		dip->un.e.num_mem = 3;
1334 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1335 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1336 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1337 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1338 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1339 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1340 		break;
1341 	case ESO_SPATIALIZER:
1342 		dip->mixer_class = ESO_OUTPUT_CLASS;
1343 		dip->prev = AUDIO_MIXER_LAST;
1344 		dip->next = ESO_SPATIALIZER_ENABLE;
1345 		strcpy(dip->label.name, AudioNspatial);
1346 		dip->type = AUDIO_MIXER_VALUE;
1347 		dip->un.v.num_channels = 1;
1348 		strcpy(dip->un.v.units.name, "level");
1349 		break;
1350 	case ESO_SPATIALIZER_ENABLE:
1351 		dip->mixer_class = ESO_OUTPUT_CLASS;
1352 		dip->prev = ESO_SPATIALIZER;
1353 		dip->next = AUDIO_MIXER_LAST;
1354 		strcpy(dip->label.name, "enable");
1355 		dip->type = AUDIO_MIXER_ENUM;
1356 		dip->un.e.num_mem = 2;
1357 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1358 		dip->un.e.member[0].ord = 0;
1359 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1360 		dip->un.e.member[1].ord = 1;
1361 		break;
1362 
1363 	case ESO_OUTPUT_CLASS:
1364 		dip->mixer_class = ESO_OUTPUT_CLASS;
1365 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1366 		strcpy(dip->label.name, AudioCoutputs);
1367 		dip->type = AUDIO_MIXER_CLASS;
1368 		break;
1369 
1370 	case ESO_RECORD_MONITOR:
1371 		dip->mixer_class = ESO_MONITOR_CLASS;
1372 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1373 		strcpy(dip->label.name, AudioNmute);
1374 		dip->type = AUDIO_MIXER_ENUM;
1375 		dip->un.e.num_mem = 2;
1376 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1377 		dip->un.e.member[0].ord = 0;
1378 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1379 		dip->un.e.member[1].ord = 1;
1380 		break;
1381 	case ESO_MONITOR_CLASS:
1382 		dip->mixer_class = ESO_MONITOR_CLASS;
1383 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1384 		strcpy(dip->label.name, AudioCmonitor);
1385 		dip->type = AUDIO_MIXER_CLASS;
1386 		break;
1387 
1388 	case ESO_RECORD_VOL:
1389 		dip->mixer_class = ESO_RECORD_CLASS;
1390 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1391 		strcpy(dip->label.name, AudioNrecord);
1392 		dip->type = AUDIO_MIXER_VALUE;
1393 		strcpy(dip->un.v.units.name, AudioNvolume);
1394 		break;
1395 	case ESO_RECORD_SOURCE:
1396 		dip->mixer_class = ESO_RECORD_CLASS;
1397 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1398 		strcpy(dip->label.name, AudioNsource);
1399 		dip->type = AUDIO_MIXER_ENUM;
1400 		dip->un.e.num_mem = 4;
1401 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1402 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1403 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1404 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1405 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1406 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1407 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1408 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1409 		break;
1410 	case ESO_DAC_REC_VOL:
1411 		dip->mixer_class = ESO_RECORD_CLASS;
1412 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 		strcpy(dip->label.name, AudioNdac);
1414 		dip->type = AUDIO_MIXER_VALUE;
1415 		dip->un.v.num_channels = 2;
1416 		strcpy(dip->un.v.units.name, AudioNvolume);
1417 		break;
1418 	case ESO_MIC_REC_VOL:
1419 		dip->mixer_class = ESO_RECORD_CLASS;
1420 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 		strcpy(dip->label.name, AudioNmicrophone);
1422 		dip->type = AUDIO_MIXER_VALUE;
1423 		dip->un.v.num_channels = 2;
1424 		strcpy(dip->un.v.units.name, AudioNvolume);
1425 		break;
1426 	case ESO_LINE_REC_VOL:
1427 		dip->mixer_class = ESO_RECORD_CLASS;
1428 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 		strcpy(dip->label.name, AudioNline);
1430 		dip->type = AUDIO_MIXER_VALUE;
1431 		dip->un.v.num_channels = 2;
1432 		strcpy(dip->un.v.units.name, AudioNvolume);
1433 		break;
1434 	case ESO_SYNTH_REC_VOL:
1435 		dip->mixer_class = ESO_RECORD_CLASS;
1436 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 		strcpy(dip->label.name, AudioNfmsynth);
1438 		dip->type = AUDIO_MIXER_VALUE;
1439 		dip->un.v.num_channels = 2;
1440 		strcpy(dip->un.v.units.name, AudioNvolume);
1441 		break;
1442 	case ESO_MONO_REC_VOL:
1443 		dip->mixer_class = ESO_RECORD_CLASS;
1444 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1445 		strcpy(dip->label.name, "mono_in");
1446 		dip->type = AUDIO_MIXER_VALUE;
1447 		dip->un.v.num_channels = 1; /* No lies */
1448 		strcpy(dip->un.v.units.name, AudioNvolume);
1449 		break;
1450 	case ESO_CD_REC_VOL:
1451 		dip->mixer_class = ESO_RECORD_CLASS;
1452 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 		strcpy(dip->label.name, AudioNcd);
1454 		dip->type = AUDIO_MIXER_VALUE;
1455 		dip->un.v.num_channels = 2;
1456 		strcpy(dip->un.v.units.name, AudioNvolume);
1457 		break;
1458 	case ESO_AUXB_REC_VOL:
1459 		dip->mixer_class = ESO_RECORD_CLASS;
1460 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 		strcpy(dip->label.name, "auxb");
1462 		dip->type = AUDIO_MIXER_VALUE;
1463 		dip->un.v.num_channels = 2;
1464 		strcpy(dip->un.v.units.name, AudioNvolume);
1465 		break;
1466 	case ESO_RECORD_CLASS:
1467 		dip->mixer_class = ESO_RECORD_CLASS;
1468 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1469 		strcpy(dip->label.name, AudioCrecord);
1470 		dip->type = AUDIO_MIXER_CLASS;
1471 		break;
1472 
1473 	default:
1474 		return (ENXIO);
1475 	}
1476 
1477 	return (0);
1478 }
1479 
1480 static int
1481 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1482 	struct eso_softc *sc;
1483 	size_t size;
1484 	size_t align;
1485 	size_t boundary;
1486 	int flags;
1487 	int direction;
1488 	struct eso_dma *ed;
1489 {
1490 	int error, wait;
1491 
1492 	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1493 	ed->ed_size = size;
1494 
1495 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1496 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1497 	    &ed->ed_nsegs, wait);
1498 	if (error)
1499 		goto out;
1500 
1501 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1502 	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1503 	if (error)
1504 		goto free;
1505 
1506 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1507 	    wait, &ed->ed_map);
1508 	if (error)
1509 		goto unmap;
1510 
1511 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1512 	    ed->ed_size, NULL, wait |
1513 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1514 	if (error)
1515 		goto destroy;
1516 
1517 	return (0);
1518 
1519  destroy:
1520 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1521  unmap:
1522 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1523  free:
1524 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1525  out:
1526 	return (error);
1527 }
1528 
1529 static void
1530 eso_freemem(ed)
1531 	struct eso_dma *ed;
1532 {
1533 
1534 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1535 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1536 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1537 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1538 }
1539 
1540 static void *
1541 eso_allocm(hdl, direction, size, type, flags)
1542 	void *hdl;
1543 	int direction;
1544 	size_t size;
1545 	struct malloc_type *type;
1546 	int flags;
1547 {
1548 	struct eso_softc *sc = hdl;
1549 	struct eso_dma *ed;
1550 	size_t boundary;
1551 	int error;
1552 
1553 	if ((ed = malloc(size, type, flags)) == NULL)
1554 		return (NULL);
1555 
1556 	/*
1557 	 * Apparently the Audio 1 DMA controller's current address
1558 	 * register can't roll over a 64K address boundary, so we have to
1559 	 * take care of that ourselves.  The second channel DMA controller
1560 	 * doesn't have that restriction, however.
1561 	 */
1562 	if (direction == AUMODE_RECORD)
1563 		boundary = 0x10000;
1564 	else
1565 		boundary = 0;
1566 
1567 #ifdef alpha
1568 	/*
1569 	 * XXX For Audio 1, which implements the 24 low address bits only,
1570 	 * XXX force allocation through the (ISA) SGMAP.
1571 	 */
1572 	if (direction == AUMODE_RECORD)
1573 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1574 	else
1575 #endif
1576 		ed->ed_dmat = sc->sc_dmat;
1577 
1578 	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1579 	if (error) {
1580 		free(ed, type);
1581 		return (NULL);
1582 	}
1583 	ed->ed_next = sc->sc_dmas;
1584 	sc->sc_dmas = ed;
1585 
1586 	return (KVADDR(ed));
1587 }
1588 
1589 static void
1590 eso_freem(hdl, addr, type)
1591 	void *hdl;
1592 	void *addr;
1593 	struct malloc_type *type;
1594 {
1595 	struct eso_softc *sc = hdl;
1596 	struct eso_dma *p, **pp;
1597 
1598 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1599 		if (KVADDR(p) == addr) {
1600 			eso_freemem(p);
1601 			*pp = p->ed_next;
1602 			free(p, type);
1603 			return;
1604 		}
1605 	}
1606 }
1607 
1608 static size_t
1609 eso_round_buffersize(hdl, direction, bufsize)
1610 	void *hdl;
1611 	int direction;
1612 	size_t bufsize;
1613 {
1614 	size_t maxsize;
1615 
1616 	/*
1617 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1618 	 * bytes.  This is because IO_A2DMAC is a two byte value
1619 	 * indicating the literal byte count, and the 4 least significant
1620 	 * bits are read-only.  Zero is not used as a special case for
1621 	 * 0x10000.
1622 	 *
1623 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1624 	 * be represented.
1625 	 */
1626 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1627 
1628 	if (bufsize > maxsize)
1629 		bufsize = maxsize;
1630 
1631 	return (bufsize);
1632 }
1633 
1634 static paddr_t
1635 eso_mappage(hdl, addr, offs, prot)
1636 	void *hdl;
1637 	void *addr;
1638 	off_t offs;
1639 	int prot;
1640 {
1641 	struct eso_softc *sc = hdl;
1642 	struct eso_dma *ed;
1643 
1644 	if (offs < 0)
1645 		return (-1);
1646 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1647 	     ed = ed->ed_next)
1648 		;
1649 	if (ed == NULL)
1650 		return (-1);
1651 
1652 	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1653 	    offs, prot, BUS_DMA_WAITOK));
1654 }
1655 
1656 /* ARGSUSED */
1657 static int
1658 eso_get_props(hdl)
1659 	void *hdl;
1660 {
1661 
1662 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1663 	    AUDIO_PROP_FULLDUPLEX);
1664 }
1665 
1666 static int
1667 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1668 	void *hdl;
1669 	void *start, *end;
1670 	int blksize;
1671 	void (*intr) __P((void *));
1672 	void *arg;
1673 	struct audio_params *param;
1674 {
1675 	struct eso_softc *sc = hdl;
1676 	struct eso_dma *ed;
1677 	uint8_t a2c1;
1678 
1679 	DPRINTF((
1680 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1681 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1682 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1683 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1684 	    param->precision, param->channels, param->sw_code, param->factor));
1685 
1686 	/* Find DMA buffer. */
1687 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1688 	     ed = ed->ed_next)
1689 		;
1690 	if (ed == NULL) {
1691 		printf("%s: trigger_output: bad addr %p\n",
1692 		    sc->sc_dev.dv_xname, start);
1693 		return (EINVAL);
1694 	}
1695 
1696 	sc->sc_pintr = intr;
1697 	sc->sc_parg = arg;
1698 
1699 	/* Compute drain timeout. */
1700 	sc->sc_pdrain = (blksize * NBBY * hz) /
1701 	    (param->sample_rate * param->channels *
1702 	     param->precision * param->factor) + 2;	/* slop */
1703 
1704 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1705 	blksize = -(blksize >> 1);
1706 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1707 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1708 
1709 	/* Update DAC to reflect DMA count and audio parameters. */
1710 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1711 	if (param->precision * param->factor == 16)
1712 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1713 	else
1714 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1715 	if (param->channels == 2)
1716 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1717 	else
1718 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1719 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1720 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1721 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1722 	else
1723 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1724 	/* Unmask IRQ. */
1725 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1726 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1727 
1728 	/* Set up DMA controller. */
1729 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1730 	    DMAADDR(ed));
1731 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1732 	    (uint8_t *)end - (uint8_t *)start);
1733 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1734 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1735 
1736 	/* Start DMA. */
1737 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1738 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1739 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1740 	    ESO_MIXREG_A2C1_AUTO;
1741 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1742 
1743 	return (0);
1744 }
1745 
1746 static int
1747 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1748 	void *hdl;
1749 	void *start, *end;
1750 	int blksize;
1751 	void (*intr) __P((void *));
1752 	void *arg;
1753 	struct audio_params *param;
1754 {
1755 	struct eso_softc *sc = hdl;
1756 	struct eso_dma *ed;
1757 	uint8_t actl, a1c1;
1758 
1759 	DPRINTF((
1760 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1761 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1762 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1763 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1764 	    param->precision, param->channels, param->sw_code, param->factor));
1765 
1766 	/*
1767 	 * If we failed to configure the Audio 1 DMA controller, bail here
1768 	 * while retaining availability of the DAC direction (in Audio 2).
1769 	 */
1770 	if (!sc->sc_dmac_configured)
1771 		return (EIO);
1772 
1773 	/* Find DMA buffer. */
1774 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1775 	     ed = ed->ed_next)
1776 		;
1777 	if (ed == NULL) {
1778 		printf("%s: trigger_output: bad addr %p\n",
1779 		    sc->sc_dev.dv_xname, start);
1780 		return (EINVAL);
1781 	}
1782 
1783 	sc->sc_rintr = intr;
1784 	sc->sc_rarg = arg;
1785 
1786 	/* Compute drain timeout. */
1787 	sc->sc_rdrain = (blksize * NBBY * hz) /
1788 	    (param->sample_rate * param->channels *
1789 	     param->precision * param->factor) + 2;	/* slop */
1790 
1791 	/* Set up ADC DMA converter parameters. */
1792 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1793 	if (param->channels == 2) {
1794 		actl &= ~ESO_CTLREG_ACTL_MONO;
1795 		actl |= ESO_CTLREG_ACTL_STEREO;
1796 	} else {
1797 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1798 		actl |= ESO_CTLREG_ACTL_MONO;
1799 	}
1800 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1801 
1802 	/* Set up Transfer Type: maybe move to attach time? */
1803 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1804 
1805 	/* DMA transfer count reload using 2's complement. */
1806 	blksize = -blksize;
1807 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1808 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1809 
1810 	/* Set up and enable Audio 1 DMA FIFO. */
1811 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1812 	if (param->precision * param->factor == 16)
1813 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1814 	if (param->channels == 2)
1815 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1816 	else
1817 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1818 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1819 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1820 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1821 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1822 
1823 	/* Set up ADC IRQ/DRQ parameters. */
1824 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1825 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1826 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1827 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1828 
1829 	/* Set up and enable DMA controller. */
1830 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1831 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1832 	    ESO_DMAC_MASK_MASK);
1833 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1834 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1835 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1836 	    DMAADDR(ed));
1837 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1838 	    (uint8_t *)end - (uint8_t *)start - 1);
1839 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1840 
1841 	/* Start DMA. */
1842 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1843 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1844 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1845 
1846 	return (0);
1847 }
1848 
1849 static int
1850 eso_set_monooutsrc(sc, monooutsrc)
1851 	struct eso_softc *sc;
1852 	unsigned int monooutsrc;
1853 {
1854 	mixer_devinfo_t di;
1855 	int i;
1856 	uint8_t mpm;
1857 
1858 	di.index = ESO_MONOOUT_SOURCE;
1859 	if (eso_query_devinfo(sc, &di) != 0)
1860 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1861 
1862 	for (i = 0; i < di.un.e.num_mem; i++) {
1863 		if (monooutsrc == di.un.e.member[i].ord) {
1864 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1865 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1866 			mpm |= monooutsrc;
1867 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1868 			sc->sc_monooutsrc = monooutsrc;
1869 			return (0);
1870 		}
1871 	}
1872 
1873 	return (EINVAL);
1874 }
1875 
1876 static int
1877 eso_set_recsrc(sc, recsrc)
1878 	struct eso_softc *sc;
1879 	unsigned int recsrc;
1880 {
1881 	mixer_devinfo_t di;
1882 	int i;
1883 
1884 	di.index = ESO_RECORD_SOURCE;
1885 	if (eso_query_devinfo(sc, &di) != 0)
1886 		panic("eso_set_recsrc: eso_query_devinfo failed");
1887 
1888 	for (i = 0; i < di.un.e.num_mem; i++) {
1889 		if (recsrc == di.un.e.member[i].ord) {
1890 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1891 			sc->sc_recsrc = recsrc;
1892 			return (0);
1893 		}
1894 	}
1895 
1896 	return (EINVAL);
1897 }
1898 
1899 /*
1900  * Reload Master Volume and Mute values in softc from mixer; used when
1901  * those have previously been invalidated by use of hardware volume controls.
1902  */
1903 static void
1904 eso_reload_master_vol(sc)
1905 	struct eso_softc *sc;
1906 {
1907 	uint8_t mv;
1908 
1909 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1910 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1911 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1912 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1913 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1914 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1915 	/* Currently both channels are muted simultaneously; either is OK. */
1916 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1917 }
1918 
1919 static void
1920 eso_set_gain(sc, port)
1921 	struct eso_softc *sc;
1922 	unsigned int port;
1923 {
1924 	uint8_t mixreg, tmp;
1925 
1926 	switch (port) {
1927 	case ESO_DAC_PLAY_VOL:
1928 		mixreg = ESO_MIXREG_PVR_A2;
1929 		break;
1930 	case ESO_MIC_PLAY_VOL:
1931 		mixreg = ESO_MIXREG_PVR_MIC;
1932 		break;
1933 	case ESO_LINE_PLAY_VOL:
1934 		mixreg = ESO_MIXREG_PVR_LINE;
1935 		break;
1936 	case ESO_SYNTH_PLAY_VOL:
1937 		mixreg = ESO_MIXREG_PVR_SYNTH;
1938 		break;
1939 	case ESO_CD_PLAY_VOL:
1940 		mixreg = ESO_MIXREG_PVR_CD;
1941 		break;
1942 	case ESO_AUXB_PLAY_VOL:
1943 		mixreg = ESO_MIXREG_PVR_AUXB;
1944 		break;
1945 
1946 	case ESO_DAC_REC_VOL:
1947 		mixreg = ESO_MIXREG_RVR_A2;
1948 		break;
1949 	case ESO_MIC_REC_VOL:
1950 		mixreg = ESO_MIXREG_RVR_MIC;
1951 		break;
1952 	case ESO_LINE_REC_VOL:
1953 		mixreg = ESO_MIXREG_RVR_LINE;
1954 		break;
1955 	case ESO_SYNTH_REC_VOL:
1956 		mixreg = ESO_MIXREG_RVR_SYNTH;
1957 		break;
1958 	case ESO_CD_REC_VOL:
1959 		mixreg = ESO_MIXREG_RVR_CD;
1960 		break;
1961 	case ESO_AUXB_REC_VOL:
1962 		mixreg = ESO_MIXREG_RVR_AUXB;
1963 		break;
1964 	case ESO_MONO_PLAY_VOL:
1965 		mixreg = ESO_MIXREG_PVR_MONO;
1966 		break;
1967 	case ESO_MONO_REC_VOL:
1968 		mixreg = ESO_MIXREG_RVR_MONO;
1969 		break;
1970 
1971 	case ESO_PCSPEAKER_VOL:
1972 		/* Special case - only 3-bit, mono, and reserved bits. */
1973 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1974 		tmp &= ESO_MIXREG_PCSVR_RESV;
1975 		/* Map bits 7:5 -> 2:0. */
1976 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1977 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1978 		return;
1979 
1980 	case ESO_MASTER_VOL:
1981 		/* Special case - separate regs, and 6-bit precision. */
1982 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
1983 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1984 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
1985 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1986 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1987 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1988 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1989 		return;
1990 
1991 	case ESO_SPATIALIZER:
1992 		/* Special case - only `mono', and higher precision. */
1993 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1994 		    sc->sc_gain[port][ESO_LEFT]);
1995 		return;
1996 
1997 	case ESO_RECORD_VOL:
1998 		/* Very Special case, controller register. */
1999 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2000 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2001 		return;
2002 
2003 	default:
2004 #ifdef DIAGNOSTIC
2005 		panic("eso_set_gain: bad port %u", port);
2006 		/* NOTREACHED */
2007 #else
2008 		return;
2009 #endif
2010 		}
2011 
2012 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2013 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2014 }
2015