xref: /netbsd-src/sys/dev/pci/eso.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: eso.c,v 1.67 2017/06/01 02:45:11 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 /*
61  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.67 2017/06/01 02:45:11 chs Exp $");
66 
67 #include "mpu.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76 
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82 
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85 
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90 
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 
94 /*
95  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96  * XXX engine by allocating through the ISA DMA tag.
97  */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101 
102 #if defined(AUDIO_DEBUG) || defined(DEBUG)
103 #define DPRINTF(x) printf x
104 #else
105 #define DPRINTF(x)
106 #endif
107 
108 struct eso_dma {
109 	bus_dma_tag_t		ed_dmat;
110 	bus_dmamap_t		ed_map;
111 	void *			ed_kva;
112 	bus_dma_segment_t	ed_segs[1];
113 	int			ed_nsegs;
114 	size_t			ed_size;
115 	SLIST_ENTRY(eso_dma)	ed_slist;
116 };
117 
118 #define KVADDR(dma)	((void *)(dma)->ed_kva)
119 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
120 
121 /* Autoconfiguration interface */
122 static int eso_match(device_t, cfdata_t, void *);
123 static void eso_attach(device_t, device_t, void *);
124 static void eso_defer(device_t);
125 static int eso_print(void *, const char *);
126 
127 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
128     eso_match, eso_attach, NULL, NULL);
129 
130 /* PCI interface */
131 static int eso_intr(void *);
132 
133 /* MI audio layer interface */
134 static int	eso_query_encoding(void *, struct audio_encoding *);
135 static int	eso_set_params(void *, int, int, audio_params_t *,
136 		    audio_params_t *, stream_filter_list_t *,
137 		    stream_filter_list_t *);
138 static int	eso_round_blocksize(void *, int, int, const audio_params_t *);
139 static int	eso_halt_output(void *);
140 static int	eso_halt_input(void *);
141 static int	eso_getdev(void *, struct audio_device *);
142 static int	eso_set_port(void *, mixer_ctrl_t *);
143 static int	eso_get_port(void *, mixer_ctrl_t *);
144 static int	eso_query_devinfo(void *, mixer_devinfo_t *);
145 static void *	eso_allocm(void *, int, size_t);
146 static void	eso_freem(void *, void *, size_t);
147 static size_t	eso_round_buffersize(void *, int, size_t);
148 static paddr_t	eso_mappage(void *, void *, off_t, int);
149 static int	eso_get_props(void *);
150 static int	eso_trigger_output(void *, void *, void *, int,
151 		    void (*)(void *), void *, const audio_params_t *);
152 static int	eso_trigger_input(void *, void *, void *, int,
153 		    void (*)(void *), void *, const audio_params_t *);
154 static void	eso_get_locks(void *, kmutex_t **, kmutex_t **);
155 
156 static const struct audio_hw_if eso_hw_if = {
157 	NULL,			/* open */
158 	NULL,			/* close */
159 	NULL,			/* drain */
160 	eso_query_encoding,
161 	eso_set_params,
162 	eso_round_blocksize,
163 	NULL,			/* commit_settings */
164 	NULL,			/* init_output */
165 	NULL,			/* init_input */
166 	NULL,			/* start_output */
167 	NULL,			/* start_input */
168 	eso_halt_output,
169 	eso_halt_input,
170 	NULL,			/* speaker_ctl */
171 	eso_getdev,
172 	NULL,			/* setfd */
173 	eso_set_port,
174 	eso_get_port,
175 	eso_query_devinfo,
176 	eso_allocm,
177 	eso_freem,
178 	eso_round_buffersize,
179 	eso_mappage,
180 	eso_get_props,
181 	eso_trigger_output,
182 	eso_trigger_input,
183 	NULL,			/* dev_ioctl */
184 	eso_get_locks,
185 };
186 
187 static const char * const eso_rev2model[] = {
188 	"ES1938",
189 	"ES1946",
190 	"ES1946 Revision E"
191 };
192 
193 #define ESO_NFORMATS	8
194 static const struct audio_format eso_formats[ESO_NFORMATS] = {
195 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
196 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
197 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
198 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
199 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
200 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
201 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
202 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
203 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
204 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
206 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
208 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
211 };
212 
213 
214 /*
215  * Utility routines
216  */
217 /* Register access etc. */
218 static uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
219 static uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
220 static uint8_t	eso_read_rdr(struct eso_softc *);
221 static void	eso_reload_master_vol(struct eso_softc *);
222 static int	eso_reset(struct eso_softc *);
223 static void	eso_set_gain(struct eso_softc *, unsigned int);
224 static int	eso_set_recsrc(struct eso_softc *, unsigned int);
225 static int	eso_set_monooutsrc(struct eso_softc *, unsigned int);
226 static int	eso_set_monoinbypass(struct eso_softc *, unsigned int);
227 static int	eso_set_preamp(struct eso_softc *, unsigned int);
228 static void	eso_write_cmd(struct eso_softc *, uint8_t);
229 static void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
230 static void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
231 /* DMA memory allocation */
232 static int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
233 		    int, struct eso_dma *);
234 static void	eso_freemem(struct eso_dma *);
235 static struct eso_dma *	eso_kva2dma(const struct eso_softc *, const void *);
236 
237 
238 static int
239 eso_match(device_t parent, cfdata_t match, void *aux)
240 {
241 	struct pci_attach_args *pa;
242 
243 	pa = aux;
244 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
245 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
246 		return 1;
247 
248 	return 0;
249 }
250 
251 static void
252 eso_attach(device_t parent, device_t self, void *aux)
253 {
254 	struct eso_softc *sc;
255 	struct pci_attach_args *pa;
256 	struct audio_attach_args aa;
257 	pci_intr_handle_t ih;
258 	bus_addr_t vcbase;
259 	const char *intrstring;
260 	int idx, error;
261 	uint8_t a2mode, mvctl;
262 	char intrbuf[PCI_INTRSTR_LEN];
263 
264 	sc = device_private(self);
265 	sc->sc_dev = self;
266 	pa = aux;
267 	aprint_naive(": Audio controller\n");
268 
269 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
270 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
271 
272 	sc->sc_revision = PCI_REVISION(pa->pa_class);
273 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
274 	if (sc->sc_revision <
275 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
276 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
277 	else
278 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
279 
280 	/* Map I/O registers. */
281 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
282 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
283 		aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
284 		return;
285 	}
286 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
287 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
288 		aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
289 		return;
290 	}
291 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
292 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
293 		aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
294 		/* Don't bail out yet: we can map it later, see below. */
295 		vcbase = 0;
296 		sc->sc_vcsize = 0x10; /* From the data sheet. */
297 	}
298 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
299 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
300 		aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
301 		return;
302 	}
303 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
304 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
305 		aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
306 		return;
307 	}
308 
309 	sc->sc_dmat = pa->pa_dmat;
310 	SLIST_INIT(&sc->sc_dmas);
311 	sc->sc_dmac_configured = 0;
312 
313 	/* Enable bus mastering. */
314 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
315 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
316 	    PCI_COMMAND_MASTER_ENABLE);
317 
318 	/* Reset the device; bail out upon failure. */
319 	mutex_spin_enter(&sc->sc_intr_lock);
320 	error = eso_reset(sc);
321 	mutex_spin_exit(&sc->sc_intr_lock);
322 	if (error != 0) {
323 		aprint_error_dev(sc->sc_dev, "can't reset\n");
324 		return;
325 	}
326 
327 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
328 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
329 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
330 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
331 
332 	/* Enable the relevant (DMA) interrupts. */
333 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
334 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
335 	    ESO_IO_IRQCTL_MPUIRQ);
336 
337 	mutex_spin_enter(&sc->sc_intr_lock);
338 
339 	/* Set up A1's sample rate generator for new-style parameters. */
340 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
341 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
342 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
343 
344 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
345 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
346 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
347 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
348 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
349 
350 	/* Set mixer regs to something reasonable, needs work. */
351 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
352 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
353 	eso_set_monoinbypass(sc, 0);
354 	eso_set_preamp(sc, 1);
355 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
356 		int v;
357 
358 		switch (idx) {
359 		case ESO_MIC_PLAY_VOL:
360 		case ESO_LINE_PLAY_VOL:
361 		case ESO_CD_PLAY_VOL:
362 		case ESO_MONO_PLAY_VOL:
363 		case ESO_AUXB_PLAY_VOL:
364 		case ESO_DAC_REC_VOL:
365 		case ESO_LINE_REC_VOL:
366 		case ESO_SYNTH_REC_VOL:
367 		case ESO_CD_REC_VOL:
368 		case ESO_MONO_REC_VOL:
369 		case ESO_AUXB_REC_VOL:
370 		case ESO_SPATIALIZER:
371 			v = 0;
372 			break;
373 		case ESO_MASTER_VOL:
374 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
375 			break;
376 		default:
377 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
378 			break;
379 		}
380 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
381 		eso_set_gain(sc, idx);
382 	}
383 
384 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
385 
386 	mutex_spin_exit(&sc->sc_intr_lock);
387 
388 	/* Map and establish the interrupt. */
389 	if (pci_intr_map(pa, &ih)) {
390 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
391 		return;
392 	}
393 
394 	intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
395 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
396 	if (sc->sc_ih == NULL) {
397 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
398 		if (intrstring != NULL)
399 			aprint_error(" at %s", intrstring);
400 		aprint_error("\n");
401 		mutex_destroy(&sc->sc_lock);
402 		mutex_destroy(&sc->sc_intr_lock);
403 		return;
404 	}
405 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstring);
406 
407 	cv_init(&sc->sc_pcv, "esoho");
408 	cv_init(&sc->sc_rcv, "esohi");
409 
410 	/*
411 	 * Set up the DDMA Control register; a suitable I/O region has been
412 	 * supposedly mapped in the VC base address register.
413 	 *
414 	 * The Solo-1 has an ... interesting silicon bug that causes it to
415 	 * not respond to I/O space accesses to the Audio 1 DMA controller
416 	 * if the latter's mapping base address is aligned on a 1K boundary.
417 	 * As a consequence, it is quite possible for the mapping provided
418 	 * in the VC BAR to be useless.  To work around this, we defer this
419 	 * part until all autoconfiguration on our parent bus is completed
420 	 * and then try to map it ourselves in fulfillment of the constraint.
421 	 *
422 	 * According to the register map we may write to the low 16 bits
423 	 * only, but experimenting has shown we're safe.
424 	 * -kjk
425 	 */
426 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
427 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
428 		    vcbase | ESO_PCI_DDMAC_DE);
429 		sc->sc_dmac_configured = 1;
430 
431 		aprint_normal_dev(sc->sc_dev,
432 		    "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
433 		    (unsigned long)vcbase);
434 	} else {
435 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
436 		    device_xname(sc->sc_dev), (unsigned long)vcbase));
437 		sc->sc_pa = *pa;
438 		config_defer(self, eso_defer);
439 	}
440 
441 	audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
442 
443 	aa.type = AUDIODEV_TYPE_OPL;
444 	aa.hwif = NULL;
445 	aa.hdl = NULL;
446 	(void)config_found(sc->sc_dev, &aa, audioprint);
447 
448 	aa.type = AUDIODEV_TYPE_MPU;
449 	aa.hwif = NULL;
450 	aa.hdl = NULL;
451 	sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
452 	if (sc->sc_mpudev != NULL) {
453 		/* Unmask the MPU irq. */
454 		mutex_spin_enter(&sc->sc_intr_lock);
455 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
456 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
457 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
458 		mutex_spin_exit(&sc->sc_intr_lock);
459 	}
460 
461 	aa.type = AUDIODEV_TYPE_AUX;
462 	aa.hwif = NULL;
463 	aa.hdl = NULL;
464 	(void)config_found(sc->sc_dev, &aa, eso_print);
465 }
466 
467 static void
468 eso_defer(device_t self)
469 {
470 	struct eso_softc *sc;
471 	struct pci_attach_args *pa;
472 	bus_addr_t addr, start;
473 
474 	sc = device_private(self);
475 	pa = &sc->sc_pa;
476 	aprint_normal_dev(sc->sc_dev, "");
477 
478 	/*
479 	 * This is outright ugly, but since we must not make assumptions
480 	 * on the underlying allocator's behaviour it's the most straight-
481 	 * forward way to implement it.  Note that we skip over the first
482 	 * 1K region, which is typically occupied by an attached ISA bus.
483 	 */
484 	mutex_enter(&sc->sc_lock);
485 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
486 		if (bus_space_alloc(sc->sc_iot,
487 		    start + sc->sc_vcsize, start + 0x0400 - 1,
488 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
489 		    &sc->sc_dmac_ioh) != 0)
490 			continue;
491 
492 		mutex_spin_enter(&sc->sc_intr_lock);
493 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
494 		    addr | ESO_PCI_DDMAC_DE);
495 		mutex_spin_exit(&sc->sc_intr_lock);
496 		sc->sc_dmac_iot = sc->sc_iot;
497 		sc->sc_dmac_configured = 1;
498 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
499 		    (unsigned long)addr);
500 
501 		mutex_exit(&sc->sc_lock);
502 		return;
503 	}
504 	mutex_exit(&sc->sc_lock);
505 
506 	aprint_error("can't map Audio 1 DMA into I/O space\n");
507 }
508 
509 /* ARGSUSED */
510 static int
511 eso_print(void *aux, const char *pnp)
512 {
513 
514 	/* Only joys can attach via this; easy. */
515 	if (pnp)
516 		aprint_normal("joy at %s:", pnp);
517 
518 	return UNCONF;
519 }
520 
521 static void
522 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
523 {
524 	int i;
525 
526 	/* Poll for busy indicator to become clear. */
527 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
528 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
529 		    & ESO_SB_RSR_BUSY) == 0) {
530 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
531 			    ESO_SB_WDR, cmd);
532 			return;
533 		} else {
534 			delay(10);
535 		}
536 	}
537 
538 	printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
539 	return;
540 }
541 
542 /* Write to a controller register */
543 static void
544 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
545 {
546 
547 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
548 
549 	eso_write_cmd(sc, reg);
550 	eso_write_cmd(sc, val);
551 }
552 
553 /* Read out the Read Data Register */
554 static uint8_t
555 eso_read_rdr(struct eso_softc *sc)
556 {
557 	int i;
558 
559 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
560 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
561 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
562 			return (bus_space_read_1(sc->sc_sb_iot,
563 			    sc->sc_sb_ioh, ESO_SB_RDR));
564 		} else {
565 			delay(10);
566 		}
567 	}
568 
569 	printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
570 	return (-1);
571 }
572 
573 static uint8_t
574 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
575 {
576 
577 	eso_write_cmd(sc, ESO_CMD_RCR);
578 	eso_write_cmd(sc, reg);
579 	return eso_read_rdr(sc);
580 }
581 
582 static void
583 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
584 {
585 
586 	KASSERT(mutex_owned(&sc->sc_intr_lock));
587 
588 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
589 
590 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
591 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
592 }
593 
594 static uint8_t
595 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
596 {
597 	uint8_t val;
598 
599 	KASSERT(mutex_owned(&sc->sc_intr_lock));
600 
601 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
602 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
603 
604 	return val;
605 }
606 
607 static int
608 eso_intr(void *hdl)
609 {
610 	struct eso_softc *sc = hdl;
611 #if NMPU > 0
612 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
613 #endif
614 	uint8_t irqctl;
615 
616 	mutex_spin_enter(&sc->sc_intr_lock);
617 
618 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
619 
620 	/* If it wasn't ours, that's all she wrote. */
621 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
622 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
623 		mutex_spin_exit(&sc->sc_intr_lock);
624 		return 0;
625 	}
626 
627 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
628 		/* Clear interrupt. */
629 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
630 		    ESO_SB_RBSR);
631 
632 		if (sc->sc_rintr)
633 			sc->sc_rintr(sc->sc_rarg);
634 		else
635 			cv_broadcast(&sc->sc_rcv);
636 	}
637 
638 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
639 		/*
640 		 * Clear the A2 IRQ latch: the cached value reflects the
641 		 * current DAC settings with the IRQ latch bit not set.
642 		 */
643 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
644 
645 		if (sc->sc_pintr)
646 			sc->sc_pintr(sc->sc_parg);
647 		else
648 			cv_broadcast(&sc->sc_pcv);
649 	}
650 
651 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
652 		/* Clear interrupt. */
653 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
654 
655 		/*
656 		 * Raise a flag to cause a lazy update of the in-softc gain
657 		 * values the next time the software mixer is read to keep
658 		 * interrupt service cost low.  ~0 cannot occur otherwise
659 		 * as the master volume has a precision of 6 bits only.
660 		 */
661 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
662 	}
663 
664 #if NMPU > 0
665 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
666 		mpu_intr(sc_mpu);
667 #endif
668 
669 	mutex_spin_exit(&sc->sc_intr_lock);
670 	return 1;
671 }
672 
673 /* Perform a software reset, including DMA FIFOs. */
674 static int
675 eso_reset(struct eso_softc *sc)
676 {
677 	int i;
678 
679 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
680 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
681 	/* `Delay' suggested in the data sheet. */
682 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
683 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
684 
685 	/* Wait for reset to take effect. */
686 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
687 		/* Poll for data to become available. */
688 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
689 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
690 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
691 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
692 
693 			/* Activate Solo-1 extension commands. */
694 			eso_write_cmd(sc, ESO_CMD_EXTENB);
695 			/* Reset mixer registers. */
696 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
697 			    ESO_MIXREG_RESET_RESET);
698 
699 			return 0;
700 		} else {
701 			delay(1000);
702 		}
703 	}
704 
705 	printf("%s: reset timeout\n", device_xname(sc->sc_dev));
706 	return -1;
707 }
708 
709 static int
710 eso_query_encoding(void *hdl, struct audio_encoding *fp)
711 {
712 
713 	switch (fp->index) {
714 	case 0:
715 		strcpy(fp->name, AudioEulinear);
716 		fp->encoding = AUDIO_ENCODING_ULINEAR;
717 		fp->precision = 8;
718 		fp->flags = 0;
719 		break;
720 	case 1:
721 		strcpy(fp->name, AudioEmulaw);
722 		fp->encoding = AUDIO_ENCODING_ULAW;
723 		fp->precision = 8;
724 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
725 		break;
726 	case 2:
727 		strcpy(fp->name, AudioEalaw);
728 		fp->encoding = AUDIO_ENCODING_ALAW;
729 		fp->precision = 8;
730 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
731 		break;
732 	case 3:
733 		strcpy(fp->name, AudioEslinear);
734 		fp->encoding = AUDIO_ENCODING_SLINEAR;
735 		fp->precision = 8;
736 		fp->flags = 0;
737 		break;
738 	case 4:
739 		strcpy(fp->name, AudioEslinear_le);
740 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
741 		fp->precision = 16;
742 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
743 		break;
744 	case 5:
745 		strcpy(fp->name, AudioEulinear_le);
746 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
747 		fp->precision = 16;
748 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
749 		break;
750 	case 6:
751 		strcpy(fp->name, AudioEslinear_be);
752 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
753 		fp->precision = 16;
754 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
755 		break;
756 	case 7:
757 		strcpy(fp->name, AudioEulinear_be);
758 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
759 		fp->precision = 16;
760 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
761 		break;
762 	default:
763 		return EINVAL;
764 	}
765 
766 	return 0;
767 }
768 
769 static int
770 eso_set_params(void *hdl, int setmode, int usemode,
771     audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
772     stream_filter_list_t *rfil)
773 {
774 	struct eso_softc *sc;
775 	struct audio_params *p;
776 	stream_filter_list_t *fil;
777 	int mode, r[2], rd[2], ar[2], clk;
778 	unsigned int srg, fltdiv;
779 	int i;
780 
781 	sc = hdl;
782 	for (mode = AUMODE_RECORD; mode != -1;
783 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
784 		if ((setmode & mode) == 0)
785 			continue;
786 
787 		p = (mode == AUMODE_PLAY) ? play : rec;
788 
789 		if (p->sample_rate < ESO_MINRATE ||
790 		    p->sample_rate > ESO_MAXRATE ||
791 		    (p->precision != 8 && p->precision != 16) ||
792 		    (p->channels != 1 && p->channels != 2))
793 			return EINVAL;
794 
795 		/*
796 		 * We'll compute both possible sample rate dividers and pick
797 		 * the one with the least error.
798 		 */
799 #define ABS(x) ((x) < 0 ? -(x) : (x))
800 		r[0] = ESO_CLK0 /
801 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
802 		r[1] = ESO_CLK1 /
803 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
804 
805 		ar[0] = p->sample_rate - r[0];
806 		ar[1] = p->sample_rate - r[1];
807 		clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
808 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
809 
810 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
811 		fltdiv = 256 - 200279L / r[clk];
812 
813 		/* Update to reflect the possibly inexact rate. */
814 		p->sample_rate = r[clk];
815 
816 		fil = (mode == AUMODE_PLAY) ? pfil : rfil;
817 		i = auconv_set_converter(eso_formats, ESO_NFORMATS,
818 					 mode, p, FALSE, fil);
819 		if (i < 0)
820 			return EINVAL;
821 
822 		mutex_spin_enter(&sc->sc_intr_lock);
823 		if (mode == AUMODE_RECORD) {
824 			/* Audio 1 */
825 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
826 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
827 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
828 		} else {
829 			/* Audio 2 */
830 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
831 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
832 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
833 		}
834 		mutex_spin_exit(&sc->sc_intr_lock);
835 #undef ABS
836 
837 	}
838 
839 	return 0;
840 }
841 
842 static int
843 eso_round_blocksize(void *hdl, int blk, int mode,
844     const audio_params_t *param)
845 {
846 
847 	return blk & -32;	/* keep good alignment; at least 16 req'd */
848 }
849 
850 static int
851 eso_halt_output(void *hdl)
852 {
853 	struct eso_softc *sc;
854 	int error;
855 
856 	sc = hdl;
857 	DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
858 
859 	/*
860 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
861 	 * stop.  The interrupt callback pointer is cleared at this
862 	 * point so that an outstanding FIFO interrupt for the remaining data
863 	 * will be acknowledged without further processing.
864 	 *
865 	 * This does not immediately `abort' an operation in progress (c.f.
866 	 * audio(9)) but is the method to leave the FIFO behind in a clean
867 	 * state with the least hair.  (Besides, that item needs to be
868 	 * rephrased for trigger_*()-based DMA environments.)
869 	 */
870 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
871 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
872 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
873 	    ESO_IO_A2DMAM_DMAENB);
874 
875 	sc->sc_pintr = NULL;
876 	mutex_exit(&sc->sc_lock);
877 	error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
878 	if (!mutex_tryenter(&sc->sc_lock)) {
879 		mutex_spin_exit(&sc->sc_intr_lock);
880 		mutex_enter(&sc->sc_lock);
881 		mutex_spin_enter(&sc->sc_intr_lock);
882 	}
883 
884 	/* Shut down DMA completely. */
885 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
886 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
887 
888 	return error == EWOULDBLOCK ? 0 : error;
889 }
890 
891 static int
892 eso_halt_input(void *hdl)
893 {
894 	struct eso_softc *sc;
895 	int error;
896 
897 	sc = hdl;
898 	DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
899 
900 	/* Just like eso_halt_output(), but for Audio 1. */
901 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
902 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
903 	    ESO_CTLREG_A1C2_DMAENB);
904 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
905 	    DMA37MD_WRITE | DMA37MD_DEMAND);
906 
907 	sc->sc_rintr = NULL;
908 	mutex_exit(&sc->sc_lock);
909 	error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
910 	if (!mutex_tryenter(&sc->sc_lock)) {
911 		mutex_spin_exit(&sc->sc_intr_lock);
912 		mutex_enter(&sc->sc_lock);
913 		mutex_spin_enter(&sc->sc_intr_lock);
914 	}
915 
916 	/* Shut down DMA completely. */
917 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
918 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
919 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
920 	    ESO_DMAC_MASK_MASK);
921 
922 	return error == EWOULDBLOCK ? 0 : error;
923 }
924 
925 static int
926 eso_getdev(void *hdl, struct audio_device *retp)
927 {
928 	struct eso_softc *sc;
929 
930 	sc = hdl;
931 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
932 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
933 	    sc->sc_revision);
934 	if (sc->sc_revision <
935 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
936 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
937 		    sizeof (retp->config));
938 	else
939 		strncpy(retp->config, "unknown", sizeof (retp->config));
940 
941 	return 0;
942 }
943 
944 static int
945 eso_set_port(void *hdl, mixer_ctrl_t *cp)
946 {
947 	struct eso_softc *sc;
948 	unsigned int lgain, rgain;
949 	uint8_t tmp;
950 	int error;
951 
952 	sc = hdl;
953 	error = 0;
954 
955 	mutex_spin_enter(&sc->sc_intr_lock);
956 
957 	switch (cp->dev) {
958 	case ESO_DAC_PLAY_VOL:
959 	case ESO_MIC_PLAY_VOL:
960 	case ESO_LINE_PLAY_VOL:
961 	case ESO_SYNTH_PLAY_VOL:
962 	case ESO_CD_PLAY_VOL:
963 	case ESO_AUXB_PLAY_VOL:
964 	case ESO_RECORD_VOL:
965 	case ESO_DAC_REC_VOL:
966 	case ESO_MIC_REC_VOL:
967 	case ESO_LINE_REC_VOL:
968 	case ESO_SYNTH_REC_VOL:
969 	case ESO_CD_REC_VOL:
970 	case ESO_AUXB_REC_VOL:
971 		if (cp->type != AUDIO_MIXER_VALUE) {
972 			error = EINVAL;
973 			break;
974 		}
975 
976 		/*
977 		 * Stereo-capable mixer ports: if we get a single-channel
978 		 * gain value passed in, then we duplicate it to both left
979 		 * and right channels.
980 		 */
981 		switch (cp->un.value.num_channels) {
982 		case 1:
983 			lgain = rgain = ESO_GAIN_TO_4BIT(
984 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
985 			break;
986 		case 2:
987 			lgain = ESO_GAIN_TO_4BIT(
988 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
989 			rgain = ESO_GAIN_TO_4BIT(
990 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
991 			break;
992 		default:
993 			error = EINVAL;
994 			break;
995 		}
996 
997 		if (!error) {
998 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
999 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1000 			eso_set_gain(sc, cp->dev);
1001 		}
1002 		break;
1003 
1004 	case ESO_MASTER_VOL:
1005 		if (cp->type != AUDIO_MIXER_VALUE) {
1006 			error = EINVAL;
1007 			break;
1008 		}
1009 
1010 		/* Like above, but a precision of 6 bits. */
1011 		switch (cp->un.value.num_channels) {
1012 		case 1:
1013 			lgain = rgain = ESO_GAIN_TO_6BIT(
1014 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1015 			break;
1016 		case 2:
1017 			lgain = ESO_GAIN_TO_6BIT(
1018 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1019 			rgain = ESO_GAIN_TO_6BIT(
1020 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1021 			break;
1022 		default:
1023 			error = EINVAL;
1024 			break;
1025 		}
1026 
1027 		if (!error) {
1028 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1029 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1030 			eso_set_gain(sc, cp->dev);
1031 		}
1032 		break;
1033 
1034 	case ESO_SPATIALIZER:
1035 		if (cp->type != AUDIO_MIXER_VALUE ||
1036 		    cp->un.value.num_channels != 1) {
1037 			error = EINVAL;
1038 			break;
1039 		}
1040 
1041 		sc->sc_gain[cp->dev][ESO_LEFT] =
1042 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1043 		    ESO_GAIN_TO_6BIT(
1044 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1045 		eso_set_gain(sc, cp->dev);
1046 		break;
1047 
1048 	case ESO_MONO_PLAY_VOL:
1049 	case ESO_MONO_REC_VOL:
1050 		if (cp->type != AUDIO_MIXER_VALUE ||
1051 		    cp->un.value.num_channels != 1) {
1052 			error = EINVAL;
1053 			break;
1054 		}
1055 
1056 		sc->sc_gain[cp->dev][ESO_LEFT] =
1057 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1058 		    ESO_GAIN_TO_4BIT(
1059 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1060 		eso_set_gain(sc, cp->dev);
1061 		break;
1062 
1063 	case ESO_PCSPEAKER_VOL:
1064 		if (cp->type != AUDIO_MIXER_VALUE ||
1065 		    cp->un.value.num_channels != 1) {
1066 			error = EINVAL;
1067 			break;
1068 		}
1069 
1070 		sc->sc_gain[cp->dev][ESO_LEFT] =
1071 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1072 		    ESO_GAIN_TO_3BIT(
1073 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1074 		eso_set_gain(sc, cp->dev);
1075 		break;
1076 
1077 	case ESO_SPATIALIZER_ENABLE:
1078 		if (cp->type != AUDIO_MIXER_ENUM) {
1079 			error = EINVAL;
1080 			break;
1081 		}
1082 
1083 		sc->sc_spatializer = (cp->un.ord != 0);
1084 
1085 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1086 		if (sc->sc_spatializer)
1087 			tmp |= ESO_MIXREG_SPAT_ENB;
1088 		else
1089 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1090 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1091 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1092 		break;
1093 
1094 	case ESO_MASTER_MUTE:
1095 		if (cp->type != AUDIO_MIXER_ENUM) {
1096 			error = EINVAL;
1097 			break;
1098 		}
1099 
1100 		sc->sc_mvmute = (cp->un.ord != 0);
1101 
1102 		if (sc->sc_mvmute) {
1103 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1104 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1105 			    ESO_MIXREG_LMVM_MUTE);
1106 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1107 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1108 			    ESO_MIXREG_RMVM_MUTE);
1109 		} else {
1110 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1111 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1112 			    ~ESO_MIXREG_LMVM_MUTE);
1113 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1114 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1115 			    ~ESO_MIXREG_RMVM_MUTE);
1116 		}
1117 		break;
1118 
1119 	case ESO_MONOOUT_SOURCE:
1120 		if (cp->type != AUDIO_MIXER_ENUM) {
1121 			error = EINVAL;
1122 			break;
1123 		}
1124 
1125 		error = eso_set_monooutsrc(sc, cp->un.ord);
1126 		break;
1127 
1128 	case ESO_MONOIN_BYPASS:
1129 		if (cp->type != AUDIO_MIXER_ENUM) {
1130 			error = EINVAL;
1131 			break;
1132 		}
1133 
1134 		error = (eso_set_monoinbypass(sc, cp->un.ord));
1135 		break;
1136 
1137 	case ESO_RECORD_MONITOR:
1138 		if (cp->type != AUDIO_MIXER_ENUM) {
1139 			error = EINVAL;
1140 			break;
1141 		}
1142 
1143 		sc->sc_recmon = (cp->un.ord != 0);
1144 
1145 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1146 		if (sc->sc_recmon)
1147 			tmp |= ESO_CTLREG_ACTL_RECMON;
1148 		else
1149 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1150 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1151 		break;
1152 
1153 	case ESO_RECORD_SOURCE:
1154 		if (cp->type != AUDIO_MIXER_ENUM) {
1155 			error = EINVAL;
1156 			break;
1157 		}
1158 
1159 		error = eso_set_recsrc(sc, cp->un.ord);
1160 		break;
1161 
1162 	case ESO_MIC_PREAMP:
1163 		if (cp->type != AUDIO_MIXER_ENUM) {
1164 			error = EINVAL;
1165 			break;
1166 		}
1167 
1168 		error = eso_set_preamp(sc, cp->un.ord);
1169 		break;
1170 
1171 	default:
1172 		error = EINVAL;
1173 		break;
1174 	}
1175 
1176 	mutex_spin_exit(&sc->sc_intr_lock);
1177 	return error;
1178 }
1179 
1180 static int
1181 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1182 {
1183 	struct eso_softc *sc;
1184 
1185 	sc = hdl;
1186 
1187 	mutex_spin_enter(&sc->sc_intr_lock);
1188 
1189 	switch (cp->dev) {
1190 	case ESO_MASTER_VOL:
1191 		/* Reload from mixer after hardware volume control use. */
1192 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1193 			eso_reload_master_vol(sc);
1194 		/* FALLTHROUGH */
1195 	case ESO_DAC_PLAY_VOL:
1196 	case ESO_MIC_PLAY_VOL:
1197 	case ESO_LINE_PLAY_VOL:
1198 	case ESO_SYNTH_PLAY_VOL:
1199 	case ESO_CD_PLAY_VOL:
1200 	case ESO_AUXB_PLAY_VOL:
1201 	case ESO_RECORD_VOL:
1202 	case ESO_DAC_REC_VOL:
1203 	case ESO_MIC_REC_VOL:
1204 	case ESO_LINE_REC_VOL:
1205 	case ESO_SYNTH_REC_VOL:
1206 	case ESO_CD_REC_VOL:
1207 	case ESO_AUXB_REC_VOL:
1208 		/*
1209 		 * Stereo-capable ports: if a single-channel query is made,
1210 		 * just return the left channel's value (since single-channel
1211 		 * settings themselves are applied to both channels).
1212 		 */
1213 		switch (cp->un.value.num_channels) {
1214 		case 1:
1215 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1216 			    sc->sc_gain[cp->dev][ESO_LEFT];
1217 			break;
1218 		case 2:
1219 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1220 			    sc->sc_gain[cp->dev][ESO_LEFT];
1221 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1222 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1223 			break;
1224 		default:
1225 			break;
1226 		}
1227 		break;
1228 
1229 	case ESO_MONO_PLAY_VOL:
1230 	case ESO_PCSPEAKER_VOL:
1231 	case ESO_MONO_REC_VOL:
1232 	case ESO_SPATIALIZER:
1233 		if (cp->un.value.num_channels != 1) {
1234 			break;
1235 		}
1236 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1237 		    sc->sc_gain[cp->dev][ESO_LEFT];
1238 		break;
1239 
1240 	case ESO_RECORD_MONITOR:
1241 		cp->un.ord = sc->sc_recmon;
1242 		break;
1243 
1244 	case ESO_RECORD_SOURCE:
1245 		cp->un.ord = sc->sc_recsrc;
1246 		break;
1247 
1248 	case ESO_MONOOUT_SOURCE:
1249 		cp->un.ord = sc->sc_monooutsrc;
1250 		break;
1251 
1252 	case ESO_MONOIN_BYPASS:
1253 		cp->un.ord = sc->sc_monoinbypass;
1254 		break;
1255 
1256 	case ESO_SPATIALIZER_ENABLE:
1257 		cp->un.ord = sc->sc_spatializer;
1258 		break;
1259 
1260 	case ESO_MIC_PREAMP:
1261 		cp->un.ord = sc->sc_preamp;
1262 		break;
1263 
1264 	case ESO_MASTER_MUTE:
1265 		/* Reload from mixer after hardware volume control use. */
1266 		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1267 			eso_reload_master_vol(sc);
1268 		cp->un.ord = sc->sc_mvmute;
1269 		break;
1270 
1271 	default:
1272 		break;
1273 	}
1274 
1275 	mutex_spin_exit(&sc->sc_intr_lock);
1276 	return 0;
1277 }
1278 
1279 static int
1280 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1281 {
1282 
1283 	switch (dip->index) {
1284 	case ESO_DAC_PLAY_VOL:
1285 		dip->mixer_class = ESO_INPUT_CLASS;
1286 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1287 		strcpy(dip->label.name, AudioNdac);
1288 		dip->type = AUDIO_MIXER_VALUE;
1289 		dip->un.v.num_channels = 2;
1290 		strcpy(dip->un.v.units.name, AudioNvolume);
1291 		break;
1292 	case ESO_MIC_PLAY_VOL:
1293 		dip->mixer_class = ESO_INPUT_CLASS;
1294 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1295 		strcpy(dip->label.name, AudioNmicrophone);
1296 		dip->type = AUDIO_MIXER_VALUE;
1297 		dip->un.v.num_channels = 2;
1298 		strcpy(dip->un.v.units.name, AudioNvolume);
1299 		break;
1300 	case ESO_LINE_PLAY_VOL:
1301 		dip->mixer_class = ESO_INPUT_CLASS;
1302 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 		strcpy(dip->label.name, AudioNline);
1304 		dip->type = AUDIO_MIXER_VALUE;
1305 		dip->un.v.num_channels = 2;
1306 		strcpy(dip->un.v.units.name, AudioNvolume);
1307 		break;
1308 	case ESO_SYNTH_PLAY_VOL:
1309 		dip->mixer_class = ESO_INPUT_CLASS;
1310 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1311 		strcpy(dip->label.name, AudioNfmsynth);
1312 		dip->type = AUDIO_MIXER_VALUE;
1313 		dip->un.v.num_channels = 2;
1314 		strcpy(dip->un.v.units.name, AudioNvolume);
1315 		break;
1316 	case ESO_MONO_PLAY_VOL:
1317 		dip->mixer_class = ESO_INPUT_CLASS;
1318 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1319 		strcpy(dip->label.name, "mono_in");
1320 		dip->type = AUDIO_MIXER_VALUE;
1321 		dip->un.v.num_channels = 1;
1322 		strcpy(dip->un.v.units.name, AudioNvolume);
1323 		break;
1324 	case ESO_CD_PLAY_VOL:
1325 		dip->mixer_class = ESO_INPUT_CLASS;
1326 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1327 		strcpy(dip->label.name, AudioNcd);
1328 		dip->type = AUDIO_MIXER_VALUE;
1329 		dip->un.v.num_channels = 2;
1330 		strcpy(dip->un.v.units.name, AudioNvolume);
1331 		break;
1332 	case ESO_AUXB_PLAY_VOL:
1333 		dip->mixer_class = ESO_INPUT_CLASS;
1334 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1335 		strcpy(dip->label.name, "auxb");
1336 		dip->type = AUDIO_MIXER_VALUE;
1337 		dip->un.v.num_channels = 2;
1338 		strcpy(dip->un.v.units.name, AudioNvolume);
1339 		break;
1340 
1341 	case ESO_MIC_PREAMP:
1342 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1343 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1344 		strcpy(dip->label.name, AudioNpreamp);
1345 		dip->type = AUDIO_MIXER_ENUM;
1346 		dip->un.e.num_mem = 2;
1347 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1348 		dip->un.e.member[0].ord = 0;
1349 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1350 		dip->un.e.member[1].ord = 1;
1351 		break;
1352 	case ESO_MICROPHONE_CLASS:
1353 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1354 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1355 		strcpy(dip->label.name, AudioNmicrophone);
1356 		dip->type = AUDIO_MIXER_CLASS;
1357 		break;
1358 
1359 	case ESO_INPUT_CLASS:
1360 		dip->mixer_class = ESO_INPUT_CLASS;
1361 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1362 		strcpy(dip->label.name, AudioCinputs);
1363 		dip->type = AUDIO_MIXER_CLASS;
1364 		break;
1365 
1366 	case ESO_MASTER_VOL:
1367 		dip->mixer_class = ESO_OUTPUT_CLASS;
1368 		dip->prev = AUDIO_MIXER_LAST;
1369 		dip->next = ESO_MASTER_MUTE;
1370 		strcpy(dip->label.name, AudioNmaster);
1371 		dip->type = AUDIO_MIXER_VALUE;
1372 		dip->un.v.num_channels = 2;
1373 		strcpy(dip->un.v.units.name, AudioNvolume);
1374 		break;
1375 	case ESO_MASTER_MUTE:
1376 		dip->mixer_class = ESO_OUTPUT_CLASS;
1377 		dip->prev = ESO_MASTER_VOL;
1378 		dip->next = AUDIO_MIXER_LAST;
1379 		strcpy(dip->label.name, AudioNmute);
1380 		dip->type = AUDIO_MIXER_ENUM;
1381 		dip->un.e.num_mem = 2;
1382 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1383 		dip->un.e.member[0].ord = 0;
1384 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1385 		dip->un.e.member[1].ord = 1;
1386 		break;
1387 
1388 	case ESO_PCSPEAKER_VOL:
1389 		dip->mixer_class = ESO_OUTPUT_CLASS;
1390 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1391 		strcpy(dip->label.name, "pc_speaker");
1392 		dip->type = AUDIO_MIXER_VALUE;
1393 		dip->un.v.num_channels = 1;
1394 		strcpy(dip->un.v.units.name, AudioNvolume);
1395 		break;
1396 	case ESO_MONOOUT_SOURCE:
1397 		dip->mixer_class = ESO_OUTPUT_CLASS;
1398 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1399 		strcpy(dip->label.name, "mono_out");
1400 		dip->type = AUDIO_MIXER_ENUM;
1401 		dip->un.e.num_mem = 3;
1402 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1403 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1404 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1405 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1406 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1407 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1408 		break;
1409 
1410 	case ESO_MONOIN_BYPASS:
1411 		dip->mixer_class = ESO_MONOIN_CLASS;
1412 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 		strcpy(dip->label.name, "bypass");
1414 		dip->type = AUDIO_MIXER_ENUM;
1415 		dip->un.e.num_mem = 2;
1416 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1417 		dip->un.e.member[0].ord = 0;
1418 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1419 		dip->un.e.member[1].ord = 1;
1420 		break;
1421 	case ESO_MONOIN_CLASS:
1422 		dip->mixer_class = ESO_MONOIN_CLASS;
1423 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1424 		strcpy(dip->label.name, "mono_in");
1425 		dip->type = AUDIO_MIXER_CLASS;
1426 		break;
1427 
1428 	case ESO_SPATIALIZER:
1429 		dip->mixer_class = ESO_OUTPUT_CLASS;
1430 		dip->prev = AUDIO_MIXER_LAST;
1431 		dip->next = ESO_SPATIALIZER_ENABLE;
1432 		strcpy(dip->label.name, AudioNspatial);
1433 		dip->type = AUDIO_MIXER_VALUE;
1434 		dip->un.v.num_channels = 1;
1435 		strcpy(dip->un.v.units.name, "level");
1436 		break;
1437 	case ESO_SPATIALIZER_ENABLE:
1438 		dip->mixer_class = ESO_OUTPUT_CLASS;
1439 		dip->prev = ESO_SPATIALIZER;
1440 		dip->next = AUDIO_MIXER_LAST;
1441 		strcpy(dip->label.name, "enable");
1442 		dip->type = AUDIO_MIXER_ENUM;
1443 		dip->un.e.num_mem = 2;
1444 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1445 		dip->un.e.member[0].ord = 0;
1446 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1447 		dip->un.e.member[1].ord = 1;
1448 		break;
1449 
1450 	case ESO_OUTPUT_CLASS:
1451 		dip->mixer_class = ESO_OUTPUT_CLASS;
1452 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 		strcpy(dip->label.name, AudioCoutputs);
1454 		dip->type = AUDIO_MIXER_CLASS;
1455 		break;
1456 
1457 	case ESO_RECORD_MONITOR:
1458 		dip->mixer_class = ESO_MONITOR_CLASS;
1459 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1460 		strcpy(dip->label.name, AudioNmute);
1461 		dip->type = AUDIO_MIXER_ENUM;
1462 		dip->un.e.num_mem = 2;
1463 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1464 		dip->un.e.member[0].ord = 0;
1465 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1466 		dip->un.e.member[1].ord = 1;
1467 		break;
1468 	case ESO_MONITOR_CLASS:
1469 		dip->mixer_class = ESO_MONITOR_CLASS;
1470 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1471 		strcpy(dip->label.name, AudioCmonitor);
1472 		dip->type = AUDIO_MIXER_CLASS;
1473 		break;
1474 
1475 	case ESO_RECORD_VOL:
1476 		dip->mixer_class = ESO_RECORD_CLASS;
1477 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1478 		strcpy(dip->label.name, AudioNrecord);
1479 		dip->type = AUDIO_MIXER_VALUE;
1480 		strcpy(dip->un.v.units.name, AudioNvolume);
1481 		break;
1482 	case ESO_RECORD_SOURCE:
1483 		dip->mixer_class = ESO_RECORD_CLASS;
1484 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1485 		strcpy(dip->label.name, AudioNsource);
1486 		dip->type = AUDIO_MIXER_ENUM;
1487 		dip->un.e.num_mem = 4;
1488 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1489 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1490 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1491 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1492 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1493 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1494 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1495 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1496 		break;
1497 	case ESO_DAC_REC_VOL:
1498 		dip->mixer_class = ESO_RECORD_CLASS;
1499 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1500 		strcpy(dip->label.name, AudioNdac);
1501 		dip->type = AUDIO_MIXER_VALUE;
1502 		dip->un.v.num_channels = 2;
1503 		strcpy(dip->un.v.units.name, AudioNvolume);
1504 		break;
1505 	case ESO_MIC_REC_VOL:
1506 		dip->mixer_class = ESO_RECORD_CLASS;
1507 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1508 		strcpy(dip->label.name, AudioNmicrophone);
1509 		dip->type = AUDIO_MIXER_VALUE;
1510 		dip->un.v.num_channels = 2;
1511 		strcpy(dip->un.v.units.name, AudioNvolume);
1512 		break;
1513 	case ESO_LINE_REC_VOL:
1514 		dip->mixer_class = ESO_RECORD_CLASS;
1515 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1516 		strcpy(dip->label.name, AudioNline);
1517 		dip->type = AUDIO_MIXER_VALUE;
1518 		dip->un.v.num_channels = 2;
1519 		strcpy(dip->un.v.units.name, AudioNvolume);
1520 		break;
1521 	case ESO_SYNTH_REC_VOL:
1522 		dip->mixer_class = ESO_RECORD_CLASS;
1523 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1524 		strcpy(dip->label.name, AudioNfmsynth);
1525 		dip->type = AUDIO_MIXER_VALUE;
1526 		dip->un.v.num_channels = 2;
1527 		strcpy(dip->un.v.units.name, AudioNvolume);
1528 		break;
1529 	case ESO_MONO_REC_VOL:
1530 		dip->mixer_class = ESO_RECORD_CLASS;
1531 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1532 		strcpy(dip->label.name, "mono_in");
1533 		dip->type = AUDIO_MIXER_VALUE;
1534 		dip->un.v.num_channels = 1; /* No lies */
1535 		strcpy(dip->un.v.units.name, AudioNvolume);
1536 		break;
1537 	case ESO_CD_REC_VOL:
1538 		dip->mixer_class = ESO_RECORD_CLASS;
1539 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1540 		strcpy(dip->label.name, AudioNcd);
1541 		dip->type = AUDIO_MIXER_VALUE;
1542 		dip->un.v.num_channels = 2;
1543 		strcpy(dip->un.v.units.name, AudioNvolume);
1544 		break;
1545 	case ESO_AUXB_REC_VOL:
1546 		dip->mixer_class = ESO_RECORD_CLASS;
1547 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1548 		strcpy(dip->label.name, "auxb");
1549 		dip->type = AUDIO_MIXER_VALUE;
1550 		dip->un.v.num_channels = 2;
1551 		strcpy(dip->un.v.units.name, AudioNvolume);
1552 		break;
1553 	case ESO_RECORD_CLASS:
1554 		dip->mixer_class = ESO_RECORD_CLASS;
1555 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1556 		strcpy(dip->label.name, AudioCrecord);
1557 		dip->type = AUDIO_MIXER_CLASS;
1558 		break;
1559 
1560 	default:
1561 		return ENXIO;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int
1568 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1569     size_t boundary, int direction, struct eso_dma *ed)
1570 {
1571 	int error;
1572 
1573 	ed->ed_size = size;
1574 
1575 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1576 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1577 	    &ed->ed_nsegs, BUS_DMA_WAITOK);
1578 	if (error)
1579 		goto out;
1580 
1581 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1582 	    ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1583 	if (error)
1584 		goto free;
1585 
1586 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1587 	    BUS_DMA_WAITOK, &ed->ed_map);
1588 	if (error)
1589 		goto unmap;
1590 
1591 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1592 	    ed->ed_size, NULL, BUS_DMA_WAITOK |
1593 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1594 	if (error)
1595 		goto destroy;
1596 
1597 	return 0;
1598 
1599  destroy:
1600 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1601  unmap:
1602 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1603  free:
1604 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1605  out:
1606 	return error;
1607 }
1608 
1609 static void
1610 eso_freemem(struct eso_dma *ed)
1611 {
1612 
1613 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1614 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1615 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1616 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1617 }
1618 
1619 static struct eso_dma *
1620 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1621 {
1622 	struct eso_dma *p;
1623 
1624 	SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1625 		if (KVADDR(p) == kva)
1626 			return p;
1627 	}
1628 
1629 	panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
1630 	/* NOTREACHED */
1631 }
1632 
1633 static void *
1634 eso_allocm(void *hdl, int direction, size_t size)
1635 {
1636 	struct eso_softc *sc;
1637 	struct eso_dma *ed;
1638 	size_t boundary;
1639 	int error;
1640 
1641 	sc = hdl;
1642 	ed = kmem_alloc(sizeof (*ed), KM_SLEEP);
1643 
1644 	/*
1645 	 * Apparently the Audio 1 DMA controller's current address
1646 	 * register can't roll over a 64K address boundary, so we have to
1647 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
1648 	 * controller needs a 1M address boundary.
1649 	 */
1650 	if (direction == AUMODE_RECORD)
1651 		boundary = 0x10000;
1652 	else
1653 		boundary = 0x100000;
1654 
1655 	/*
1656 	 * XXX Work around allocation problems for Audio 1, which
1657 	 * XXX implements the 24 low address bits only, with
1658 	 * XXX machine-specific DMA tag use.
1659 	 */
1660 #ifdef alpha
1661 	/*
1662 	 * XXX Force allocation through the (ISA) SGMAP.
1663 	 */
1664 	if (direction == AUMODE_RECORD)
1665 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1666 	else
1667 #elif defined(amd64) || defined(i386)
1668 	/*
1669 	 * XXX Force allocation through the ISA DMA tag.
1670 	 */
1671 	if (direction == AUMODE_RECORD)
1672 		ed->ed_dmat = &isa_bus_dma_tag;
1673 	else
1674 #endif
1675 		ed->ed_dmat = sc->sc_dmat;
1676 
1677 	error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1678 	if (error) {
1679 		kmem_free(ed, sizeof(*ed));
1680 		return NULL;
1681 	}
1682 	SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1683 
1684 	return KVADDR(ed);
1685 }
1686 
1687 static void
1688 eso_freem(void *hdl, void *addr, size_t size)
1689 {
1690 	struct eso_softc *sc;
1691 	struct eso_dma *p;
1692 
1693 	sc = hdl;
1694 	p = eso_kva2dma(sc, addr);
1695 
1696 	SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1697 	eso_freemem(p);
1698 	kmem_free(p, sizeof(*p));
1699 }
1700 
1701 static size_t
1702 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1703 {
1704 	size_t maxsize;
1705 
1706 	/*
1707 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1708 	 * bytes.  This is because IO_A2DMAC is a two byte value
1709 	 * indicating the literal byte count, and the 4 least significant
1710 	 * bits are read-only.  Zero is not used as a special case for
1711 	 * 0x10000.
1712 	 *
1713 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1714 	 * be represented.
1715 	 */
1716 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1717 
1718 	if (bufsize > maxsize)
1719 		bufsize = maxsize;
1720 
1721 	return bufsize;
1722 }
1723 
1724 static paddr_t
1725 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1726 {
1727 	struct eso_softc *sc;
1728 	struct eso_dma *ed;
1729 
1730 	sc = hdl;
1731 	if (offs < 0)
1732 		return -1;
1733 	ed = eso_kva2dma(sc, addr);
1734 
1735 	return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1736 	    offs, prot, BUS_DMA_WAITOK);
1737 }
1738 
1739 /* ARGSUSED */
1740 static int
1741 eso_get_props(void *hdl)
1742 {
1743 
1744 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1745 	    AUDIO_PROP_FULLDUPLEX;
1746 }
1747 
1748 static int
1749 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1750     void (*intr)(void *), void *arg, const audio_params_t *param)
1751 {
1752 	struct eso_softc *sc;
1753 	struct eso_dma *ed;
1754 	uint8_t a2c1;
1755 
1756 	sc = hdl;
1757 	DPRINTF((
1758 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1759 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1760 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1761 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1762 	    param->precision, param->channels));
1763 
1764 	/* Find DMA buffer. */
1765 	ed = eso_kva2dma(sc, start);
1766 	DPRINTF(("%s: dmaaddr %lx\n",
1767 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1768 
1769 	sc->sc_pintr = intr;
1770 	sc->sc_parg = arg;
1771 
1772 	/* Compute drain timeout. */
1773 	sc->sc_pdrain = (blksize * NBBY * hz) /
1774 	    (param->sample_rate * param->channels *
1775 	     param->precision) + 2;	/* slop */
1776 
1777 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1778 	blksize = -(blksize >> 1);
1779 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1780 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1781 
1782 	/* Update DAC to reflect DMA count and audio parameters. */
1783 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1784 	if (param->precision == 16)
1785 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1786 	else
1787 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1788 	if (param->channels == 2)
1789 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1790 	else
1791 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1792 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1793 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1794 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1795 	else
1796 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1797 	/* Unmask IRQ. */
1798 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1799 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1800 
1801 	/* Set up DMA controller. */
1802 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1803 	    DMAADDR(ed));
1804 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1805 	    (uint8_t *)end - (uint8_t *)start);
1806 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1807 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1808 
1809 	/* Start DMA. */
1810 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1811 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1812 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1813 	    ESO_MIXREG_A2C1_AUTO;
1814 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1815 
1816 	return 0;
1817 }
1818 
1819 static int
1820 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1821     void (*intr)(void *), void *arg, const audio_params_t *param)
1822 {
1823 	struct eso_softc *sc;
1824 	struct eso_dma *ed;
1825 	uint8_t actl, a1c1;
1826 
1827 	sc = hdl;
1828 	DPRINTF((
1829 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1830 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1831 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1832 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1833 	    param->precision, param->channels));
1834 
1835 	/*
1836 	 * If we failed to configure the Audio 1 DMA controller, bail here
1837 	 * while retaining availability of the DAC direction (in Audio 2).
1838 	 */
1839 	if (!sc->sc_dmac_configured)
1840 		return EIO;
1841 
1842 	/* Find DMA buffer. */
1843 	ed = eso_kva2dma(sc, start);
1844 	DPRINTF(("%s: dmaaddr %lx\n",
1845 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1846 
1847 	sc->sc_rintr = intr;
1848 	sc->sc_rarg = arg;
1849 
1850 	/* Compute drain timeout. */
1851 	sc->sc_rdrain = (blksize * NBBY * hz) /
1852 	    (param->sample_rate * param->channels *
1853 	     param->precision) + 2;	/* slop */
1854 
1855 	/* Set up ADC DMA converter parameters. */
1856 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1857 	if (param->channels == 2) {
1858 		actl &= ~ESO_CTLREG_ACTL_MONO;
1859 		actl |= ESO_CTLREG_ACTL_STEREO;
1860 	} else {
1861 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1862 		actl |= ESO_CTLREG_ACTL_MONO;
1863 	}
1864 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1865 
1866 	/* Set up Transfer Type: maybe move to attach time? */
1867 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1868 
1869 	/* DMA transfer count reload using 2's complement. */
1870 	blksize = -blksize;
1871 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1872 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1873 
1874 	/* Set up and enable Audio 1 DMA FIFO. */
1875 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1876 	if (param->precision == 16)
1877 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1878 	if (param->channels == 2)
1879 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1880 	else
1881 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1882 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1883 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1884 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1885 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1886 
1887 	/* Set up ADC IRQ/DRQ parameters. */
1888 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1889 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1890 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1891 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1892 
1893 	/* Set up and enable DMA controller. */
1894 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1895 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1896 	    ESO_DMAC_MASK_MASK);
1897 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1898 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1899 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1900 	    DMAADDR(ed));
1901 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1902 	    (uint8_t *)end - (uint8_t *)start - 1);
1903 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1904 
1905 	/* Start DMA. */
1906 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1907 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1908 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1909 
1910 	return 0;
1911 }
1912 
1913 
1914 static void
1915 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1916 {
1917 	struct eso_softc *sc;
1918 
1919 	sc = addr;
1920 	*intr = &sc->sc_intr_lock;
1921 	*thread = &sc->sc_lock;
1922 }
1923 
1924 /*
1925  * Mixer utility functions.
1926  */
1927 static int
1928 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1929 {
1930 	mixer_devinfo_t di;
1931 	int i;
1932 
1933 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1934 
1935 	di.index = ESO_RECORD_SOURCE;
1936 	if (eso_query_devinfo(sc, &di) != 0)
1937 		panic("eso_set_recsrc: eso_query_devinfo failed");
1938 
1939 	for (i = 0; i < di.un.e.num_mem; i++) {
1940 		if (recsrc == di.un.e.member[i].ord) {
1941 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1942 			sc->sc_recsrc = recsrc;
1943 			return 0;
1944 		}
1945 	}
1946 
1947 	return EINVAL;
1948 }
1949 
1950 static int
1951 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1952 {
1953 	mixer_devinfo_t di;
1954 	int i;
1955 	uint8_t mpm;
1956 
1957 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1958 
1959 	di.index = ESO_MONOOUT_SOURCE;
1960 	if (eso_query_devinfo(sc, &di) != 0)
1961 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1962 
1963 	for (i = 0; i < di.un.e.num_mem; i++) {
1964 		if (monooutsrc == di.un.e.member[i].ord) {
1965 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1966 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1967 			mpm |= monooutsrc;
1968 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1969 			sc->sc_monooutsrc = monooutsrc;
1970 			return 0;
1971 		}
1972 	}
1973 
1974 	return EINVAL;
1975 }
1976 
1977 static int
1978 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1979 {
1980 	mixer_devinfo_t di;
1981 	int i;
1982 	uint8_t mpm;
1983 
1984 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1985 
1986 	di.index = ESO_MONOIN_BYPASS;
1987 	if (eso_query_devinfo(sc, &di) != 0)
1988 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
1989 
1990 	for (i = 0; i < di.un.e.num_mem; i++) {
1991 		if (monoinbypass == di.un.e.member[i].ord) {
1992 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1993 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1994 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1995 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1996 			sc->sc_monoinbypass = monoinbypass;
1997 			return 0;
1998 		}
1999 	}
2000 
2001 	return EINVAL;
2002 }
2003 
2004 static int
2005 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2006 {
2007 	mixer_devinfo_t di;
2008 	int i;
2009 	uint8_t mpm;
2010 
2011 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2012 
2013 	di.index = ESO_MIC_PREAMP;
2014 	if (eso_query_devinfo(sc, &di) != 0)
2015 		panic("eso_set_preamp: eso_query_devinfo failed");
2016 
2017 	for (i = 0; i < di.un.e.num_mem; i++) {
2018 		if (preamp == di.un.e.member[i].ord) {
2019 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2020 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2021 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2022 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2023 			sc->sc_preamp = preamp;
2024 			return 0;
2025 		}
2026 	}
2027 
2028 	return EINVAL;
2029 }
2030 
2031 /*
2032  * Reload Master Volume and Mute values in softc from mixer; used when
2033  * those have previously been invalidated by use of hardware volume controls.
2034  */
2035 static void
2036 eso_reload_master_vol(struct eso_softc *sc)
2037 {
2038 	uint8_t mv;
2039 
2040 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2041 
2042 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2043 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2044 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2045 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2046 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2047 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2048 	/* Currently both channels are muted simultaneously; either is OK. */
2049 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2050 }
2051 
2052 static void
2053 eso_set_gain(struct eso_softc *sc, unsigned int port)
2054 {
2055 	uint8_t mixreg, tmp;
2056 
2057 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2058 
2059 	switch (port) {
2060 	case ESO_DAC_PLAY_VOL:
2061 		mixreg = ESO_MIXREG_PVR_A2;
2062 		break;
2063 	case ESO_MIC_PLAY_VOL:
2064 		mixreg = ESO_MIXREG_PVR_MIC;
2065 		break;
2066 	case ESO_LINE_PLAY_VOL:
2067 		mixreg = ESO_MIXREG_PVR_LINE;
2068 		break;
2069 	case ESO_SYNTH_PLAY_VOL:
2070 		mixreg = ESO_MIXREG_PVR_SYNTH;
2071 		break;
2072 	case ESO_CD_PLAY_VOL:
2073 		mixreg = ESO_MIXREG_PVR_CD;
2074 		break;
2075 	case ESO_AUXB_PLAY_VOL:
2076 		mixreg = ESO_MIXREG_PVR_AUXB;
2077 		break;
2078 
2079 	case ESO_DAC_REC_VOL:
2080 		mixreg = ESO_MIXREG_RVR_A2;
2081 		break;
2082 	case ESO_MIC_REC_VOL:
2083 		mixreg = ESO_MIXREG_RVR_MIC;
2084 		break;
2085 	case ESO_LINE_REC_VOL:
2086 		mixreg = ESO_MIXREG_RVR_LINE;
2087 		break;
2088 	case ESO_SYNTH_REC_VOL:
2089 		mixreg = ESO_MIXREG_RVR_SYNTH;
2090 		break;
2091 	case ESO_CD_REC_VOL:
2092 		mixreg = ESO_MIXREG_RVR_CD;
2093 		break;
2094 	case ESO_AUXB_REC_VOL:
2095 		mixreg = ESO_MIXREG_RVR_AUXB;
2096 		break;
2097 	case ESO_MONO_PLAY_VOL:
2098 		mixreg = ESO_MIXREG_PVR_MONO;
2099 		break;
2100 	case ESO_MONO_REC_VOL:
2101 		mixreg = ESO_MIXREG_RVR_MONO;
2102 		break;
2103 
2104 	case ESO_PCSPEAKER_VOL:
2105 		/* Special case - only 3-bit, mono, and reserved bits. */
2106 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2107 		tmp &= ESO_MIXREG_PCSVR_RESV;
2108 		/* Map bits 7:5 -> 2:0. */
2109 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2110 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2111 		return;
2112 
2113 	case ESO_MASTER_VOL:
2114 		/* Special case - separate regs, and 6-bit precision. */
2115 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
2116 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2117 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
2118 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2119 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2120 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2121 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2122 		return;
2123 
2124 	case ESO_SPATIALIZER:
2125 		/* Special case - only `mono', and higher precision. */
2126 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2127 		    sc->sc_gain[port][ESO_LEFT]);
2128 		return;
2129 
2130 	case ESO_RECORD_VOL:
2131 		/* Very Special case, controller register. */
2132 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2133 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2134 		return;
2135 
2136 	default:
2137 #ifdef DIAGNOSTIC
2138 		panic("eso_set_gain: bad port %u", port);
2139 		/* NOTREACHED */
2140 #else
2141 		return;
2142 #endif
2143 	}
2144 
2145 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2146 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2147 }
2148