1 /* $NetBSD: eso.c,v 1.20 2000/12/28 22:59:12 sommerfeld Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include "mpu.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/device.h> 42 #include <sys/proc.h> 43 44 #include <dev/pci/pcidevs.h> 45 #include <dev/pci/pcivar.h> 46 47 #include <sys/audioio.h> 48 #include <dev/audio_if.h> 49 #include <dev/midi_if.h> 50 51 #include <dev/mulaw.h> 52 #include <dev/auconv.h> 53 54 #include <dev/ic/mpuvar.h> 55 #include <dev/ic/i8237reg.h> 56 #include <dev/pci/esoreg.h> 57 #include <dev/pci/esovar.h> 58 59 #include <machine/bus.h> 60 #include <machine/intr.h> 61 62 #if defined(AUDIO_DEBUG) || defined(DEBUG) 63 #define DPRINTF(x) printf x 64 #else 65 #define DPRINTF(x) 66 #endif 67 68 struct eso_dma { 69 bus_dma_tag_t ed_dmat; 70 bus_dmamap_t ed_map; 71 caddr_t ed_addr; 72 bus_dma_segment_t ed_segs[1]; 73 int ed_nsegs; 74 size_t ed_size; 75 struct eso_dma * ed_next; 76 }; 77 78 #define KVADDR(dma) ((void *)(dma)->ed_addr) 79 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 80 81 /* Autoconfiguration interface */ 82 static int eso_match __P((struct device *, struct cfdata *, void *)); 83 static void eso_attach __P((struct device *, struct device *, void *)); 84 static void eso_defer __P((struct device *)); 85 86 struct cfattach eso_ca = { 87 sizeof (struct eso_softc), eso_match, eso_attach 88 }; 89 90 /* PCI interface */ 91 static int eso_intr __P((void *)); 92 93 /* MI audio layer interface */ 94 static int eso_open __P((void *, int)); 95 static void eso_close __P((void *)); 96 static int eso_query_encoding __P((void *, struct audio_encoding *)); 97 static int eso_set_params __P((void *, int, int, struct audio_params *, 98 struct audio_params *)); 99 static int eso_round_blocksize __P((void *, int)); 100 static int eso_halt_output __P((void *)); 101 static int eso_halt_input __P((void *)); 102 static int eso_getdev __P((void *, struct audio_device *)); 103 static int eso_set_port __P((void *, mixer_ctrl_t *)); 104 static int eso_get_port __P((void *, mixer_ctrl_t *)); 105 static int eso_query_devinfo __P((void *, mixer_devinfo_t *)); 106 static void * eso_allocm __P((void *, int, size_t, int, int)); 107 static void eso_freem __P((void *, void *, int)); 108 static size_t eso_round_buffersize __P((void *, int, size_t)); 109 static paddr_t eso_mappage __P((void *, void *, off_t, int)); 110 static int eso_get_props __P((void *)); 111 static int eso_trigger_output __P((void *, void *, void *, int, 112 void (*)(void *), void *, struct audio_params *)); 113 static int eso_trigger_input __P((void *, void *, void *, int, 114 void (*)(void *), void *, struct audio_params *)); 115 116 static struct audio_hw_if eso_hw_if = { 117 eso_open, 118 eso_close, 119 NULL, /* drain */ 120 eso_query_encoding, 121 eso_set_params, 122 eso_round_blocksize, 123 NULL, /* commit_settings */ 124 NULL, /* init_output */ 125 NULL, /* init_input */ 126 NULL, /* start_output */ 127 NULL, /* start_input */ 128 eso_halt_output, 129 eso_halt_input, 130 NULL, /* speaker_ctl */ 131 eso_getdev, 132 NULL, /* setfd */ 133 eso_set_port, 134 eso_get_port, 135 eso_query_devinfo, 136 eso_allocm, 137 eso_freem, 138 eso_round_buffersize, 139 eso_mappage, 140 eso_get_props, 141 eso_trigger_output, 142 eso_trigger_input 143 }; 144 145 static const char * const eso_rev2model[] = { 146 "ES1938", 147 "ES1946", 148 "ES1946 Revision E" 149 }; 150 151 152 /* 153 * Utility routines 154 */ 155 /* Register access etc. */ 156 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t)); 157 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t)); 158 static uint8_t eso_read_rdr __P((struct eso_softc *)); 159 static void eso_reload_master_vol __P((struct eso_softc *)); 160 static int eso_reset __P((struct eso_softc *)); 161 static void eso_set_gain __P((struct eso_softc *, unsigned int)); 162 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int)); 163 static int eso_set_recsrc __P((struct eso_softc *, unsigned int)); 164 static void eso_write_cmd __P((struct eso_softc *, uint8_t)); 165 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t)); 166 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t)); 167 /* DMA memory allocation */ 168 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t, 169 int, struct eso_dma *)); 170 static void eso_freemem __P((struct eso_dma *)); 171 172 173 static int 174 eso_match(parent, match, aux) 175 struct device *parent; 176 struct cfdata *match; 177 void *aux; 178 { 179 struct pci_attach_args *pa = aux; 180 181 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 183 return (1); 184 185 return (0); 186 } 187 188 static void 189 eso_attach(parent, self, aux) 190 struct device *parent, *self; 191 void *aux; 192 { 193 struct eso_softc *sc = (struct eso_softc *)self; 194 struct pci_attach_args *pa = aux; 195 struct audio_attach_args aa; 196 pci_intr_handle_t ih; 197 bus_addr_t vcbase; 198 const char *intrstring; 199 int idx; 200 uint8_t a2mode, mvctl; 201 202 sc->sc_revision = PCI_REVISION(pa->pa_class); 203 204 printf(": ESS Solo-1 PCI AudioDrive "); 205 if (sc->sc_revision < 206 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 207 printf("%s\n", eso_rev2model[sc->sc_revision]); 208 else 209 printf("(unknown rev. 0x%02x)\n", sc->sc_revision); 210 211 /* Map I/O registers. */ 212 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 213 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 214 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname); 215 return; 216 } 217 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 218 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 219 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname); 220 return; 221 } 222 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 223 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 224 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname); 225 /* Don't bail out yet: we can map it later, see below. */ 226 vcbase = 0; 227 sc->sc_vcsize = 0x10; /* From the data sheet. */ 228 } 229 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 230 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 231 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname); 232 return; 233 } 234 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 235 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 236 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname); 237 return; 238 } 239 240 sc->sc_dmat = pa->pa_dmat; 241 sc->sc_dmas = NULL; 242 sc->sc_dmac_configured = 0; 243 244 /* Enable bus mastering. */ 245 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 246 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 247 PCI_COMMAND_MASTER_ENABLE); 248 249 /* Reset the device; bail out upon failure. */ 250 if (eso_reset(sc) != 0) { 251 printf("%s: can't reset\n", sc->sc_dev.dv_xname); 252 return; 253 } 254 255 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 256 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 257 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 258 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 259 260 /* Enable the relevant (DMA) interrupts. */ 261 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 262 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 263 ESO_IO_IRQCTL_MPUIRQ); 264 265 /* Set up A1's sample rate generator for new-style parameters. */ 266 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 267 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 268 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 269 270 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */ 271 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 272 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 273 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 274 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 275 276 /* Set mixer regs to something reasonable, needs work. */ 277 sc->sc_recsrc = ESO_MIXREG_ERS_LINE; 278 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE; 279 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 280 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 281 int v; 282 283 switch (idx) { 284 case ESO_MIC_PLAY_VOL: 285 case ESO_LINE_PLAY_VOL: 286 case ESO_CD_PLAY_VOL: 287 case ESO_MONO_PLAY_VOL: 288 case ESO_AUXB_PLAY_VOL: 289 case ESO_DAC_REC_VOL: 290 case ESO_LINE_REC_VOL: 291 case ESO_SYNTH_REC_VOL: 292 case ESO_CD_REC_VOL: 293 case ESO_MONO_REC_VOL: 294 case ESO_AUXB_REC_VOL: 295 case ESO_SPATIALIZER: 296 v = 0; 297 break; 298 case ESO_MASTER_VOL: 299 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 300 break; 301 default: 302 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 303 break; 304 } 305 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 306 eso_set_gain(sc, idx); 307 } 308 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 309 310 /* Map and establish the interrupt. */ 311 if (pci_intr_map(pa, &ih)) { 312 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 313 return; 314 } 315 intrstring = pci_intr_string(pa->pa_pc, ih); 316 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 317 if (sc->sc_ih == NULL) { 318 printf("%s: couldn't establish interrupt", 319 sc->sc_dev.dv_xname); 320 if (intrstring != NULL) 321 printf(" at %s", intrstring); 322 printf("\n"); 323 return; 324 } 325 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring); 326 327 /* 328 * Set up the DDMA Control register; a suitable I/O region has been 329 * supposedly mapped in the VC base address register. 330 * 331 * The Solo-1 has an ... interesting silicon bug that causes it to 332 * not respond to I/O space accesses to the Audio 1 DMA controller 333 * if the latter's mapping base address is aligned on a 1K boundary. 334 * As a consequence, it is quite possible for the mapping provided 335 * in the VC BAR to be useless. To work around this, we defer this 336 * part until all autoconfiguration on our parent bus is completed 337 * and then try to map it ourselves in fulfillment of the constraint. 338 * 339 * According to the register map we may write to the low 16 bits 340 * only, but experimenting has shown we're safe. 341 * -kjk 342 */ 343 if (ESO_VALID_DDMAC_BASE(vcbase)) { 344 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 345 vcbase | ESO_PCI_DDMAC_DE); 346 sc->sc_dmac_configured = 1; 347 348 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 349 sc->sc_dev.dv_xname, (unsigned long)vcbase); 350 } else { 351 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 352 sc->sc_dev.dv_xname, (unsigned long)vcbase)); 353 sc->sc_pa = *pa; 354 config_defer(self, eso_defer); 355 } 356 357 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 358 359 aa.type = AUDIODEV_TYPE_OPL; 360 aa.hwif = NULL; 361 aa.hdl = NULL; 362 (void)config_found(&sc->sc_dev, &aa, audioprint); 363 364 aa.type = AUDIODEV_TYPE_MPU; 365 aa.hwif = NULL; 366 aa.hdl = NULL; 367 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 368 if (sc->sc_mpudev != NULL) { 369 /* Unmask the MPU irq. */ 370 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 371 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 372 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 373 } 374 } 375 376 static void 377 eso_defer(self) 378 struct device *self; 379 { 380 struct eso_softc *sc = (struct eso_softc *)self; 381 struct pci_attach_args *pa = &sc->sc_pa; 382 bus_addr_t addr, start; 383 384 printf("%s: ", sc->sc_dev.dv_xname); 385 386 /* 387 * This is outright ugly, but since we must not make assumptions 388 * on the underlying allocator's behaviour it's the most straight- 389 * forward way to implement it. Note that we skip over the first 390 * 1K region, which is typically occupied by an attached ISA bus. 391 */ 392 for (start = 0x0400; start < 0xffff; start += 0x0400) { 393 if (bus_space_alloc(sc->sc_iot, 394 start + sc->sc_vcsize, start + 0x0400 - 1, 395 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 396 &sc->sc_dmac_ioh) != 0) 397 continue; 398 399 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 400 addr | ESO_PCI_DDMAC_DE); 401 sc->sc_dmac_iot = sc->sc_iot; 402 sc->sc_dmac_configured = 1; 403 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n", 404 (unsigned long)addr); 405 406 return; 407 } 408 409 printf("can't map Audio 1 DMA into I/O space\n"); 410 } 411 412 static void 413 eso_write_cmd(sc, cmd) 414 struct eso_softc *sc; 415 uint8_t cmd; 416 { 417 int i; 418 419 /* Poll for busy indicator to become clear. */ 420 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 421 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 422 & ESO_SB_RSR_BUSY) == 0) { 423 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 424 ESO_SB_WDR, cmd); 425 return; 426 } else { 427 delay(10); 428 } 429 } 430 431 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); 432 return; 433 } 434 435 /* Write to a controller register */ 436 static void 437 eso_write_ctlreg(sc, reg, val) 438 struct eso_softc *sc; 439 uint8_t reg, val; 440 { 441 442 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 443 444 eso_write_cmd(sc, reg); 445 eso_write_cmd(sc, val); 446 } 447 448 /* Read out the Read Data Register */ 449 static uint8_t 450 eso_read_rdr(sc) 451 struct eso_softc *sc; 452 { 453 int i; 454 455 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 456 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 457 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 458 return (bus_space_read_1(sc->sc_sb_iot, 459 sc->sc_sb_ioh, ESO_SB_RDR)); 460 } else { 461 delay(10); 462 } 463 } 464 465 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); 466 return (-1); 467 } 468 469 470 static uint8_t 471 eso_read_ctlreg(sc, reg) 472 struct eso_softc *sc; 473 uint8_t reg; 474 { 475 476 eso_write_cmd(sc, ESO_CMD_RCR); 477 eso_write_cmd(sc, reg); 478 return (eso_read_rdr(sc)); 479 } 480 481 static void 482 eso_write_mixreg(sc, reg, val) 483 struct eso_softc *sc; 484 uint8_t reg, val; 485 { 486 int s; 487 488 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 489 490 s = splaudio(); 491 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 492 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 493 splx(s); 494 } 495 496 static uint8_t 497 eso_read_mixreg(sc, reg) 498 struct eso_softc *sc; 499 uint8_t reg; 500 { 501 int s; 502 uint8_t val; 503 504 s = splaudio(); 505 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 506 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 507 splx(s); 508 509 return (val); 510 } 511 512 static int 513 eso_intr(hdl) 514 void *hdl; 515 { 516 struct eso_softc *sc = hdl; 517 uint8_t irqctl; 518 519 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 520 521 /* If it wasn't ours, that's all she wrote. */ 522 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 523 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 524 return (0); 525 526 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 527 /* Clear interrupt. */ 528 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 529 ESO_SB_RBSR); 530 531 if (sc->sc_rintr) 532 sc->sc_rintr(sc->sc_rarg); 533 else 534 wakeup(&sc->sc_rintr); 535 } 536 537 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 538 /* 539 * Clear the A2 IRQ latch: the cached value reflects the 540 * current DAC settings with the IRQ latch bit not set. 541 */ 542 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 543 544 if (sc->sc_pintr) 545 sc->sc_pintr(sc->sc_parg); 546 else 547 wakeup(&sc->sc_pintr); 548 } 549 550 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 551 /* Clear interrupt. */ 552 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 553 554 /* 555 * Raise a flag to cause a lazy update of the in-softc gain 556 * values the next time the software mixer is read to keep 557 * interrupt service cost low. ~0 cannot occur otherwise 558 * as the master volume has a precision of 6 bits only. 559 */ 560 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 561 } 562 563 #if NMPU > 0 564 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) 565 mpu_intr(sc->sc_mpudev); 566 #endif 567 568 return (1); 569 } 570 571 /* Perform a software reset, including DMA FIFOs. */ 572 static int 573 eso_reset(sc) 574 struct eso_softc *sc; 575 { 576 int i; 577 578 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 579 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 580 /* `Delay' suggested in the data sheet. */ 581 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 582 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 583 584 /* Wait for reset to take effect. */ 585 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 586 /* Poll for data to become available. */ 587 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 588 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 589 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 590 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 591 592 /* Activate Solo-1 extension commands. */ 593 eso_write_cmd(sc, ESO_CMD_EXTENB); 594 /* Reset mixer registers. */ 595 eso_write_mixreg(sc, ESO_MIXREG_RESET, 596 ESO_MIXREG_RESET_RESET); 597 598 return (0); 599 } else { 600 delay(1000); 601 } 602 } 603 604 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 605 return (-1); 606 } 607 608 609 /* ARGSUSED */ 610 static int 611 eso_open(hdl, flags) 612 void *hdl; 613 int flags; 614 { 615 struct eso_softc *sc = hdl; 616 617 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname)); 618 619 sc->sc_pintr = NULL; 620 sc->sc_rintr = NULL; 621 622 return (0); 623 } 624 625 static void 626 eso_close(hdl) 627 void *hdl; 628 { 629 630 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname)); 631 } 632 633 static int 634 eso_query_encoding(hdl, fp) 635 void *hdl; 636 struct audio_encoding *fp; 637 { 638 639 switch (fp->index) { 640 case 0: 641 strcpy(fp->name, AudioEulinear); 642 fp->encoding = AUDIO_ENCODING_ULINEAR; 643 fp->precision = 8; 644 fp->flags = 0; 645 break; 646 case 1: 647 strcpy(fp->name, AudioEmulaw); 648 fp->encoding = AUDIO_ENCODING_ULAW; 649 fp->precision = 8; 650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 651 break; 652 case 2: 653 strcpy(fp->name, AudioEalaw); 654 fp->encoding = AUDIO_ENCODING_ALAW; 655 fp->precision = 8; 656 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 657 break; 658 case 3: 659 strcpy(fp->name, AudioEslinear); 660 fp->encoding = AUDIO_ENCODING_SLINEAR; 661 fp->precision = 8; 662 fp->flags = 0; 663 break; 664 case 4: 665 strcpy(fp->name, AudioEslinear_le); 666 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 667 fp->precision = 16; 668 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 669 break; 670 case 5: 671 strcpy(fp->name, AudioEulinear_le); 672 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 673 fp->precision = 16; 674 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 675 break; 676 case 6: 677 strcpy(fp->name, AudioEslinear_be); 678 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 679 fp->precision = 16; 680 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 681 break; 682 case 7: 683 strcpy(fp->name, AudioEulinear_be); 684 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 685 fp->precision = 16; 686 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 687 break; 688 default: 689 return (EINVAL); 690 } 691 692 return (0); 693 } 694 695 static int 696 eso_set_params(hdl, setmode, usemode, play, rec) 697 void *hdl; 698 int setmode, usemode; 699 struct audio_params *play, *rec; 700 { 701 struct eso_softc *sc = hdl; 702 struct audio_params *p; 703 int mode, r[2], rd[2], clk; 704 unsigned int srg, fltdiv; 705 706 for (mode = AUMODE_RECORD; mode != -1; 707 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 708 if ((setmode & mode) == 0) 709 continue; 710 711 p = (mode == AUMODE_PLAY) ? play : rec; 712 713 if (p->sample_rate < ESO_MINRATE || 714 p->sample_rate > ESO_MAXRATE || 715 (p->precision != 8 && p->precision != 16) || 716 (p->channels != 1 && p->channels != 2)) 717 return (EINVAL); 718 719 p->factor = 1; 720 p->sw_code = NULL; 721 switch (p->encoding) { 722 case AUDIO_ENCODING_SLINEAR_BE: 723 case AUDIO_ENCODING_ULINEAR_BE: 724 if (mode == AUMODE_PLAY && p->precision == 16) 725 p->sw_code = swap_bytes; 726 break; 727 case AUDIO_ENCODING_SLINEAR_LE: 728 case AUDIO_ENCODING_ULINEAR_LE: 729 if (mode == AUMODE_RECORD && p->precision == 16) 730 p->sw_code = swap_bytes; 731 break; 732 case AUDIO_ENCODING_ULAW: 733 if (mode == AUMODE_PLAY) { 734 p->factor = 2; 735 p->sw_code = mulaw_to_ulinear16_le; 736 } else { 737 p->sw_code = ulinear8_to_mulaw; 738 } 739 break; 740 case AUDIO_ENCODING_ALAW: 741 if (mode == AUMODE_PLAY) { 742 p->factor = 2; 743 p->sw_code = alaw_to_ulinear16_le; 744 } else { 745 p->sw_code = ulinear8_to_alaw; 746 } 747 break; 748 default: 749 return (EINVAL); 750 } 751 752 /* 753 * We'll compute both possible sample rate dividers and pick 754 * the one with the least error. 755 */ 756 #define ABS(x) ((x) < 0 ? -(x) : (x)) 757 r[0] = ESO_CLK0 / 758 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 759 r[1] = ESO_CLK1 / 760 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 761 762 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]); 763 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 764 765 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 766 fltdiv = 256 - 200279L / r[clk]; 767 768 /* Update to reflect the possibly inexact rate. */ 769 p->sample_rate = r[clk]; 770 771 if (mode == AUMODE_RECORD) { 772 /* Audio 1 */ 773 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 774 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 775 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 776 } else { 777 /* Audio 2 */ 778 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 779 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 780 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 781 } 782 #undef ABS 783 784 } 785 786 return (0); 787 } 788 789 static int 790 eso_round_blocksize(hdl, blk) 791 void *hdl; 792 int blk; 793 { 794 795 return (blk & -32); /* keep good alignment; at least 16 req'd */ 796 } 797 798 static int 799 eso_halt_output(hdl) 800 void *hdl; 801 { 802 struct eso_softc *sc = hdl; 803 int error, s; 804 805 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); 806 807 /* 808 * Disable auto-initialize DMA, allowing the FIFO to drain and then 809 * stop. The interrupt callback pointer is cleared at this 810 * point so that an outstanding FIFO interrupt for the remaining data 811 * will be acknowledged without further processing. 812 * 813 * This does not immediately `abort' an operation in progress (c.f. 814 * audio(9)) but is the method to leave the FIFO behind in a clean 815 * state with the least hair. (Besides, that item needs to be 816 * rephrased for trigger_*()-based DMA environments.) 817 */ 818 s = splaudio(); 819 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 820 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 821 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 822 ESO_IO_A2DMAM_DMAENB); 823 824 sc->sc_pintr = NULL; 825 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 826 splx(s); 827 828 /* Shut down DMA completely. */ 829 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 830 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 831 832 return (error == EWOULDBLOCK ? 0 : error); 833 } 834 835 static int 836 eso_halt_input(hdl) 837 void *hdl; 838 { 839 struct eso_softc *sc = hdl; 840 int error, s; 841 842 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); 843 844 /* Just like eso_halt_output(), but for Audio 1. */ 845 s = splaudio(); 846 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 847 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 848 ESO_CTLREG_A1C2_DMAENB); 849 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 850 DMA37MD_WRITE | DMA37MD_DEMAND); 851 852 sc->sc_rintr = NULL; 853 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 854 splx(s); 855 856 /* Shut down DMA completely. */ 857 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 858 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 859 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 860 ESO_DMAC_MASK_MASK); 861 862 return (error == EWOULDBLOCK ? 0 : error); 863 } 864 865 static int 866 eso_getdev(hdl, retp) 867 void *hdl; 868 struct audio_device *retp; 869 { 870 struct eso_softc *sc = hdl; 871 872 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 873 snprintf(retp->version, sizeof (retp->version), "0x%02x", 874 sc->sc_revision); 875 if (sc->sc_revision < 876 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 877 strncpy(retp->config, eso_rev2model[sc->sc_revision], 878 sizeof (retp->config)); 879 else 880 strncpy(retp->config, "unknown", sizeof (retp->config)); 881 882 return (0); 883 } 884 885 static int 886 eso_set_port(hdl, cp) 887 void *hdl; 888 mixer_ctrl_t *cp; 889 { 890 struct eso_softc *sc = hdl; 891 unsigned int lgain, rgain; 892 uint8_t tmp; 893 894 switch (cp->dev) { 895 case ESO_DAC_PLAY_VOL: 896 case ESO_MIC_PLAY_VOL: 897 case ESO_LINE_PLAY_VOL: 898 case ESO_SYNTH_PLAY_VOL: 899 case ESO_CD_PLAY_VOL: 900 case ESO_AUXB_PLAY_VOL: 901 case ESO_RECORD_VOL: 902 case ESO_DAC_REC_VOL: 903 case ESO_MIC_REC_VOL: 904 case ESO_LINE_REC_VOL: 905 case ESO_SYNTH_REC_VOL: 906 case ESO_CD_REC_VOL: 907 case ESO_AUXB_REC_VOL: 908 if (cp->type != AUDIO_MIXER_VALUE) 909 return (EINVAL); 910 911 /* 912 * Stereo-capable mixer ports: if we get a single-channel 913 * gain value passed in, then we duplicate it to both left 914 * and right channels. 915 */ 916 switch (cp->un.value.num_channels) { 917 case 1: 918 lgain = rgain = ESO_GAIN_TO_4BIT( 919 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 920 break; 921 case 2: 922 lgain = ESO_GAIN_TO_4BIT( 923 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 924 rgain = ESO_GAIN_TO_4BIT( 925 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 926 break; 927 default: 928 return (EINVAL); 929 } 930 931 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 932 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 933 eso_set_gain(sc, cp->dev); 934 break; 935 936 case ESO_MASTER_VOL: 937 if (cp->type != AUDIO_MIXER_VALUE) 938 return (EINVAL); 939 940 /* Like above, but a precision of 6 bits. */ 941 switch (cp->un.value.num_channels) { 942 case 1: 943 lgain = rgain = ESO_GAIN_TO_6BIT( 944 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 945 break; 946 case 2: 947 lgain = ESO_GAIN_TO_6BIT( 948 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 949 rgain = ESO_GAIN_TO_6BIT( 950 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 951 break; 952 default: 953 return (EINVAL); 954 } 955 956 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 957 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 958 eso_set_gain(sc, cp->dev); 959 break; 960 961 case ESO_SPATIALIZER: 962 if (cp->type != AUDIO_MIXER_VALUE || 963 cp->un.value.num_channels != 1) 964 return (EINVAL); 965 966 sc->sc_gain[cp->dev][ESO_LEFT] = 967 sc->sc_gain[cp->dev][ESO_RIGHT] = 968 ESO_GAIN_TO_6BIT( 969 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 970 eso_set_gain(sc, cp->dev); 971 break; 972 973 case ESO_MONO_PLAY_VOL: 974 case ESO_MONO_REC_VOL: 975 if (cp->type != AUDIO_MIXER_VALUE || 976 cp->un.value.num_channels != 1) 977 return (EINVAL); 978 979 sc->sc_gain[cp->dev][ESO_LEFT] = 980 sc->sc_gain[cp->dev][ESO_RIGHT] = 981 ESO_GAIN_TO_4BIT( 982 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 983 eso_set_gain(sc, cp->dev); 984 break; 985 986 case ESO_PCSPEAKER_VOL: 987 if (cp->type != AUDIO_MIXER_VALUE || 988 cp->un.value.num_channels != 1) 989 return (EINVAL); 990 991 sc->sc_gain[cp->dev][ESO_LEFT] = 992 sc->sc_gain[cp->dev][ESO_RIGHT] = 993 ESO_GAIN_TO_3BIT( 994 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 995 eso_set_gain(sc, cp->dev); 996 break; 997 998 case ESO_SPATIALIZER_ENABLE: 999 if (cp->type != AUDIO_MIXER_ENUM) 1000 return (EINVAL); 1001 1002 sc->sc_spatializer = (cp->un.ord != 0); 1003 1004 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1005 if (sc->sc_spatializer) 1006 tmp |= ESO_MIXREG_SPAT_ENB; 1007 else 1008 tmp &= ~ESO_MIXREG_SPAT_ENB; 1009 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1010 tmp | ESO_MIXREG_SPAT_RSTREL); 1011 break; 1012 1013 case ESO_MASTER_MUTE: 1014 if (cp->type != AUDIO_MIXER_ENUM) 1015 return (EINVAL); 1016 1017 sc->sc_mvmute = (cp->un.ord != 0); 1018 1019 if (sc->sc_mvmute) { 1020 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1021 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1022 ESO_MIXREG_LMVM_MUTE); 1023 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1024 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1025 ESO_MIXREG_RMVM_MUTE); 1026 } else { 1027 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1028 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1029 ~ESO_MIXREG_LMVM_MUTE); 1030 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1031 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1032 ~ESO_MIXREG_RMVM_MUTE); 1033 } 1034 break; 1035 1036 case ESO_MONOOUT_SOURCE: 1037 if (cp->type != AUDIO_MIXER_ENUM) 1038 return (EINVAL); 1039 1040 return (eso_set_monooutsrc(sc, cp->un.ord)); 1041 1042 case ESO_RECORD_MONITOR: 1043 if (cp->type != AUDIO_MIXER_ENUM) 1044 return (EINVAL); 1045 1046 sc->sc_recmon = (cp->un.ord != 0); 1047 1048 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1049 if (sc->sc_recmon) 1050 tmp |= ESO_CTLREG_ACTL_RECMON; 1051 else 1052 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1053 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1054 break; 1055 1056 case ESO_RECORD_SOURCE: 1057 if (cp->type != AUDIO_MIXER_ENUM) 1058 return (EINVAL); 1059 1060 return (eso_set_recsrc(sc, cp->un.ord)); 1061 1062 case ESO_MIC_PREAMP: 1063 if (cp->type != AUDIO_MIXER_ENUM) 1064 return (EINVAL); 1065 1066 sc->sc_preamp = (cp->un.ord != 0); 1067 1068 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1069 tmp &= ~ESO_MIXREG_MPM_RESV0; 1070 if (sc->sc_preamp) 1071 tmp |= ESO_MIXREG_MPM_PREAMP; 1072 else 1073 tmp &= ~ESO_MIXREG_MPM_PREAMP; 1074 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp); 1075 break; 1076 1077 default: 1078 return (EINVAL); 1079 } 1080 1081 return (0); 1082 } 1083 1084 static int 1085 eso_get_port(hdl, cp) 1086 void *hdl; 1087 mixer_ctrl_t *cp; 1088 { 1089 struct eso_softc *sc = hdl; 1090 1091 switch (cp->dev) { 1092 case ESO_MASTER_VOL: 1093 /* Reload from mixer after hardware volume control use. */ 1094 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1095 eso_reload_master_vol(sc); 1096 /* FALLTHROUGH */ 1097 case ESO_DAC_PLAY_VOL: 1098 case ESO_MIC_PLAY_VOL: 1099 case ESO_LINE_PLAY_VOL: 1100 case ESO_SYNTH_PLAY_VOL: 1101 case ESO_CD_PLAY_VOL: 1102 case ESO_AUXB_PLAY_VOL: 1103 case ESO_RECORD_VOL: 1104 case ESO_DAC_REC_VOL: 1105 case ESO_MIC_REC_VOL: 1106 case ESO_LINE_REC_VOL: 1107 case ESO_SYNTH_REC_VOL: 1108 case ESO_CD_REC_VOL: 1109 case ESO_AUXB_REC_VOL: 1110 /* 1111 * Stereo-capable ports: if a single-channel query is made, 1112 * just return the left channel's value (since single-channel 1113 * settings themselves are applied to both channels). 1114 */ 1115 switch (cp->un.value.num_channels) { 1116 case 1: 1117 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1118 sc->sc_gain[cp->dev][ESO_LEFT]; 1119 break; 1120 case 2: 1121 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1122 sc->sc_gain[cp->dev][ESO_LEFT]; 1123 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1124 sc->sc_gain[cp->dev][ESO_RIGHT]; 1125 break; 1126 default: 1127 return (EINVAL); 1128 } 1129 break; 1130 1131 case ESO_MONO_PLAY_VOL: 1132 case ESO_PCSPEAKER_VOL: 1133 case ESO_MONO_REC_VOL: 1134 case ESO_SPATIALIZER: 1135 if (cp->un.value.num_channels != 1) 1136 return (EINVAL); 1137 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1138 sc->sc_gain[cp->dev][ESO_LEFT]; 1139 break; 1140 1141 case ESO_RECORD_MONITOR: 1142 cp->un.ord = sc->sc_recmon; 1143 break; 1144 1145 case ESO_RECORD_SOURCE: 1146 cp->un.ord = sc->sc_recsrc; 1147 break; 1148 1149 case ESO_MONOOUT_SOURCE: 1150 cp->un.ord = sc->sc_monooutsrc; 1151 break; 1152 1153 case ESO_SPATIALIZER_ENABLE: 1154 cp->un.ord = sc->sc_spatializer; 1155 break; 1156 1157 case ESO_MIC_PREAMP: 1158 cp->un.ord = sc->sc_preamp; 1159 break; 1160 1161 case ESO_MASTER_MUTE: 1162 /* Reload from mixer after hardware volume control use. */ 1163 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1164 eso_reload_master_vol(sc); 1165 cp->un.ord = sc->sc_mvmute; 1166 break; 1167 1168 default: 1169 return (EINVAL); 1170 } 1171 1172 1173 return (0); 1174 1175 } 1176 1177 static int 1178 eso_query_devinfo(hdl, dip) 1179 void *hdl; 1180 mixer_devinfo_t *dip; 1181 { 1182 1183 switch (dip->index) { 1184 case ESO_DAC_PLAY_VOL: 1185 dip->mixer_class = ESO_INPUT_CLASS; 1186 dip->next = dip->prev = AUDIO_MIXER_LAST; 1187 strcpy(dip->label.name, AudioNdac); 1188 dip->type = AUDIO_MIXER_VALUE; 1189 dip->un.v.num_channels = 2; 1190 strcpy(dip->un.v.units.name, AudioNvolume); 1191 break; 1192 case ESO_MIC_PLAY_VOL: 1193 dip->mixer_class = ESO_INPUT_CLASS; 1194 dip->next = dip->prev = AUDIO_MIXER_LAST; 1195 strcpy(dip->label.name, AudioNmicrophone); 1196 dip->type = AUDIO_MIXER_VALUE; 1197 dip->un.v.num_channels = 2; 1198 strcpy(dip->un.v.units.name, AudioNvolume); 1199 break; 1200 case ESO_LINE_PLAY_VOL: 1201 dip->mixer_class = ESO_INPUT_CLASS; 1202 dip->next = dip->prev = AUDIO_MIXER_LAST; 1203 strcpy(dip->label.name, AudioNline); 1204 dip->type = AUDIO_MIXER_VALUE; 1205 dip->un.v.num_channels = 2; 1206 strcpy(dip->un.v.units.name, AudioNvolume); 1207 break; 1208 case ESO_SYNTH_PLAY_VOL: 1209 dip->mixer_class = ESO_INPUT_CLASS; 1210 dip->next = dip->prev = AUDIO_MIXER_LAST; 1211 strcpy(dip->label.name, AudioNfmsynth); 1212 dip->type = AUDIO_MIXER_VALUE; 1213 dip->un.v.num_channels = 2; 1214 strcpy(dip->un.v.units.name, AudioNvolume); 1215 break; 1216 case ESO_MONO_PLAY_VOL: 1217 dip->mixer_class = ESO_INPUT_CLASS; 1218 dip->next = dip->prev = AUDIO_MIXER_LAST; 1219 strcpy(dip->label.name, "mono_in"); 1220 dip->type = AUDIO_MIXER_VALUE; 1221 dip->un.v.num_channels = 1; 1222 strcpy(dip->un.v.units.name, AudioNvolume); 1223 break; 1224 case ESO_CD_PLAY_VOL: 1225 dip->mixer_class = ESO_INPUT_CLASS; 1226 dip->next = dip->prev = AUDIO_MIXER_LAST; 1227 strcpy(dip->label.name, AudioNcd); 1228 dip->type = AUDIO_MIXER_VALUE; 1229 dip->un.v.num_channels = 2; 1230 strcpy(dip->un.v.units.name, AudioNvolume); 1231 break; 1232 case ESO_AUXB_PLAY_VOL: 1233 dip->mixer_class = ESO_INPUT_CLASS; 1234 dip->next = dip->prev = AUDIO_MIXER_LAST; 1235 strcpy(dip->label.name, "auxb"); 1236 dip->type = AUDIO_MIXER_VALUE; 1237 dip->un.v.num_channels = 2; 1238 strcpy(dip->un.v.units.name, AudioNvolume); 1239 break; 1240 1241 case ESO_MIC_PREAMP: 1242 dip->mixer_class = ESO_MICROPHONE_CLASS; 1243 dip->next = dip->prev = AUDIO_MIXER_LAST; 1244 strcpy(dip->label.name, AudioNpreamp); 1245 dip->type = AUDIO_MIXER_ENUM; 1246 dip->un.e.num_mem = 2; 1247 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1248 dip->un.e.member[0].ord = 0; 1249 strcpy(dip->un.e.member[1].label.name, AudioNon); 1250 dip->un.e.member[1].ord = 1; 1251 break; 1252 case ESO_MICROPHONE_CLASS: 1253 dip->mixer_class = ESO_MICROPHONE_CLASS; 1254 dip->next = dip->prev = AUDIO_MIXER_LAST; 1255 strcpy(dip->label.name, AudioNmicrophone); 1256 dip->type = AUDIO_MIXER_CLASS; 1257 break; 1258 1259 case ESO_INPUT_CLASS: 1260 dip->mixer_class = ESO_INPUT_CLASS; 1261 dip->next = dip->prev = AUDIO_MIXER_LAST; 1262 strcpy(dip->label.name, AudioCinputs); 1263 dip->type = AUDIO_MIXER_CLASS; 1264 break; 1265 1266 case ESO_MASTER_VOL: 1267 dip->mixer_class = ESO_OUTPUT_CLASS; 1268 dip->prev = AUDIO_MIXER_LAST; 1269 dip->next = ESO_MASTER_MUTE; 1270 strcpy(dip->label.name, AudioNmaster); 1271 dip->type = AUDIO_MIXER_VALUE; 1272 dip->un.v.num_channels = 2; 1273 strcpy(dip->un.v.units.name, AudioNvolume); 1274 break; 1275 case ESO_MASTER_MUTE: 1276 dip->mixer_class = ESO_OUTPUT_CLASS; 1277 dip->prev = ESO_MASTER_VOL; 1278 dip->next = AUDIO_MIXER_LAST; 1279 strcpy(dip->label.name, AudioNmute); 1280 dip->type = AUDIO_MIXER_ENUM; 1281 dip->un.e.num_mem = 2; 1282 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1283 dip->un.e.member[0].ord = 0; 1284 strcpy(dip->un.e.member[1].label.name, AudioNon); 1285 dip->un.e.member[1].ord = 1; 1286 break; 1287 1288 case ESO_PCSPEAKER_VOL: 1289 dip->mixer_class = ESO_OUTPUT_CLASS; 1290 dip->next = dip->prev = AUDIO_MIXER_LAST; 1291 strcpy(dip->label.name, "pc_speaker"); 1292 dip->type = AUDIO_MIXER_VALUE; 1293 dip->un.v.num_channels = 1; 1294 strcpy(dip->un.v.units.name, AudioNvolume); 1295 break; 1296 case ESO_MONOOUT_SOURCE: 1297 dip->mixer_class = ESO_OUTPUT_CLASS; 1298 dip->next = dip->prev = AUDIO_MIXER_LAST; 1299 strcpy(dip->label.name, "mono_out"); 1300 dip->type = AUDIO_MIXER_ENUM; 1301 dip->un.e.num_mem = 3; 1302 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1303 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1304 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1305 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1306 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1307 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1308 break; 1309 case ESO_SPATIALIZER: 1310 dip->mixer_class = ESO_OUTPUT_CLASS; 1311 dip->prev = AUDIO_MIXER_LAST; 1312 dip->next = ESO_SPATIALIZER_ENABLE; 1313 strcpy(dip->label.name, AudioNspatial); 1314 dip->type = AUDIO_MIXER_VALUE; 1315 dip->un.v.num_channels = 1; 1316 strcpy(dip->un.v.units.name, "level"); 1317 break; 1318 case ESO_SPATIALIZER_ENABLE: 1319 dip->mixer_class = ESO_OUTPUT_CLASS; 1320 dip->prev = ESO_SPATIALIZER; 1321 dip->next = AUDIO_MIXER_LAST; 1322 strcpy(dip->label.name, "enable"); 1323 dip->type = AUDIO_MIXER_ENUM; 1324 dip->un.e.num_mem = 2; 1325 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1326 dip->un.e.member[0].ord = 0; 1327 strcpy(dip->un.e.member[1].label.name, AudioNon); 1328 dip->un.e.member[1].ord = 1; 1329 break; 1330 1331 case ESO_OUTPUT_CLASS: 1332 dip->mixer_class = ESO_OUTPUT_CLASS; 1333 dip->next = dip->prev = AUDIO_MIXER_LAST; 1334 strcpy(dip->label.name, AudioCoutputs); 1335 dip->type = AUDIO_MIXER_CLASS; 1336 break; 1337 1338 case ESO_RECORD_MONITOR: 1339 dip->mixer_class = ESO_MONITOR_CLASS; 1340 dip->next = dip->prev = AUDIO_MIXER_LAST; 1341 strcpy(dip->label.name, AudioNmute); 1342 dip->type = AUDIO_MIXER_ENUM; 1343 dip->un.e.num_mem = 2; 1344 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1345 dip->un.e.member[0].ord = 0; 1346 strcpy(dip->un.e.member[1].label.name, AudioNon); 1347 dip->un.e.member[1].ord = 1; 1348 break; 1349 case ESO_MONITOR_CLASS: 1350 dip->mixer_class = ESO_MONITOR_CLASS; 1351 dip->next = dip->prev = AUDIO_MIXER_LAST; 1352 strcpy(dip->label.name, AudioCmonitor); 1353 dip->type = AUDIO_MIXER_CLASS; 1354 break; 1355 1356 case ESO_RECORD_VOL: 1357 dip->mixer_class = ESO_RECORD_CLASS; 1358 dip->next = dip->prev = AUDIO_MIXER_LAST; 1359 strcpy(dip->label.name, AudioNrecord); 1360 dip->type = AUDIO_MIXER_VALUE; 1361 strcpy(dip->un.v.units.name, AudioNvolume); 1362 break; 1363 case ESO_RECORD_SOURCE: 1364 dip->mixer_class = ESO_RECORD_CLASS; 1365 dip->next = dip->prev = AUDIO_MIXER_LAST; 1366 strcpy(dip->label.name, AudioNsource); 1367 dip->type = AUDIO_MIXER_ENUM; 1368 dip->un.e.num_mem = 4; 1369 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1370 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1371 strcpy(dip->un.e.member[1].label.name, AudioNline); 1372 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1373 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1374 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1375 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1376 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1377 break; 1378 case ESO_DAC_REC_VOL: 1379 dip->mixer_class = ESO_RECORD_CLASS; 1380 dip->next = dip->prev = AUDIO_MIXER_LAST; 1381 strcpy(dip->label.name, AudioNdac); 1382 dip->type = AUDIO_MIXER_VALUE; 1383 dip->un.v.num_channels = 2; 1384 strcpy(dip->un.v.units.name, AudioNvolume); 1385 break; 1386 case ESO_MIC_REC_VOL: 1387 dip->mixer_class = ESO_RECORD_CLASS; 1388 dip->next = dip->prev = AUDIO_MIXER_LAST; 1389 strcpy(dip->label.name, AudioNmicrophone); 1390 dip->type = AUDIO_MIXER_VALUE; 1391 dip->un.v.num_channels = 2; 1392 strcpy(dip->un.v.units.name, AudioNvolume); 1393 break; 1394 case ESO_LINE_REC_VOL: 1395 dip->mixer_class = ESO_RECORD_CLASS; 1396 dip->next = dip->prev = AUDIO_MIXER_LAST; 1397 strcpy(dip->label.name, AudioNline); 1398 dip->type = AUDIO_MIXER_VALUE; 1399 dip->un.v.num_channels = 2; 1400 strcpy(dip->un.v.units.name, AudioNvolume); 1401 break; 1402 case ESO_SYNTH_REC_VOL: 1403 dip->mixer_class = ESO_RECORD_CLASS; 1404 dip->next = dip->prev = AUDIO_MIXER_LAST; 1405 strcpy(dip->label.name, AudioNfmsynth); 1406 dip->type = AUDIO_MIXER_VALUE; 1407 dip->un.v.num_channels = 2; 1408 strcpy(dip->un.v.units.name, AudioNvolume); 1409 break; 1410 case ESO_MONO_REC_VOL: 1411 dip->mixer_class = ESO_RECORD_CLASS; 1412 dip->next = dip->prev = AUDIO_MIXER_LAST; 1413 strcpy(dip->label.name, "mono_in"); 1414 dip->type = AUDIO_MIXER_VALUE; 1415 dip->un.v.num_channels = 1; /* No lies */ 1416 strcpy(dip->un.v.units.name, AudioNvolume); 1417 break; 1418 case ESO_CD_REC_VOL: 1419 dip->mixer_class = ESO_RECORD_CLASS; 1420 dip->next = dip->prev = AUDIO_MIXER_LAST; 1421 strcpy(dip->label.name, AudioNcd); 1422 dip->type = AUDIO_MIXER_VALUE; 1423 dip->un.v.num_channels = 2; 1424 strcpy(dip->un.v.units.name, AudioNvolume); 1425 break; 1426 case ESO_AUXB_REC_VOL: 1427 dip->mixer_class = ESO_RECORD_CLASS; 1428 dip->next = dip->prev = AUDIO_MIXER_LAST; 1429 strcpy(dip->label.name, "auxb"); 1430 dip->type = AUDIO_MIXER_VALUE; 1431 dip->un.v.num_channels = 2; 1432 strcpy(dip->un.v.units.name, AudioNvolume); 1433 break; 1434 case ESO_RECORD_CLASS: 1435 dip->mixer_class = ESO_RECORD_CLASS; 1436 dip->next = dip->prev = AUDIO_MIXER_LAST; 1437 strcpy(dip->label.name, AudioCrecord); 1438 dip->type = AUDIO_MIXER_CLASS; 1439 break; 1440 1441 default: 1442 return (ENXIO); 1443 } 1444 1445 return (0); 1446 } 1447 1448 static int 1449 eso_allocmem(sc, size, align, boundary, flags, ed) 1450 struct eso_softc *sc; 1451 size_t size; 1452 size_t align; 1453 size_t boundary; 1454 int flags; 1455 struct eso_dma *ed; 1456 { 1457 int error, wait; 1458 1459 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1460 ed->ed_size = size; 1461 1462 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1463 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1464 &ed->ed_nsegs, wait); 1465 if (error) 1466 goto out; 1467 1468 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1469 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT); 1470 if (error) 1471 goto free; 1472 1473 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1474 wait, &ed->ed_map); 1475 if (error) 1476 goto unmap; 1477 1478 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr, 1479 ed->ed_size, NULL, wait); 1480 if (error) 1481 goto destroy; 1482 1483 return (0); 1484 1485 destroy: 1486 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1487 unmap: 1488 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1489 free: 1490 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1491 out: 1492 return (error); 1493 } 1494 1495 static void 1496 eso_freemem(ed) 1497 struct eso_dma *ed; 1498 { 1499 1500 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1501 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1502 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1503 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1504 } 1505 1506 static void * 1507 eso_allocm(hdl, direction, size, type, flags) 1508 void *hdl; 1509 int direction; 1510 size_t size; 1511 int type, flags; 1512 { 1513 struct eso_softc *sc = hdl; 1514 struct eso_dma *ed; 1515 size_t boundary; 1516 int error; 1517 1518 if ((ed = malloc(size, type, flags)) == NULL) 1519 return (NULL); 1520 1521 /* 1522 * Apparently the Audio 1 DMA controller's current address 1523 * register can't roll over a 64K address boundary, so we have to 1524 * take care of that ourselves. The second channel DMA controller 1525 * doesn't have that restriction, however. 1526 */ 1527 if (direction == AUMODE_RECORD) 1528 boundary = 0x10000; 1529 else 1530 boundary = 0; 1531 1532 #ifdef alpha 1533 /* 1534 * XXX For Audio 1, which implements the 24 low address bits only, 1535 * XXX force allocation through the (ISA) SGMAP. 1536 */ 1537 if (direction == AUMODE_RECORD) 1538 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1539 else 1540 #endif 1541 ed->ed_dmat = sc->sc_dmat; 1542 1543 error = eso_allocmem(sc, size, 32, boundary, flags, ed); 1544 if (error) { 1545 free(ed, type); 1546 return (NULL); 1547 } 1548 ed->ed_next = sc->sc_dmas; 1549 sc->sc_dmas = ed; 1550 1551 return (KVADDR(ed)); 1552 } 1553 1554 static void 1555 eso_freem(hdl, addr, type) 1556 void *hdl; 1557 void *addr; 1558 int type; 1559 { 1560 struct eso_softc *sc = hdl; 1561 struct eso_dma *p, **pp; 1562 1563 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) { 1564 if (KVADDR(p) == addr) { 1565 eso_freemem(p); 1566 *pp = p->ed_next; 1567 free(p, type); 1568 return; 1569 } 1570 } 1571 } 1572 1573 static size_t 1574 eso_round_buffersize(hdl, direction, bufsize) 1575 void *hdl; 1576 int direction; 1577 size_t bufsize; 1578 { 1579 size_t maxsize; 1580 1581 /* 1582 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1583 * bytes. This is because IO_A2DMAC is a two byte value 1584 * indicating the literal byte count, and the 4 least significant 1585 * bits are read-only. Zero is not used as a special case for 1586 * 0x10000. 1587 * 1588 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1589 * be represented. 1590 */ 1591 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1592 1593 if (bufsize > maxsize) 1594 bufsize = maxsize; 1595 1596 return (bufsize); 1597 } 1598 1599 static paddr_t 1600 eso_mappage(hdl, addr, offs, prot) 1601 void *hdl; 1602 void *addr; 1603 off_t offs; 1604 int prot; 1605 { 1606 struct eso_softc *sc = hdl; 1607 struct eso_dma *ed; 1608 1609 if (offs < 0) 1610 return (-1); 1611 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr; 1612 ed = ed->ed_next) 1613 ; 1614 if (ed == NULL) 1615 return (-1); 1616 1617 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1618 offs, prot, BUS_DMA_WAITOK)); 1619 } 1620 1621 /* ARGSUSED */ 1622 static int 1623 eso_get_props(hdl) 1624 void *hdl; 1625 { 1626 1627 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1628 AUDIO_PROP_FULLDUPLEX); 1629 } 1630 1631 static int 1632 eso_trigger_output(hdl, start, end, blksize, intr, arg, param) 1633 void *hdl; 1634 void *start, *end; 1635 int blksize; 1636 void (*intr) __P((void *)); 1637 void *arg; 1638 struct audio_params *param; 1639 { 1640 struct eso_softc *sc = hdl; 1641 struct eso_dma *ed; 1642 uint8_t a2c1; 1643 1644 DPRINTF(( 1645 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1646 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1647 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1648 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1649 param->precision, param->channels, param->sw_code, param->factor)); 1650 1651 /* Find DMA buffer. */ 1652 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1653 ed = ed->ed_next) 1654 ; 1655 if (ed == NULL) { 1656 printf("%s: trigger_output: bad addr %p\n", 1657 sc->sc_dev.dv_xname, start); 1658 return (EINVAL); 1659 } 1660 1661 sc->sc_pintr = intr; 1662 sc->sc_parg = arg; 1663 1664 /* Compute drain timeout. */ 1665 sc->sc_pdrain = (blksize * NBBY * hz) / 1666 (param->sample_rate * param->channels * 1667 param->precision * param->factor) + 2; /* slop */ 1668 1669 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1670 blksize = -(blksize >> 1); 1671 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1672 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1673 1674 /* Update DAC to reflect DMA count and audio parameters. */ 1675 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1676 if (param->precision * param->factor == 16) 1677 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1678 else 1679 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1680 if (param->channels == 2) 1681 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1682 else 1683 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1684 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1685 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1686 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1687 else 1688 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1689 /* Unmask IRQ. */ 1690 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1691 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1692 1693 /* Set up DMA controller. */ 1694 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1695 DMAADDR(ed)); 1696 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1697 (uint8_t *)end - (uint8_t *)start); 1698 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1699 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1700 1701 /* Start DMA. */ 1702 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1703 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1704 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1705 ESO_MIXREG_A2C1_AUTO; 1706 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1707 1708 return (0); 1709 } 1710 1711 static int 1712 eso_trigger_input(hdl, start, end, blksize, intr, arg, param) 1713 void *hdl; 1714 void *start, *end; 1715 int blksize; 1716 void (*intr) __P((void *)); 1717 void *arg; 1718 struct audio_params *param; 1719 { 1720 struct eso_softc *sc = hdl; 1721 struct eso_dma *ed; 1722 uint8_t actl, a1c1; 1723 1724 DPRINTF(( 1725 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1726 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1727 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1728 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1729 param->precision, param->channels, param->sw_code, param->factor)); 1730 1731 /* 1732 * If we failed to configure the Audio 1 DMA controller, bail here 1733 * while retaining availability of the DAC direction (in Audio 2). 1734 */ 1735 if (!sc->sc_dmac_configured) 1736 return (EIO); 1737 1738 /* Find DMA buffer. */ 1739 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1740 ed = ed->ed_next) 1741 ; 1742 if (ed == NULL) { 1743 printf("%s: trigger_output: bad addr %p\n", 1744 sc->sc_dev.dv_xname, start); 1745 return (EINVAL); 1746 } 1747 1748 sc->sc_rintr = intr; 1749 sc->sc_rarg = arg; 1750 1751 /* Compute drain timeout. */ 1752 sc->sc_rdrain = (blksize * NBBY * hz) / 1753 (param->sample_rate * param->channels * 1754 param->precision * param->factor) + 2; /* slop */ 1755 1756 /* Set up ADC DMA converter parameters. */ 1757 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1758 if (param->channels == 2) { 1759 actl &= ~ESO_CTLREG_ACTL_MONO; 1760 actl |= ESO_CTLREG_ACTL_STEREO; 1761 } else { 1762 actl &= ~ESO_CTLREG_ACTL_STEREO; 1763 actl |= ESO_CTLREG_ACTL_MONO; 1764 } 1765 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1766 1767 /* Set up Transfer Type: maybe move to attach time? */ 1768 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1769 1770 /* DMA transfer count reload using 2's complement. */ 1771 blksize = -blksize; 1772 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1773 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1774 1775 /* Set up and enable Audio 1 DMA FIFO. */ 1776 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1777 if (param->precision * param->factor == 16) 1778 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1779 if (param->channels == 2) 1780 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1781 else 1782 a1c1 |= ESO_CTLREG_A1C1_MONO; 1783 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1784 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1785 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1786 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1787 1788 /* Set up ADC IRQ/DRQ parameters. */ 1789 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1790 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1791 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1792 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1793 1794 /* Set up and enable DMA controller. */ 1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1796 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1797 ESO_DMAC_MASK_MASK); 1798 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1799 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1800 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1801 DMAADDR(ed)); 1802 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1803 (uint8_t *)end - (uint8_t *)start - 1); 1804 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1805 1806 /* Start DMA. */ 1807 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1808 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1809 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1810 1811 return (0); 1812 } 1813 1814 static int 1815 eso_set_monooutsrc(sc, monooutsrc) 1816 struct eso_softc *sc; 1817 unsigned int monooutsrc; 1818 { 1819 mixer_devinfo_t di; 1820 int i; 1821 uint8_t mpm; 1822 1823 di.index = ESO_MONOOUT_SOURCE; 1824 if (eso_query_devinfo(sc, &di) != 0) 1825 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1826 1827 for (i = 0; i < di.un.e.num_mem; i++) { 1828 if (monooutsrc == di.un.e.member[i].ord) { 1829 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1830 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1831 mpm |= monooutsrc; 1832 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1833 sc->sc_monooutsrc = monooutsrc; 1834 return (0); 1835 } 1836 } 1837 1838 return (EINVAL); 1839 } 1840 1841 static int 1842 eso_set_recsrc(sc, recsrc) 1843 struct eso_softc *sc; 1844 unsigned int recsrc; 1845 { 1846 mixer_devinfo_t di; 1847 int i; 1848 1849 di.index = ESO_RECORD_SOURCE; 1850 if (eso_query_devinfo(sc, &di) != 0) 1851 panic("eso_set_recsrc: eso_query_devinfo failed"); 1852 1853 for (i = 0; i < di.un.e.num_mem; i++) { 1854 if (recsrc == di.un.e.member[i].ord) { 1855 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1856 sc->sc_recsrc = recsrc; 1857 return (0); 1858 } 1859 } 1860 1861 return (EINVAL); 1862 } 1863 1864 /* 1865 * Reload Master Volume and Mute values in softc from mixer; used when 1866 * those have previously been invalidated by use of hardware volume controls. 1867 */ 1868 static void 1869 eso_reload_master_vol(sc) 1870 struct eso_softc *sc; 1871 { 1872 uint8_t mv; 1873 1874 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1875 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 1876 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 1877 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1878 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 1879 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 1880 /* Currently both channels are muted simultaneously; either is OK. */ 1881 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 1882 } 1883 1884 static void 1885 eso_set_gain(sc, port) 1886 struct eso_softc *sc; 1887 unsigned int port; 1888 { 1889 uint8_t mixreg, tmp; 1890 1891 switch (port) { 1892 case ESO_DAC_PLAY_VOL: 1893 mixreg = ESO_MIXREG_PVR_A2; 1894 break; 1895 case ESO_MIC_PLAY_VOL: 1896 mixreg = ESO_MIXREG_PVR_MIC; 1897 break; 1898 case ESO_LINE_PLAY_VOL: 1899 mixreg = ESO_MIXREG_PVR_LINE; 1900 break; 1901 case ESO_SYNTH_PLAY_VOL: 1902 mixreg = ESO_MIXREG_PVR_SYNTH; 1903 break; 1904 case ESO_CD_PLAY_VOL: 1905 mixreg = ESO_MIXREG_PVR_CD; 1906 break; 1907 case ESO_AUXB_PLAY_VOL: 1908 mixreg = ESO_MIXREG_PVR_AUXB; 1909 break; 1910 1911 case ESO_DAC_REC_VOL: 1912 mixreg = ESO_MIXREG_RVR_A2; 1913 break; 1914 case ESO_MIC_REC_VOL: 1915 mixreg = ESO_MIXREG_RVR_MIC; 1916 break; 1917 case ESO_LINE_REC_VOL: 1918 mixreg = ESO_MIXREG_RVR_LINE; 1919 break; 1920 case ESO_SYNTH_REC_VOL: 1921 mixreg = ESO_MIXREG_RVR_SYNTH; 1922 break; 1923 case ESO_CD_REC_VOL: 1924 mixreg = ESO_MIXREG_RVR_CD; 1925 break; 1926 case ESO_AUXB_REC_VOL: 1927 mixreg = ESO_MIXREG_RVR_AUXB; 1928 break; 1929 case ESO_MONO_PLAY_VOL: 1930 mixreg = ESO_MIXREG_PVR_MONO; 1931 break; 1932 case ESO_MONO_REC_VOL: 1933 mixreg = ESO_MIXREG_RVR_MONO; 1934 break; 1935 1936 case ESO_PCSPEAKER_VOL: 1937 /* Special case - only 3-bit, mono, and reserved bits. */ 1938 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 1939 tmp &= ESO_MIXREG_PCSVR_RESV; 1940 /* Map bits 7:5 -> 2:0. */ 1941 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 1942 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 1943 return; 1944 1945 case ESO_MASTER_VOL: 1946 /* Special case - separate regs, and 6-bit precision. */ 1947 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 1948 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1949 (sc->sc_gain[port][ESO_LEFT] >> 2) | 1950 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 1951 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1952 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 1953 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 1954 return; 1955 1956 case ESO_SPATIALIZER: 1957 /* Special case - only `mono', and higher precision. */ 1958 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 1959 sc->sc_gain[port][ESO_LEFT]); 1960 return; 1961 1962 case ESO_RECORD_VOL: 1963 /* Very Special case, controller register. */ 1964 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 1965 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1966 return; 1967 1968 default: 1969 #ifdef DIAGNOSTIC 1970 panic("eso_set_gain: bad port %u", port); 1971 /* NOTREACHED */ 1972 #else 1973 return; 1974 #endif 1975 } 1976 1977 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 1978 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1979 } 1980