xref: /netbsd-src/sys/dev/pci/eso.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: eso.c,v 1.62 2012/10/27 17:18:31 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 /*
61  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.62 2012/10/27 17:18:31 chs Exp $");
66 
67 #include "mpu.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76 
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82 
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85 
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90 
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 
94 /*
95  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96  * XXX engine by allocating through the ISA DMA tag.
97  */
98 #if defined(amd64) || defined(i386)
99 #include "isa.h"
100 #if NISA > 0
101 #include <dev/isa/isavar.h>
102 #endif
103 #endif
104 
105 #if defined(AUDIO_DEBUG) || defined(DEBUG)
106 #define DPRINTF(x) printf x
107 #else
108 #define DPRINTF(x)
109 #endif
110 
111 struct eso_dma {
112 	bus_dma_tag_t		ed_dmat;
113 	bus_dmamap_t		ed_map;
114 	void *			ed_kva;
115 	bus_dma_segment_t	ed_segs[1];
116 	int			ed_nsegs;
117 	size_t			ed_size;
118 	SLIST_ENTRY(eso_dma)	ed_slist;
119 };
120 
121 #define KVADDR(dma)	((void *)(dma)->ed_kva)
122 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
123 
124 /* Autoconfiguration interface */
125 static int eso_match(device_t, cfdata_t, void *);
126 static void eso_attach(device_t, device_t, void *);
127 static void eso_defer(device_t);
128 static int eso_print(void *, const char *);
129 
130 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
131     eso_match, eso_attach, NULL, NULL);
132 
133 /* PCI interface */
134 static int eso_intr(void *);
135 
136 /* MI audio layer interface */
137 static int	eso_query_encoding(void *, struct audio_encoding *);
138 static int	eso_set_params(void *, int, int, audio_params_t *,
139 		    audio_params_t *, stream_filter_list_t *,
140 		    stream_filter_list_t *);
141 static int	eso_round_blocksize(void *, int, int, const audio_params_t *);
142 static int	eso_halt_output(void *);
143 static int	eso_halt_input(void *);
144 static int	eso_getdev(void *, struct audio_device *);
145 static int	eso_set_port(void *, mixer_ctrl_t *);
146 static int	eso_get_port(void *, mixer_ctrl_t *);
147 static int	eso_query_devinfo(void *, mixer_devinfo_t *);
148 static void *	eso_allocm(void *, int, size_t);
149 static void	eso_freem(void *, void *, size_t);
150 static size_t	eso_round_buffersize(void *, int, size_t);
151 static paddr_t	eso_mappage(void *, void *, off_t, int);
152 static int	eso_get_props(void *);
153 static int	eso_trigger_output(void *, void *, void *, int,
154 		    void (*)(void *), void *, const audio_params_t *);
155 static int	eso_trigger_input(void *, void *, void *, int,
156 		    void (*)(void *), void *, const audio_params_t *);
157 static void	eso_get_locks(void *, kmutex_t **, kmutex_t **);
158 
159 static const struct audio_hw_if eso_hw_if = {
160 	NULL,			/* open */
161 	NULL,			/* close */
162 	NULL,			/* drain */
163 	eso_query_encoding,
164 	eso_set_params,
165 	eso_round_blocksize,
166 	NULL,			/* commit_settings */
167 	NULL,			/* init_output */
168 	NULL,			/* init_input */
169 	NULL,			/* start_output */
170 	NULL,			/* start_input */
171 	eso_halt_output,
172 	eso_halt_input,
173 	NULL,			/* speaker_ctl */
174 	eso_getdev,
175 	NULL,			/* setfd */
176 	eso_set_port,
177 	eso_get_port,
178 	eso_query_devinfo,
179 	eso_allocm,
180 	eso_freem,
181 	eso_round_buffersize,
182 	eso_mappage,
183 	eso_get_props,
184 	eso_trigger_output,
185 	eso_trigger_input,
186 	NULL,			/* dev_ioctl */
187 	eso_get_locks,
188 };
189 
190 static const char * const eso_rev2model[] = {
191 	"ES1938",
192 	"ES1946",
193 	"ES1946 Revision E"
194 };
195 
196 #define ESO_NFORMATS	8
197 static const struct audio_format eso_formats[ESO_NFORMATS] = {
198 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
199 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
200 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
201 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
202 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
203 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
204 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
205 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
206 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
207 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
208 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
209 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
210 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
211 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
212 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
213 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
214 };
215 
216 
217 /*
218  * Utility routines
219  */
220 /* Register access etc. */
221 static uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
222 static uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
223 static uint8_t	eso_read_rdr(struct eso_softc *);
224 static void	eso_reload_master_vol(struct eso_softc *);
225 static int	eso_reset(struct eso_softc *);
226 static void	eso_set_gain(struct eso_softc *, unsigned int);
227 static int	eso_set_recsrc(struct eso_softc *, unsigned int);
228 static int	eso_set_monooutsrc(struct eso_softc *, unsigned int);
229 static int	eso_set_monoinbypass(struct eso_softc *, unsigned int);
230 static int	eso_set_preamp(struct eso_softc *, unsigned int);
231 static void	eso_write_cmd(struct eso_softc *, uint8_t);
232 static void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
233 static void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
234 /* DMA memory allocation */
235 static int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
236 		    int, struct eso_dma *);
237 static void	eso_freemem(struct eso_dma *);
238 static struct eso_dma *	eso_kva2dma(const struct eso_softc *, const void *);
239 
240 
241 static int
242 eso_match(device_t parent, cfdata_t match, void *aux)
243 {
244 	struct pci_attach_args *pa;
245 
246 	pa = aux;
247 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
248 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
249 		return 1;
250 
251 	return 0;
252 }
253 
254 static void
255 eso_attach(device_t parent, device_t self, void *aux)
256 {
257 	struct eso_softc *sc;
258 	struct pci_attach_args *pa;
259 	struct audio_attach_args aa;
260 	pci_intr_handle_t ih;
261 	bus_addr_t vcbase;
262 	const char *intrstring;
263 	int idx, error;
264 	uint8_t a2mode, mvctl;
265 
266 	sc = device_private(self);
267 	sc->sc_dev = self;
268 	pa = aux;
269 	aprint_naive(": Audio controller\n");
270 
271 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
272 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
273 
274 	sc->sc_revision = PCI_REVISION(pa->pa_class);
275 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
276 	if (sc->sc_revision <
277 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
278 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
279 	else
280 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
281 
282 	/* Map I/O registers. */
283 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
284 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
285 		aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
286 		return;
287 	}
288 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
289 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
290 		aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
291 		return;
292 	}
293 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
294 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
295 		aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
296 		/* Don't bail out yet: we can map it later, see below. */
297 		vcbase = 0;
298 		sc->sc_vcsize = 0x10; /* From the data sheet. */
299 	}
300 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
301 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
302 		aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
303 		return;
304 	}
305 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
306 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
307 		aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
308 		return;
309 	}
310 
311 	sc->sc_dmat = pa->pa_dmat;
312 	SLIST_INIT(&sc->sc_dmas);
313 	sc->sc_dmac_configured = 0;
314 
315 	/* Enable bus mastering. */
316 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
317 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
318 	    PCI_COMMAND_MASTER_ENABLE);
319 
320 	/* Reset the device; bail out upon failure. */
321 	mutex_spin_enter(&sc->sc_intr_lock);
322 	error = eso_reset(sc);
323 	mutex_spin_exit(&sc->sc_intr_lock);
324 	if (error != 0) {
325 		aprint_error_dev(sc->sc_dev, "can't reset\n");
326 		return;
327 	}
328 
329 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
330 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
331 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
332 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
333 
334 	/* Enable the relevant (DMA) interrupts. */
335 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
336 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
337 	    ESO_IO_IRQCTL_MPUIRQ);
338 
339 	mutex_spin_enter(&sc->sc_intr_lock);
340 
341 	/* Set up A1's sample rate generator for new-style parameters. */
342 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
343 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
344 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
345 
346 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
347 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
348 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
349 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
350 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
351 
352 	/* Set mixer regs to something reasonable, needs work. */
353 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
354 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
355 	eso_set_monoinbypass(sc, 0);
356 	eso_set_preamp(sc, 1);
357 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
358 		int v;
359 
360 		switch (idx) {
361 		case ESO_MIC_PLAY_VOL:
362 		case ESO_LINE_PLAY_VOL:
363 		case ESO_CD_PLAY_VOL:
364 		case ESO_MONO_PLAY_VOL:
365 		case ESO_AUXB_PLAY_VOL:
366 		case ESO_DAC_REC_VOL:
367 		case ESO_LINE_REC_VOL:
368 		case ESO_SYNTH_REC_VOL:
369 		case ESO_CD_REC_VOL:
370 		case ESO_MONO_REC_VOL:
371 		case ESO_AUXB_REC_VOL:
372 		case ESO_SPATIALIZER:
373 			v = 0;
374 			break;
375 		case ESO_MASTER_VOL:
376 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
377 			break;
378 		default:
379 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
380 			break;
381 		}
382 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
383 		eso_set_gain(sc, idx);
384 	}
385 
386 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
387 
388 	mutex_spin_exit(&sc->sc_intr_lock);
389 
390 	/* Map and establish the interrupt. */
391 	if (pci_intr_map(pa, &ih)) {
392 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
393 		return;
394 	}
395 
396 	intrstring = pci_intr_string(pa->pa_pc, ih);
397 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
398 	if (sc->sc_ih == NULL) {
399 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
400 		if (intrstring != NULL)
401 			aprint_error(" at %s", intrstring);
402 		aprint_error("\n");
403 		mutex_destroy(&sc->sc_lock);
404 		mutex_destroy(&sc->sc_intr_lock);
405 		return;
406 	}
407 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n",
408 	    intrstring);
409 
410 	cv_init(&sc->sc_pcv, "esoho");
411 	cv_init(&sc->sc_rcv, "esohi");
412 
413 	/*
414 	 * Set up the DDMA Control register; a suitable I/O region has been
415 	 * supposedly mapped in the VC base address register.
416 	 *
417 	 * The Solo-1 has an ... interesting silicon bug that causes it to
418 	 * not respond to I/O space accesses to the Audio 1 DMA controller
419 	 * if the latter's mapping base address is aligned on a 1K boundary.
420 	 * As a consequence, it is quite possible for the mapping provided
421 	 * in the VC BAR to be useless.  To work around this, we defer this
422 	 * part until all autoconfiguration on our parent bus is completed
423 	 * and then try to map it ourselves in fulfillment of the constraint.
424 	 *
425 	 * According to the register map we may write to the low 16 bits
426 	 * only, but experimenting has shown we're safe.
427 	 * -kjk
428 	 */
429 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
430 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
431 		    vcbase | ESO_PCI_DDMAC_DE);
432 		sc->sc_dmac_configured = 1;
433 
434 		aprint_normal_dev(sc->sc_dev,
435 		    "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
436 		    (unsigned long)vcbase);
437 	} else {
438 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
439 		    device_xname(sc->sc_dev), (unsigned long)vcbase));
440 		sc->sc_pa = *pa;
441 		config_defer(self, eso_defer);
442 	}
443 
444 	audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
445 
446 	aa.type = AUDIODEV_TYPE_OPL;
447 	aa.hwif = NULL;
448 	aa.hdl = NULL;
449 	(void)config_found(sc->sc_dev, &aa, audioprint);
450 
451 	aa.type = AUDIODEV_TYPE_MPU;
452 	aa.hwif = NULL;
453 	aa.hdl = NULL;
454 	sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
455 	if (sc->sc_mpudev != NULL) {
456 		/* Unmask the MPU irq. */
457 		mutex_spin_enter(&sc->sc_intr_lock);
458 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
459 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
460 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
461 		mutex_spin_exit(&sc->sc_intr_lock);
462 	}
463 
464 	aa.type = AUDIODEV_TYPE_AUX;
465 	aa.hwif = NULL;
466 	aa.hdl = NULL;
467 	(void)config_found(sc->sc_dev, &aa, eso_print);
468 }
469 
470 static void
471 eso_defer(device_t self)
472 {
473 	struct eso_softc *sc;
474 	struct pci_attach_args *pa;
475 	bus_addr_t addr, start;
476 
477 	sc = device_private(self);
478 	pa = &sc->sc_pa;
479 	aprint_normal_dev(sc->sc_dev, "");
480 
481 	/*
482 	 * This is outright ugly, but since we must not make assumptions
483 	 * on the underlying allocator's behaviour it's the most straight-
484 	 * forward way to implement it.  Note that we skip over the first
485 	 * 1K region, which is typically occupied by an attached ISA bus.
486 	 */
487 	mutex_enter(&sc->sc_lock);
488 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
489 		if (bus_space_alloc(sc->sc_iot,
490 		    start + sc->sc_vcsize, start + 0x0400 - 1,
491 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
492 		    &sc->sc_dmac_ioh) != 0)
493 			continue;
494 
495 		mutex_spin_enter(&sc->sc_intr_lock);
496 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
497 		    addr | ESO_PCI_DDMAC_DE);
498 		mutex_spin_exit(&sc->sc_intr_lock);
499 		sc->sc_dmac_iot = sc->sc_iot;
500 		sc->sc_dmac_configured = 1;
501 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
502 		    (unsigned long)addr);
503 
504 		mutex_exit(&sc->sc_lock);
505 		return;
506 	}
507 	mutex_exit(&sc->sc_lock);
508 
509 	aprint_error("can't map Audio 1 DMA into I/O space\n");
510 }
511 
512 /* ARGSUSED */
513 static int
514 eso_print(void *aux, const char *pnp)
515 {
516 
517 	/* Only joys can attach via this; easy. */
518 	if (pnp)
519 		aprint_normal("joy at %s:", pnp);
520 
521 	return UNCONF;
522 }
523 
524 static void
525 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
526 {
527 	int i;
528 
529 	/* Poll for busy indicator to become clear. */
530 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
531 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
532 		    & ESO_SB_RSR_BUSY) == 0) {
533 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
534 			    ESO_SB_WDR, cmd);
535 			return;
536 		} else {
537 			delay(10);
538 		}
539 	}
540 
541 	printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
542 	return;
543 }
544 
545 /* Write to a controller register */
546 static void
547 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
548 {
549 
550 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
551 
552 	eso_write_cmd(sc, reg);
553 	eso_write_cmd(sc, val);
554 }
555 
556 /* Read out the Read Data Register */
557 static uint8_t
558 eso_read_rdr(struct eso_softc *sc)
559 {
560 	int i;
561 
562 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
563 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
564 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
565 			return (bus_space_read_1(sc->sc_sb_iot,
566 			    sc->sc_sb_ioh, ESO_SB_RDR));
567 		} else {
568 			delay(10);
569 		}
570 	}
571 
572 	printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
573 	return (-1);
574 }
575 
576 static uint8_t
577 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
578 {
579 
580 	eso_write_cmd(sc, ESO_CMD_RCR);
581 	eso_write_cmd(sc, reg);
582 	return eso_read_rdr(sc);
583 }
584 
585 static void
586 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
587 {
588 
589 	KASSERT(mutex_owned(&sc->sc_intr_lock));
590 
591 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
592 
593 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
594 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
595 }
596 
597 static uint8_t
598 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
599 {
600 	uint8_t val;
601 
602 	KASSERT(mutex_owned(&sc->sc_intr_lock));
603 
604 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
605 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
606 
607 	return val;
608 }
609 
610 static int
611 eso_intr(void *hdl)
612 {
613 	struct eso_softc *sc = hdl;
614 #if NMPU > 0
615 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
616 #endif
617 	uint8_t irqctl;
618 
619 	mutex_spin_enter(&sc->sc_intr_lock);
620 
621 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
622 
623 	/* If it wasn't ours, that's all she wrote. */
624 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
625 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
626 		mutex_spin_exit(&sc->sc_intr_lock);
627 		return 0;
628 	}
629 
630 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
631 		/* Clear interrupt. */
632 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
633 		    ESO_SB_RBSR);
634 
635 		if (sc->sc_rintr)
636 			sc->sc_rintr(sc->sc_rarg);
637 		else
638 			cv_broadcast(&sc->sc_rcv);
639 	}
640 
641 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
642 		/*
643 		 * Clear the A2 IRQ latch: the cached value reflects the
644 		 * current DAC settings with the IRQ latch bit not set.
645 		 */
646 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
647 
648 		if (sc->sc_pintr)
649 			sc->sc_pintr(sc->sc_parg);
650 		else
651 			cv_broadcast(&sc->sc_pcv);
652 	}
653 
654 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
655 		/* Clear interrupt. */
656 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
657 
658 		/*
659 		 * Raise a flag to cause a lazy update of the in-softc gain
660 		 * values the next time the software mixer is read to keep
661 		 * interrupt service cost low.  ~0 cannot occur otherwise
662 		 * as the master volume has a precision of 6 bits only.
663 		 */
664 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
665 	}
666 
667 #if NMPU > 0
668 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
669 		mpu_intr(sc_mpu);
670 #endif
671 
672 	mutex_spin_exit(&sc->sc_intr_lock);
673 	return 1;
674 }
675 
676 /* Perform a software reset, including DMA FIFOs. */
677 static int
678 eso_reset(struct eso_softc *sc)
679 {
680 	int i;
681 
682 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
683 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
684 	/* `Delay' suggested in the data sheet. */
685 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
686 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
687 
688 	/* Wait for reset to take effect. */
689 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
690 		/* Poll for data to become available. */
691 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
692 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
693 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
694 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
695 
696 			/* Activate Solo-1 extension commands. */
697 			eso_write_cmd(sc, ESO_CMD_EXTENB);
698 			/* Reset mixer registers. */
699 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
700 			    ESO_MIXREG_RESET_RESET);
701 
702 			return 0;
703 		} else {
704 			delay(1000);
705 		}
706 	}
707 
708 	printf("%s: reset timeout\n", device_xname(sc->sc_dev));
709 	return -1;
710 }
711 
712 static int
713 eso_query_encoding(void *hdl, struct audio_encoding *fp)
714 {
715 
716 	switch (fp->index) {
717 	case 0:
718 		strcpy(fp->name, AudioEulinear);
719 		fp->encoding = AUDIO_ENCODING_ULINEAR;
720 		fp->precision = 8;
721 		fp->flags = 0;
722 		break;
723 	case 1:
724 		strcpy(fp->name, AudioEmulaw);
725 		fp->encoding = AUDIO_ENCODING_ULAW;
726 		fp->precision = 8;
727 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
728 		break;
729 	case 2:
730 		strcpy(fp->name, AudioEalaw);
731 		fp->encoding = AUDIO_ENCODING_ALAW;
732 		fp->precision = 8;
733 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
734 		break;
735 	case 3:
736 		strcpy(fp->name, AudioEslinear);
737 		fp->encoding = AUDIO_ENCODING_SLINEAR;
738 		fp->precision = 8;
739 		fp->flags = 0;
740 		break;
741 	case 4:
742 		strcpy(fp->name, AudioEslinear_le);
743 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
744 		fp->precision = 16;
745 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
746 		break;
747 	case 5:
748 		strcpy(fp->name, AudioEulinear_le);
749 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
750 		fp->precision = 16;
751 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
752 		break;
753 	case 6:
754 		strcpy(fp->name, AudioEslinear_be);
755 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
756 		fp->precision = 16;
757 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
758 		break;
759 	case 7:
760 		strcpy(fp->name, AudioEulinear_be);
761 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
762 		fp->precision = 16;
763 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
764 		break;
765 	default:
766 		return EINVAL;
767 	}
768 
769 	return 0;
770 }
771 
772 static int
773 eso_set_params(void *hdl, int setmode, int usemode,
774     audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
775     stream_filter_list_t *rfil)
776 {
777 	struct eso_softc *sc;
778 	struct audio_params *p;
779 	stream_filter_list_t *fil;
780 	int mode, r[2], rd[2], ar[2], clk;
781 	unsigned int srg, fltdiv;
782 	int i;
783 
784 	sc = hdl;
785 	for (mode = AUMODE_RECORD; mode != -1;
786 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
787 		if ((setmode & mode) == 0)
788 			continue;
789 
790 		p = (mode == AUMODE_PLAY) ? play : rec;
791 
792 		if (p->sample_rate < ESO_MINRATE ||
793 		    p->sample_rate > ESO_MAXRATE ||
794 		    (p->precision != 8 && p->precision != 16) ||
795 		    (p->channels != 1 && p->channels != 2))
796 			return EINVAL;
797 
798 		/*
799 		 * We'll compute both possible sample rate dividers and pick
800 		 * the one with the least error.
801 		 */
802 #define ABS(x) ((x) < 0 ? -(x) : (x))
803 		r[0] = ESO_CLK0 /
804 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
805 		r[1] = ESO_CLK1 /
806 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
807 
808 		ar[0] = p->sample_rate - r[0];
809 		ar[1] = p->sample_rate - r[1];
810 		clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
811 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
812 
813 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
814 		fltdiv = 256 - 200279L / r[clk];
815 
816 		/* Update to reflect the possibly inexact rate. */
817 		p->sample_rate = r[clk];
818 
819 		fil = (mode == AUMODE_PLAY) ? pfil : rfil;
820 		i = auconv_set_converter(eso_formats, ESO_NFORMATS,
821 					 mode, p, FALSE, fil);
822 		if (i < 0)
823 			return EINVAL;
824 
825 		mutex_spin_enter(&sc->sc_intr_lock);
826 		if (mode == AUMODE_RECORD) {
827 			/* Audio 1 */
828 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
829 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
830 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
831 		} else {
832 			/* Audio 2 */
833 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
834 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
835 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
836 		}
837 		mutex_spin_exit(&sc->sc_intr_lock);
838 #undef ABS
839 
840 	}
841 
842 	return 0;
843 }
844 
845 static int
846 eso_round_blocksize(void *hdl, int blk, int mode,
847     const audio_params_t *param)
848 {
849 
850 	return blk & -32;	/* keep good alignment; at least 16 req'd */
851 }
852 
853 static int
854 eso_halt_output(void *hdl)
855 {
856 	struct eso_softc *sc;
857 	int error;
858 
859 	sc = hdl;
860 	DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
861 
862 	/*
863 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
864 	 * stop.  The interrupt callback pointer is cleared at this
865 	 * point so that an outstanding FIFO interrupt for the remaining data
866 	 * will be acknowledged without further processing.
867 	 *
868 	 * This does not immediately `abort' an operation in progress (c.f.
869 	 * audio(9)) but is the method to leave the FIFO behind in a clean
870 	 * state with the least hair.  (Besides, that item needs to be
871 	 * rephrased for trigger_*()-based DMA environments.)
872 	 */
873 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
874 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
875 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
876 	    ESO_IO_A2DMAM_DMAENB);
877 
878 	sc->sc_pintr = NULL;
879 	mutex_exit(&sc->sc_lock);
880 	error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
881 	if (!mutex_tryenter(&sc->sc_lock)) {
882 		mutex_spin_exit(&sc->sc_intr_lock);
883 		mutex_enter(&sc->sc_lock);
884 		mutex_spin_enter(&sc->sc_intr_lock);
885 	}
886 
887 	/* Shut down DMA completely. */
888 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
889 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
890 
891 	return error == EWOULDBLOCK ? 0 : error;
892 }
893 
894 static int
895 eso_halt_input(void *hdl)
896 {
897 	struct eso_softc *sc;
898 	int error;
899 
900 	sc = hdl;
901 	DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
902 
903 	/* Just like eso_halt_output(), but for Audio 1. */
904 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
905 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
906 	    ESO_CTLREG_A1C2_DMAENB);
907 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
908 	    DMA37MD_WRITE | DMA37MD_DEMAND);
909 
910 	sc->sc_rintr = NULL;
911 	mutex_exit(&sc->sc_lock);
912 	error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
913 	if (!mutex_tryenter(&sc->sc_lock)) {
914 		mutex_spin_exit(&sc->sc_intr_lock);
915 		mutex_enter(&sc->sc_lock);
916 		mutex_spin_enter(&sc->sc_intr_lock);
917 	}
918 
919 	/* Shut down DMA completely. */
920 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
921 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
922 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
923 	    ESO_DMAC_MASK_MASK);
924 
925 	return error == EWOULDBLOCK ? 0 : error;
926 }
927 
928 static int
929 eso_getdev(void *hdl, struct audio_device *retp)
930 {
931 	struct eso_softc *sc;
932 
933 	sc = hdl;
934 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
935 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
936 	    sc->sc_revision);
937 	if (sc->sc_revision <
938 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
939 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
940 		    sizeof (retp->config));
941 	else
942 		strncpy(retp->config, "unknown", sizeof (retp->config));
943 
944 	return 0;
945 }
946 
947 static int
948 eso_set_port(void *hdl, mixer_ctrl_t *cp)
949 {
950 	struct eso_softc *sc;
951 	unsigned int lgain, rgain;
952 	uint8_t tmp;
953 	int error;
954 
955 	sc = hdl;
956 	error = 0;
957 
958 	mutex_spin_enter(&sc->sc_intr_lock);
959 
960 	switch (cp->dev) {
961 	case ESO_DAC_PLAY_VOL:
962 	case ESO_MIC_PLAY_VOL:
963 	case ESO_LINE_PLAY_VOL:
964 	case ESO_SYNTH_PLAY_VOL:
965 	case ESO_CD_PLAY_VOL:
966 	case ESO_AUXB_PLAY_VOL:
967 	case ESO_RECORD_VOL:
968 	case ESO_DAC_REC_VOL:
969 	case ESO_MIC_REC_VOL:
970 	case ESO_LINE_REC_VOL:
971 	case ESO_SYNTH_REC_VOL:
972 	case ESO_CD_REC_VOL:
973 	case ESO_AUXB_REC_VOL:
974 		if (cp->type != AUDIO_MIXER_VALUE) {
975 			error = EINVAL;
976 			break;
977 		}
978 
979 		/*
980 		 * Stereo-capable mixer ports: if we get a single-channel
981 		 * gain value passed in, then we duplicate it to both left
982 		 * and right channels.
983 		 */
984 		switch (cp->un.value.num_channels) {
985 		case 1:
986 			lgain = rgain = ESO_GAIN_TO_4BIT(
987 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
988 			break;
989 		case 2:
990 			lgain = ESO_GAIN_TO_4BIT(
991 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
992 			rgain = ESO_GAIN_TO_4BIT(
993 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
994 			break;
995 		default:
996 			error = EINVAL;
997 			break;
998 		}
999 
1000 		if (!error) {
1001 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1002 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1003 			eso_set_gain(sc, cp->dev);
1004 		}
1005 		break;
1006 
1007 	case ESO_MASTER_VOL:
1008 		if (cp->type != AUDIO_MIXER_VALUE) {
1009 			error = EINVAL;
1010 			break;
1011 		}
1012 
1013 		/* Like above, but a precision of 6 bits. */
1014 		switch (cp->un.value.num_channels) {
1015 		case 1:
1016 			lgain = rgain = ESO_GAIN_TO_6BIT(
1017 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1018 			break;
1019 		case 2:
1020 			lgain = ESO_GAIN_TO_6BIT(
1021 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1022 			rgain = ESO_GAIN_TO_6BIT(
1023 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1024 			break;
1025 		default:
1026 			error = EINVAL;
1027 			break;
1028 		}
1029 
1030 		if (!error) {
1031 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1032 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1033 			eso_set_gain(sc, cp->dev);
1034 		}
1035 		break;
1036 
1037 	case ESO_SPATIALIZER:
1038 		if (cp->type != AUDIO_MIXER_VALUE ||
1039 		    cp->un.value.num_channels != 1) {
1040 			error = EINVAL;
1041 			break;
1042 		}
1043 
1044 		sc->sc_gain[cp->dev][ESO_LEFT] =
1045 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1046 		    ESO_GAIN_TO_6BIT(
1047 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1048 		eso_set_gain(sc, cp->dev);
1049 		break;
1050 
1051 	case ESO_MONO_PLAY_VOL:
1052 	case ESO_MONO_REC_VOL:
1053 		if (cp->type != AUDIO_MIXER_VALUE ||
1054 		    cp->un.value.num_channels != 1) {
1055 			error = EINVAL;
1056 			break;
1057 		}
1058 
1059 		sc->sc_gain[cp->dev][ESO_LEFT] =
1060 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1061 		    ESO_GAIN_TO_4BIT(
1062 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1063 		eso_set_gain(sc, cp->dev);
1064 		break;
1065 
1066 	case ESO_PCSPEAKER_VOL:
1067 		if (cp->type != AUDIO_MIXER_VALUE ||
1068 		    cp->un.value.num_channels != 1) {
1069 			error = EINVAL;
1070 			break;
1071 		}
1072 
1073 		sc->sc_gain[cp->dev][ESO_LEFT] =
1074 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1075 		    ESO_GAIN_TO_3BIT(
1076 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1077 		eso_set_gain(sc, cp->dev);
1078 		break;
1079 
1080 	case ESO_SPATIALIZER_ENABLE:
1081 		if (cp->type != AUDIO_MIXER_ENUM) {
1082 			error = EINVAL;
1083 			break;
1084 		}
1085 
1086 		sc->sc_spatializer = (cp->un.ord != 0);
1087 
1088 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1089 		if (sc->sc_spatializer)
1090 			tmp |= ESO_MIXREG_SPAT_ENB;
1091 		else
1092 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1093 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1094 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1095 		break;
1096 
1097 	case ESO_MASTER_MUTE:
1098 		if (cp->type != AUDIO_MIXER_ENUM) {
1099 			error = EINVAL;
1100 			break;
1101 		}
1102 
1103 		sc->sc_mvmute = (cp->un.ord != 0);
1104 
1105 		if (sc->sc_mvmute) {
1106 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1107 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1108 			    ESO_MIXREG_LMVM_MUTE);
1109 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1110 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1111 			    ESO_MIXREG_RMVM_MUTE);
1112 		} else {
1113 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1114 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1115 			    ~ESO_MIXREG_LMVM_MUTE);
1116 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1117 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1118 			    ~ESO_MIXREG_RMVM_MUTE);
1119 		}
1120 		break;
1121 
1122 	case ESO_MONOOUT_SOURCE:
1123 		if (cp->type != AUDIO_MIXER_ENUM) {
1124 			error = EINVAL;
1125 			break;
1126 		}
1127 
1128 		error = eso_set_monooutsrc(sc, cp->un.ord);
1129 		break;
1130 
1131 	case ESO_MONOIN_BYPASS:
1132 		if (cp->type != AUDIO_MIXER_ENUM) {
1133 			error = EINVAL;
1134 			break;
1135 		}
1136 
1137 		error = (eso_set_monoinbypass(sc, cp->un.ord));
1138 		break;
1139 
1140 	case ESO_RECORD_MONITOR:
1141 		if (cp->type != AUDIO_MIXER_ENUM) {
1142 			error = EINVAL;
1143 			break;
1144 		}
1145 
1146 		sc->sc_recmon = (cp->un.ord != 0);
1147 
1148 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1149 		if (sc->sc_recmon)
1150 			tmp |= ESO_CTLREG_ACTL_RECMON;
1151 		else
1152 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1153 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1154 		break;
1155 
1156 	case ESO_RECORD_SOURCE:
1157 		if (cp->type != AUDIO_MIXER_ENUM) {
1158 			error = EINVAL;
1159 			break;
1160 		}
1161 
1162 		error = eso_set_recsrc(sc, cp->un.ord);
1163 		break;
1164 
1165 	case ESO_MIC_PREAMP:
1166 		if (cp->type != AUDIO_MIXER_ENUM) {
1167 			error = EINVAL;
1168 			break;
1169 		}
1170 
1171 		error = eso_set_preamp(sc, cp->un.ord);
1172 		break;
1173 
1174 	default:
1175 		error = EINVAL;
1176 		break;
1177 	}
1178 
1179 	mutex_spin_exit(&sc->sc_intr_lock);
1180 	return error;
1181 }
1182 
1183 static int
1184 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1185 {
1186 	struct eso_softc *sc;
1187 	int error;
1188 
1189 	sc = hdl;
1190 	error = 0;
1191 
1192 	mutex_spin_enter(&sc->sc_intr_lock);
1193 
1194 	switch (cp->dev) {
1195 	case ESO_MASTER_VOL:
1196 		/* Reload from mixer after hardware volume control use. */
1197 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1198 			eso_reload_master_vol(sc);
1199 		/* FALLTHROUGH */
1200 	case ESO_DAC_PLAY_VOL:
1201 	case ESO_MIC_PLAY_VOL:
1202 	case ESO_LINE_PLAY_VOL:
1203 	case ESO_SYNTH_PLAY_VOL:
1204 	case ESO_CD_PLAY_VOL:
1205 	case ESO_AUXB_PLAY_VOL:
1206 	case ESO_RECORD_VOL:
1207 	case ESO_DAC_REC_VOL:
1208 	case ESO_MIC_REC_VOL:
1209 	case ESO_LINE_REC_VOL:
1210 	case ESO_SYNTH_REC_VOL:
1211 	case ESO_CD_REC_VOL:
1212 	case ESO_AUXB_REC_VOL:
1213 		/*
1214 		 * Stereo-capable ports: if a single-channel query is made,
1215 		 * just return the left channel's value (since single-channel
1216 		 * settings themselves are applied to both channels).
1217 		 */
1218 		switch (cp->un.value.num_channels) {
1219 		case 1:
1220 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1221 			    sc->sc_gain[cp->dev][ESO_LEFT];
1222 			break;
1223 		case 2:
1224 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1225 			    sc->sc_gain[cp->dev][ESO_LEFT];
1226 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1227 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1228 			break;
1229 		default:
1230 			error = EINVAL;
1231 			break;
1232 		}
1233 		break;
1234 
1235 	case ESO_MONO_PLAY_VOL:
1236 	case ESO_PCSPEAKER_VOL:
1237 	case ESO_MONO_REC_VOL:
1238 	case ESO_SPATIALIZER:
1239 		if (cp->un.value.num_channels != 1) {
1240 			error = EINVAL;
1241 			break;
1242 		}
1243 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1244 		    sc->sc_gain[cp->dev][ESO_LEFT];
1245 		break;
1246 
1247 	case ESO_RECORD_MONITOR:
1248 		cp->un.ord = sc->sc_recmon;
1249 		break;
1250 
1251 	case ESO_RECORD_SOURCE:
1252 		cp->un.ord = sc->sc_recsrc;
1253 		break;
1254 
1255 	case ESO_MONOOUT_SOURCE:
1256 		cp->un.ord = sc->sc_monooutsrc;
1257 		break;
1258 
1259 	case ESO_MONOIN_BYPASS:
1260 		cp->un.ord = sc->sc_monoinbypass;
1261 		break;
1262 
1263 	case ESO_SPATIALIZER_ENABLE:
1264 		cp->un.ord = sc->sc_spatializer;
1265 		break;
1266 
1267 	case ESO_MIC_PREAMP:
1268 		cp->un.ord = sc->sc_preamp;
1269 		break;
1270 
1271 	case ESO_MASTER_MUTE:
1272 		/* Reload from mixer after hardware volume control use. */
1273 		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1274 			eso_reload_master_vol(sc);
1275 		cp->un.ord = sc->sc_mvmute;
1276 		break;
1277 
1278 	default:
1279 		error = EINVAL;
1280 		break;
1281 	}
1282 
1283 	mutex_spin_exit(&sc->sc_intr_lock);
1284 	return 0;
1285 }
1286 
1287 static int
1288 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1289 {
1290 
1291 	switch (dip->index) {
1292 	case ESO_DAC_PLAY_VOL:
1293 		dip->mixer_class = ESO_INPUT_CLASS;
1294 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1295 		strcpy(dip->label.name, AudioNdac);
1296 		dip->type = AUDIO_MIXER_VALUE;
1297 		dip->un.v.num_channels = 2;
1298 		strcpy(dip->un.v.units.name, AudioNvolume);
1299 		break;
1300 	case ESO_MIC_PLAY_VOL:
1301 		dip->mixer_class = ESO_INPUT_CLASS;
1302 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 		strcpy(dip->label.name, AudioNmicrophone);
1304 		dip->type = AUDIO_MIXER_VALUE;
1305 		dip->un.v.num_channels = 2;
1306 		strcpy(dip->un.v.units.name, AudioNvolume);
1307 		break;
1308 	case ESO_LINE_PLAY_VOL:
1309 		dip->mixer_class = ESO_INPUT_CLASS;
1310 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1311 		strcpy(dip->label.name, AudioNline);
1312 		dip->type = AUDIO_MIXER_VALUE;
1313 		dip->un.v.num_channels = 2;
1314 		strcpy(dip->un.v.units.name, AudioNvolume);
1315 		break;
1316 	case ESO_SYNTH_PLAY_VOL:
1317 		dip->mixer_class = ESO_INPUT_CLASS;
1318 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1319 		strcpy(dip->label.name, AudioNfmsynth);
1320 		dip->type = AUDIO_MIXER_VALUE;
1321 		dip->un.v.num_channels = 2;
1322 		strcpy(dip->un.v.units.name, AudioNvolume);
1323 		break;
1324 	case ESO_MONO_PLAY_VOL:
1325 		dip->mixer_class = ESO_INPUT_CLASS;
1326 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1327 		strcpy(dip->label.name, "mono_in");
1328 		dip->type = AUDIO_MIXER_VALUE;
1329 		dip->un.v.num_channels = 1;
1330 		strcpy(dip->un.v.units.name, AudioNvolume);
1331 		break;
1332 	case ESO_CD_PLAY_VOL:
1333 		dip->mixer_class = ESO_INPUT_CLASS;
1334 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1335 		strcpy(dip->label.name, AudioNcd);
1336 		dip->type = AUDIO_MIXER_VALUE;
1337 		dip->un.v.num_channels = 2;
1338 		strcpy(dip->un.v.units.name, AudioNvolume);
1339 		break;
1340 	case ESO_AUXB_PLAY_VOL:
1341 		dip->mixer_class = ESO_INPUT_CLASS;
1342 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1343 		strcpy(dip->label.name, "auxb");
1344 		dip->type = AUDIO_MIXER_VALUE;
1345 		dip->un.v.num_channels = 2;
1346 		strcpy(dip->un.v.units.name, AudioNvolume);
1347 		break;
1348 
1349 	case ESO_MIC_PREAMP:
1350 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1351 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1352 		strcpy(dip->label.name, AudioNpreamp);
1353 		dip->type = AUDIO_MIXER_ENUM;
1354 		dip->un.e.num_mem = 2;
1355 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1356 		dip->un.e.member[0].ord = 0;
1357 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1358 		dip->un.e.member[1].ord = 1;
1359 		break;
1360 	case ESO_MICROPHONE_CLASS:
1361 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1362 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 		strcpy(dip->label.name, AudioNmicrophone);
1364 		dip->type = AUDIO_MIXER_CLASS;
1365 		break;
1366 
1367 	case ESO_INPUT_CLASS:
1368 		dip->mixer_class = ESO_INPUT_CLASS;
1369 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1370 		strcpy(dip->label.name, AudioCinputs);
1371 		dip->type = AUDIO_MIXER_CLASS;
1372 		break;
1373 
1374 	case ESO_MASTER_VOL:
1375 		dip->mixer_class = ESO_OUTPUT_CLASS;
1376 		dip->prev = AUDIO_MIXER_LAST;
1377 		dip->next = ESO_MASTER_MUTE;
1378 		strcpy(dip->label.name, AudioNmaster);
1379 		dip->type = AUDIO_MIXER_VALUE;
1380 		dip->un.v.num_channels = 2;
1381 		strcpy(dip->un.v.units.name, AudioNvolume);
1382 		break;
1383 	case ESO_MASTER_MUTE:
1384 		dip->mixer_class = ESO_OUTPUT_CLASS;
1385 		dip->prev = ESO_MASTER_VOL;
1386 		dip->next = AUDIO_MIXER_LAST;
1387 		strcpy(dip->label.name, AudioNmute);
1388 		dip->type = AUDIO_MIXER_ENUM;
1389 		dip->un.e.num_mem = 2;
1390 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1391 		dip->un.e.member[0].ord = 0;
1392 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1393 		dip->un.e.member[1].ord = 1;
1394 		break;
1395 
1396 	case ESO_PCSPEAKER_VOL:
1397 		dip->mixer_class = ESO_OUTPUT_CLASS;
1398 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1399 		strcpy(dip->label.name, "pc_speaker");
1400 		dip->type = AUDIO_MIXER_VALUE;
1401 		dip->un.v.num_channels = 1;
1402 		strcpy(dip->un.v.units.name, AudioNvolume);
1403 		break;
1404 	case ESO_MONOOUT_SOURCE:
1405 		dip->mixer_class = ESO_OUTPUT_CLASS;
1406 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1407 		strcpy(dip->label.name, "mono_out");
1408 		dip->type = AUDIO_MIXER_ENUM;
1409 		dip->un.e.num_mem = 3;
1410 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1411 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1412 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1413 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1414 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1415 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1416 		break;
1417 
1418 	case ESO_MONOIN_BYPASS:
1419 		dip->mixer_class = ESO_MONOIN_CLASS;
1420 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 		strcpy(dip->label.name, "bypass");
1422 		dip->type = AUDIO_MIXER_ENUM;
1423 		dip->un.e.num_mem = 2;
1424 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1425 		dip->un.e.member[0].ord = 0;
1426 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1427 		dip->un.e.member[1].ord = 1;
1428 		break;
1429 	case ESO_MONOIN_CLASS:
1430 		dip->mixer_class = ESO_MONOIN_CLASS;
1431 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1432 		strcpy(dip->label.name, "mono_in");
1433 		dip->type = AUDIO_MIXER_CLASS;
1434 		break;
1435 
1436 	case ESO_SPATIALIZER:
1437 		dip->mixer_class = ESO_OUTPUT_CLASS;
1438 		dip->prev = AUDIO_MIXER_LAST;
1439 		dip->next = ESO_SPATIALIZER_ENABLE;
1440 		strcpy(dip->label.name, AudioNspatial);
1441 		dip->type = AUDIO_MIXER_VALUE;
1442 		dip->un.v.num_channels = 1;
1443 		strcpy(dip->un.v.units.name, "level");
1444 		break;
1445 	case ESO_SPATIALIZER_ENABLE:
1446 		dip->mixer_class = ESO_OUTPUT_CLASS;
1447 		dip->prev = ESO_SPATIALIZER;
1448 		dip->next = AUDIO_MIXER_LAST;
1449 		strcpy(dip->label.name, "enable");
1450 		dip->type = AUDIO_MIXER_ENUM;
1451 		dip->un.e.num_mem = 2;
1452 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1453 		dip->un.e.member[0].ord = 0;
1454 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1455 		dip->un.e.member[1].ord = 1;
1456 		break;
1457 
1458 	case ESO_OUTPUT_CLASS:
1459 		dip->mixer_class = ESO_OUTPUT_CLASS;
1460 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 		strcpy(dip->label.name, AudioCoutputs);
1462 		dip->type = AUDIO_MIXER_CLASS;
1463 		break;
1464 
1465 	case ESO_RECORD_MONITOR:
1466 		dip->mixer_class = ESO_MONITOR_CLASS;
1467 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1468 		strcpy(dip->label.name, AudioNmute);
1469 		dip->type = AUDIO_MIXER_ENUM;
1470 		dip->un.e.num_mem = 2;
1471 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1472 		dip->un.e.member[0].ord = 0;
1473 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1474 		dip->un.e.member[1].ord = 1;
1475 		break;
1476 	case ESO_MONITOR_CLASS:
1477 		dip->mixer_class = ESO_MONITOR_CLASS;
1478 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1479 		strcpy(dip->label.name, AudioCmonitor);
1480 		dip->type = AUDIO_MIXER_CLASS;
1481 		break;
1482 
1483 	case ESO_RECORD_VOL:
1484 		dip->mixer_class = ESO_RECORD_CLASS;
1485 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1486 		strcpy(dip->label.name, AudioNrecord);
1487 		dip->type = AUDIO_MIXER_VALUE;
1488 		strcpy(dip->un.v.units.name, AudioNvolume);
1489 		break;
1490 	case ESO_RECORD_SOURCE:
1491 		dip->mixer_class = ESO_RECORD_CLASS;
1492 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1493 		strcpy(dip->label.name, AudioNsource);
1494 		dip->type = AUDIO_MIXER_ENUM;
1495 		dip->un.e.num_mem = 4;
1496 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1497 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1498 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1499 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1500 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1501 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1502 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1503 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1504 		break;
1505 	case ESO_DAC_REC_VOL:
1506 		dip->mixer_class = ESO_RECORD_CLASS;
1507 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1508 		strcpy(dip->label.name, AudioNdac);
1509 		dip->type = AUDIO_MIXER_VALUE;
1510 		dip->un.v.num_channels = 2;
1511 		strcpy(dip->un.v.units.name, AudioNvolume);
1512 		break;
1513 	case ESO_MIC_REC_VOL:
1514 		dip->mixer_class = ESO_RECORD_CLASS;
1515 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1516 		strcpy(dip->label.name, AudioNmicrophone);
1517 		dip->type = AUDIO_MIXER_VALUE;
1518 		dip->un.v.num_channels = 2;
1519 		strcpy(dip->un.v.units.name, AudioNvolume);
1520 		break;
1521 	case ESO_LINE_REC_VOL:
1522 		dip->mixer_class = ESO_RECORD_CLASS;
1523 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1524 		strcpy(dip->label.name, AudioNline);
1525 		dip->type = AUDIO_MIXER_VALUE;
1526 		dip->un.v.num_channels = 2;
1527 		strcpy(dip->un.v.units.name, AudioNvolume);
1528 		break;
1529 	case ESO_SYNTH_REC_VOL:
1530 		dip->mixer_class = ESO_RECORD_CLASS;
1531 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1532 		strcpy(dip->label.name, AudioNfmsynth);
1533 		dip->type = AUDIO_MIXER_VALUE;
1534 		dip->un.v.num_channels = 2;
1535 		strcpy(dip->un.v.units.name, AudioNvolume);
1536 		break;
1537 	case ESO_MONO_REC_VOL:
1538 		dip->mixer_class = ESO_RECORD_CLASS;
1539 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1540 		strcpy(dip->label.name, "mono_in");
1541 		dip->type = AUDIO_MIXER_VALUE;
1542 		dip->un.v.num_channels = 1; /* No lies */
1543 		strcpy(dip->un.v.units.name, AudioNvolume);
1544 		break;
1545 	case ESO_CD_REC_VOL:
1546 		dip->mixer_class = ESO_RECORD_CLASS;
1547 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1548 		strcpy(dip->label.name, AudioNcd);
1549 		dip->type = AUDIO_MIXER_VALUE;
1550 		dip->un.v.num_channels = 2;
1551 		strcpy(dip->un.v.units.name, AudioNvolume);
1552 		break;
1553 	case ESO_AUXB_REC_VOL:
1554 		dip->mixer_class = ESO_RECORD_CLASS;
1555 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1556 		strcpy(dip->label.name, "auxb");
1557 		dip->type = AUDIO_MIXER_VALUE;
1558 		dip->un.v.num_channels = 2;
1559 		strcpy(dip->un.v.units.name, AudioNvolume);
1560 		break;
1561 	case ESO_RECORD_CLASS:
1562 		dip->mixer_class = ESO_RECORD_CLASS;
1563 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1564 		strcpy(dip->label.name, AudioCrecord);
1565 		dip->type = AUDIO_MIXER_CLASS;
1566 		break;
1567 
1568 	default:
1569 		return ENXIO;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int
1576 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1577     size_t boundary, int direction, struct eso_dma *ed)
1578 {
1579 	int error;
1580 
1581 	ed->ed_size = size;
1582 
1583 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1584 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1585 	    &ed->ed_nsegs, BUS_DMA_WAITOK);
1586 	if (error)
1587 		goto out;
1588 
1589 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1590 	    ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1591 	if (error)
1592 		goto free;
1593 
1594 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1595 	    BUS_DMA_WAITOK, &ed->ed_map);
1596 	if (error)
1597 		goto unmap;
1598 
1599 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1600 	    ed->ed_size, NULL, BUS_DMA_WAITOK |
1601 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1602 	if (error)
1603 		goto destroy;
1604 
1605 	return 0;
1606 
1607  destroy:
1608 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1609  unmap:
1610 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1611  free:
1612 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1613  out:
1614 	return error;
1615 }
1616 
1617 static void
1618 eso_freemem(struct eso_dma *ed)
1619 {
1620 
1621 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1622 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1623 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1624 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1625 }
1626 
1627 static struct eso_dma *
1628 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1629 {
1630 	struct eso_dma *p;
1631 
1632 	SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1633 		if (KVADDR(p) == kva)
1634 			return p;
1635 	}
1636 
1637 	panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
1638 	/* NOTREACHED */
1639 }
1640 
1641 static void *
1642 eso_allocm(void *hdl, int direction, size_t size)
1643 {
1644 	struct eso_softc *sc;
1645 	struct eso_dma *ed;
1646 	size_t boundary;
1647 	int error;
1648 
1649 	sc = hdl;
1650 	if ((ed = kmem_alloc(sizeof (*ed), KM_SLEEP)) == NULL)
1651 		return NULL;
1652 
1653 	/*
1654 	 * Apparently the Audio 1 DMA controller's current address
1655 	 * register can't roll over a 64K address boundary, so we have to
1656 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
1657 	 * controller needs a 1M address boundary.
1658 	 */
1659 	if (direction == AUMODE_RECORD)
1660 		boundary = 0x10000;
1661 	else
1662 		boundary = 0x100000;
1663 
1664 	/*
1665 	 * XXX Work around allocation problems for Audio 1, which
1666 	 * XXX implements the 24 low address bits only, with
1667 	 * XXX machine-specific DMA tag use.
1668 	 */
1669 #ifdef alpha
1670 	/*
1671 	 * XXX Force allocation through the (ISA) SGMAP.
1672 	 */
1673 	if (direction == AUMODE_RECORD)
1674 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1675 	else
1676 #elif defined(amd64) || defined(i386)
1677 	/*
1678 	 * XXX Force allocation through the ISA DMA tag.
1679 	 */
1680 	if (direction == AUMODE_RECORD)
1681 		ed->ed_dmat = &isa_bus_dma_tag;
1682 	else
1683 #endif
1684 		ed->ed_dmat = sc->sc_dmat;
1685 
1686 	error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1687 	if (error) {
1688 		kmem_free(ed, sizeof(*ed));
1689 		return NULL;
1690 	}
1691 	SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1692 
1693 	return KVADDR(ed);
1694 }
1695 
1696 static void
1697 eso_freem(void *hdl, void *addr, size_t size)
1698 {
1699 	struct eso_softc *sc;
1700 	struct eso_dma *p;
1701 
1702 	sc = hdl;
1703 	p = eso_kva2dma(sc, addr);
1704 
1705 	SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1706 	eso_freemem(p);
1707 	kmem_free(p, sizeof(*p));
1708 }
1709 
1710 static size_t
1711 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1712 {
1713 	size_t maxsize;
1714 
1715 	/*
1716 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1717 	 * bytes.  This is because IO_A2DMAC is a two byte value
1718 	 * indicating the literal byte count, and the 4 least significant
1719 	 * bits are read-only.  Zero is not used as a special case for
1720 	 * 0x10000.
1721 	 *
1722 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1723 	 * be represented.
1724 	 */
1725 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1726 
1727 	if (bufsize > maxsize)
1728 		bufsize = maxsize;
1729 
1730 	return bufsize;
1731 }
1732 
1733 static paddr_t
1734 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1735 {
1736 	struct eso_softc *sc;
1737 	struct eso_dma *ed;
1738 
1739 	sc = hdl;
1740 	if (offs < 0)
1741 		return -1;
1742 	ed = eso_kva2dma(sc, addr);
1743 
1744 	return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1745 	    offs, prot, BUS_DMA_WAITOK);
1746 }
1747 
1748 /* ARGSUSED */
1749 static int
1750 eso_get_props(void *hdl)
1751 {
1752 
1753 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1754 	    AUDIO_PROP_FULLDUPLEX;
1755 }
1756 
1757 static int
1758 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1759     void (*intr)(void *), void *arg, const audio_params_t *param)
1760 {
1761 	struct eso_softc *sc;
1762 	struct eso_dma *ed;
1763 	uint8_t a2c1;
1764 
1765 	sc = hdl;
1766 	DPRINTF((
1767 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1768 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1769 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1770 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1771 	    param->precision, param->channels));
1772 
1773 	/* Find DMA buffer. */
1774 	ed = eso_kva2dma(sc, start);
1775 	DPRINTF(("%s: dmaaddr %lx\n",
1776 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1777 
1778 	sc->sc_pintr = intr;
1779 	sc->sc_parg = arg;
1780 
1781 	/* Compute drain timeout. */
1782 	sc->sc_pdrain = (blksize * NBBY * hz) /
1783 	    (param->sample_rate * param->channels *
1784 	     param->precision) + 2;	/* slop */
1785 
1786 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1787 	blksize = -(blksize >> 1);
1788 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1789 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1790 
1791 	/* Update DAC to reflect DMA count and audio parameters. */
1792 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1793 	if (param->precision == 16)
1794 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1795 	else
1796 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1797 	if (param->channels == 2)
1798 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1799 	else
1800 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1801 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1802 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1803 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1804 	else
1805 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1806 	/* Unmask IRQ. */
1807 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1808 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1809 
1810 	/* Set up DMA controller. */
1811 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1812 	    DMAADDR(ed));
1813 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1814 	    (uint8_t *)end - (uint8_t *)start);
1815 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1816 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1817 
1818 	/* Start DMA. */
1819 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1820 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1821 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1822 	    ESO_MIXREG_A2C1_AUTO;
1823 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1824 
1825 	return 0;
1826 }
1827 
1828 static int
1829 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1830     void (*intr)(void *), void *arg, const audio_params_t *param)
1831 {
1832 	struct eso_softc *sc;
1833 	struct eso_dma *ed;
1834 	uint8_t actl, a1c1;
1835 
1836 	sc = hdl;
1837 	DPRINTF((
1838 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1839 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1840 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1841 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1842 	    param->precision, param->channels));
1843 
1844 	/*
1845 	 * If we failed to configure the Audio 1 DMA controller, bail here
1846 	 * while retaining availability of the DAC direction (in Audio 2).
1847 	 */
1848 	if (!sc->sc_dmac_configured)
1849 		return EIO;
1850 
1851 	/* Find DMA buffer. */
1852 	ed = eso_kva2dma(sc, start);
1853 	DPRINTF(("%s: dmaaddr %lx\n",
1854 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1855 
1856 	sc->sc_rintr = intr;
1857 	sc->sc_rarg = arg;
1858 
1859 	/* Compute drain timeout. */
1860 	sc->sc_rdrain = (blksize * NBBY * hz) /
1861 	    (param->sample_rate * param->channels *
1862 	     param->precision) + 2;	/* slop */
1863 
1864 	/* Set up ADC DMA converter parameters. */
1865 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1866 	if (param->channels == 2) {
1867 		actl &= ~ESO_CTLREG_ACTL_MONO;
1868 		actl |= ESO_CTLREG_ACTL_STEREO;
1869 	} else {
1870 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1871 		actl |= ESO_CTLREG_ACTL_MONO;
1872 	}
1873 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1874 
1875 	/* Set up Transfer Type: maybe move to attach time? */
1876 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1877 
1878 	/* DMA transfer count reload using 2's complement. */
1879 	blksize = -blksize;
1880 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1881 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1882 
1883 	/* Set up and enable Audio 1 DMA FIFO. */
1884 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1885 	if (param->precision == 16)
1886 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1887 	if (param->channels == 2)
1888 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1889 	else
1890 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1891 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1892 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1893 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1894 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1895 
1896 	/* Set up ADC IRQ/DRQ parameters. */
1897 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1898 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1899 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1900 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1901 
1902 	/* Set up and enable DMA controller. */
1903 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1904 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1905 	    ESO_DMAC_MASK_MASK);
1906 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1907 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1908 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1909 	    DMAADDR(ed));
1910 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1911 	    (uint8_t *)end - (uint8_t *)start - 1);
1912 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1913 
1914 	/* Start DMA. */
1915 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1916 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1917 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1918 
1919 	return 0;
1920 }
1921 
1922 
1923 static void
1924 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1925 {
1926 	struct eso_softc *sc;
1927 
1928 	sc = addr;
1929 	*intr = &sc->sc_intr_lock;
1930 	*thread = &sc->sc_lock;
1931 }
1932 
1933 /*
1934  * Mixer utility functions.
1935  */
1936 static int
1937 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1938 {
1939 	mixer_devinfo_t di;
1940 	int i;
1941 
1942 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1943 
1944 	di.index = ESO_RECORD_SOURCE;
1945 	if (eso_query_devinfo(sc, &di) != 0)
1946 		panic("eso_set_recsrc: eso_query_devinfo failed");
1947 
1948 	for (i = 0; i < di.un.e.num_mem; i++) {
1949 		if (recsrc == di.un.e.member[i].ord) {
1950 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1951 			sc->sc_recsrc = recsrc;
1952 			return 0;
1953 		}
1954 	}
1955 
1956 	return EINVAL;
1957 }
1958 
1959 static int
1960 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1961 {
1962 	mixer_devinfo_t di;
1963 	int i;
1964 	uint8_t mpm;
1965 
1966 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1967 
1968 	di.index = ESO_MONOOUT_SOURCE;
1969 	if (eso_query_devinfo(sc, &di) != 0)
1970 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1971 
1972 	for (i = 0; i < di.un.e.num_mem; i++) {
1973 		if (monooutsrc == di.un.e.member[i].ord) {
1974 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1975 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1976 			mpm |= monooutsrc;
1977 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1978 			sc->sc_monooutsrc = monooutsrc;
1979 			return 0;
1980 		}
1981 	}
1982 
1983 	return EINVAL;
1984 }
1985 
1986 static int
1987 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1988 {
1989 	mixer_devinfo_t di;
1990 	int i;
1991 	uint8_t mpm;
1992 
1993 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1994 
1995 	di.index = ESO_MONOIN_BYPASS;
1996 	if (eso_query_devinfo(sc, &di) != 0)
1997 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
1998 
1999 	for (i = 0; i < di.un.e.num_mem; i++) {
2000 		if (monoinbypass == di.un.e.member[i].ord) {
2001 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2002 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
2003 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
2004 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2005 			sc->sc_monoinbypass = monoinbypass;
2006 			return 0;
2007 		}
2008 	}
2009 
2010 	return EINVAL;
2011 }
2012 
2013 static int
2014 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2015 {
2016 	mixer_devinfo_t di;
2017 	int i;
2018 	uint8_t mpm;
2019 
2020 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2021 
2022 	di.index = ESO_MIC_PREAMP;
2023 	if (eso_query_devinfo(sc, &di) != 0)
2024 		panic("eso_set_preamp: eso_query_devinfo failed");
2025 
2026 	for (i = 0; i < di.un.e.num_mem; i++) {
2027 		if (preamp == di.un.e.member[i].ord) {
2028 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2029 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2030 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2031 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2032 			sc->sc_preamp = preamp;
2033 			return 0;
2034 		}
2035 	}
2036 
2037 	return EINVAL;
2038 }
2039 
2040 /*
2041  * Reload Master Volume and Mute values in softc from mixer; used when
2042  * those have previously been invalidated by use of hardware volume controls.
2043  */
2044 static void
2045 eso_reload_master_vol(struct eso_softc *sc)
2046 {
2047 	uint8_t mv;
2048 
2049 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2050 
2051 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2052 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2053 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2054 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2055 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2056 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2057 	/* Currently both channels are muted simultaneously; either is OK. */
2058 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2059 }
2060 
2061 static void
2062 eso_set_gain(struct eso_softc *sc, unsigned int port)
2063 {
2064 	uint8_t mixreg, tmp;
2065 
2066 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2067 
2068 	switch (port) {
2069 	case ESO_DAC_PLAY_VOL:
2070 		mixreg = ESO_MIXREG_PVR_A2;
2071 		break;
2072 	case ESO_MIC_PLAY_VOL:
2073 		mixreg = ESO_MIXREG_PVR_MIC;
2074 		break;
2075 	case ESO_LINE_PLAY_VOL:
2076 		mixreg = ESO_MIXREG_PVR_LINE;
2077 		break;
2078 	case ESO_SYNTH_PLAY_VOL:
2079 		mixreg = ESO_MIXREG_PVR_SYNTH;
2080 		break;
2081 	case ESO_CD_PLAY_VOL:
2082 		mixreg = ESO_MIXREG_PVR_CD;
2083 		break;
2084 	case ESO_AUXB_PLAY_VOL:
2085 		mixreg = ESO_MIXREG_PVR_AUXB;
2086 		break;
2087 
2088 	case ESO_DAC_REC_VOL:
2089 		mixreg = ESO_MIXREG_RVR_A2;
2090 		break;
2091 	case ESO_MIC_REC_VOL:
2092 		mixreg = ESO_MIXREG_RVR_MIC;
2093 		break;
2094 	case ESO_LINE_REC_VOL:
2095 		mixreg = ESO_MIXREG_RVR_LINE;
2096 		break;
2097 	case ESO_SYNTH_REC_VOL:
2098 		mixreg = ESO_MIXREG_RVR_SYNTH;
2099 		break;
2100 	case ESO_CD_REC_VOL:
2101 		mixreg = ESO_MIXREG_RVR_CD;
2102 		break;
2103 	case ESO_AUXB_REC_VOL:
2104 		mixreg = ESO_MIXREG_RVR_AUXB;
2105 		break;
2106 	case ESO_MONO_PLAY_VOL:
2107 		mixreg = ESO_MIXREG_PVR_MONO;
2108 		break;
2109 	case ESO_MONO_REC_VOL:
2110 		mixreg = ESO_MIXREG_RVR_MONO;
2111 		break;
2112 
2113 	case ESO_PCSPEAKER_VOL:
2114 		/* Special case - only 3-bit, mono, and reserved bits. */
2115 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2116 		tmp &= ESO_MIXREG_PCSVR_RESV;
2117 		/* Map bits 7:5 -> 2:0. */
2118 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2119 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2120 		return;
2121 
2122 	case ESO_MASTER_VOL:
2123 		/* Special case - separate regs, and 6-bit precision. */
2124 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
2125 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2126 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
2127 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2128 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2129 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2130 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2131 		return;
2132 
2133 	case ESO_SPATIALIZER:
2134 		/* Special case - only `mono', and higher precision. */
2135 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2136 		    sc->sc_gain[port][ESO_LEFT]);
2137 		return;
2138 
2139 	case ESO_RECORD_VOL:
2140 		/* Very Special case, controller register. */
2141 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2142 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2143 		return;
2144 
2145 	default:
2146 #ifdef DIAGNOSTIC
2147 		panic("eso_set_gain: bad port %u", port);
2148 		/* NOTREACHED */
2149 #else
2150 		return;
2151 #endif
2152 	}
2153 
2154 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2155 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2156 }
2157