xref: /netbsd-src/sys/dev/pci/eso.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: eso.c,v 1.65 2014/03/29 19:28:24 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 /*
61  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.65 2014/03/29 19:28:24 christos Exp $");
66 
67 #include "mpu.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76 
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82 
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85 
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90 
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 
94 /*
95  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96  * XXX engine by allocating through the ISA DMA tag.
97  */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101 
102 #if defined(AUDIO_DEBUG) || defined(DEBUG)
103 #define DPRINTF(x) printf x
104 #else
105 #define DPRINTF(x)
106 #endif
107 
108 struct eso_dma {
109 	bus_dma_tag_t		ed_dmat;
110 	bus_dmamap_t		ed_map;
111 	void *			ed_kva;
112 	bus_dma_segment_t	ed_segs[1];
113 	int			ed_nsegs;
114 	size_t			ed_size;
115 	SLIST_ENTRY(eso_dma)	ed_slist;
116 };
117 
118 #define KVADDR(dma)	((void *)(dma)->ed_kva)
119 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
120 
121 /* Autoconfiguration interface */
122 static int eso_match(device_t, cfdata_t, void *);
123 static void eso_attach(device_t, device_t, void *);
124 static void eso_defer(device_t);
125 static int eso_print(void *, const char *);
126 
127 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
128     eso_match, eso_attach, NULL, NULL);
129 
130 /* PCI interface */
131 static int eso_intr(void *);
132 
133 /* MI audio layer interface */
134 static int	eso_query_encoding(void *, struct audio_encoding *);
135 static int	eso_set_params(void *, int, int, audio_params_t *,
136 		    audio_params_t *, stream_filter_list_t *,
137 		    stream_filter_list_t *);
138 static int	eso_round_blocksize(void *, int, int, const audio_params_t *);
139 static int	eso_halt_output(void *);
140 static int	eso_halt_input(void *);
141 static int	eso_getdev(void *, struct audio_device *);
142 static int	eso_set_port(void *, mixer_ctrl_t *);
143 static int	eso_get_port(void *, mixer_ctrl_t *);
144 static int	eso_query_devinfo(void *, mixer_devinfo_t *);
145 static void *	eso_allocm(void *, int, size_t);
146 static void	eso_freem(void *, void *, size_t);
147 static size_t	eso_round_buffersize(void *, int, size_t);
148 static paddr_t	eso_mappage(void *, void *, off_t, int);
149 static int	eso_get_props(void *);
150 static int	eso_trigger_output(void *, void *, void *, int,
151 		    void (*)(void *), void *, const audio_params_t *);
152 static int	eso_trigger_input(void *, void *, void *, int,
153 		    void (*)(void *), void *, const audio_params_t *);
154 static void	eso_get_locks(void *, kmutex_t **, kmutex_t **);
155 
156 static const struct audio_hw_if eso_hw_if = {
157 	NULL,			/* open */
158 	NULL,			/* close */
159 	NULL,			/* drain */
160 	eso_query_encoding,
161 	eso_set_params,
162 	eso_round_blocksize,
163 	NULL,			/* commit_settings */
164 	NULL,			/* init_output */
165 	NULL,			/* init_input */
166 	NULL,			/* start_output */
167 	NULL,			/* start_input */
168 	eso_halt_output,
169 	eso_halt_input,
170 	NULL,			/* speaker_ctl */
171 	eso_getdev,
172 	NULL,			/* setfd */
173 	eso_set_port,
174 	eso_get_port,
175 	eso_query_devinfo,
176 	eso_allocm,
177 	eso_freem,
178 	eso_round_buffersize,
179 	eso_mappage,
180 	eso_get_props,
181 	eso_trigger_output,
182 	eso_trigger_input,
183 	NULL,			/* dev_ioctl */
184 	eso_get_locks,
185 };
186 
187 static const char * const eso_rev2model[] = {
188 	"ES1938",
189 	"ES1946",
190 	"ES1946 Revision E"
191 };
192 
193 #define ESO_NFORMATS	8
194 static const struct audio_format eso_formats[ESO_NFORMATS] = {
195 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
196 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
197 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
198 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
199 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
200 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
201 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
202 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
203 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
204 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
206 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
208 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
211 };
212 
213 
214 /*
215  * Utility routines
216  */
217 /* Register access etc. */
218 static uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
219 static uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
220 static uint8_t	eso_read_rdr(struct eso_softc *);
221 static void	eso_reload_master_vol(struct eso_softc *);
222 static int	eso_reset(struct eso_softc *);
223 static void	eso_set_gain(struct eso_softc *, unsigned int);
224 static int	eso_set_recsrc(struct eso_softc *, unsigned int);
225 static int	eso_set_monooutsrc(struct eso_softc *, unsigned int);
226 static int	eso_set_monoinbypass(struct eso_softc *, unsigned int);
227 static int	eso_set_preamp(struct eso_softc *, unsigned int);
228 static void	eso_write_cmd(struct eso_softc *, uint8_t);
229 static void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
230 static void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
231 /* DMA memory allocation */
232 static int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
233 		    int, struct eso_dma *);
234 static void	eso_freemem(struct eso_dma *);
235 static struct eso_dma *	eso_kva2dma(const struct eso_softc *, const void *);
236 
237 
238 static int
239 eso_match(device_t parent, cfdata_t match, void *aux)
240 {
241 	struct pci_attach_args *pa;
242 
243 	pa = aux;
244 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
245 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
246 		return 1;
247 
248 	return 0;
249 }
250 
251 static void
252 eso_attach(device_t parent, device_t self, void *aux)
253 {
254 	struct eso_softc *sc;
255 	struct pci_attach_args *pa;
256 	struct audio_attach_args aa;
257 	pci_intr_handle_t ih;
258 	bus_addr_t vcbase;
259 	const char *intrstring;
260 	int idx, error;
261 	uint8_t a2mode, mvctl;
262 	char intrbuf[PCI_INTRSTR_LEN];
263 
264 	sc = device_private(self);
265 	sc->sc_dev = self;
266 	pa = aux;
267 	aprint_naive(": Audio controller\n");
268 
269 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
270 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
271 
272 	sc->sc_revision = PCI_REVISION(pa->pa_class);
273 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
274 	if (sc->sc_revision <
275 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
276 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
277 	else
278 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
279 
280 	/* Map I/O registers. */
281 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
282 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
283 		aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
284 		return;
285 	}
286 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
287 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
288 		aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
289 		return;
290 	}
291 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
292 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
293 		aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
294 		/* Don't bail out yet: we can map it later, see below. */
295 		vcbase = 0;
296 		sc->sc_vcsize = 0x10; /* From the data sheet. */
297 	}
298 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
299 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
300 		aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
301 		return;
302 	}
303 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
304 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
305 		aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
306 		return;
307 	}
308 
309 	sc->sc_dmat = pa->pa_dmat;
310 	SLIST_INIT(&sc->sc_dmas);
311 	sc->sc_dmac_configured = 0;
312 
313 	/* Enable bus mastering. */
314 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
315 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
316 	    PCI_COMMAND_MASTER_ENABLE);
317 
318 	/* Reset the device; bail out upon failure. */
319 	mutex_spin_enter(&sc->sc_intr_lock);
320 	error = eso_reset(sc);
321 	mutex_spin_exit(&sc->sc_intr_lock);
322 	if (error != 0) {
323 		aprint_error_dev(sc->sc_dev, "can't reset\n");
324 		return;
325 	}
326 
327 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
328 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
329 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
330 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
331 
332 	/* Enable the relevant (DMA) interrupts. */
333 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
334 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
335 	    ESO_IO_IRQCTL_MPUIRQ);
336 
337 	mutex_spin_enter(&sc->sc_intr_lock);
338 
339 	/* Set up A1's sample rate generator for new-style parameters. */
340 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
341 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
342 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
343 
344 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
345 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
346 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
347 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
348 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
349 
350 	/* Set mixer regs to something reasonable, needs work. */
351 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
352 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
353 	eso_set_monoinbypass(sc, 0);
354 	eso_set_preamp(sc, 1);
355 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
356 		int v;
357 
358 		switch (idx) {
359 		case ESO_MIC_PLAY_VOL:
360 		case ESO_LINE_PLAY_VOL:
361 		case ESO_CD_PLAY_VOL:
362 		case ESO_MONO_PLAY_VOL:
363 		case ESO_AUXB_PLAY_VOL:
364 		case ESO_DAC_REC_VOL:
365 		case ESO_LINE_REC_VOL:
366 		case ESO_SYNTH_REC_VOL:
367 		case ESO_CD_REC_VOL:
368 		case ESO_MONO_REC_VOL:
369 		case ESO_AUXB_REC_VOL:
370 		case ESO_SPATIALIZER:
371 			v = 0;
372 			break;
373 		case ESO_MASTER_VOL:
374 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
375 			break;
376 		default:
377 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
378 			break;
379 		}
380 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
381 		eso_set_gain(sc, idx);
382 	}
383 
384 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
385 
386 	mutex_spin_exit(&sc->sc_intr_lock);
387 
388 	/* Map and establish the interrupt. */
389 	if (pci_intr_map(pa, &ih)) {
390 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
391 		return;
392 	}
393 
394 	intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
395 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
396 	if (sc->sc_ih == NULL) {
397 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
398 		if (intrstring != NULL)
399 			aprint_error(" at %s", intrstring);
400 		aprint_error("\n");
401 		mutex_destroy(&sc->sc_lock);
402 		mutex_destroy(&sc->sc_intr_lock);
403 		return;
404 	}
405 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n",
406 	    intrstring);
407 
408 	cv_init(&sc->sc_pcv, "esoho");
409 	cv_init(&sc->sc_rcv, "esohi");
410 
411 	/*
412 	 * Set up the DDMA Control register; a suitable I/O region has been
413 	 * supposedly mapped in the VC base address register.
414 	 *
415 	 * The Solo-1 has an ... interesting silicon bug that causes it to
416 	 * not respond to I/O space accesses to the Audio 1 DMA controller
417 	 * if the latter's mapping base address is aligned on a 1K boundary.
418 	 * As a consequence, it is quite possible for the mapping provided
419 	 * in the VC BAR to be useless.  To work around this, we defer this
420 	 * part until all autoconfiguration on our parent bus is completed
421 	 * and then try to map it ourselves in fulfillment of the constraint.
422 	 *
423 	 * According to the register map we may write to the low 16 bits
424 	 * only, but experimenting has shown we're safe.
425 	 * -kjk
426 	 */
427 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
428 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
429 		    vcbase | ESO_PCI_DDMAC_DE);
430 		sc->sc_dmac_configured = 1;
431 
432 		aprint_normal_dev(sc->sc_dev,
433 		    "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
434 		    (unsigned long)vcbase);
435 	} else {
436 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
437 		    device_xname(sc->sc_dev), (unsigned long)vcbase));
438 		sc->sc_pa = *pa;
439 		config_defer(self, eso_defer);
440 	}
441 
442 	audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
443 
444 	aa.type = AUDIODEV_TYPE_OPL;
445 	aa.hwif = NULL;
446 	aa.hdl = NULL;
447 	(void)config_found(sc->sc_dev, &aa, audioprint);
448 
449 	aa.type = AUDIODEV_TYPE_MPU;
450 	aa.hwif = NULL;
451 	aa.hdl = NULL;
452 	sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
453 	if (sc->sc_mpudev != NULL) {
454 		/* Unmask the MPU irq. */
455 		mutex_spin_enter(&sc->sc_intr_lock);
456 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
457 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
458 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
459 		mutex_spin_exit(&sc->sc_intr_lock);
460 	}
461 
462 	aa.type = AUDIODEV_TYPE_AUX;
463 	aa.hwif = NULL;
464 	aa.hdl = NULL;
465 	(void)config_found(sc->sc_dev, &aa, eso_print);
466 }
467 
468 static void
469 eso_defer(device_t self)
470 {
471 	struct eso_softc *sc;
472 	struct pci_attach_args *pa;
473 	bus_addr_t addr, start;
474 
475 	sc = device_private(self);
476 	pa = &sc->sc_pa;
477 	aprint_normal_dev(sc->sc_dev, "");
478 
479 	/*
480 	 * This is outright ugly, but since we must not make assumptions
481 	 * on the underlying allocator's behaviour it's the most straight-
482 	 * forward way to implement it.  Note that we skip over the first
483 	 * 1K region, which is typically occupied by an attached ISA bus.
484 	 */
485 	mutex_enter(&sc->sc_lock);
486 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
487 		if (bus_space_alloc(sc->sc_iot,
488 		    start + sc->sc_vcsize, start + 0x0400 - 1,
489 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
490 		    &sc->sc_dmac_ioh) != 0)
491 			continue;
492 
493 		mutex_spin_enter(&sc->sc_intr_lock);
494 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
495 		    addr | ESO_PCI_DDMAC_DE);
496 		mutex_spin_exit(&sc->sc_intr_lock);
497 		sc->sc_dmac_iot = sc->sc_iot;
498 		sc->sc_dmac_configured = 1;
499 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
500 		    (unsigned long)addr);
501 
502 		mutex_exit(&sc->sc_lock);
503 		return;
504 	}
505 	mutex_exit(&sc->sc_lock);
506 
507 	aprint_error("can't map Audio 1 DMA into I/O space\n");
508 }
509 
510 /* ARGSUSED */
511 static int
512 eso_print(void *aux, const char *pnp)
513 {
514 
515 	/* Only joys can attach via this; easy. */
516 	if (pnp)
517 		aprint_normal("joy at %s:", pnp);
518 
519 	return UNCONF;
520 }
521 
522 static void
523 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
524 {
525 	int i;
526 
527 	/* Poll for busy indicator to become clear. */
528 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
529 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
530 		    & ESO_SB_RSR_BUSY) == 0) {
531 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
532 			    ESO_SB_WDR, cmd);
533 			return;
534 		} else {
535 			delay(10);
536 		}
537 	}
538 
539 	printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
540 	return;
541 }
542 
543 /* Write to a controller register */
544 static void
545 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
546 {
547 
548 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
549 
550 	eso_write_cmd(sc, reg);
551 	eso_write_cmd(sc, val);
552 }
553 
554 /* Read out the Read Data Register */
555 static uint8_t
556 eso_read_rdr(struct eso_softc *sc)
557 {
558 	int i;
559 
560 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
561 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
562 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
563 			return (bus_space_read_1(sc->sc_sb_iot,
564 			    sc->sc_sb_ioh, ESO_SB_RDR));
565 		} else {
566 			delay(10);
567 		}
568 	}
569 
570 	printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
571 	return (-1);
572 }
573 
574 static uint8_t
575 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
576 {
577 
578 	eso_write_cmd(sc, ESO_CMD_RCR);
579 	eso_write_cmd(sc, reg);
580 	return eso_read_rdr(sc);
581 }
582 
583 static void
584 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
585 {
586 
587 	KASSERT(mutex_owned(&sc->sc_intr_lock));
588 
589 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
590 
591 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
592 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
593 }
594 
595 static uint8_t
596 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
597 {
598 	uint8_t val;
599 
600 	KASSERT(mutex_owned(&sc->sc_intr_lock));
601 
602 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
603 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
604 
605 	return val;
606 }
607 
608 static int
609 eso_intr(void *hdl)
610 {
611 	struct eso_softc *sc = hdl;
612 #if NMPU > 0
613 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
614 #endif
615 	uint8_t irqctl;
616 
617 	mutex_spin_enter(&sc->sc_intr_lock);
618 
619 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
620 
621 	/* If it wasn't ours, that's all she wrote. */
622 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
623 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
624 		mutex_spin_exit(&sc->sc_intr_lock);
625 		return 0;
626 	}
627 
628 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
629 		/* Clear interrupt. */
630 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
631 		    ESO_SB_RBSR);
632 
633 		if (sc->sc_rintr)
634 			sc->sc_rintr(sc->sc_rarg);
635 		else
636 			cv_broadcast(&sc->sc_rcv);
637 	}
638 
639 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
640 		/*
641 		 * Clear the A2 IRQ latch: the cached value reflects the
642 		 * current DAC settings with the IRQ latch bit not set.
643 		 */
644 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
645 
646 		if (sc->sc_pintr)
647 			sc->sc_pintr(sc->sc_parg);
648 		else
649 			cv_broadcast(&sc->sc_pcv);
650 	}
651 
652 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
653 		/* Clear interrupt. */
654 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
655 
656 		/*
657 		 * Raise a flag to cause a lazy update of the in-softc gain
658 		 * values the next time the software mixer is read to keep
659 		 * interrupt service cost low.  ~0 cannot occur otherwise
660 		 * as the master volume has a precision of 6 bits only.
661 		 */
662 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
663 	}
664 
665 #if NMPU > 0
666 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
667 		mpu_intr(sc_mpu);
668 #endif
669 
670 	mutex_spin_exit(&sc->sc_intr_lock);
671 	return 1;
672 }
673 
674 /* Perform a software reset, including DMA FIFOs. */
675 static int
676 eso_reset(struct eso_softc *sc)
677 {
678 	int i;
679 
680 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
681 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
682 	/* `Delay' suggested in the data sheet. */
683 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
684 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
685 
686 	/* Wait for reset to take effect. */
687 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
688 		/* Poll for data to become available. */
689 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
690 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
691 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
692 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
693 
694 			/* Activate Solo-1 extension commands. */
695 			eso_write_cmd(sc, ESO_CMD_EXTENB);
696 			/* Reset mixer registers. */
697 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
698 			    ESO_MIXREG_RESET_RESET);
699 
700 			return 0;
701 		} else {
702 			delay(1000);
703 		}
704 	}
705 
706 	printf("%s: reset timeout\n", device_xname(sc->sc_dev));
707 	return -1;
708 }
709 
710 static int
711 eso_query_encoding(void *hdl, struct audio_encoding *fp)
712 {
713 
714 	switch (fp->index) {
715 	case 0:
716 		strcpy(fp->name, AudioEulinear);
717 		fp->encoding = AUDIO_ENCODING_ULINEAR;
718 		fp->precision = 8;
719 		fp->flags = 0;
720 		break;
721 	case 1:
722 		strcpy(fp->name, AudioEmulaw);
723 		fp->encoding = AUDIO_ENCODING_ULAW;
724 		fp->precision = 8;
725 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
726 		break;
727 	case 2:
728 		strcpy(fp->name, AudioEalaw);
729 		fp->encoding = AUDIO_ENCODING_ALAW;
730 		fp->precision = 8;
731 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
732 		break;
733 	case 3:
734 		strcpy(fp->name, AudioEslinear);
735 		fp->encoding = AUDIO_ENCODING_SLINEAR;
736 		fp->precision = 8;
737 		fp->flags = 0;
738 		break;
739 	case 4:
740 		strcpy(fp->name, AudioEslinear_le);
741 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
742 		fp->precision = 16;
743 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
744 		break;
745 	case 5:
746 		strcpy(fp->name, AudioEulinear_le);
747 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
748 		fp->precision = 16;
749 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
750 		break;
751 	case 6:
752 		strcpy(fp->name, AudioEslinear_be);
753 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
754 		fp->precision = 16;
755 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
756 		break;
757 	case 7:
758 		strcpy(fp->name, AudioEulinear_be);
759 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
760 		fp->precision = 16;
761 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
762 		break;
763 	default:
764 		return EINVAL;
765 	}
766 
767 	return 0;
768 }
769 
770 static int
771 eso_set_params(void *hdl, int setmode, int usemode,
772     audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
773     stream_filter_list_t *rfil)
774 {
775 	struct eso_softc *sc;
776 	struct audio_params *p;
777 	stream_filter_list_t *fil;
778 	int mode, r[2], rd[2], ar[2], clk;
779 	unsigned int srg, fltdiv;
780 	int i;
781 
782 	sc = hdl;
783 	for (mode = AUMODE_RECORD; mode != -1;
784 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
785 		if ((setmode & mode) == 0)
786 			continue;
787 
788 		p = (mode == AUMODE_PLAY) ? play : rec;
789 
790 		if (p->sample_rate < ESO_MINRATE ||
791 		    p->sample_rate > ESO_MAXRATE ||
792 		    (p->precision != 8 && p->precision != 16) ||
793 		    (p->channels != 1 && p->channels != 2))
794 			return EINVAL;
795 
796 		/*
797 		 * We'll compute both possible sample rate dividers and pick
798 		 * the one with the least error.
799 		 */
800 #define ABS(x) ((x) < 0 ? -(x) : (x))
801 		r[0] = ESO_CLK0 /
802 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
803 		r[1] = ESO_CLK1 /
804 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
805 
806 		ar[0] = p->sample_rate - r[0];
807 		ar[1] = p->sample_rate - r[1];
808 		clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
809 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
810 
811 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
812 		fltdiv = 256 - 200279L / r[clk];
813 
814 		/* Update to reflect the possibly inexact rate. */
815 		p->sample_rate = r[clk];
816 
817 		fil = (mode == AUMODE_PLAY) ? pfil : rfil;
818 		i = auconv_set_converter(eso_formats, ESO_NFORMATS,
819 					 mode, p, FALSE, fil);
820 		if (i < 0)
821 			return EINVAL;
822 
823 		mutex_spin_enter(&sc->sc_intr_lock);
824 		if (mode == AUMODE_RECORD) {
825 			/* Audio 1 */
826 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
827 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
828 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
829 		} else {
830 			/* Audio 2 */
831 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
832 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
833 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
834 		}
835 		mutex_spin_exit(&sc->sc_intr_lock);
836 #undef ABS
837 
838 	}
839 
840 	return 0;
841 }
842 
843 static int
844 eso_round_blocksize(void *hdl, int blk, int mode,
845     const audio_params_t *param)
846 {
847 
848 	return blk & -32;	/* keep good alignment; at least 16 req'd */
849 }
850 
851 static int
852 eso_halt_output(void *hdl)
853 {
854 	struct eso_softc *sc;
855 	int error;
856 
857 	sc = hdl;
858 	DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
859 
860 	/*
861 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
862 	 * stop.  The interrupt callback pointer is cleared at this
863 	 * point so that an outstanding FIFO interrupt for the remaining data
864 	 * will be acknowledged without further processing.
865 	 *
866 	 * This does not immediately `abort' an operation in progress (c.f.
867 	 * audio(9)) but is the method to leave the FIFO behind in a clean
868 	 * state with the least hair.  (Besides, that item needs to be
869 	 * rephrased for trigger_*()-based DMA environments.)
870 	 */
871 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
872 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
873 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
874 	    ESO_IO_A2DMAM_DMAENB);
875 
876 	sc->sc_pintr = NULL;
877 	mutex_exit(&sc->sc_lock);
878 	error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
879 	if (!mutex_tryenter(&sc->sc_lock)) {
880 		mutex_spin_exit(&sc->sc_intr_lock);
881 		mutex_enter(&sc->sc_lock);
882 		mutex_spin_enter(&sc->sc_intr_lock);
883 	}
884 
885 	/* Shut down DMA completely. */
886 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
887 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
888 
889 	return error == EWOULDBLOCK ? 0 : error;
890 }
891 
892 static int
893 eso_halt_input(void *hdl)
894 {
895 	struct eso_softc *sc;
896 	int error;
897 
898 	sc = hdl;
899 	DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
900 
901 	/* Just like eso_halt_output(), but for Audio 1. */
902 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
903 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
904 	    ESO_CTLREG_A1C2_DMAENB);
905 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
906 	    DMA37MD_WRITE | DMA37MD_DEMAND);
907 
908 	sc->sc_rintr = NULL;
909 	mutex_exit(&sc->sc_lock);
910 	error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
911 	if (!mutex_tryenter(&sc->sc_lock)) {
912 		mutex_spin_exit(&sc->sc_intr_lock);
913 		mutex_enter(&sc->sc_lock);
914 		mutex_spin_enter(&sc->sc_intr_lock);
915 	}
916 
917 	/* Shut down DMA completely. */
918 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
919 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
920 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
921 	    ESO_DMAC_MASK_MASK);
922 
923 	return error == EWOULDBLOCK ? 0 : error;
924 }
925 
926 static int
927 eso_getdev(void *hdl, struct audio_device *retp)
928 {
929 	struct eso_softc *sc;
930 
931 	sc = hdl;
932 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
933 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
934 	    sc->sc_revision);
935 	if (sc->sc_revision <
936 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
937 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
938 		    sizeof (retp->config));
939 	else
940 		strncpy(retp->config, "unknown", sizeof (retp->config));
941 
942 	return 0;
943 }
944 
945 static int
946 eso_set_port(void *hdl, mixer_ctrl_t *cp)
947 {
948 	struct eso_softc *sc;
949 	unsigned int lgain, rgain;
950 	uint8_t tmp;
951 	int error;
952 
953 	sc = hdl;
954 	error = 0;
955 
956 	mutex_spin_enter(&sc->sc_intr_lock);
957 
958 	switch (cp->dev) {
959 	case ESO_DAC_PLAY_VOL:
960 	case ESO_MIC_PLAY_VOL:
961 	case ESO_LINE_PLAY_VOL:
962 	case ESO_SYNTH_PLAY_VOL:
963 	case ESO_CD_PLAY_VOL:
964 	case ESO_AUXB_PLAY_VOL:
965 	case ESO_RECORD_VOL:
966 	case ESO_DAC_REC_VOL:
967 	case ESO_MIC_REC_VOL:
968 	case ESO_LINE_REC_VOL:
969 	case ESO_SYNTH_REC_VOL:
970 	case ESO_CD_REC_VOL:
971 	case ESO_AUXB_REC_VOL:
972 		if (cp->type != AUDIO_MIXER_VALUE) {
973 			error = EINVAL;
974 			break;
975 		}
976 
977 		/*
978 		 * Stereo-capable mixer ports: if we get a single-channel
979 		 * gain value passed in, then we duplicate it to both left
980 		 * and right channels.
981 		 */
982 		switch (cp->un.value.num_channels) {
983 		case 1:
984 			lgain = rgain = ESO_GAIN_TO_4BIT(
985 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
986 			break;
987 		case 2:
988 			lgain = ESO_GAIN_TO_4BIT(
989 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
990 			rgain = ESO_GAIN_TO_4BIT(
991 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
992 			break;
993 		default:
994 			error = EINVAL;
995 			break;
996 		}
997 
998 		if (!error) {
999 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1000 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1001 			eso_set_gain(sc, cp->dev);
1002 		}
1003 		break;
1004 
1005 	case ESO_MASTER_VOL:
1006 		if (cp->type != AUDIO_MIXER_VALUE) {
1007 			error = EINVAL;
1008 			break;
1009 		}
1010 
1011 		/* Like above, but a precision of 6 bits. */
1012 		switch (cp->un.value.num_channels) {
1013 		case 1:
1014 			lgain = rgain = ESO_GAIN_TO_6BIT(
1015 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1016 			break;
1017 		case 2:
1018 			lgain = ESO_GAIN_TO_6BIT(
1019 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1020 			rgain = ESO_GAIN_TO_6BIT(
1021 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1022 			break;
1023 		default:
1024 			error = EINVAL;
1025 			break;
1026 		}
1027 
1028 		if (!error) {
1029 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1030 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1031 			eso_set_gain(sc, cp->dev);
1032 		}
1033 		break;
1034 
1035 	case ESO_SPATIALIZER:
1036 		if (cp->type != AUDIO_MIXER_VALUE ||
1037 		    cp->un.value.num_channels != 1) {
1038 			error = EINVAL;
1039 			break;
1040 		}
1041 
1042 		sc->sc_gain[cp->dev][ESO_LEFT] =
1043 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1044 		    ESO_GAIN_TO_6BIT(
1045 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1046 		eso_set_gain(sc, cp->dev);
1047 		break;
1048 
1049 	case ESO_MONO_PLAY_VOL:
1050 	case ESO_MONO_REC_VOL:
1051 		if (cp->type != AUDIO_MIXER_VALUE ||
1052 		    cp->un.value.num_channels != 1) {
1053 			error = EINVAL;
1054 			break;
1055 		}
1056 
1057 		sc->sc_gain[cp->dev][ESO_LEFT] =
1058 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1059 		    ESO_GAIN_TO_4BIT(
1060 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1061 		eso_set_gain(sc, cp->dev);
1062 		break;
1063 
1064 	case ESO_PCSPEAKER_VOL:
1065 		if (cp->type != AUDIO_MIXER_VALUE ||
1066 		    cp->un.value.num_channels != 1) {
1067 			error = EINVAL;
1068 			break;
1069 		}
1070 
1071 		sc->sc_gain[cp->dev][ESO_LEFT] =
1072 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
1073 		    ESO_GAIN_TO_3BIT(
1074 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1075 		eso_set_gain(sc, cp->dev);
1076 		break;
1077 
1078 	case ESO_SPATIALIZER_ENABLE:
1079 		if (cp->type != AUDIO_MIXER_ENUM) {
1080 			error = EINVAL;
1081 			break;
1082 		}
1083 
1084 		sc->sc_spatializer = (cp->un.ord != 0);
1085 
1086 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1087 		if (sc->sc_spatializer)
1088 			tmp |= ESO_MIXREG_SPAT_ENB;
1089 		else
1090 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1091 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1092 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1093 		break;
1094 
1095 	case ESO_MASTER_MUTE:
1096 		if (cp->type != AUDIO_MIXER_ENUM) {
1097 			error = EINVAL;
1098 			break;
1099 		}
1100 
1101 		sc->sc_mvmute = (cp->un.ord != 0);
1102 
1103 		if (sc->sc_mvmute) {
1104 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1105 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1106 			    ESO_MIXREG_LMVM_MUTE);
1107 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1108 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1109 			    ESO_MIXREG_RMVM_MUTE);
1110 		} else {
1111 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1112 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1113 			    ~ESO_MIXREG_LMVM_MUTE);
1114 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1115 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1116 			    ~ESO_MIXREG_RMVM_MUTE);
1117 		}
1118 		break;
1119 
1120 	case ESO_MONOOUT_SOURCE:
1121 		if (cp->type != AUDIO_MIXER_ENUM) {
1122 			error = EINVAL;
1123 			break;
1124 		}
1125 
1126 		error = eso_set_monooutsrc(sc, cp->un.ord);
1127 		break;
1128 
1129 	case ESO_MONOIN_BYPASS:
1130 		if (cp->type != AUDIO_MIXER_ENUM) {
1131 			error = EINVAL;
1132 			break;
1133 		}
1134 
1135 		error = (eso_set_monoinbypass(sc, cp->un.ord));
1136 		break;
1137 
1138 	case ESO_RECORD_MONITOR:
1139 		if (cp->type != AUDIO_MIXER_ENUM) {
1140 			error = EINVAL;
1141 			break;
1142 		}
1143 
1144 		sc->sc_recmon = (cp->un.ord != 0);
1145 
1146 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1147 		if (sc->sc_recmon)
1148 			tmp |= ESO_CTLREG_ACTL_RECMON;
1149 		else
1150 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1151 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1152 		break;
1153 
1154 	case ESO_RECORD_SOURCE:
1155 		if (cp->type != AUDIO_MIXER_ENUM) {
1156 			error = EINVAL;
1157 			break;
1158 		}
1159 
1160 		error = eso_set_recsrc(sc, cp->un.ord);
1161 		break;
1162 
1163 	case ESO_MIC_PREAMP:
1164 		if (cp->type != AUDIO_MIXER_ENUM) {
1165 			error = EINVAL;
1166 			break;
1167 		}
1168 
1169 		error = eso_set_preamp(sc, cp->un.ord);
1170 		break;
1171 
1172 	default:
1173 		error = EINVAL;
1174 		break;
1175 	}
1176 
1177 	mutex_spin_exit(&sc->sc_intr_lock);
1178 	return error;
1179 }
1180 
1181 static int
1182 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1183 {
1184 	struct eso_softc *sc;
1185 
1186 	sc = hdl;
1187 
1188 	mutex_spin_enter(&sc->sc_intr_lock);
1189 
1190 	switch (cp->dev) {
1191 	case ESO_MASTER_VOL:
1192 		/* Reload from mixer after hardware volume control use. */
1193 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1194 			eso_reload_master_vol(sc);
1195 		/* FALLTHROUGH */
1196 	case ESO_DAC_PLAY_VOL:
1197 	case ESO_MIC_PLAY_VOL:
1198 	case ESO_LINE_PLAY_VOL:
1199 	case ESO_SYNTH_PLAY_VOL:
1200 	case ESO_CD_PLAY_VOL:
1201 	case ESO_AUXB_PLAY_VOL:
1202 	case ESO_RECORD_VOL:
1203 	case ESO_DAC_REC_VOL:
1204 	case ESO_MIC_REC_VOL:
1205 	case ESO_LINE_REC_VOL:
1206 	case ESO_SYNTH_REC_VOL:
1207 	case ESO_CD_REC_VOL:
1208 	case ESO_AUXB_REC_VOL:
1209 		/*
1210 		 * Stereo-capable ports: if a single-channel query is made,
1211 		 * just return the left channel's value (since single-channel
1212 		 * settings themselves are applied to both channels).
1213 		 */
1214 		switch (cp->un.value.num_channels) {
1215 		case 1:
1216 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1217 			    sc->sc_gain[cp->dev][ESO_LEFT];
1218 			break;
1219 		case 2:
1220 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1221 			    sc->sc_gain[cp->dev][ESO_LEFT];
1222 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1223 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1224 			break;
1225 		default:
1226 			break;
1227 		}
1228 		break;
1229 
1230 	case ESO_MONO_PLAY_VOL:
1231 	case ESO_PCSPEAKER_VOL:
1232 	case ESO_MONO_REC_VOL:
1233 	case ESO_SPATIALIZER:
1234 		if (cp->un.value.num_channels != 1) {
1235 			break;
1236 		}
1237 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1238 		    sc->sc_gain[cp->dev][ESO_LEFT];
1239 		break;
1240 
1241 	case ESO_RECORD_MONITOR:
1242 		cp->un.ord = sc->sc_recmon;
1243 		break;
1244 
1245 	case ESO_RECORD_SOURCE:
1246 		cp->un.ord = sc->sc_recsrc;
1247 		break;
1248 
1249 	case ESO_MONOOUT_SOURCE:
1250 		cp->un.ord = sc->sc_monooutsrc;
1251 		break;
1252 
1253 	case ESO_MONOIN_BYPASS:
1254 		cp->un.ord = sc->sc_monoinbypass;
1255 		break;
1256 
1257 	case ESO_SPATIALIZER_ENABLE:
1258 		cp->un.ord = sc->sc_spatializer;
1259 		break;
1260 
1261 	case ESO_MIC_PREAMP:
1262 		cp->un.ord = sc->sc_preamp;
1263 		break;
1264 
1265 	case ESO_MASTER_MUTE:
1266 		/* Reload from mixer after hardware volume control use. */
1267 		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1268 			eso_reload_master_vol(sc);
1269 		cp->un.ord = sc->sc_mvmute;
1270 		break;
1271 
1272 	default:
1273 		break;
1274 	}
1275 
1276 	mutex_spin_exit(&sc->sc_intr_lock);
1277 	return 0;
1278 }
1279 
1280 static int
1281 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1282 {
1283 
1284 	switch (dip->index) {
1285 	case ESO_DAC_PLAY_VOL:
1286 		dip->mixer_class = ESO_INPUT_CLASS;
1287 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1288 		strcpy(dip->label.name, AudioNdac);
1289 		dip->type = AUDIO_MIXER_VALUE;
1290 		dip->un.v.num_channels = 2;
1291 		strcpy(dip->un.v.units.name, AudioNvolume);
1292 		break;
1293 	case ESO_MIC_PLAY_VOL:
1294 		dip->mixer_class = ESO_INPUT_CLASS;
1295 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1296 		strcpy(dip->label.name, AudioNmicrophone);
1297 		dip->type = AUDIO_MIXER_VALUE;
1298 		dip->un.v.num_channels = 2;
1299 		strcpy(dip->un.v.units.name, AudioNvolume);
1300 		break;
1301 	case ESO_LINE_PLAY_VOL:
1302 		dip->mixer_class = ESO_INPUT_CLASS;
1303 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1304 		strcpy(dip->label.name, AudioNline);
1305 		dip->type = AUDIO_MIXER_VALUE;
1306 		dip->un.v.num_channels = 2;
1307 		strcpy(dip->un.v.units.name, AudioNvolume);
1308 		break;
1309 	case ESO_SYNTH_PLAY_VOL:
1310 		dip->mixer_class = ESO_INPUT_CLASS;
1311 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1312 		strcpy(dip->label.name, AudioNfmsynth);
1313 		dip->type = AUDIO_MIXER_VALUE;
1314 		dip->un.v.num_channels = 2;
1315 		strcpy(dip->un.v.units.name, AudioNvolume);
1316 		break;
1317 	case ESO_MONO_PLAY_VOL:
1318 		dip->mixer_class = ESO_INPUT_CLASS;
1319 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1320 		strcpy(dip->label.name, "mono_in");
1321 		dip->type = AUDIO_MIXER_VALUE;
1322 		dip->un.v.num_channels = 1;
1323 		strcpy(dip->un.v.units.name, AudioNvolume);
1324 		break;
1325 	case ESO_CD_PLAY_VOL:
1326 		dip->mixer_class = ESO_INPUT_CLASS;
1327 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1328 		strcpy(dip->label.name, AudioNcd);
1329 		dip->type = AUDIO_MIXER_VALUE;
1330 		dip->un.v.num_channels = 2;
1331 		strcpy(dip->un.v.units.name, AudioNvolume);
1332 		break;
1333 	case ESO_AUXB_PLAY_VOL:
1334 		dip->mixer_class = ESO_INPUT_CLASS;
1335 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1336 		strcpy(dip->label.name, "auxb");
1337 		dip->type = AUDIO_MIXER_VALUE;
1338 		dip->un.v.num_channels = 2;
1339 		strcpy(dip->un.v.units.name, AudioNvolume);
1340 		break;
1341 
1342 	case ESO_MIC_PREAMP:
1343 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1344 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1345 		strcpy(dip->label.name, AudioNpreamp);
1346 		dip->type = AUDIO_MIXER_ENUM;
1347 		dip->un.e.num_mem = 2;
1348 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1349 		dip->un.e.member[0].ord = 0;
1350 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1351 		dip->un.e.member[1].ord = 1;
1352 		break;
1353 	case ESO_MICROPHONE_CLASS:
1354 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1355 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1356 		strcpy(dip->label.name, AudioNmicrophone);
1357 		dip->type = AUDIO_MIXER_CLASS;
1358 		break;
1359 
1360 	case ESO_INPUT_CLASS:
1361 		dip->mixer_class = ESO_INPUT_CLASS;
1362 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 		strcpy(dip->label.name, AudioCinputs);
1364 		dip->type = AUDIO_MIXER_CLASS;
1365 		break;
1366 
1367 	case ESO_MASTER_VOL:
1368 		dip->mixer_class = ESO_OUTPUT_CLASS;
1369 		dip->prev = AUDIO_MIXER_LAST;
1370 		dip->next = ESO_MASTER_MUTE;
1371 		strcpy(dip->label.name, AudioNmaster);
1372 		dip->type = AUDIO_MIXER_VALUE;
1373 		dip->un.v.num_channels = 2;
1374 		strcpy(dip->un.v.units.name, AudioNvolume);
1375 		break;
1376 	case ESO_MASTER_MUTE:
1377 		dip->mixer_class = ESO_OUTPUT_CLASS;
1378 		dip->prev = ESO_MASTER_VOL;
1379 		dip->next = AUDIO_MIXER_LAST;
1380 		strcpy(dip->label.name, AudioNmute);
1381 		dip->type = AUDIO_MIXER_ENUM;
1382 		dip->un.e.num_mem = 2;
1383 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1384 		dip->un.e.member[0].ord = 0;
1385 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1386 		dip->un.e.member[1].ord = 1;
1387 		break;
1388 
1389 	case ESO_PCSPEAKER_VOL:
1390 		dip->mixer_class = ESO_OUTPUT_CLASS;
1391 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1392 		strcpy(dip->label.name, "pc_speaker");
1393 		dip->type = AUDIO_MIXER_VALUE;
1394 		dip->un.v.num_channels = 1;
1395 		strcpy(dip->un.v.units.name, AudioNvolume);
1396 		break;
1397 	case ESO_MONOOUT_SOURCE:
1398 		dip->mixer_class = ESO_OUTPUT_CLASS;
1399 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1400 		strcpy(dip->label.name, "mono_out");
1401 		dip->type = AUDIO_MIXER_ENUM;
1402 		dip->un.e.num_mem = 3;
1403 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1404 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1405 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1406 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1407 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1408 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1409 		break;
1410 
1411 	case ESO_MONOIN_BYPASS:
1412 		dip->mixer_class = ESO_MONOIN_CLASS;
1413 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1414 		strcpy(dip->label.name, "bypass");
1415 		dip->type = AUDIO_MIXER_ENUM;
1416 		dip->un.e.num_mem = 2;
1417 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1418 		dip->un.e.member[0].ord = 0;
1419 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1420 		dip->un.e.member[1].ord = 1;
1421 		break;
1422 	case ESO_MONOIN_CLASS:
1423 		dip->mixer_class = ESO_MONOIN_CLASS;
1424 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 		strcpy(dip->label.name, "mono_in");
1426 		dip->type = AUDIO_MIXER_CLASS;
1427 		break;
1428 
1429 	case ESO_SPATIALIZER:
1430 		dip->mixer_class = ESO_OUTPUT_CLASS;
1431 		dip->prev = AUDIO_MIXER_LAST;
1432 		dip->next = ESO_SPATIALIZER_ENABLE;
1433 		strcpy(dip->label.name, AudioNspatial);
1434 		dip->type = AUDIO_MIXER_VALUE;
1435 		dip->un.v.num_channels = 1;
1436 		strcpy(dip->un.v.units.name, "level");
1437 		break;
1438 	case ESO_SPATIALIZER_ENABLE:
1439 		dip->mixer_class = ESO_OUTPUT_CLASS;
1440 		dip->prev = ESO_SPATIALIZER;
1441 		dip->next = AUDIO_MIXER_LAST;
1442 		strcpy(dip->label.name, "enable");
1443 		dip->type = AUDIO_MIXER_ENUM;
1444 		dip->un.e.num_mem = 2;
1445 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1446 		dip->un.e.member[0].ord = 0;
1447 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1448 		dip->un.e.member[1].ord = 1;
1449 		break;
1450 
1451 	case ESO_OUTPUT_CLASS:
1452 		dip->mixer_class = ESO_OUTPUT_CLASS;
1453 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1454 		strcpy(dip->label.name, AudioCoutputs);
1455 		dip->type = AUDIO_MIXER_CLASS;
1456 		break;
1457 
1458 	case ESO_RECORD_MONITOR:
1459 		dip->mixer_class = ESO_MONITOR_CLASS;
1460 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 		strcpy(dip->label.name, AudioNmute);
1462 		dip->type = AUDIO_MIXER_ENUM;
1463 		dip->un.e.num_mem = 2;
1464 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1465 		dip->un.e.member[0].ord = 0;
1466 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1467 		dip->un.e.member[1].ord = 1;
1468 		break;
1469 	case ESO_MONITOR_CLASS:
1470 		dip->mixer_class = ESO_MONITOR_CLASS;
1471 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1472 		strcpy(dip->label.name, AudioCmonitor);
1473 		dip->type = AUDIO_MIXER_CLASS;
1474 		break;
1475 
1476 	case ESO_RECORD_VOL:
1477 		dip->mixer_class = ESO_RECORD_CLASS;
1478 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1479 		strcpy(dip->label.name, AudioNrecord);
1480 		dip->type = AUDIO_MIXER_VALUE;
1481 		strcpy(dip->un.v.units.name, AudioNvolume);
1482 		break;
1483 	case ESO_RECORD_SOURCE:
1484 		dip->mixer_class = ESO_RECORD_CLASS;
1485 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1486 		strcpy(dip->label.name, AudioNsource);
1487 		dip->type = AUDIO_MIXER_ENUM;
1488 		dip->un.e.num_mem = 4;
1489 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1490 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1491 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1492 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1493 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1494 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1495 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1496 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1497 		break;
1498 	case ESO_DAC_REC_VOL:
1499 		dip->mixer_class = ESO_RECORD_CLASS;
1500 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1501 		strcpy(dip->label.name, AudioNdac);
1502 		dip->type = AUDIO_MIXER_VALUE;
1503 		dip->un.v.num_channels = 2;
1504 		strcpy(dip->un.v.units.name, AudioNvolume);
1505 		break;
1506 	case ESO_MIC_REC_VOL:
1507 		dip->mixer_class = ESO_RECORD_CLASS;
1508 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1509 		strcpy(dip->label.name, AudioNmicrophone);
1510 		dip->type = AUDIO_MIXER_VALUE;
1511 		dip->un.v.num_channels = 2;
1512 		strcpy(dip->un.v.units.name, AudioNvolume);
1513 		break;
1514 	case ESO_LINE_REC_VOL:
1515 		dip->mixer_class = ESO_RECORD_CLASS;
1516 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1517 		strcpy(dip->label.name, AudioNline);
1518 		dip->type = AUDIO_MIXER_VALUE;
1519 		dip->un.v.num_channels = 2;
1520 		strcpy(dip->un.v.units.name, AudioNvolume);
1521 		break;
1522 	case ESO_SYNTH_REC_VOL:
1523 		dip->mixer_class = ESO_RECORD_CLASS;
1524 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1525 		strcpy(dip->label.name, AudioNfmsynth);
1526 		dip->type = AUDIO_MIXER_VALUE;
1527 		dip->un.v.num_channels = 2;
1528 		strcpy(dip->un.v.units.name, AudioNvolume);
1529 		break;
1530 	case ESO_MONO_REC_VOL:
1531 		dip->mixer_class = ESO_RECORD_CLASS;
1532 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1533 		strcpy(dip->label.name, "mono_in");
1534 		dip->type = AUDIO_MIXER_VALUE;
1535 		dip->un.v.num_channels = 1; /* No lies */
1536 		strcpy(dip->un.v.units.name, AudioNvolume);
1537 		break;
1538 	case ESO_CD_REC_VOL:
1539 		dip->mixer_class = ESO_RECORD_CLASS;
1540 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1541 		strcpy(dip->label.name, AudioNcd);
1542 		dip->type = AUDIO_MIXER_VALUE;
1543 		dip->un.v.num_channels = 2;
1544 		strcpy(dip->un.v.units.name, AudioNvolume);
1545 		break;
1546 	case ESO_AUXB_REC_VOL:
1547 		dip->mixer_class = ESO_RECORD_CLASS;
1548 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1549 		strcpy(dip->label.name, "auxb");
1550 		dip->type = AUDIO_MIXER_VALUE;
1551 		dip->un.v.num_channels = 2;
1552 		strcpy(dip->un.v.units.name, AudioNvolume);
1553 		break;
1554 	case ESO_RECORD_CLASS:
1555 		dip->mixer_class = ESO_RECORD_CLASS;
1556 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1557 		strcpy(dip->label.name, AudioCrecord);
1558 		dip->type = AUDIO_MIXER_CLASS;
1559 		break;
1560 
1561 	default:
1562 		return ENXIO;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static int
1569 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1570     size_t boundary, int direction, struct eso_dma *ed)
1571 {
1572 	int error;
1573 
1574 	ed->ed_size = size;
1575 
1576 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1577 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1578 	    &ed->ed_nsegs, BUS_DMA_WAITOK);
1579 	if (error)
1580 		goto out;
1581 
1582 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1583 	    ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1584 	if (error)
1585 		goto free;
1586 
1587 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1588 	    BUS_DMA_WAITOK, &ed->ed_map);
1589 	if (error)
1590 		goto unmap;
1591 
1592 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1593 	    ed->ed_size, NULL, BUS_DMA_WAITOK |
1594 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1595 	if (error)
1596 		goto destroy;
1597 
1598 	return 0;
1599 
1600  destroy:
1601 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1602  unmap:
1603 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1604  free:
1605 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1606  out:
1607 	return error;
1608 }
1609 
1610 static void
1611 eso_freemem(struct eso_dma *ed)
1612 {
1613 
1614 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1615 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1616 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1617 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1618 }
1619 
1620 static struct eso_dma *
1621 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1622 {
1623 	struct eso_dma *p;
1624 
1625 	SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1626 		if (KVADDR(p) == kva)
1627 			return p;
1628 	}
1629 
1630 	panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
1631 	/* NOTREACHED */
1632 }
1633 
1634 static void *
1635 eso_allocm(void *hdl, int direction, size_t size)
1636 {
1637 	struct eso_softc *sc;
1638 	struct eso_dma *ed;
1639 	size_t boundary;
1640 	int error;
1641 
1642 	sc = hdl;
1643 	if ((ed = kmem_alloc(sizeof (*ed), KM_SLEEP)) == NULL)
1644 		return NULL;
1645 
1646 	/*
1647 	 * Apparently the Audio 1 DMA controller's current address
1648 	 * register can't roll over a 64K address boundary, so we have to
1649 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
1650 	 * controller needs a 1M address boundary.
1651 	 */
1652 	if (direction == AUMODE_RECORD)
1653 		boundary = 0x10000;
1654 	else
1655 		boundary = 0x100000;
1656 
1657 	/*
1658 	 * XXX Work around allocation problems for Audio 1, which
1659 	 * XXX implements the 24 low address bits only, with
1660 	 * XXX machine-specific DMA tag use.
1661 	 */
1662 #ifdef alpha
1663 	/*
1664 	 * XXX Force allocation through the (ISA) SGMAP.
1665 	 */
1666 	if (direction == AUMODE_RECORD)
1667 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1668 	else
1669 #elif defined(amd64) || defined(i386)
1670 	/*
1671 	 * XXX Force allocation through the ISA DMA tag.
1672 	 */
1673 	if (direction == AUMODE_RECORD)
1674 		ed->ed_dmat = &isa_bus_dma_tag;
1675 	else
1676 #endif
1677 		ed->ed_dmat = sc->sc_dmat;
1678 
1679 	error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1680 	if (error) {
1681 		kmem_free(ed, sizeof(*ed));
1682 		return NULL;
1683 	}
1684 	SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1685 
1686 	return KVADDR(ed);
1687 }
1688 
1689 static void
1690 eso_freem(void *hdl, void *addr, size_t size)
1691 {
1692 	struct eso_softc *sc;
1693 	struct eso_dma *p;
1694 
1695 	sc = hdl;
1696 	p = eso_kva2dma(sc, addr);
1697 
1698 	SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1699 	eso_freemem(p);
1700 	kmem_free(p, sizeof(*p));
1701 }
1702 
1703 static size_t
1704 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1705 {
1706 	size_t maxsize;
1707 
1708 	/*
1709 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1710 	 * bytes.  This is because IO_A2DMAC is a two byte value
1711 	 * indicating the literal byte count, and the 4 least significant
1712 	 * bits are read-only.  Zero is not used as a special case for
1713 	 * 0x10000.
1714 	 *
1715 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1716 	 * be represented.
1717 	 */
1718 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1719 
1720 	if (bufsize > maxsize)
1721 		bufsize = maxsize;
1722 
1723 	return bufsize;
1724 }
1725 
1726 static paddr_t
1727 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1728 {
1729 	struct eso_softc *sc;
1730 	struct eso_dma *ed;
1731 
1732 	sc = hdl;
1733 	if (offs < 0)
1734 		return -1;
1735 	ed = eso_kva2dma(sc, addr);
1736 
1737 	return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1738 	    offs, prot, BUS_DMA_WAITOK);
1739 }
1740 
1741 /* ARGSUSED */
1742 static int
1743 eso_get_props(void *hdl)
1744 {
1745 
1746 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1747 	    AUDIO_PROP_FULLDUPLEX;
1748 }
1749 
1750 static int
1751 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1752     void (*intr)(void *), void *arg, const audio_params_t *param)
1753 {
1754 	struct eso_softc *sc;
1755 	struct eso_dma *ed;
1756 	uint8_t a2c1;
1757 
1758 	sc = hdl;
1759 	DPRINTF((
1760 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1761 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1762 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1763 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1764 	    param->precision, param->channels));
1765 
1766 	/* Find DMA buffer. */
1767 	ed = eso_kva2dma(sc, start);
1768 	DPRINTF(("%s: dmaaddr %lx\n",
1769 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1770 
1771 	sc->sc_pintr = intr;
1772 	sc->sc_parg = arg;
1773 
1774 	/* Compute drain timeout. */
1775 	sc->sc_pdrain = (blksize * NBBY * hz) /
1776 	    (param->sample_rate * param->channels *
1777 	     param->precision) + 2;	/* slop */
1778 
1779 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1780 	blksize = -(blksize >> 1);
1781 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1782 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1783 
1784 	/* Update DAC to reflect DMA count and audio parameters. */
1785 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1786 	if (param->precision == 16)
1787 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1788 	else
1789 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1790 	if (param->channels == 2)
1791 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1792 	else
1793 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1794 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1795 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1796 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1797 	else
1798 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1799 	/* Unmask IRQ. */
1800 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1801 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1802 
1803 	/* Set up DMA controller. */
1804 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1805 	    DMAADDR(ed));
1806 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1807 	    (uint8_t *)end - (uint8_t *)start);
1808 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1809 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1810 
1811 	/* Start DMA. */
1812 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1813 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1814 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1815 	    ESO_MIXREG_A2C1_AUTO;
1816 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1817 
1818 	return 0;
1819 }
1820 
1821 static int
1822 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1823     void (*intr)(void *), void *arg, const audio_params_t *param)
1824 {
1825 	struct eso_softc *sc;
1826 	struct eso_dma *ed;
1827 	uint8_t actl, a1c1;
1828 
1829 	sc = hdl;
1830 	DPRINTF((
1831 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1832 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1833 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1834 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1835 	    param->precision, param->channels));
1836 
1837 	/*
1838 	 * If we failed to configure the Audio 1 DMA controller, bail here
1839 	 * while retaining availability of the DAC direction (in Audio 2).
1840 	 */
1841 	if (!sc->sc_dmac_configured)
1842 		return EIO;
1843 
1844 	/* Find DMA buffer. */
1845 	ed = eso_kva2dma(sc, start);
1846 	DPRINTF(("%s: dmaaddr %lx\n",
1847 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1848 
1849 	sc->sc_rintr = intr;
1850 	sc->sc_rarg = arg;
1851 
1852 	/* Compute drain timeout. */
1853 	sc->sc_rdrain = (blksize * NBBY * hz) /
1854 	    (param->sample_rate * param->channels *
1855 	     param->precision) + 2;	/* slop */
1856 
1857 	/* Set up ADC DMA converter parameters. */
1858 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1859 	if (param->channels == 2) {
1860 		actl &= ~ESO_CTLREG_ACTL_MONO;
1861 		actl |= ESO_CTLREG_ACTL_STEREO;
1862 	} else {
1863 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1864 		actl |= ESO_CTLREG_ACTL_MONO;
1865 	}
1866 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1867 
1868 	/* Set up Transfer Type: maybe move to attach time? */
1869 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1870 
1871 	/* DMA transfer count reload using 2's complement. */
1872 	blksize = -blksize;
1873 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1874 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1875 
1876 	/* Set up and enable Audio 1 DMA FIFO. */
1877 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1878 	if (param->precision == 16)
1879 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1880 	if (param->channels == 2)
1881 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1882 	else
1883 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1884 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1885 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1886 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1887 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1888 
1889 	/* Set up ADC IRQ/DRQ parameters. */
1890 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1891 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1892 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1893 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1894 
1895 	/* Set up and enable DMA controller. */
1896 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1897 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1898 	    ESO_DMAC_MASK_MASK);
1899 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1900 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1901 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1902 	    DMAADDR(ed));
1903 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1904 	    (uint8_t *)end - (uint8_t *)start - 1);
1905 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1906 
1907 	/* Start DMA. */
1908 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1909 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1910 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1911 
1912 	return 0;
1913 }
1914 
1915 
1916 static void
1917 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1918 {
1919 	struct eso_softc *sc;
1920 
1921 	sc = addr;
1922 	*intr = &sc->sc_intr_lock;
1923 	*thread = &sc->sc_lock;
1924 }
1925 
1926 /*
1927  * Mixer utility functions.
1928  */
1929 static int
1930 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1931 {
1932 	mixer_devinfo_t di;
1933 	int i;
1934 
1935 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1936 
1937 	di.index = ESO_RECORD_SOURCE;
1938 	if (eso_query_devinfo(sc, &di) != 0)
1939 		panic("eso_set_recsrc: eso_query_devinfo failed");
1940 
1941 	for (i = 0; i < di.un.e.num_mem; i++) {
1942 		if (recsrc == di.un.e.member[i].ord) {
1943 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1944 			sc->sc_recsrc = recsrc;
1945 			return 0;
1946 		}
1947 	}
1948 
1949 	return EINVAL;
1950 }
1951 
1952 static int
1953 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1954 {
1955 	mixer_devinfo_t di;
1956 	int i;
1957 	uint8_t mpm;
1958 
1959 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1960 
1961 	di.index = ESO_MONOOUT_SOURCE;
1962 	if (eso_query_devinfo(sc, &di) != 0)
1963 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1964 
1965 	for (i = 0; i < di.un.e.num_mem; i++) {
1966 		if (monooutsrc == di.un.e.member[i].ord) {
1967 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1968 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1969 			mpm |= monooutsrc;
1970 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1971 			sc->sc_monooutsrc = monooutsrc;
1972 			return 0;
1973 		}
1974 	}
1975 
1976 	return EINVAL;
1977 }
1978 
1979 static int
1980 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1981 {
1982 	mixer_devinfo_t di;
1983 	int i;
1984 	uint8_t mpm;
1985 
1986 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1987 
1988 	di.index = ESO_MONOIN_BYPASS;
1989 	if (eso_query_devinfo(sc, &di) != 0)
1990 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
1991 
1992 	for (i = 0; i < di.un.e.num_mem; i++) {
1993 		if (monoinbypass == di.un.e.member[i].ord) {
1994 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1995 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1996 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1997 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1998 			sc->sc_monoinbypass = monoinbypass;
1999 			return 0;
2000 		}
2001 	}
2002 
2003 	return EINVAL;
2004 }
2005 
2006 static int
2007 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2008 {
2009 	mixer_devinfo_t di;
2010 	int i;
2011 	uint8_t mpm;
2012 
2013 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2014 
2015 	di.index = ESO_MIC_PREAMP;
2016 	if (eso_query_devinfo(sc, &di) != 0)
2017 		panic("eso_set_preamp: eso_query_devinfo failed");
2018 
2019 	for (i = 0; i < di.un.e.num_mem; i++) {
2020 		if (preamp == di.un.e.member[i].ord) {
2021 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2022 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2023 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2024 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2025 			sc->sc_preamp = preamp;
2026 			return 0;
2027 		}
2028 	}
2029 
2030 	return EINVAL;
2031 }
2032 
2033 /*
2034  * Reload Master Volume and Mute values in softc from mixer; used when
2035  * those have previously been invalidated by use of hardware volume controls.
2036  */
2037 static void
2038 eso_reload_master_vol(struct eso_softc *sc)
2039 {
2040 	uint8_t mv;
2041 
2042 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2043 
2044 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2045 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2046 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2047 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2048 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2049 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2050 	/* Currently both channels are muted simultaneously; either is OK. */
2051 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2052 }
2053 
2054 static void
2055 eso_set_gain(struct eso_softc *sc, unsigned int port)
2056 {
2057 	uint8_t mixreg, tmp;
2058 
2059 	KASSERT(mutex_owned(&sc->sc_intr_lock));
2060 
2061 	switch (port) {
2062 	case ESO_DAC_PLAY_VOL:
2063 		mixreg = ESO_MIXREG_PVR_A2;
2064 		break;
2065 	case ESO_MIC_PLAY_VOL:
2066 		mixreg = ESO_MIXREG_PVR_MIC;
2067 		break;
2068 	case ESO_LINE_PLAY_VOL:
2069 		mixreg = ESO_MIXREG_PVR_LINE;
2070 		break;
2071 	case ESO_SYNTH_PLAY_VOL:
2072 		mixreg = ESO_MIXREG_PVR_SYNTH;
2073 		break;
2074 	case ESO_CD_PLAY_VOL:
2075 		mixreg = ESO_MIXREG_PVR_CD;
2076 		break;
2077 	case ESO_AUXB_PLAY_VOL:
2078 		mixreg = ESO_MIXREG_PVR_AUXB;
2079 		break;
2080 
2081 	case ESO_DAC_REC_VOL:
2082 		mixreg = ESO_MIXREG_RVR_A2;
2083 		break;
2084 	case ESO_MIC_REC_VOL:
2085 		mixreg = ESO_MIXREG_RVR_MIC;
2086 		break;
2087 	case ESO_LINE_REC_VOL:
2088 		mixreg = ESO_MIXREG_RVR_LINE;
2089 		break;
2090 	case ESO_SYNTH_REC_VOL:
2091 		mixreg = ESO_MIXREG_RVR_SYNTH;
2092 		break;
2093 	case ESO_CD_REC_VOL:
2094 		mixreg = ESO_MIXREG_RVR_CD;
2095 		break;
2096 	case ESO_AUXB_REC_VOL:
2097 		mixreg = ESO_MIXREG_RVR_AUXB;
2098 		break;
2099 	case ESO_MONO_PLAY_VOL:
2100 		mixreg = ESO_MIXREG_PVR_MONO;
2101 		break;
2102 	case ESO_MONO_REC_VOL:
2103 		mixreg = ESO_MIXREG_RVR_MONO;
2104 		break;
2105 
2106 	case ESO_PCSPEAKER_VOL:
2107 		/* Special case - only 3-bit, mono, and reserved bits. */
2108 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2109 		tmp &= ESO_MIXREG_PCSVR_RESV;
2110 		/* Map bits 7:5 -> 2:0. */
2111 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2112 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2113 		return;
2114 
2115 	case ESO_MASTER_VOL:
2116 		/* Special case - separate regs, and 6-bit precision. */
2117 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
2118 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2119 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
2120 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2121 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2122 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2123 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2124 		return;
2125 
2126 	case ESO_SPATIALIZER:
2127 		/* Special case - only `mono', and higher precision. */
2128 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2129 		    sc->sc_gain[port][ESO_LEFT]);
2130 		return;
2131 
2132 	case ESO_RECORD_VOL:
2133 		/* Very Special case, controller register. */
2134 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2135 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2136 		return;
2137 
2138 	default:
2139 #ifdef DIAGNOSTIC
2140 		panic("eso_set_gain: bad port %u", port);
2141 		/* NOTREACHED */
2142 #else
2143 		return;
2144 #endif
2145 	}
2146 
2147 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2148 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2149 }
2150