1 /* $NetBSD: eso.c,v 1.51 2007/10/19 12:00:43 ad Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.51 2007/10/19 12:00:43 ad Exp $"); 37 38 #include "mpu.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/device.h> 45 #include <sys/queue.h> 46 #include <sys/proc.h> 47 48 #include <dev/pci/pcidevs.h> 49 #include <dev/pci/pcivar.h> 50 51 #include <sys/audioio.h> 52 #include <dev/audio_if.h> 53 #include <dev/midi_if.h> 54 55 #include <dev/mulaw.h> 56 #include <dev/auconv.h> 57 58 #include <dev/ic/mpuvar.h> 59 #include <dev/ic/i8237reg.h> 60 #include <dev/pci/esoreg.h> 61 #include <dev/pci/esovar.h> 62 63 #include <sys/bus.h> 64 #include <sys/intr.h> 65 66 /* 67 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA 68 * XXX engine by allocating through the ISA DMA tag. 69 */ 70 #if defined(amd64) || defined(i386) 71 #include "isa.h" 72 #if NISA > 0 73 #include <dev/isa/isavar.h> 74 #endif 75 #endif 76 77 #if defined(AUDIO_DEBUG) || defined(DEBUG) 78 #define DPRINTF(x) printf x 79 #else 80 #define DPRINTF(x) 81 #endif 82 83 struct eso_dma { 84 bus_dma_tag_t ed_dmat; 85 bus_dmamap_t ed_map; 86 void * ed_kva; 87 bus_dma_segment_t ed_segs[1]; 88 int ed_nsegs; 89 size_t ed_size; 90 SLIST_ENTRY(eso_dma) ed_slist; 91 }; 92 93 #define KVADDR(dma) ((void *)(dma)->ed_kva) 94 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 95 96 /* Autoconfiguration interface */ 97 static int eso_match(struct device *, struct cfdata *, void *); 98 static void eso_attach(struct device *, struct device *, void *); 99 static void eso_defer(struct device *); 100 static int eso_print(void *, const char *); 101 102 CFATTACH_DECL(eso, sizeof (struct eso_softc), 103 eso_match, eso_attach, NULL, NULL); 104 105 /* PCI interface */ 106 static int eso_intr(void *); 107 108 /* MI audio layer interface */ 109 static int eso_query_encoding(void *, struct audio_encoding *); 110 static int eso_set_params(void *, int, int, audio_params_t *, 111 audio_params_t *, stream_filter_list_t *, 112 stream_filter_list_t *); 113 static int eso_round_blocksize(void *, int, int, const audio_params_t *); 114 static int eso_halt_output(void *); 115 static int eso_halt_input(void *); 116 static int eso_getdev(void *, struct audio_device *); 117 static int eso_set_port(void *, mixer_ctrl_t *); 118 static int eso_get_port(void *, mixer_ctrl_t *); 119 static int eso_query_devinfo(void *, mixer_devinfo_t *); 120 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int); 121 static void eso_freem(void *, void *, struct malloc_type *); 122 static size_t eso_round_buffersize(void *, int, size_t); 123 static paddr_t eso_mappage(void *, void *, off_t, int); 124 static int eso_get_props(void *); 125 static int eso_trigger_output(void *, void *, void *, int, 126 void (*)(void *), void *, const audio_params_t *); 127 static int eso_trigger_input(void *, void *, void *, int, 128 void (*)(void *), void *, const audio_params_t *); 129 130 static const struct audio_hw_if eso_hw_if = { 131 NULL, /* open */ 132 NULL, /* close */ 133 NULL, /* drain */ 134 eso_query_encoding, 135 eso_set_params, 136 eso_round_blocksize, 137 NULL, /* commit_settings */ 138 NULL, /* init_output */ 139 NULL, /* init_input */ 140 NULL, /* start_output */ 141 NULL, /* start_input */ 142 eso_halt_output, 143 eso_halt_input, 144 NULL, /* speaker_ctl */ 145 eso_getdev, 146 NULL, /* setfd */ 147 eso_set_port, 148 eso_get_port, 149 eso_query_devinfo, 150 eso_allocm, 151 eso_freem, 152 eso_round_buffersize, 153 eso_mappage, 154 eso_get_props, 155 eso_trigger_output, 156 eso_trigger_input, 157 NULL, /* dev_ioctl */ 158 NULL, /* powerstate */ 159 }; 160 161 static const char * const eso_rev2model[] = { 162 "ES1938", 163 "ES1946", 164 "ES1946 Revision E" 165 }; 166 167 #define ESO_NFORMATS 8 168 static const struct audio_format eso_formats[ESO_NFORMATS] = { 169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 172 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, 174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, 176 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, 178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, 180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 182 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 183 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}} 185 }; 186 187 188 /* 189 * Utility routines 190 */ 191 /* Register access etc. */ 192 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t); 193 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t); 194 static uint8_t eso_read_rdr(struct eso_softc *); 195 static void eso_reload_master_vol(struct eso_softc *); 196 static int eso_reset(struct eso_softc *); 197 static void eso_set_gain(struct eso_softc *, unsigned int); 198 static int eso_set_recsrc(struct eso_softc *, unsigned int); 199 static int eso_set_monooutsrc(struct eso_softc *, unsigned int); 200 static int eso_set_monoinbypass(struct eso_softc *, unsigned int); 201 static int eso_set_preamp(struct eso_softc *, unsigned int); 202 static void eso_write_cmd(struct eso_softc *, uint8_t); 203 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t); 204 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t); 205 /* DMA memory allocation */ 206 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t, 207 int, int, struct eso_dma *); 208 static void eso_freemem(struct eso_dma *); 209 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *); 210 211 212 static int 213 eso_match(struct device *parent, struct cfdata *match, 214 void *aux) 215 { 216 struct pci_attach_args *pa; 217 218 pa = aux; 219 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 220 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 221 return 1; 222 223 return 0; 224 } 225 226 static void 227 eso_attach(struct device *parent, struct device *self, void *aux) 228 { 229 struct eso_softc *sc; 230 struct pci_attach_args *pa; 231 struct audio_attach_args aa; 232 pci_intr_handle_t ih; 233 bus_addr_t vcbase; 234 const char *intrstring; 235 int idx; 236 uint8_t a2mode, mvctl; 237 238 sc = (struct eso_softc *)self; 239 pa = aux; 240 aprint_naive(": Audio controller\n"); 241 242 sc->sc_revision = PCI_REVISION(pa->pa_class); 243 244 aprint_normal(": ESS Solo-1 PCI AudioDrive "); 245 if (sc->sc_revision < 246 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 247 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]); 248 else 249 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision); 250 251 /* Map I/O registers. */ 252 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 253 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 254 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname); 255 return; 256 } 257 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 258 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 259 aprint_error("%s: can't map SB I/O space\n", 260 sc->sc_dev.dv_xname); 261 return; 262 } 263 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 264 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 265 aprint_error("%s: can't map VC I/O space\n", 266 sc->sc_dev.dv_xname); 267 /* Don't bail out yet: we can map it later, see below. */ 268 vcbase = 0; 269 sc->sc_vcsize = 0x10; /* From the data sheet. */ 270 } 271 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 272 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 273 aprint_error("%s: can't map MPU I/O space\n", 274 sc->sc_dev.dv_xname); 275 return; 276 } 277 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 278 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 279 aprint_error("%s: can't map Game I/O space\n", 280 sc->sc_dev.dv_xname); 281 return; 282 } 283 284 sc->sc_dmat = pa->pa_dmat; 285 SLIST_INIT(&sc->sc_dmas); 286 sc->sc_dmac_configured = 0; 287 288 /* Enable bus mastering. */ 289 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 290 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 291 PCI_COMMAND_MASTER_ENABLE); 292 293 /* Reset the device; bail out upon failure. */ 294 if (eso_reset(sc) != 0) { 295 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname); 296 return; 297 } 298 299 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 300 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 301 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 302 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 303 304 /* Enable the relevant (DMA) interrupts. */ 305 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 306 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 307 ESO_IO_IRQCTL_MPUIRQ); 308 309 /* Set up A1's sample rate generator for new-style parameters. */ 310 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 311 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 312 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 313 314 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/ 315 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 316 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 317 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 318 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 319 320 /* Set mixer regs to something reasonable, needs work. */ 321 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 322 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE); 323 eso_set_monoinbypass(sc, 0); 324 eso_set_preamp(sc, 1); 325 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 326 int v; 327 328 switch (idx) { 329 case ESO_MIC_PLAY_VOL: 330 case ESO_LINE_PLAY_VOL: 331 case ESO_CD_PLAY_VOL: 332 case ESO_MONO_PLAY_VOL: 333 case ESO_AUXB_PLAY_VOL: 334 case ESO_DAC_REC_VOL: 335 case ESO_LINE_REC_VOL: 336 case ESO_SYNTH_REC_VOL: 337 case ESO_CD_REC_VOL: 338 case ESO_MONO_REC_VOL: 339 case ESO_AUXB_REC_VOL: 340 case ESO_SPATIALIZER: 341 v = 0; 342 break; 343 case ESO_MASTER_VOL: 344 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 345 break; 346 default: 347 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 348 break; 349 } 350 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 351 eso_set_gain(sc, idx); 352 } 353 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 354 355 /* Map and establish the interrupt. */ 356 if (pci_intr_map(pa, &ih)) { 357 aprint_error("%s: couldn't map interrupt\n", 358 sc->sc_dev.dv_xname); 359 return; 360 } 361 intrstring = pci_intr_string(pa->pa_pc, ih); 362 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 363 if (sc->sc_ih == NULL) { 364 aprint_error("%s: couldn't establish interrupt", 365 sc->sc_dev.dv_xname); 366 if (intrstring != NULL) 367 aprint_normal(" at %s", intrstring); 368 aprint_normal("\n"); 369 return; 370 } 371 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, 372 intrstring); 373 374 /* 375 * Set up the DDMA Control register; a suitable I/O region has been 376 * supposedly mapped in the VC base address register. 377 * 378 * The Solo-1 has an ... interesting silicon bug that causes it to 379 * not respond to I/O space accesses to the Audio 1 DMA controller 380 * if the latter's mapping base address is aligned on a 1K boundary. 381 * As a consequence, it is quite possible for the mapping provided 382 * in the VC BAR to be useless. To work around this, we defer this 383 * part until all autoconfiguration on our parent bus is completed 384 * and then try to map it ourselves in fulfillment of the constraint. 385 * 386 * According to the register map we may write to the low 16 bits 387 * only, but experimenting has shown we're safe. 388 * -kjk 389 */ 390 if (ESO_VALID_DDMAC_BASE(vcbase)) { 391 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 392 vcbase | ESO_PCI_DDMAC_DE); 393 sc->sc_dmac_configured = 1; 394 395 aprint_normal( 396 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 397 sc->sc_dev.dv_xname, (unsigned long)vcbase); 398 } else { 399 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 400 sc->sc_dev.dv_xname, (unsigned long)vcbase)); 401 sc->sc_pa = *pa; 402 config_defer(self, eso_defer); 403 } 404 405 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 406 407 aa.type = AUDIODEV_TYPE_OPL; 408 aa.hwif = NULL; 409 aa.hdl = NULL; 410 (void)config_found(&sc->sc_dev, &aa, audioprint); 411 412 aa.type = AUDIODEV_TYPE_MPU; 413 aa.hwif = NULL; 414 aa.hdl = NULL; 415 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 416 if (sc->sc_mpudev != NULL) { 417 /* Unmask the MPU irq. */ 418 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 419 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 420 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 421 } 422 423 aa.type = AUDIODEV_TYPE_AUX; 424 aa.hwif = NULL; 425 aa.hdl = NULL; 426 (void)config_found(&sc->sc_dev, &aa, eso_print); 427 } 428 429 static void 430 eso_defer(struct device *self) 431 { 432 struct eso_softc *sc; 433 struct pci_attach_args *pa; 434 bus_addr_t addr, start; 435 436 sc = (struct eso_softc *)self; 437 pa = &sc->sc_pa; 438 aprint_normal("%s: ", sc->sc_dev.dv_xname); 439 440 /* 441 * This is outright ugly, but since we must not make assumptions 442 * on the underlying allocator's behaviour it's the most straight- 443 * forward way to implement it. Note that we skip over the first 444 * 1K region, which is typically occupied by an attached ISA bus. 445 */ 446 for (start = 0x0400; start < 0xffff; start += 0x0400) { 447 if (bus_space_alloc(sc->sc_iot, 448 start + sc->sc_vcsize, start + 0x0400 - 1, 449 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 450 &sc->sc_dmac_ioh) != 0) 451 continue; 452 453 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 454 addr | ESO_PCI_DDMAC_DE); 455 sc->sc_dmac_iot = sc->sc_iot; 456 sc->sc_dmac_configured = 1; 457 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n", 458 (unsigned long)addr); 459 460 return; 461 } 462 463 aprint_error("can't map Audio 1 DMA into I/O space\n"); 464 } 465 466 /* ARGSUSED */ 467 static int 468 eso_print(void *aux, const char *pnp) 469 { 470 471 /* Only joys can attach via this; easy. */ 472 if (pnp) 473 aprint_normal("joy at %s:", pnp); 474 475 return UNCONF; 476 } 477 478 static void 479 eso_write_cmd(struct eso_softc *sc, uint8_t cmd) 480 { 481 int i; 482 483 /* Poll for busy indicator to become clear. */ 484 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 485 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 486 & ESO_SB_RSR_BUSY) == 0) { 487 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 488 ESO_SB_WDR, cmd); 489 return; 490 } else { 491 delay(10); 492 } 493 } 494 495 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); 496 return; 497 } 498 499 /* Write to a controller register */ 500 static void 501 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val) 502 { 503 504 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 505 506 eso_write_cmd(sc, reg); 507 eso_write_cmd(sc, val); 508 } 509 510 /* Read out the Read Data Register */ 511 static uint8_t 512 eso_read_rdr(struct eso_softc *sc) 513 { 514 int i; 515 516 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 517 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 518 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 519 return (bus_space_read_1(sc->sc_sb_iot, 520 sc->sc_sb_ioh, ESO_SB_RDR)); 521 } else { 522 delay(10); 523 } 524 } 525 526 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); 527 return (-1); 528 } 529 530 static uint8_t 531 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg) 532 { 533 534 eso_write_cmd(sc, ESO_CMD_RCR); 535 eso_write_cmd(sc, reg); 536 return eso_read_rdr(sc); 537 } 538 539 static void 540 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val) 541 { 542 int s; 543 544 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 545 546 s = splaudio(); 547 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 548 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 549 splx(s); 550 } 551 552 static uint8_t 553 eso_read_mixreg(struct eso_softc *sc, uint8_t reg) 554 { 555 int s; 556 uint8_t val; 557 558 s = splaudio(); 559 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 560 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 561 splx(s); 562 563 return val; 564 } 565 566 static int 567 eso_intr(void *hdl) 568 { 569 struct eso_softc *sc; 570 uint8_t irqctl; 571 572 sc = hdl; 573 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 574 575 /* If it wasn't ours, that's all she wrote. */ 576 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 577 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 578 return 0; 579 580 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 581 /* Clear interrupt. */ 582 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 583 ESO_SB_RBSR); 584 585 if (sc->sc_rintr) 586 sc->sc_rintr(sc->sc_rarg); 587 else 588 wakeup(&sc->sc_rintr); 589 } 590 591 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 592 /* 593 * Clear the A2 IRQ latch: the cached value reflects the 594 * current DAC settings with the IRQ latch bit not set. 595 */ 596 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 597 598 if (sc->sc_pintr) 599 sc->sc_pintr(sc->sc_parg); 600 else 601 wakeup(&sc->sc_pintr); 602 } 603 604 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 605 /* Clear interrupt. */ 606 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 607 608 /* 609 * Raise a flag to cause a lazy update of the in-softc gain 610 * values the next time the software mixer is read to keep 611 * interrupt service cost low. ~0 cannot occur otherwise 612 * as the master volume has a precision of 6 bits only. 613 */ 614 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 615 } 616 617 #if NMPU > 0 618 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) 619 mpu_intr(sc->sc_mpudev); 620 #endif 621 622 return 1; 623 } 624 625 /* Perform a software reset, including DMA FIFOs. */ 626 static int 627 eso_reset(struct eso_softc *sc) 628 { 629 int i; 630 631 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 632 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 633 /* `Delay' suggested in the data sheet. */ 634 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 635 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 636 637 /* Wait for reset to take effect. */ 638 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 639 /* Poll for data to become available. */ 640 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 641 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 642 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 643 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 644 645 /* Activate Solo-1 extension commands. */ 646 eso_write_cmd(sc, ESO_CMD_EXTENB); 647 /* Reset mixer registers. */ 648 eso_write_mixreg(sc, ESO_MIXREG_RESET, 649 ESO_MIXREG_RESET_RESET); 650 651 return 0; 652 } else { 653 delay(1000); 654 } 655 } 656 657 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 658 return -1; 659 } 660 661 static int 662 eso_query_encoding(void *hdl, struct audio_encoding *fp) 663 { 664 665 switch (fp->index) { 666 case 0: 667 strcpy(fp->name, AudioEulinear); 668 fp->encoding = AUDIO_ENCODING_ULINEAR; 669 fp->precision = 8; 670 fp->flags = 0; 671 break; 672 case 1: 673 strcpy(fp->name, AudioEmulaw); 674 fp->encoding = AUDIO_ENCODING_ULAW; 675 fp->precision = 8; 676 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 677 break; 678 case 2: 679 strcpy(fp->name, AudioEalaw); 680 fp->encoding = AUDIO_ENCODING_ALAW; 681 fp->precision = 8; 682 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 683 break; 684 case 3: 685 strcpy(fp->name, AudioEslinear); 686 fp->encoding = AUDIO_ENCODING_SLINEAR; 687 fp->precision = 8; 688 fp->flags = 0; 689 break; 690 case 4: 691 strcpy(fp->name, AudioEslinear_le); 692 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 693 fp->precision = 16; 694 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 695 break; 696 case 5: 697 strcpy(fp->name, AudioEulinear_le); 698 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 699 fp->precision = 16; 700 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 701 break; 702 case 6: 703 strcpy(fp->name, AudioEslinear_be); 704 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 705 fp->precision = 16; 706 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 707 break; 708 case 7: 709 strcpy(fp->name, AudioEulinear_be); 710 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 711 fp->precision = 16; 712 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 713 break; 714 default: 715 return EINVAL; 716 } 717 718 return 0; 719 } 720 721 static int 722 eso_set_params(void *hdl, int setmode, int usemode, 723 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil, 724 stream_filter_list_t *rfil) 725 { 726 struct eso_softc *sc; 727 struct audio_params *p; 728 stream_filter_list_t *fil; 729 int mode, r[2], rd[2], ar[2], clk; 730 unsigned int srg, fltdiv; 731 int i; 732 733 sc = hdl; 734 for (mode = AUMODE_RECORD; mode != -1; 735 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 736 if ((setmode & mode) == 0) 737 continue; 738 739 p = (mode == AUMODE_PLAY) ? play : rec; 740 741 if (p->sample_rate < ESO_MINRATE || 742 p->sample_rate > ESO_MAXRATE || 743 (p->precision != 8 && p->precision != 16) || 744 (p->channels != 1 && p->channels != 2)) 745 return EINVAL; 746 747 /* 748 * We'll compute both possible sample rate dividers and pick 749 * the one with the least error. 750 */ 751 #define ABS(x) ((x) < 0 ? -(x) : (x)) 752 r[0] = ESO_CLK0 / 753 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 754 r[1] = ESO_CLK1 / 755 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 756 757 ar[0] = p->sample_rate - r[0]; 758 ar[1] = p->sample_rate - r[1]; 759 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0; 760 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 761 762 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 763 fltdiv = 256 - 200279L / r[clk]; 764 765 /* Update to reflect the possibly inexact rate. */ 766 p->sample_rate = r[clk]; 767 768 fil = (mode == AUMODE_PLAY) ? pfil : rfil; 769 i = auconv_set_converter(eso_formats, ESO_NFORMATS, 770 mode, p, FALSE, fil); 771 if (i < 0) 772 return EINVAL; 773 if (mode == AUMODE_RECORD) { 774 /* Audio 1 */ 775 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 776 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 777 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 778 } else { 779 /* Audio 2 */ 780 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 781 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 782 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 783 } 784 #undef ABS 785 786 } 787 788 return 0; 789 } 790 791 static int 792 eso_round_blocksize(void *hdl, int blk, int mode, 793 const audio_params_t *param) 794 { 795 796 return blk & -32; /* keep good alignment; at least 16 req'd */ 797 } 798 799 static int 800 eso_halt_output(void *hdl) 801 { 802 struct eso_softc *sc; 803 int error, s; 804 805 sc = hdl; 806 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); 807 808 /* 809 * Disable auto-initialize DMA, allowing the FIFO to drain and then 810 * stop. The interrupt callback pointer is cleared at this 811 * point so that an outstanding FIFO interrupt for the remaining data 812 * will be acknowledged without further processing. 813 * 814 * This does not immediately `abort' an operation in progress (c.f. 815 * audio(9)) but is the method to leave the FIFO behind in a clean 816 * state with the least hair. (Besides, that item needs to be 817 * rephrased for trigger_*()-based DMA environments.) 818 */ 819 s = splaudio(); 820 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 821 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 822 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 823 ESO_IO_A2DMAM_DMAENB); 824 825 sc->sc_pintr = NULL; 826 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 827 splx(s); 828 829 /* Shut down DMA completely. */ 830 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 831 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 832 833 return error == EWOULDBLOCK ? 0 : error; 834 } 835 836 static int 837 eso_halt_input(void *hdl) 838 { 839 struct eso_softc *sc; 840 int error, s; 841 842 sc = hdl; 843 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); 844 845 /* Just like eso_halt_output(), but for Audio 1. */ 846 s = splaudio(); 847 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 848 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 849 ESO_CTLREG_A1C2_DMAENB); 850 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 851 DMA37MD_WRITE | DMA37MD_DEMAND); 852 853 sc->sc_rintr = NULL; 854 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 855 splx(s); 856 857 /* Shut down DMA completely. */ 858 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 859 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 860 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 861 ESO_DMAC_MASK_MASK); 862 863 return error == EWOULDBLOCK ? 0 : error; 864 } 865 866 static int 867 eso_getdev(void *hdl, struct audio_device *retp) 868 { 869 struct eso_softc *sc; 870 871 sc = hdl; 872 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 873 snprintf(retp->version, sizeof (retp->version), "0x%02x", 874 sc->sc_revision); 875 if (sc->sc_revision < 876 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 877 strncpy(retp->config, eso_rev2model[sc->sc_revision], 878 sizeof (retp->config)); 879 else 880 strncpy(retp->config, "unknown", sizeof (retp->config)); 881 882 return 0; 883 } 884 885 static int 886 eso_set_port(void *hdl, mixer_ctrl_t *cp) 887 { 888 struct eso_softc *sc; 889 unsigned int lgain, rgain; 890 uint8_t tmp; 891 892 sc = hdl; 893 switch (cp->dev) { 894 case ESO_DAC_PLAY_VOL: 895 case ESO_MIC_PLAY_VOL: 896 case ESO_LINE_PLAY_VOL: 897 case ESO_SYNTH_PLAY_VOL: 898 case ESO_CD_PLAY_VOL: 899 case ESO_AUXB_PLAY_VOL: 900 case ESO_RECORD_VOL: 901 case ESO_DAC_REC_VOL: 902 case ESO_MIC_REC_VOL: 903 case ESO_LINE_REC_VOL: 904 case ESO_SYNTH_REC_VOL: 905 case ESO_CD_REC_VOL: 906 case ESO_AUXB_REC_VOL: 907 if (cp->type != AUDIO_MIXER_VALUE) 908 return EINVAL; 909 910 /* 911 * Stereo-capable mixer ports: if we get a single-channel 912 * gain value passed in, then we duplicate it to both left 913 * and right channels. 914 */ 915 switch (cp->un.value.num_channels) { 916 case 1: 917 lgain = rgain = ESO_GAIN_TO_4BIT( 918 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 919 break; 920 case 2: 921 lgain = ESO_GAIN_TO_4BIT( 922 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 923 rgain = ESO_GAIN_TO_4BIT( 924 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 925 break; 926 default: 927 return EINVAL; 928 } 929 930 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 931 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 932 eso_set_gain(sc, cp->dev); 933 break; 934 935 case ESO_MASTER_VOL: 936 if (cp->type != AUDIO_MIXER_VALUE) 937 return EINVAL; 938 939 /* Like above, but a precision of 6 bits. */ 940 switch (cp->un.value.num_channels) { 941 case 1: 942 lgain = rgain = ESO_GAIN_TO_6BIT( 943 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 944 break; 945 case 2: 946 lgain = ESO_GAIN_TO_6BIT( 947 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 948 rgain = ESO_GAIN_TO_6BIT( 949 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 950 break; 951 default: 952 return EINVAL; 953 } 954 955 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 956 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 957 eso_set_gain(sc, cp->dev); 958 break; 959 960 case ESO_SPATIALIZER: 961 if (cp->type != AUDIO_MIXER_VALUE || 962 cp->un.value.num_channels != 1) 963 return EINVAL; 964 965 sc->sc_gain[cp->dev][ESO_LEFT] = 966 sc->sc_gain[cp->dev][ESO_RIGHT] = 967 ESO_GAIN_TO_6BIT( 968 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 969 eso_set_gain(sc, cp->dev); 970 break; 971 972 case ESO_MONO_PLAY_VOL: 973 case ESO_MONO_REC_VOL: 974 if (cp->type != AUDIO_MIXER_VALUE || 975 cp->un.value.num_channels != 1) 976 return EINVAL; 977 978 sc->sc_gain[cp->dev][ESO_LEFT] = 979 sc->sc_gain[cp->dev][ESO_RIGHT] = 980 ESO_GAIN_TO_4BIT( 981 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 982 eso_set_gain(sc, cp->dev); 983 break; 984 985 case ESO_PCSPEAKER_VOL: 986 if (cp->type != AUDIO_MIXER_VALUE || 987 cp->un.value.num_channels != 1) 988 return EINVAL; 989 990 sc->sc_gain[cp->dev][ESO_LEFT] = 991 sc->sc_gain[cp->dev][ESO_RIGHT] = 992 ESO_GAIN_TO_3BIT( 993 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 994 eso_set_gain(sc, cp->dev); 995 break; 996 997 case ESO_SPATIALIZER_ENABLE: 998 if (cp->type != AUDIO_MIXER_ENUM) 999 return EINVAL; 1000 1001 sc->sc_spatializer = (cp->un.ord != 0); 1002 1003 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1004 if (sc->sc_spatializer) 1005 tmp |= ESO_MIXREG_SPAT_ENB; 1006 else 1007 tmp &= ~ESO_MIXREG_SPAT_ENB; 1008 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1009 tmp | ESO_MIXREG_SPAT_RSTREL); 1010 break; 1011 1012 case ESO_MASTER_MUTE: 1013 if (cp->type != AUDIO_MIXER_ENUM) 1014 return EINVAL; 1015 1016 sc->sc_mvmute = (cp->un.ord != 0); 1017 1018 if (sc->sc_mvmute) { 1019 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1020 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1021 ESO_MIXREG_LMVM_MUTE); 1022 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1023 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1024 ESO_MIXREG_RMVM_MUTE); 1025 } else { 1026 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1027 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1028 ~ESO_MIXREG_LMVM_MUTE); 1029 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1030 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1031 ~ESO_MIXREG_RMVM_MUTE); 1032 } 1033 break; 1034 1035 case ESO_MONOOUT_SOURCE: 1036 if (cp->type != AUDIO_MIXER_ENUM) 1037 return EINVAL; 1038 1039 return eso_set_monooutsrc(sc, cp->un.ord); 1040 1041 case ESO_MONOIN_BYPASS: 1042 if (cp->type != AUDIO_MIXER_ENUM) 1043 return EINVAL; 1044 1045 return (eso_set_monoinbypass(sc, cp->un.ord)); 1046 1047 case ESO_RECORD_MONITOR: 1048 if (cp->type != AUDIO_MIXER_ENUM) 1049 return EINVAL; 1050 1051 sc->sc_recmon = (cp->un.ord != 0); 1052 1053 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1054 if (sc->sc_recmon) 1055 tmp |= ESO_CTLREG_ACTL_RECMON; 1056 else 1057 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1058 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1059 break; 1060 1061 case ESO_RECORD_SOURCE: 1062 if (cp->type != AUDIO_MIXER_ENUM) 1063 return EINVAL; 1064 1065 return eso_set_recsrc(sc, cp->un.ord); 1066 1067 case ESO_MIC_PREAMP: 1068 if (cp->type != AUDIO_MIXER_ENUM) 1069 return EINVAL; 1070 1071 return eso_set_preamp(sc, cp->un.ord); 1072 1073 default: 1074 return EINVAL; 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int 1081 eso_get_port(void *hdl, mixer_ctrl_t *cp) 1082 { 1083 struct eso_softc *sc; 1084 1085 sc = hdl; 1086 switch (cp->dev) { 1087 case ESO_MASTER_VOL: 1088 /* Reload from mixer after hardware volume control use. */ 1089 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1090 eso_reload_master_vol(sc); 1091 /* FALLTHROUGH */ 1092 case ESO_DAC_PLAY_VOL: 1093 case ESO_MIC_PLAY_VOL: 1094 case ESO_LINE_PLAY_VOL: 1095 case ESO_SYNTH_PLAY_VOL: 1096 case ESO_CD_PLAY_VOL: 1097 case ESO_AUXB_PLAY_VOL: 1098 case ESO_RECORD_VOL: 1099 case ESO_DAC_REC_VOL: 1100 case ESO_MIC_REC_VOL: 1101 case ESO_LINE_REC_VOL: 1102 case ESO_SYNTH_REC_VOL: 1103 case ESO_CD_REC_VOL: 1104 case ESO_AUXB_REC_VOL: 1105 /* 1106 * Stereo-capable ports: if a single-channel query is made, 1107 * just return the left channel's value (since single-channel 1108 * settings themselves are applied to both channels). 1109 */ 1110 switch (cp->un.value.num_channels) { 1111 case 1: 1112 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1113 sc->sc_gain[cp->dev][ESO_LEFT]; 1114 break; 1115 case 2: 1116 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1117 sc->sc_gain[cp->dev][ESO_LEFT]; 1118 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1119 sc->sc_gain[cp->dev][ESO_RIGHT]; 1120 break; 1121 default: 1122 return EINVAL; 1123 } 1124 break; 1125 1126 case ESO_MONO_PLAY_VOL: 1127 case ESO_PCSPEAKER_VOL: 1128 case ESO_MONO_REC_VOL: 1129 case ESO_SPATIALIZER: 1130 if (cp->un.value.num_channels != 1) 1131 return EINVAL; 1132 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1133 sc->sc_gain[cp->dev][ESO_LEFT]; 1134 break; 1135 1136 case ESO_RECORD_MONITOR: 1137 cp->un.ord = sc->sc_recmon; 1138 break; 1139 1140 case ESO_RECORD_SOURCE: 1141 cp->un.ord = sc->sc_recsrc; 1142 break; 1143 1144 case ESO_MONOOUT_SOURCE: 1145 cp->un.ord = sc->sc_monooutsrc; 1146 break; 1147 1148 case ESO_MONOIN_BYPASS: 1149 cp->un.ord = sc->sc_monoinbypass; 1150 break; 1151 1152 case ESO_SPATIALIZER_ENABLE: 1153 cp->un.ord = sc->sc_spatializer; 1154 break; 1155 1156 case ESO_MIC_PREAMP: 1157 cp->un.ord = sc->sc_preamp; 1158 break; 1159 1160 case ESO_MASTER_MUTE: 1161 /* Reload from mixer after hardware volume control use. */ 1162 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0) 1163 eso_reload_master_vol(sc); 1164 cp->un.ord = sc->sc_mvmute; 1165 break; 1166 1167 default: 1168 return EINVAL; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int 1175 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip) 1176 { 1177 1178 switch (dip->index) { 1179 case ESO_DAC_PLAY_VOL: 1180 dip->mixer_class = ESO_INPUT_CLASS; 1181 dip->next = dip->prev = AUDIO_MIXER_LAST; 1182 strcpy(dip->label.name, AudioNdac); 1183 dip->type = AUDIO_MIXER_VALUE; 1184 dip->un.v.num_channels = 2; 1185 strcpy(dip->un.v.units.name, AudioNvolume); 1186 break; 1187 case ESO_MIC_PLAY_VOL: 1188 dip->mixer_class = ESO_INPUT_CLASS; 1189 dip->next = dip->prev = AUDIO_MIXER_LAST; 1190 strcpy(dip->label.name, AudioNmicrophone); 1191 dip->type = AUDIO_MIXER_VALUE; 1192 dip->un.v.num_channels = 2; 1193 strcpy(dip->un.v.units.name, AudioNvolume); 1194 break; 1195 case ESO_LINE_PLAY_VOL: 1196 dip->mixer_class = ESO_INPUT_CLASS; 1197 dip->next = dip->prev = AUDIO_MIXER_LAST; 1198 strcpy(dip->label.name, AudioNline); 1199 dip->type = AUDIO_MIXER_VALUE; 1200 dip->un.v.num_channels = 2; 1201 strcpy(dip->un.v.units.name, AudioNvolume); 1202 break; 1203 case ESO_SYNTH_PLAY_VOL: 1204 dip->mixer_class = ESO_INPUT_CLASS; 1205 dip->next = dip->prev = AUDIO_MIXER_LAST; 1206 strcpy(dip->label.name, AudioNfmsynth); 1207 dip->type = AUDIO_MIXER_VALUE; 1208 dip->un.v.num_channels = 2; 1209 strcpy(dip->un.v.units.name, AudioNvolume); 1210 break; 1211 case ESO_MONO_PLAY_VOL: 1212 dip->mixer_class = ESO_INPUT_CLASS; 1213 dip->next = dip->prev = AUDIO_MIXER_LAST; 1214 strcpy(dip->label.name, "mono_in"); 1215 dip->type = AUDIO_MIXER_VALUE; 1216 dip->un.v.num_channels = 1; 1217 strcpy(dip->un.v.units.name, AudioNvolume); 1218 break; 1219 case ESO_CD_PLAY_VOL: 1220 dip->mixer_class = ESO_INPUT_CLASS; 1221 dip->next = dip->prev = AUDIO_MIXER_LAST; 1222 strcpy(dip->label.name, AudioNcd); 1223 dip->type = AUDIO_MIXER_VALUE; 1224 dip->un.v.num_channels = 2; 1225 strcpy(dip->un.v.units.name, AudioNvolume); 1226 break; 1227 case ESO_AUXB_PLAY_VOL: 1228 dip->mixer_class = ESO_INPUT_CLASS; 1229 dip->next = dip->prev = AUDIO_MIXER_LAST; 1230 strcpy(dip->label.name, "auxb"); 1231 dip->type = AUDIO_MIXER_VALUE; 1232 dip->un.v.num_channels = 2; 1233 strcpy(dip->un.v.units.name, AudioNvolume); 1234 break; 1235 1236 case ESO_MIC_PREAMP: 1237 dip->mixer_class = ESO_MICROPHONE_CLASS; 1238 dip->next = dip->prev = AUDIO_MIXER_LAST; 1239 strcpy(dip->label.name, AudioNpreamp); 1240 dip->type = AUDIO_MIXER_ENUM; 1241 dip->un.e.num_mem = 2; 1242 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1243 dip->un.e.member[0].ord = 0; 1244 strcpy(dip->un.e.member[1].label.name, AudioNon); 1245 dip->un.e.member[1].ord = 1; 1246 break; 1247 case ESO_MICROPHONE_CLASS: 1248 dip->mixer_class = ESO_MICROPHONE_CLASS; 1249 dip->next = dip->prev = AUDIO_MIXER_LAST; 1250 strcpy(dip->label.name, AudioNmicrophone); 1251 dip->type = AUDIO_MIXER_CLASS; 1252 break; 1253 1254 case ESO_INPUT_CLASS: 1255 dip->mixer_class = ESO_INPUT_CLASS; 1256 dip->next = dip->prev = AUDIO_MIXER_LAST; 1257 strcpy(dip->label.name, AudioCinputs); 1258 dip->type = AUDIO_MIXER_CLASS; 1259 break; 1260 1261 case ESO_MASTER_VOL: 1262 dip->mixer_class = ESO_OUTPUT_CLASS; 1263 dip->prev = AUDIO_MIXER_LAST; 1264 dip->next = ESO_MASTER_MUTE; 1265 strcpy(dip->label.name, AudioNmaster); 1266 dip->type = AUDIO_MIXER_VALUE; 1267 dip->un.v.num_channels = 2; 1268 strcpy(dip->un.v.units.name, AudioNvolume); 1269 break; 1270 case ESO_MASTER_MUTE: 1271 dip->mixer_class = ESO_OUTPUT_CLASS; 1272 dip->prev = ESO_MASTER_VOL; 1273 dip->next = AUDIO_MIXER_LAST; 1274 strcpy(dip->label.name, AudioNmute); 1275 dip->type = AUDIO_MIXER_ENUM; 1276 dip->un.e.num_mem = 2; 1277 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1278 dip->un.e.member[0].ord = 0; 1279 strcpy(dip->un.e.member[1].label.name, AudioNon); 1280 dip->un.e.member[1].ord = 1; 1281 break; 1282 1283 case ESO_PCSPEAKER_VOL: 1284 dip->mixer_class = ESO_OUTPUT_CLASS; 1285 dip->next = dip->prev = AUDIO_MIXER_LAST; 1286 strcpy(dip->label.name, "pc_speaker"); 1287 dip->type = AUDIO_MIXER_VALUE; 1288 dip->un.v.num_channels = 1; 1289 strcpy(dip->un.v.units.name, AudioNvolume); 1290 break; 1291 case ESO_MONOOUT_SOURCE: 1292 dip->mixer_class = ESO_OUTPUT_CLASS; 1293 dip->next = dip->prev = AUDIO_MIXER_LAST; 1294 strcpy(dip->label.name, "mono_out"); 1295 dip->type = AUDIO_MIXER_ENUM; 1296 dip->un.e.num_mem = 3; 1297 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1298 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1299 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1300 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1301 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1302 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1303 break; 1304 1305 case ESO_MONOIN_BYPASS: 1306 dip->mixer_class = ESO_MONOIN_CLASS; 1307 dip->next = dip->prev = AUDIO_MIXER_LAST; 1308 strcpy(dip->label.name, "bypass"); 1309 dip->type = AUDIO_MIXER_ENUM; 1310 dip->un.e.num_mem = 2; 1311 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1312 dip->un.e.member[0].ord = 0; 1313 strcpy(dip->un.e.member[1].label.name, AudioNon); 1314 dip->un.e.member[1].ord = 1; 1315 break; 1316 case ESO_MONOIN_CLASS: 1317 dip->mixer_class = ESO_MONOIN_CLASS; 1318 dip->next = dip->prev = AUDIO_MIXER_LAST; 1319 strcpy(dip->label.name, "mono_in"); 1320 dip->type = AUDIO_MIXER_CLASS; 1321 break; 1322 1323 case ESO_SPATIALIZER: 1324 dip->mixer_class = ESO_OUTPUT_CLASS; 1325 dip->prev = AUDIO_MIXER_LAST; 1326 dip->next = ESO_SPATIALIZER_ENABLE; 1327 strcpy(dip->label.name, AudioNspatial); 1328 dip->type = AUDIO_MIXER_VALUE; 1329 dip->un.v.num_channels = 1; 1330 strcpy(dip->un.v.units.name, "level"); 1331 break; 1332 case ESO_SPATIALIZER_ENABLE: 1333 dip->mixer_class = ESO_OUTPUT_CLASS; 1334 dip->prev = ESO_SPATIALIZER; 1335 dip->next = AUDIO_MIXER_LAST; 1336 strcpy(dip->label.name, "enable"); 1337 dip->type = AUDIO_MIXER_ENUM; 1338 dip->un.e.num_mem = 2; 1339 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1340 dip->un.e.member[0].ord = 0; 1341 strcpy(dip->un.e.member[1].label.name, AudioNon); 1342 dip->un.e.member[1].ord = 1; 1343 break; 1344 1345 case ESO_OUTPUT_CLASS: 1346 dip->mixer_class = ESO_OUTPUT_CLASS; 1347 dip->next = dip->prev = AUDIO_MIXER_LAST; 1348 strcpy(dip->label.name, AudioCoutputs); 1349 dip->type = AUDIO_MIXER_CLASS; 1350 break; 1351 1352 case ESO_RECORD_MONITOR: 1353 dip->mixer_class = ESO_MONITOR_CLASS; 1354 dip->next = dip->prev = AUDIO_MIXER_LAST; 1355 strcpy(dip->label.name, AudioNmute); 1356 dip->type = AUDIO_MIXER_ENUM; 1357 dip->un.e.num_mem = 2; 1358 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1359 dip->un.e.member[0].ord = 0; 1360 strcpy(dip->un.e.member[1].label.name, AudioNon); 1361 dip->un.e.member[1].ord = 1; 1362 break; 1363 case ESO_MONITOR_CLASS: 1364 dip->mixer_class = ESO_MONITOR_CLASS; 1365 dip->next = dip->prev = AUDIO_MIXER_LAST; 1366 strcpy(dip->label.name, AudioCmonitor); 1367 dip->type = AUDIO_MIXER_CLASS; 1368 break; 1369 1370 case ESO_RECORD_VOL: 1371 dip->mixer_class = ESO_RECORD_CLASS; 1372 dip->next = dip->prev = AUDIO_MIXER_LAST; 1373 strcpy(dip->label.name, AudioNrecord); 1374 dip->type = AUDIO_MIXER_VALUE; 1375 strcpy(dip->un.v.units.name, AudioNvolume); 1376 break; 1377 case ESO_RECORD_SOURCE: 1378 dip->mixer_class = ESO_RECORD_CLASS; 1379 dip->next = dip->prev = AUDIO_MIXER_LAST; 1380 strcpy(dip->label.name, AudioNsource); 1381 dip->type = AUDIO_MIXER_ENUM; 1382 dip->un.e.num_mem = 4; 1383 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1384 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1385 strcpy(dip->un.e.member[1].label.name, AudioNline); 1386 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1387 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1388 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1389 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1390 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1391 break; 1392 case ESO_DAC_REC_VOL: 1393 dip->mixer_class = ESO_RECORD_CLASS; 1394 dip->next = dip->prev = AUDIO_MIXER_LAST; 1395 strcpy(dip->label.name, AudioNdac); 1396 dip->type = AUDIO_MIXER_VALUE; 1397 dip->un.v.num_channels = 2; 1398 strcpy(dip->un.v.units.name, AudioNvolume); 1399 break; 1400 case ESO_MIC_REC_VOL: 1401 dip->mixer_class = ESO_RECORD_CLASS; 1402 dip->next = dip->prev = AUDIO_MIXER_LAST; 1403 strcpy(dip->label.name, AudioNmicrophone); 1404 dip->type = AUDIO_MIXER_VALUE; 1405 dip->un.v.num_channels = 2; 1406 strcpy(dip->un.v.units.name, AudioNvolume); 1407 break; 1408 case ESO_LINE_REC_VOL: 1409 dip->mixer_class = ESO_RECORD_CLASS; 1410 dip->next = dip->prev = AUDIO_MIXER_LAST; 1411 strcpy(dip->label.name, AudioNline); 1412 dip->type = AUDIO_MIXER_VALUE; 1413 dip->un.v.num_channels = 2; 1414 strcpy(dip->un.v.units.name, AudioNvolume); 1415 break; 1416 case ESO_SYNTH_REC_VOL: 1417 dip->mixer_class = ESO_RECORD_CLASS; 1418 dip->next = dip->prev = AUDIO_MIXER_LAST; 1419 strcpy(dip->label.name, AudioNfmsynth); 1420 dip->type = AUDIO_MIXER_VALUE; 1421 dip->un.v.num_channels = 2; 1422 strcpy(dip->un.v.units.name, AudioNvolume); 1423 break; 1424 case ESO_MONO_REC_VOL: 1425 dip->mixer_class = ESO_RECORD_CLASS; 1426 dip->next = dip->prev = AUDIO_MIXER_LAST; 1427 strcpy(dip->label.name, "mono_in"); 1428 dip->type = AUDIO_MIXER_VALUE; 1429 dip->un.v.num_channels = 1; /* No lies */ 1430 strcpy(dip->un.v.units.name, AudioNvolume); 1431 break; 1432 case ESO_CD_REC_VOL: 1433 dip->mixer_class = ESO_RECORD_CLASS; 1434 dip->next = dip->prev = AUDIO_MIXER_LAST; 1435 strcpy(dip->label.name, AudioNcd); 1436 dip->type = AUDIO_MIXER_VALUE; 1437 dip->un.v.num_channels = 2; 1438 strcpy(dip->un.v.units.name, AudioNvolume); 1439 break; 1440 case ESO_AUXB_REC_VOL: 1441 dip->mixer_class = ESO_RECORD_CLASS; 1442 dip->next = dip->prev = AUDIO_MIXER_LAST; 1443 strcpy(dip->label.name, "auxb"); 1444 dip->type = AUDIO_MIXER_VALUE; 1445 dip->un.v.num_channels = 2; 1446 strcpy(dip->un.v.units.name, AudioNvolume); 1447 break; 1448 case ESO_RECORD_CLASS: 1449 dip->mixer_class = ESO_RECORD_CLASS; 1450 dip->next = dip->prev = AUDIO_MIXER_LAST; 1451 strcpy(dip->label.name, AudioCrecord); 1452 dip->type = AUDIO_MIXER_CLASS; 1453 break; 1454 1455 default: 1456 return ENXIO; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int 1463 eso_allocmem(struct eso_softc *sc, size_t size, size_t align, 1464 size_t boundary, int flags, int direction, struct eso_dma *ed) 1465 { 1466 int error, wait; 1467 1468 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1469 ed->ed_size = size; 1470 1471 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1472 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1473 &ed->ed_nsegs, wait); 1474 if (error) 1475 goto out; 1476 1477 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1478 ed->ed_size, &ed->ed_kva, wait | BUS_DMA_COHERENT); 1479 if (error) 1480 goto free; 1481 1482 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1483 wait, &ed->ed_map); 1484 if (error) 1485 goto unmap; 1486 1487 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva, 1488 ed->ed_size, NULL, wait | 1489 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 1490 if (error) 1491 goto destroy; 1492 1493 return 0; 1494 1495 destroy: 1496 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1497 unmap: 1498 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); 1499 free: 1500 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1501 out: 1502 return error; 1503 } 1504 1505 static void 1506 eso_freemem(struct eso_dma *ed) 1507 { 1508 1509 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1510 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1511 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); 1512 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1513 } 1514 1515 static struct eso_dma * 1516 eso_kva2dma(const struct eso_softc *sc, const void *kva) 1517 { 1518 struct eso_dma *p; 1519 1520 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) { 1521 if (KVADDR(p) == kva) 1522 return p; 1523 } 1524 1525 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva); 1526 /* NOTREACHED */ 1527 } 1528 1529 static void * 1530 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type, 1531 int flags) 1532 { 1533 struct eso_softc *sc; 1534 struct eso_dma *ed; 1535 size_t boundary; 1536 int error; 1537 1538 sc = hdl; 1539 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL) 1540 return NULL; 1541 1542 /* 1543 * Apparently the Audio 1 DMA controller's current address 1544 * register can't roll over a 64K address boundary, so we have to 1545 * take care of that ourselves. Similarly, the Audio 2 DMA 1546 * controller needs a 1M address boundary. 1547 */ 1548 if (direction == AUMODE_RECORD) 1549 boundary = 0x10000; 1550 else 1551 boundary = 0x100000; 1552 1553 /* 1554 * XXX Work around allocation problems for Audio 1, which 1555 * XXX implements the 24 low address bits only, with 1556 * XXX machine-specific DMA tag use. 1557 */ 1558 #ifdef alpha 1559 /* 1560 * XXX Force allocation through the (ISA) SGMAP. 1561 */ 1562 if (direction == AUMODE_RECORD) 1563 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1564 else 1565 #elif defined(amd64) || defined(i386) 1566 /* 1567 * XXX Force allocation through the ISA DMA tag. 1568 */ 1569 if (direction == AUMODE_RECORD) 1570 ed->ed_dmat = &isa_bus_dma_tag; 1571 else 1572 #endif 1573 ed->ed_dmat = sc->sc_dmat; 1574 1575 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed); 1576 if (error) { 1577 free(ed, type); 1578 return NULL; 1579 } 1580 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist); 1581 1582 return KVADDR(ed); 1583 } 1584 1585 static void 1586 eso_freem(void *hdl, void *addr, struct malloc_type *type) 1587 { 1588 struct eso_softc *sc; 1589 struct eso_dma *p; 1590 1591 sc = hdl; 1592 p = eso_kva2dma(sc, addr); 1593 1594 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist); 1595 eso_freemem(p); 1596 free(p, type); 1597 } 1598 1599 static size_t 1600 eso_round_buffersize(void *hdl, int direction, size_t bufsize) 1601 { 1602 size_t maxsize; 1603 1604 /* 1605 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1606 * bytes. This is because IO_A2DMAC is a two byte value 1607 * indicating the literal byte count, and the 4 least significant 1608 * bits are read-only. Zero is not used as a special case for 1609 * 0x10000. 1610 * 1611 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1612 * be represented. 1613 */ 1614 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1615 1616 if (bufsize > maxsize) 1617 bufsize = maxsize; 1618 1619 return bufsize; 1620 } 1621 1622 static paddr_t 1623 eso_mappage(void *hdl, void *addr, off_t offs, int prot) 1624 { 1625 struct eso_softc *sc; 1626 struct eso_dma *ed; 1627 1628 sc = hdl; 1629 if (offs < 0) 1630 return -1; 1631 ed = eso_kva2dma(sc, addr); 1632 1633 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1634 offs, prot, BUS_DMA_WAITOK); 1635 } 1636 1637 /* ARGSUSED */ 1638 static int 1639 eso_get_props(void *hdl) 1640 { 1641 1642 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1643 AUDIO_PROP_FULLDUPLEX; 1644 } 1645 1646 static int 1647 eso_trigger_output(void *hdl, void *start, void *end, int blksize, 1648 void (*intr)(void *), void *arg, const audio_params_t *param) 1649 { 1650 struct eso_softc *sc; 1651 struct eso_dma *ed; 1652 uint8_t a2c1; 1653 1654 sc = hdl; 1655 DPRINTF(( 1656 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1657 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1658 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n", 1659 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1660 param->precision, param->channels)); 1661 1662 /* Find DMA buffer. */ 1663 ed = eso_kva2dma(sc, start); 1664 DPRINTF(("%s: dmaaddr %lx\n", 1665 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed))); 1666 1667 sc->sc_pintr = intr; 1668 sc->sc_parg = arg; 1669 1670 /* Compute drain timeout. */ 1671 sc->sc_pdrain = (blksize * NBBY * hz) / 1672 (param->sample_rate * param->channels * 1673 param->precision) + 2; /* slop */ 1674 1675 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1676 blksize = -(blksize >> 1); 1677 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1678 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1679 1680 /* Update DAC to reflect DMA count and audio parameters. */ 1681 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1682 if (param->precision == 16) 1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1684 else 1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1686 if (param->channels == 2) 1687 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1688 else 1689 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1690 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1691 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1693 else 1694 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1695 /* Unmask IRQ. */ 1696 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1697 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1698 1699 /* Set up DMA controller. */ 1700 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1701 DMAADDR(ed)); 1702 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1703 (uint8_t *)end - (uint8_t *)start); 1704 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1705 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1706 1707 /* Start DMA. */ 1708 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1709 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1710 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1711 ESO_MIXREG_A2C1_AUTO; 1712 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1713 1714 return 0; 1715 } 1716 1717 static int 1718 eso_trigger_input(void *hdl, void *start, void *end, int blksize, 1719 void (*intr)(void *), void *arg, const audio_params_t *param) 1720 { 1721 struct eso_softc *sc; 1722 struct eso_dma *ed; 1723 uint8_t actl, a1c1; 1724 1725 sc = hdl; 1726 DPRINTF(( 1727 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1728 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1729 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n", 1730 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1731 param->precision, param->channels)); 1732 1733 /* 1734 * If we failed to configure the Audio 1 DMA controller, bail here 1735 * while retaining availability of the DAC direction (in Audio 2). 1736 */ 1737 if (!sc->sc_dmac_configured) 1738 return EIO; 1739 1740 /* Find DMA buffer. */ 1741 ed = eso_kva2dma(sc, start); 1742 DPRINTF(("%s: dmaaddr %lx\n", 1743 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed))); 1744 1745 sc->sc_rintr = intr; 1746 sc->sc_rarg = arg; 1747 1748 /* Compute drain timeout. */ 1749 sc->sc_rdrain = (blksize * NBBY * hz) / 1750 (param->sample_rate * param->channels * 1751 param->precision) + 2; /* slop */ 1752 1753 /* Set up ADC DMA converter parameters. */ 1754 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1755 if (param->channels == 2) { 1756 actl &= ~ESO_CTLREG_ACTL_MONO; 1757 actl |= ESO_CTLREG_ACTL_STEREO; 1758 } else { 1759 actl &= ~ESO_CTLREG_ACTL_STEREO; 1760 actl |= ESO_CTLREG_ACTL_MONO; 1761 } 1762 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1763 1764 /* Set up Transfer Type: maybe move to attach time? */ 1765 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1766 1767 /* DMA transfer count reload using 2's complement. */ 1768 blksize = -blksize; 1769 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1770 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1771 1772 /* Set up and enable Audio 1 DMA FIFO. */ 1773 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1774 if (param->precision == 16) 1775 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1776 if (param->channels == 2) 1777 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1778 else 1779 a1c1 |= ESO_CTLREG_A1C1_MONO; 1780 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1781 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1782 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1783 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1784 1785 /* Set up ADC IRQ/DRQ parameters. */ 1786 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1787 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1788 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1789 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1790 1791 /* Set up and enable DMA controller. */ 1792 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1793 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1794 ESO_DMAC_MASK_MASK); 1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1796 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1797 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1798 DMAADDR(ed)); 1799 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1800 (uint8_t *)end - (uint8_t *)start - 1); 1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1802 1803 /* Start DMA. */ 1804 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1805 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1806 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1807 1808 return 0; 1809 } 1810 1811 /* 1812 * Mixer utility functions. 1813 */ 1814 static int 1815 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc) 1816 { 1817 mixer_devinfo_t di; 1818 int i; 1819 1820 di.index = ESO_RECORD_SOURCE; 1821 if (eso_query_devinfo(sc, &di) != 0) 1822 panic("eso_set_recsrc: eso_query_devinfo failed"); 1823 1824 for (i = 0; i < di.un.e.num_mem; i++) { 1825 if (recsrc == di.un.e.member[i].ord) { 1826 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1827 sc->sc_recsrc = recsrc; 1828 return 0; 1829 } 1830 } 1831 1832 return EINVAL; 1833 } 1834 1835 static int 1836 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc) 1837 { 1838 mixer_devinfo_t di; 1839 int i; 1840 uint8_t mpm; 1841 1842 di.index = ESO_MONOOUT_SOURCE; 1843 if (eso_query_devinfo(sc, &di) != 0) 1844 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1845 1846 for (i = 0; i < di.un.e.num_mem; i++) { 1847 if (monooutsrc == di.un.e.member[i].ord) { 1848 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1849 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1850 mpm |= monooutsrc; 1851 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1852 sc->sc_monooutsrc = monooutsrc; 1853 return 0; 1854 } 1855 } 1856 1857 return EINVAL; 1858 } 1859 1860 static int 1861 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass) 1862 { 1863 mixer_devinfo_t di; 1864 int i; 1865 uint8_t mpm; 1866 1867 di.index = ESO_MONOIN_BYPASS; 1868 if (eso_query_devinfo(sc, &di) != 0) 1869 panic("eso_set_monoinbypass: eso_query_devinfo failed"); 1870 1871 for (i = 0; i < di.un.e.num_mem; i++) { 1872 if (monoinbypass == di.un.e.member[i].ord) { 1873 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1874 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0); 1875 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0); 1876 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1877 sc->sc_monoinbypass = monoinbypass; 1878 return 0; 1879 } 1880 } 1881 1882 return EINVAL; 1883 } 1884 1885 static int 1886 eso_set_preamp(struct eso_softc *sc, unsigned int preamp) 1887 { 1888 mixer_devinfo_t di; 1889 int i; 1890 uint8_t mpm; 1891 1892 di.index = ESO_MIC_PREAMP; 1893 if (eso_query_devinfo(sc, &di) != 0) 1894 panic("eso_set_preamp: eso_query_devinfo failed"); 1895 1896 for (i = 0; i < di.un.e.num_mem; i++) { 1897 if (preamp == di.un.e.member[i].ord) { 1898 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1899 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0); 1900 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0); 1901 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1902 sc->sc_preamp = preamp; 1903 return 0; 1904 } 1905 } 1906 1907 return EINVAL; 1908 } 1909 1910 /* 1911 * Reload Master Volume and Mute values in softc from mixer; used when 1912 * those have previously been invalidated by use of hardware volume controls. 1913 */ 1914 static void 1915 eso_reload_master_vol(struct eso_softc *sc) 1916 { 1917 uint8_t mv; 1918 1919 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1920 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 1921 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 1922 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1923 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 1924 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 1925 /* Currently both channels are muted simultaneously; either is OK. */ 1926 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 1927 } 1928 1929 static void 1930 eso_set_gain(struct eso_softc *sc, unsigned int port) 1931 { 1932 uint8_t mixreg, tmp; 1933 1934 switch (port) { 1935 case ESO_DAC_PLAY_VOL: 1936 mixreg = ESO_MIXREG_PVR_A2; 1937 break; 1938 case ESO_MIC_PLAY_VOL: 1939 mixreg = ESO_MIXREG_PVR_MIC; 1940 break; 1941 case ESO_LINE_PLAY_VOL: 1942 mixreg = ESO_MIXREG_PVR_LINE; 1943 break; 1944 case ESO_SYNTH_PLAY_VOL: 1945 mixreg = ESO_MIXREG_PVR_SYNTH; 1946 break; 1947 case ESO_CD_PLAY_VOL: 1948 mixreg = ESO_MIXREG_PVR_CD; 1949 break; 1950 case ESO_AUXB_PLAY_VOL: 1951 mixreg = ESO_MIXREG_PVR_AUXB; 1952 break; 1953 1954 case ESO_DAC_REC_VOL: 1955 mixreg = ESO_MIXREG_RVR_A2; 1956 break; 1957 case ESO_MIC_REC_VOL: 1958 mixreg = ESO_MIXREG_RVR_MIC; 1959 break; 1960 case ESO_LINE_REC_VOL: 1961 mixreg = ESO_MIXREG_RVR_LINE; 1962 break; 1963 case ESO_SYNTH_REC_VOL: 1964 mixreg = ESO_MIXREG_RVR_SYNTH; 1965 break; 1966 case ESO_CD_REC_VOL: 1967 mixreg = ESO_MIXREG_RVR_CD; 1968 break; 1969 case ESO_AUXB_REC_VOL: 1970 mixreg = ESO_MIXREG_RVR_AUXB; 1971 break; 1972 case ESO_MONO_PLAY_VOL: 1973 mixreg = ESO_MIXREG_PVR_MONO; 1974 break; 1975 case ESO_MONO_REC_VOL: 1976 mixreg = ESO_MIXREG_RVR_MONO; 1977 break; 1978 1979 case ESO_PCSPEAKER_VOL: 1980 /* Special case - only 3-bit, mono, and reserved bits. */ 1981 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 1982 tmp &= ESO_MIXREG_PCSVR_RESV; 1983 /* Map bits 7:5 -> 2:0. */ 1984 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 1985 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 1986 return; 1987 1988 case ESO_MASTER_VOL: 1989 /* Special case - separate regs, and 6-bit precision. */ 1990 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 1991 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1992 (sc->sc_gain[port][ESO_LEFT] >> 2) | 1993 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 1994 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1995 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 1996 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 1997 return; 1998 1999 case ESO_SPATIALIZER: 2000 /* Special case - only `mono', and higher precision. */ 2001 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 2002 sc->sc_gain[port][ESO_LEFT]); 2003 return; 2004 2005 case ESO_RECORD_VOL: 2006 /* Very Special case, controller register. */ 2007 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 2008 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2009 return; 2010 2011 default: 2012 #ifdef DIAGNOSTIC 2013 panic("eso_set_gain: bad port %u", port); 2014 /* NOTREACHED */ 2015 #else 2016 return; 2017 #endif 2018 } 2019 2020 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 2021 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2022 } 2023