1 /* $NetBSD: eso.c,v 1.19 2000/06/26 04:56:24 simonb Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include "mpu.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/device.h> 42 #include <sys/proc.h> 43 44 #include <dev/pci/pcidevs.h> 45 #include <dev/pci/pcivar.h> 46 47 #include <sys/audioio.h> 48 #include <dev/audio_if.h> 49 #include <dev/midi_if.h> 50 51 #include <dev/mulaw.h> 52 #include <dev/auconv.h> 53 54 #include <dev/ic/mpuvar.h> 55 #include <dev/ic/i8237reg.h> 56 #include <dev/pci/esoreg.h> 57 #include <dev/pci/esovar.h> 58 59 #include <machine/bus.h> 60 #include <machine/intr.h> 61 62 #if defined(AUDIO_DEBUG) || defined(DEBUG) 63 #define DPRINTF(x) printf x 64 #else 65 #define DPRINTF(x) 66 #endif 67 68 struct eso_dma { 69 bus_dma_tag_t ed_dmat; 70 bus_dmamap_t ed_map; 71 caddr_t ed_addr; 72 bus_dma_segment_t ed_segs[1]; 73 int ed_nsegs; 74 size_t ed_size; 75 struct eso_dma * ed_next; 76 }; 77 78 #define KVADDR(dma) ((void *)(dma)->ed_addr) 79 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 80 81 /* Autoconfiguration interface */ 82 static int eso_match __P((struct device *, struct cfdata *, void *)); 83 static void eso_attach __P((struct device *, struct device *, void *)); 84 static void eso_defer __P((struct device *)); 85 86 struct cfattach eso_ca = { 87 sizeof (struct eso_softc), eso_match, eso_attach 88 }; 89 90 /* PCI interface */ 91 static int eso_intr __P((void *)); 92 93 /* MI audio layer interface */ 94 static int eso_open __P((void *, int)); 95 static void eso_close __P((void *)); 96 static int eso_query_encoding __P((void *, struct audio_encoding *)); 97 static int eso_set_params __P((void *, int, int, struct audio_params *, 98 struct audio_params *)); 99 static int eso_round_blocksize __P((void *, int)); 100 static int eso_halt_output __P((void *)); 101 static int eso_halt_input __P((void *)); 102 static int eso_getdev __P((void *, struct audio_device *)); 103 static int eso_set_port __P((void *, mixer_ctrl_t *)); 104 static int eso_get_port __P((void *, mixer_ctrl_t *)); 105 static int eso_query_devinfo __P((void *, mixer_devinfo_t *)); 106 static void * eso_allocm __P((void *, int, size_t, int, int)); 107 static void eso_freem __P((void *, void *, int)); 108 static size_t eso_round_buffersize __P((void *, int, size_t)); 109 static paddr_t eso_mappage __P((void *, void *, off_t, int)); 110 static int eso_get_props __P((void *)); 111 static int eso_trigger_output __P((void *, void *, void *, int, 112 void (*)(void *), void *, struct audio_params *)); 113 static int eso_trigger_input __P((void *, void *, void *, int, 114 void (*)(void *), void *, struct audio_params *)); 115 116 static struct audio_hw_if eso_hw_if = { 117 eso_open, 118 eso_close, 119 NULL, /* drain */ 120 eso_query_encoding, 121 eso_set_params, 122 eso_round_blocksize, 123 NULL, /* commit_settings */ 124 NULL, /* init_output */ 125 NULL, /* init_input */ 126 NULL, /* start_output */ 127 NULL, /* start_input */ 128 eso_halt_output, 129 eso_halt_input, 130 NULL, /* speaker_ctl */ 131 eso_getdev, 132 NULL, /* setfd */ 133 eso_set_port, 134 eso_get_port, 135 eso_query_devinfo, 136 eso_allocm, 137 eso_freem, 138 eso_round_buffersize, 139 eso_mappage, 140 eso_get_props, 141 eso_trigger_output, 142 eso_trigger_input 143 }; 144 145 static const char * const eso_rev2model[] = { 146 "ES1938", 147 "ES1946", 148 "ES1946 Revision E" 149 }; 150 151 152 /* 153 * Utility routines 154 */ 155 /* Register access etc. */ 156 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t)); 157 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t)); 158 static uint8_t eso_read_rdr __P((struct eso_softc *)); 159 static void eso_reload_master_vol __P((struct eso_softc *)); 160 static int eso_reset __P((struct eso_softc *)); 161 static void eso_set_gain __P((struct eso_softc *, unsigned int)); 162 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int)); 163 static int eso_set_recsrc __P((struct eso_softc *, unsigned int)); 164 static void eso_write_cmd __P((struct eso_softc *, uint8_t)); 165 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t)); 166 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t)); 167 /* DMA memory allocation */ 168 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t, 169 int, struct eso_dma *)); 170 static void eso_freemem __P((struct eso_dma *)); 171 172 173 static int 174 eso_match(parent, match, aux) 175 struct device *parent; 176 struct cfdata *match; 177 void *aux; 178 { 179 struct pci_attach_args *pa = aux; 180 181 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 183 return (1); 184 185 return (0); 186 } 187 188 static void 189 eso_attach(parent, self, aux) 190 struct device *parent, *self; 191 void *aux; 192 { 193 struct eso_softc *sc = (struct eso_softc *)self; 194 struct pci_attach_args *pa = aux; 195 struct audio_attach_args aa; 196 pci_intr_handle_t ih; 197 bus_addr_t vcbase; 198 const char *intrstring; 199 int idx; 200 uint8_t a2mode, mvctl; 201 202 sc->sc_revision = PCI_REVISION(pa->pa_class); 203 204 printf(": ESS Solo-1 PCI AudioDrive "); 205 if (sc->sc_revision < 206 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 207 printf("%s\n", eso_rev2model[sc->sc_revision]); 208 else 209 printf("(unknown rev. 0x%02x)\n", sc->sc_revision); 210 211 /* Map I/O registers. */ 212 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 213 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 214 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname); 215 return; 216 } 217 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 218 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 219 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname); 220 return; 221 } 222 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 223 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 224 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname); 225 /* Don't bail out yet: we can map it later, see below. */ 226 vcbase = 0; 227 sc->sc_vcsize = 0x10; /* From the data sheet. */ 228 } 229 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 230 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 231 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname); 232 return; 233 } 234 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 235 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 236 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname); 237 return; 238 } 239 240 sc->sc_dmat = pa->pa_dmat; 241 sc->sc_dmas = NULL; 242 sc->sc_dmac_configured = 0; 243 244 /* Enable bus mastering. */ 245 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 246 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 247 PCI_COMMAND_MASTER_ENABLE); 248 249 /* Reset the device; bail out upon failure. */ 250 if (eso_reset(sc) != 0) { 251 printf("%s: can't reset\n", sc->sc_dev.dv_xname); 252 return; 253 } 254 255 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 256 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 257 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 258 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 259 260 /* Enable the relevant (DMA) interrupts. */ 261 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 262 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 263 ESO_IO_IRQCTL_MPUIRQ); 264 265 /* Set up A1's sample rate generator for new-style parameters. */ 266 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 267 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 268 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 269 270 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */ 271 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 272 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 273 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 274 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 275 276 /* Set mixer regs to something reasonable, needs work. */ 277 sc->sc_recsrc = ESO_MIXREG_ERS_LINE; 278 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE; 279 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 280 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 281 int v; 282 283 switch (idx) { 284 case ESO_MIC_PLAY_VOL: 285 case ESO_LINE_PLAY_VOL: 286 case ESO_CD_PLAY_VOL: 287 case ESO_MONO_PLAY_VOL: 288 case ESO_AUXB_PLAY_VOL: 289 case ESO_DAC_REC_VOL: 290 case ESO_LINE_REC_VOL: 291 case ESO_SYNTH_REC_VOL: 292 case ESO_CD_REC_VOL: 293 case ESO_MONO_REC_VOL: 294 case ESO_AUXB_REC_VOL: 295 case ESO_SPATIALIZER: 296 v = 0; 297 break; 298 case ESO_MASTER_VOL: 299 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 300 break; 301 default: 302 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 303 break; 304 } 305 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 306 eso_set_gain(sc, idx); 307 } 308 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 309 310 /* Map and establish the interrupt. */ 311 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin, 312 pa->pa_intrline, &ih)) { 313 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 314 return; 315 } 316 intrstring = pci_intr_string(pa->pa_pc, ih); 317 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 318 if (sc->sc_ih == NULL) { 319 printf("%s: couldn't establish interrupt", 320 sc->sc_dev.dv_xname); 321 if (intrstring != NULL) 322 printf(" at %s", intrstring); 323 printf("\n"); 324 return; 325 } 326 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring); 327 328 /* 329 * Set up the DDMA Control register; a suitable I/O region has been 330 * supposedly mapped in the VC base address register. 331 * 332 * The Solo-1 has an ... interesting silicon bug that causes it to 333 * not respond to I/O space accesses to the Audio 1 DMA controller 334 * if the latter's mapping base address is aligned on a 1K boundary. 335 * As a consequence, it is quite possible for the mapping provided 336 * in the VC BAR to be useless. To work around this, we defer this 337 * part until all autoconfiguration on our parent bus is completed 338 * and then try to map it ourselves in fulfillment of the constraint. 339 * 340 * According to the register map we may write to the low 16 bits 341 * only, but experimenting has shown we're safe. 342 * -kjk 343 */ 344 if (ESO_VALID_DDMAC_BASE(vcbase)) { 345 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 346 vcbase | ESO_PCI_DDMAC_DE); 347 sc->sc_dmac_configured = 1; 348 349 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 350 sc->sc_dev.dv_xname, (unsigned long)vcbase); 351 } else { 352 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 353 sc->sc_dev.dv_xname, (unsigned long)vcbase)); 354 sc->sc_pa = *pa; 355 config_defer(self, eso_defer); 356 } 357 358 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 359 360 aa.type = AUDIODEV_TYPE_OPL; 361 aa.hwif = NULL; 362 aa.hdl = NULL; 363 (void)config_found(&sc->sc_dev, &aa, audioprint); 364 365 aa.type = AUDIODEV_TYPE_MPU; 366 aa.hwif = NULL; 367 aa.hdl = NULL; 368 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 369 if (sc->sc_mpudev != NULL) { 370 /* Unmask the MPU irq. */ 371 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 372 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 373 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 374 } 375 } 376 377 static void 378 eso_defer(self) 379 struct device *self; 380 { 381 struct eso_softc *sc = (struct eso_softc *)self; 382 struct pci_attach_args *pa = &sc->sc_pa; 383 bus_addr_t addr, start; 384 385 printf("%s: ", sc->sc_dev.dv_xname); 386 387 /* 388 * This is outright ugly, but since we must not make assumptions 389 * on the underlying allocator's behaviour it's the most straight- 390 * forward way to implement it. Note that we skip over the first 391 * 1K region, which is typically occupied by an attached ISA bus. 392 */ 393 for (start = 0x0400; start < 0xffff; start += 0x0400) { 394 if (bus_space_alloc(sc->sc_iot, 395 start + sc->sc_vcsize, start + 0x0400 - 1, 396 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 397 &sc->sc_dmac_ioh) != 0) 398 continue; 399 400 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 401 addr | ESO_PCI_DDMAC_DE); 402 sc->sc_dmac_iot = sc->sc_iot; 403 sc->sc_dmac_configured = 1; 404 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n", 405 (unsigned long)addr); 406 407 return; 408 } 409 410 printf("can't map Audio 1 DMA into I/O space\n"); 411 } 412 413 static void 414 eso_write_cmd(sc, cmd) 415 struct eso_softc *sc; 416 uint8_t cmd; 417 { 418 int i; 419 420 /* Poll for busy indicator to become clear. */ 421 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 422 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 423 & ESO_SB_RSR_BUSY) == 0) { 424 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 425 ESO_SB_WDR, cmd); 426 return; 427 } else { 428 delay(10); 429 } 430 } 431 432 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); 433 return; 434 } 435 436 /* Write to a controller register */ 437 static void 438 eso_write_ctlreg(sc, reg, val) 439 struct eso_softc *sc; 440 uint8_t reg, val; 441 { 442 443 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 444 445 eso_write_cmd(sc, reg); 446 eso_write_cmd(sc, val); 447 } 448 449 /* Read out the Read Data Register */ 450 static uint8_t 451 eso_read_rdr(sc) 452 struct eso_softc *sc; 453 { 454 int i; 455 456 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 457 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 458 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 459 return (bus_space_read_1(sc->sc_sb_iot, 460 sc->sc_sb_ioh, ESO_SB_RDR)); 461 } else { 462 delay(10); 463 } 464 } 465 466 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); 467 return (-1); 468 } 469 470 471 static uint8_t 472 eso_read_ctlreg(sc, reg) 473 struct eso_softc *sc; 474 uint8_t reg; 475 { 476 477 eso_write_cmd(sc, ESO_CMD_RCR); 478 eso_write_cmd(sc, reg); 479 return (eso_read_rdr(sc)); 480 } 481 482 static void 483 eso_write_mixreg(sc, reg, val) 484 struct eso_softc *sc; 485 uint8_t reg, val; 486 { 487 int s; 488 489 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 490 491 s = splaudio(); 492 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 493 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 494 splx(s); 495 } 496 497 static uint8_t 498 eso_read_mixreg(sc, reg) 499 struct eso_softc *sc; 500 uint8_t reg; 501 { 502 int s; 503 uint8_t val; 504 505 s = splaudio(); 506 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 507 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 508 splx(s); 509 510 return (val); 511 } 512 513 static int 514 eso_intr(hdl) 515 void *hdl; 516 { 517 struct eso_softc *sc = hdl; 518 uint8_t irqctl; 519 520 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 521 522 /* If it wasn't ours, that's all she wrote. */ 523 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 524 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 525 return (0); 526 527 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 528 /* Clear interrupt. */ 529 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 530 ESO_SB_RBSR); 531 532 if (sc->sc_rintr) 533 sc->sc_rintr(sc->sc_rarg); 534 else 535 wakeup(&sc->sc_rintr); 536 } 537 538 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 539 /* 540 * Clear the A2 IRQ latch: the cached value reflects the 541 * current DAC settings with the IRQ latch bit not set. 542 */ 543 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 544 545 if (sc->sc_pintr) 546 sc->sc_pintr(sc->sc_parg); 547 else 548 wakeup(&sc->sc_pintr); 549 } 550 551 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 552 /* Clear interrupt. */ 553 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 554 555 /* 556 * Raise a flag to cause a lazy update of the in-softc gain 557 * values the next time the software mixer is read to keep 558 * interrupt service cost low. ~0 cannot occur otherwise 559 * as the master volume has a precision of 6 bits only. 560 */ 561 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 562 } 563 564 #if NMPU > 0 565 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) 566 mpu_intr(sc->sc_mpudev); 567 #endif 568 569 return (1); 570 } 571 572 /* Perform a software reset, including DMA FIFOs. */ 573 static int 574 eso_reset(sc) 575 struct eso_softc *sc; 576 { 577 int i; 578 579 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 580 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 581 /* `Delay' suggested in the data sheet. */ 582 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 583 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 584 585 /* Wait for reset to take effect. */ 586 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 587 /* Poll for data to become available. */ 588 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 589 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 590 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 591 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 592 593 /* Activate Solo-1 extension commands. */ 594 eso_write_cmd(sc, ESO_CMD_EXTENB); 595 /* Reset mixer registers. */ 596 eso_write_mixreg(sc, ESO_MIXREG_RESET, 597 ESO_MIXREG_RESET_RESET); 598 599 return (0); 600 } else { 601 delay(1000); 602 } 603 } 604 605 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 606 return (-1); 607 } 608 609 610 /* ARGSUSED */ 611 static int 612 eso_open(hdl, flags) 613 void *hdl; 614 int flags; 615 { 616 struct eso_softc *sc = hdl; 617 618 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname)); 619 620 sc->sc_pintr = NULL; 621 sc->sc_rintr = NULL; 622 623 return (0); 624 } 625 626 static void 627 eso_close(hdl) 628 void *hdl; 629 { 630 631 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname)); 632 } 633 634 static int 635 eso_query_encoding(hdl, fp) 636 void *hdl; 637 struct audio_encoding *fp; 638 { 639 640 switch (fp->index) { 641 case 0: 642 strcpy(fp->name, AudioEulinear); 643 fp->encoding = AUDIO_ENCODING_ULINEAR; 644 fp->precision = 8; 645 fp->flags = 0; 646 break; 647 case 1: 648 strcpy(fp->name, AudioEmulaw); 649 fp->encoding = AUDIO_ENCODING_ULAW; 650 fp->precision = 8; 651 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 652 break; 653 case 2: 654 strcpy(fp->name, AudioEalaw); 655 fp->encoding = AUDIO_ENCODING_ALAW; 656 fp->precision = 8; 657 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 658 break; 659 case 3: 660 strcpy(fp->name, AudioEslinear); 661 fp->encoding = AUDIO_ENCODING_SLINEAR; 662 fp->precision = 8; 663 fp->flags = 0; 664 break; 665 case 4: 666 strcpy(fp->name, AudioEslinear_le); 667 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 668 fp->precision = 16; 669 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 670 break; 671 case 5: 672 strcpy(fp->name, AudioEulinear_le); 673 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 674 fp->precision = 16; 675 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 676 break; 677 case 6: 678 strcpy(fp->name, AudioEslinear_be); 679 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 680 fp->precision = 16; 681 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 682 break; 683 case 7: 684 strcpy(fp->name, AudioEulinear_be); 685 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 686 fp->precision = 16; 687 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 688 break; 689 default: 690 return (EINVAL); 691 } 692 693 return (0); 694 } 695 696 static int 697 eso_set_params(hdl, setmode, usemode, play, rec) 698 void *hdl; 699 int setmode, usemode; 700 struct audio_params *play, *rec; 701 { 702 struct eso_softc *sc = hdl; 703 struct audio_params *p; 704 int mode, r[2], rd[2], clk; 705 unsigned int srg, fltdiv; 706 707 for (mode = AUMODE_RECORD; mode != -1; 708 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 709 if ((setmode & mode) == 0) 710 continue; 711 712 p = (mode == AUMODE_PLAY) ? play : rec; 713 714 if (p->sample_rate < ESO_MINRATE || 715 p->sample_rate > ESO_MAXRATE || 716 (p->precision != 8 && p->precision != 16) || 717 (p->channels != 1 && p->channels != 2)) 718 return (EINVAL); 719 720 p->factor = 1; 721 p->sw_code = NULL; 722 switch (p->encoding) { 723 case AUDIO_ENCODING_SLINEAR_BE: 724 case AUDIO_ENCODING_ULINEAR_BE: 725 if (mode == AUMODE_PLAY && p->precision == 16) 726 p->sw_code = swap_bytes; 727 break; 728 case AUDIO_ENCODING_SLINEAR_LE: 729 case AUDIO_ENCODING_ULINEAR_LE: 730 if (mode == AUMODE_RECORD && p->precision == 16) 731 p->sw_code = swap_bytes; 732 break; 733 case AUDIO_ENCODING_ULAW: 734 if (mode == AUMODE_PLAY) { 735 p->factor = 2; 736 p->sw_code = mulaw_to_ulinear16_le; 737 } else { 738 p->sw_code = ulinear8_to_mulaw; 739 } 740 break; 741 case AUDIO_ENCODING_ALAW: 742 if (mode == AUMODE_PLAY) { 743 p->factor = 2; 744 p->sw_code = alaw_to_ulinear16_le; 745 } else { 746 p->sw_code = ulinear8_to_alaw; 747 } 748 break; 749 default: 750 return (EINVAL); 751 } 752 753 /* 754 * We'll compute both possible sample rate dividers and pick 755 * the one with the least error. 756 */ 757 #define ABS(x) ((x) < 0 ? -(x) : (x)) 758 r[0] = ESO_CLK0 / 759 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 760 r[1] = ESO_CLK1 / 761 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 762 763 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]); 764 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 765 766 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 767 fltdiv = 256 - 200279L / r[clk]; 768 769 /* Update to reflect the possibly inexact rate. */ 770 p->sample_rate = r[clk]; 771 772 if (mode == AUMODE_RECORD) { 773 /* Audio 1 */ 774 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 775 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 776 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 777 } else { 778 /* Audio 2 */ 779 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 780 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 781 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 782 } 783 #undef ABS 784 785 } 786 787 return (0); 788 } 789 790 static int 791 eso_round_blocksize(hdl, blk) 792 void *hdl; 793 int blk; 794 { 795 796 return (blk & -32); /* keep good alignment; at least 16 req'd */ 797 } 798 799 static int 800 eso_halt_output(hdl) 801 void *hdl; 802 { 803 struct eso_softc *sc = hdl; 804 int error, s; 805 806 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); 807 808 /* 809 * Disable auto-initialize DMA, allowing the FIFO to drain and then 810 * stop. The interrupt callback pointer is cleared at this 811 * point so that an outstanding FIFO interrupt for the remaining data 812 * will be acknowledged without further processing. 813 * 814 * This does not immediately `abort' an operation in progress (c.f. 815 * audio(9)) but is the method to leave the FIFO behind in a clean 816 * state with the least hair. (Besides, that item needs to be 817 * rephrased for trigger_*()-based DMA environments.) 818 */ 819 s = splaudio(); 820 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 821 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 822 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 823 ESO_IO_A2DMAM_DMAENB); 824 825 sc->sc_pintr = NULL; 826 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 827 splx(s); 828 829 /* Shut down DMA completely. */ 830 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 831 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 832 833 return (error == EWOULDBLOCK ? 0 : error); 834 } 835 836 static int 837 eso_halt_input(hdl) 838 void *hdl; 839 { 840 struct eso_softc *sc = hdl; 841 int error, s; 842 843 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); 844 845 /* Just like eso_halt_output(), but for Audio 1. */ 846 s = splaudio(); 847 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 848 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 849 ESO_CTLREG_A1C2_DMAENB); 850 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 851 DMA37MD_WRITE | DMA37MD_DEMAND); 852 853 sc->sc_rintr = NULL; 854 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 855 splx(s); 856 857 /* Shut down DMA completely. */ 858 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 859 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 860 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 861 ESO_DMAC_MASK_MASK); 862 863 return (error == EWOULDBLOCK ? 0 : error); 864 } 865 866 static int 867 eso_getdev(hdl, retp) 868 void *hdl; 869 struct audio_device *retp; 870 { 871 struct eso_softc *sc = hdl; 872 873 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 874 snprintf(retp->version, sizeof (retp->version), "0x%02x", 875 sc->sc_revision); 876 if (sc->sc_revision < 877 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 878 strncpy(retp->config, eso_rev2model[sc->sc_revision], 879 sizeof (retp->config)); 880 else 881 strncpy(retp->config, "unknown", sizeof (retp->config)); 882 883 return (0); 884 } 885 886 static int 887 eso_set_port(hdl, cp) 888 void *hdl; 889 mixer_ctrl_t *cp; 890 { 891 struct eso_softc *sc = hdl; 892 unsigned int lgain, rgain; 893 uint8_t tmp; 894 895 switch (cp->dev) { 896 case ESO_DAC_PLAY_VOL: 897 case ESO_MIC_PLAY_VOL: 898 case ESO_LINE_PLAY_VOL: 899 case ESO_SYNTH_PLAY_VOL: 900 case ESO_CD_PLAY_VOL: 901 case ESO_AUXB_PLAY_VOL: 902 case ESO_RECORD_VOL: 903 case ESO_DAC_REC_VOL: 904 case ESO_MIC_REC_VOL: 905 case ESO_LINE_REC_VOL: 906 case ESO_SYNTH_REC_VOL: 907 case ESO_CD_REC_VOL: 908 case ESO_AUXB_REC_VOL: 909 if (cp->type != AUDIO_MIXER_VALUE) 910 return (EINVAL); 911 912 /* 913 * Stereo-capable mixer ports: if we get a single-channel 914 * gain value passed in, then we duplicate it to both left 915 * and right channels. 916 */ 917 switch (cp->un.value.num_channels) { 918 case 1: 919 lgain = rgain = ESO_GAIN_TO_4BIT( 920 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 921 break; 922 case 2: 923 lgain = ESO_GAIN_TO_4BIT( 924 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 925 rgain = ESO_GAIN_TO_4BIT( 926 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 927 break; 928 default: 929 return (EINVAL); 930 } 931 932 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 933 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 934 eso_set_gain(sc, cp->dev); 935 break; 936 937 case ESO_MASTER_VOL: 938 if (cp->type != AUDIO_MIXER_VALUE) 939 return (EINVAL); 940 941 /* Like above, but a precision of 6 bits. */ 942 switch (cp->un.value.num_channels) { 943 case 1: 944 lgain = rgain = ESO_GAIN_TO_6BIT( 945 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 946 break; 947 case 2: 948 lgain = ESO_GAIN_TO_6BIT( 949 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 950 rgain = ESO_GAIN_TO_6BIT( 951 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 952 break; 953 default: 954 return (EINVAL); 955 } 956 957 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 958 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 959 eso_set_gain(sc, cp->dev); 960 break; 961 962 case ESO_SPATIALIZER: 963 if (cp->type != AUDIO_MIXER_VALUE || 964 cp->un.value.num_channels != 1) 965 return (EINVAL); 966 967 sc->sc_gain[cp->dev][ESO_LEFT] = 968 sc->sc_gain[cp->dev][ESO_RIGHT] = 969 ESO_GAIN_TO_6BIT( 970 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 971 eso_set_gain(sc, cp->dev); 972 break; 973 974 case ESO_MONO_PLAY_VOL: 975 case ESO_MONO_REC_VOL: 976 if (cp->type != AUDIO_MIXER_VALUE || 977 cp->un.value.num_channels != 1) 978 return (EINVAL); 979 980 sc->sc_gain[cp->dev][ESO_LEFT] = 981 sc->sc_gain[cp->dev][ESO_RIGHT] = 982 ESO_GAIN_TO_4BIT( 983 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 984 eso_set_gain(sc, cp->dev); 985 break; 986 987 case ESO_PCSPEAKER_VOL: 988 if (cp->type != AUDIO_MIXER_VALUE || 989 cp->un.value.num_channels != 1) 990 return (EINVAL); 991 992 sc->sc_gain[cp->dev][ESO_LEFT] = 993 sc->sc_gain[cp->dev][ESO_RIGHT] = 994 ESO_GAIN_TO_3BIT( 995 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 996 eso_set_gain(sc, cp->dev); 997 break; 998 999 case ESO_SPATIALIZER_ENABLE: 1000 if (cp->type != AUDIO_MIXER_ENUM) 1001 return (EINVAL); 1002 1003 sc->sc_spatializer = (cp->un.ord != 0); 1004 1005 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1006 if (sc->sc_spatializer) 1007 tmp |= ESO_MIXREG_SPAT_ENB; 1008 else 1009 tmp &= ~ESO_MIXREG_SPAT_ENB; 1010 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1011 tmp | ESO_MIXREG_SPAT_RSTREL); 1012 break; 1013 1014 case ESO_MASTER_MUTE: 1015 if (cp->type != AUDIO_MIXER_ENUM) 1016 return (EINVAL); 1017 1018 sc->sc_mvmute = (cp->un.ord != 0); 1019 1020 if (sc->sc_mvmute) { 1021 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1022 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1023 ESO_MIXREG_LMVM_MUTE); 1024 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1025 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1026 ESO_MIXREG_RMVM_MUTE); 1027 } else { 1028 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1029 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1030 ~ESO_MIXREG_LMVM_MUTE); 1031 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1032 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1033 ~ESO_MIXREG_RMVM_MUTE); 1034 } 1035 break; 1036 1037 case ESO_MONOOUT_SOURCE: 1038 if (cp->type != AUDIO_MIXER_ENUM) 1039 return (EINVAL); 1040 1041 return (eso_set_monooutsrc(sc, cp->un.ord)); 1042 1043 case ESO_RECORD_MONITOR: 1044 if (cp->type != AUDIO_MIXER_ENUM) 1045 return (EINVAL); 1046 1047 sc->sc_recmon = (cp->un.ord != 0); 1048 1049 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1050 if (sc->sc_recmon) 1051 tmp |= ESO_CTLREG_ACTL_RECMON; 1052 else 1053 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1054 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1055 break; 1056 1057 case ESO_RECORD_SOURCE: 1058 if (cp->type != AUDIO_MIXER_ENUM) 1059 return (EINVAL); 1060 1061 return (eso_set_recsrc(sc, cp->un.ord)); 1062 1063 case ESO_MIC_PREAMP: 1064 if (cp->type != AUDIO_MIXER_ENUM) 1065 return (EINVAL); 1066 1067 sc->sc_preamp = (cp->un.ord != 0); 1068 1069 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1070 tmp &= ~ESO_MIXREG_MPM_RESV0; 1071 if (sc->sc_preamp) 1072 tmp |= ESO_MIXREG_MPM_PREAMP; 1073 else 1074 tmp &= ~ESO_MIXREG_MPM_PREAMP; 1075 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp); 1076 break; 1077 1078 default: 1079 return (EINVAL); 1080 } 1081 1082 return (0); 1083 } 1084 1085 static int 1086 eso_get_port(hdl, cp) 1087 void *hdl; 1088 mixer_ctrl_t *cp; 1089 { 1090 struct eso_softc *sc = hdl; 1091 1092 switch (cp->dev) { 1093 case ESO_MASTER_VOL: 1094 /* Reload from mixer after hardware volume control use. */ 1095 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1096 eso_reload_master_vol(sc); 1097 /* FALLTHROUGH */ 1098 case ESO_DAC_PLAY_VOL: 1099 case ESO_MIC_PLAY_VOL: 1100 case ESO_LINE_PLAY_VOL: 1101 case ESO_SYNTH_PLAY_VOL: 1102 case ESO_CD_PLAY_VOL: 1103 case ESO_AUXB_PLAY_VOL: 1104 case ESO_RECORD_VOL: 1105 case ESO_DAC_REC_VOL: 1106 case ESO_MIC_REC_VOL: 1107 case ESO_LINE_REC_VOL: 1108 case ESO_SYNTH_REC_VOL: 1109 case ESO_CD_REC_VOL: 1110 case ESO_AUXB_REC_VOL: 1111 /* 1112 * Stereo-capable ports: if a single-channel query is made, 1113 * just return the left channel's value (since single-channel 1114 * settings themselves are applied to both channels). 1115 */ 1116 switch (cp->un.value.num_channels) { 1117 case 1: 1118 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1119 sc->sc_gain[cp->dev][ESO_LEFT]; 1120 break; 1121 case 2: 1122 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1123 sc->sc_gain[cp->dev][ESO_LEFT]; 1124 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1125 sc->sc_gain[cp->dev][ESO_RIGHT]; 1126 break; 1127 default: 1128 return (EINVAL); 1129 } 1130 break; 1131 1132 case ESO_MONO_PLAY_VOL: 1133 case ESO_PCSPEAKER_VOL: 1134 case ESO_MONO_REC_VOL: 1135 case ESO_SPATIALIZER: 1136 if (cp->un.value.num_channels != 1) 1137 return (EINVAL); 1138 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1139 sc->sc_gain[cp->dev][ESO_LEFT]; 1140 break; 1141 1142 case ESO_RECORD_MONITOR: 1143 cp->un.ord = sc->sc_recmon; 1144 break; 1145 1146 case ESO_RECORD_SOURCE: 1147 cp->un.ord = sc->sc_recsrc; 1148 break; 1149 1150 case ESO_MONOOUT_SOURCE: 1151 cp->un.ord = sc->sc_monooutsrc; 1152 break; 1153 1154 case ESO_SPATIALIZER_ENABLE: 1155 cp->un.ord = sc->sc_spatializer; 1156 break; 1157 1158 case ESO_MIC_PREAMP: 1159 cp->un.ord = sc->sc_preamp; 1160 break; 1161 1162 case ESO_MASTER_MUTE: 1163 /* Reload from mixer after hardware volume control use. */ 1164 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1165 eso_reload_master_vol(sc); 1166 cp->un.ord = sc->sc_mvmute; 1167 break; 1168 1169 default: 1170 return (EINVAL); 1171 } 1172 1173 1174 return (0); 1175 1176 } 1177 1178 static int 1179 eso_query_devinfo(hdl, dip) 1180 void *hdl; 1181 mixer_devinfo_t *dip; 1182 { 1183 1184 switch (dip->index) { 1185 case ESO_DAC_PLAY_VOL: 1186 dip->mixer_class = ESO_INPUT_CLASS; 1187 dip->next = dip->prev = AUDIO_MIXER_LAST; 1188 strcpy(dip->label.name, AudioNdac); 1189 dip->type = AUDIO_MIXER_VALUE; 1190 dip->un.v.num_channels = 2; 1191 strcpy(dip->un.v.units.name, AudioNvolume); 1192 break; 1193 case ESO_MIC_PLAY_VOL: 1194 dip->mixer_class = ESO_INPUT_CLASS; 1195 dip->next = dip->prev = AUDIO_MIXER_LAST; 1196 strcpy(dip->label.name, AudioNmicrophone); 1197 dip->type = AUDIO_MIXER_VALUE; 1198 dip->un.v.num_channels = 2; 1199 strcpy(dip->un.v.units.name, AudioNvolume); 1200 break; 1201 case ESO_LINE_PLAY_VOL: 1202 dip->mixer_class = ESO_INPUT_CLASS; 1203 dip->next = dip->prev = AUDIO_MIXER_LAST; 1204 strcpy(dip->label.name, AudioNline); 1205 dip->type = AUDIO_MIXER_VALUE; 1206 dip->un.v.num_channels = 2; 1207 strcpy(dip->un.v.units.name, AudioNvolume); 1208 break; 1209 case ESO_SYNTH_PLAY_VOL: 1210 dip->mixer_class = ESO_INPUT_CLASS; 1211 dip->next = dip->prev = AUDIO_MIXER_LAST; 1212 strcpy(dip->label.name, AudioNfmsynth); 1213 dip->type = AUDIO_MIXER_VALUE; 1214 dip->un.v.num_channels = 2; 1215 strcpy(dip->un.v.units.name, AudioNvolume); 1216 break; 1217 case ESO_MONO_PLAY_VOL: 1218 dip->mixer_class = ESO_INPUT_CLASS; 1219 dip->next = dip->prev = AUDIO_MIXER_LAST; 1220 strcpy(dip->label.name, "mono_in"); 1221 dip->type = AUDIO_MIXER_VALUE; 1222 dip->un.v.num_channels = 1; 1223 strcpy(dip->un.v.units.name, AudioNvolume); 1224 break; 1225 case ESO_CD_PLAY_VOL: 1226 dip->mixer_class = ESO_INPUT_CLASS; 1227 dip->next = dip->prev = AUDIO_MIXER_LAST; 1228 strcpy(dip->label.name, AudioNcd); 1229 dip->type = AUDIO_MIXER_VALUE; 1230 dip->un.v.num_channels = 2; 1231 strcpy(dip->un.v.units.name, AudioNvolume); 1232 break; 1233 case ESO_AUXB_PLAY_VOL: 1234 dip->mixer_class = ESO_INPUT_CLASS; 1235 dip->next = dip->prev = AUDIO_MIXER_LAST; 1236 strcpy(dip->label.name, "auxb"); 1237 dip->type = AUDIO_MIXER_VALUE; 1238 dip->un.v.num_channels = 2; 1239 strcpy(dip->un.v.units.name, AudioNvolume); 1240 break; 1241 1242 case ESO_MIC_PREAMP: 1243 dip->mixer_class = ESO_MICROPHONE_CLASS; 1244 dip->next = dip->prev = AUDIO_MIXER_LAST; 1245 strcpy(dip->label.name, AudioNpreamp); 1246 dip->type = AUDIO_MIXER_ENUM; 1247 dip->un.e.num_mem = 2; 1248 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1249 dip->un.e.member[0].ord = 0; 1250 strcpy(dip->un.e.member[1].label.name, AudioNon); 1251 dip->un.e.member[1].ord = 1; 1252 break; 1253 case ESO_MICROPHONE_CLASS: 1254 dip->mixer_class = ESO_MICROPHONE_CLASS; 1255 dip->next = dip->prev = AUDIO_MIXER_LAST; 1256 strcpy(dip->label.name, AudioNmicrophone); 1257 dip->type = AUDIO_MIXER_CLASS; 1258 break; 1259 1260 case ESO_INPUT_CLASS: 1261 dip->mixer_class = ESO_INPUT_CLASS; 1262 dip->next = dip->prev = AUDIO_MIXER_LAST; 1263 strcpy(dip->label.name, AudioCinputs); 1264 dip->type = AUDIO_MIXER_CLASS; 1265 break; 1266 1267 case ESO_MASTER_VOL: 1268 dip->mixer_class = ESO_OUTPUT_CLASS; 1269 dip->prev = AUDIO_MIXER_LAST; 1270 dip->next = ESO_MASTER_MUTE; 1271 strcpy(dip->label.name, AudioNmaster); 1272 dip->type = AUDIO_MIXER_VALUE; 1273 dip->un.v.num_channels = 2; 1274 strcpy(dip->un.v.units.name, AudioNvolume); 1275 break; 1276 case ESO_MASTER_MUTE: 1277 dip->mixer_class = ESO_OUTPUT_CLASS; 1278 dip->prev = ESO_MASTER_VOL; 1279 dip->next = AUDIO_MIXER_LAST; 1280 strcpy(dip->label.name, AudioNmute); 1281 dip->type = AUDIO_MIXER_ENUM; 1282 dip->un.e.num_mem = 2; 1283 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1284 dip->un.e.member[0].ord = 0; 1285 strcpy(dip->un.e.member[1].label.name, AudioNon); 1286 dip->un.e.member[1].ord = 1; 1287 break; 1288 1289 case ESO_PCSPEAKER_VOL: 1290 dip->mixer_class = ESO_OUTPUT_CLASS; 1291 dip->next = dip->prev = AUDIO_MIXER_LAST; 1292 strcpy(dip->label.name, "pc_speaker"); 1293 dip->type = AUDIO_MIXER_VALUE; 1294 dip->un.v.num_channels = 1; 1295 strcpy(dip->un.v.units.name, AudioNvolume); 1296 break; 1297 case ESO_MONOOUT_SOURCE: 1298 dip->mixer_class = ESO_OUTPUT_CLASS; 1299 dip->next = dip->prev = AUDIO_MIXER_LAST; 1300 strcpy(dip->label.name, "mono_out"); 1301 dip->type = AUDIO_MIXER_ENUM; 1302 dip->un.e.num_mem = 3; 1303 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1304 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1305 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1306 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1307 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1308 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1309 break; 1310 case ESO_SPATIALIZER: 1311 dip->mixer_class = ESO_OUTPUT_CLASS; 1312 dip->prev = AUDIO_MIXER_LAST; 1313 dip->next = ESO_SPATIALIZER_ENABLE; 1314 strcpy(dip->label.name, AudioNspatial); 1315 dip->type = AUDIO_MIXER_VALUE; 1316 dip->un.v.num_channels = 1; 1317 strcpy(dip->un.v.units.name, "level"); 1318 break; 1319 case ESO_SPATIALIZER_ENABLE: 1320 dip->mixer_class = ESO_OUTPUT_CLASS; 1321 dip->prev = ESO_SPATIALIZER; 1322 dip->next = AUDIO_MIXER_LAST; 1323 strcpy(dip->label.name, "enable"); 1324 dip->type = AUDIO_MIXER_ENUM; 1325 dip->un.e.num_mem = 2; 1326 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1327 dip->un.e.member[0].ord = 0; 1328 strcpy(dip->un.e.member[1].label.name, AudioNon); 1329 dip->un.e.member[1].ord = 1; 1330 break; 1331 1332 case ESO_OUTPUT_CLASS: 1333 dip->mixer_class = ESO_OUTPUT_CLASS; 1334 dip->next = dip->prev = AUDIO_MIXER_LAST; 1335 strcpy(dip->label.name, AudioCoutputs); 1336 dip->type = AUDIO_MIXER_CLASS; 1337 break; 1338 1339 case ESO_RECORD_MONITOR: 1340 dip->mixer_class = ESO_MONITOR_CLASS; 1341 dip->next = dip->prev = AUDIO_MIXER_LAST; 1342 strcpy(dip->label.name, AudioNmute); 1343 dip->type = AUDIO_MIXER_ENUM; 1344 dip->un.e.num_mem = 2; 1345 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1346 dip->un.e.member[0].ord = 0; 1347 strcpy(dip->un.e.member[1].label.name, AudioNon); 1348 dip->un.e.member[1].ord = 1; 1349 break; 1350 case ESO_MONITOR_CLASS: 1351 dip->mixer_class = ESO_MONITOR_CLASS; 1352 dip->next = dip->prev = AUDIO_MIXER_LAST; 1353 strcpy(dip->label.name, AudioCmonitor); 1354 dip->type = AUDIO_MIXER_CLASS; 1355 break; 1356 1357 case ESO_RECORD_VOL: 1358 dip->mixer_class = ESO_RECORD_CLASS; 1359 dip->next = dip->prev = AUDIO_MIXER_LAST; 1360 strcpy(dip->label.name, AudioNrecord); 1361 dip->type = AUDIO_MIXER_VALUE; 1362 strcpy(dip->un.v.units.name, AudioNvolume); 1363 break; 1364 case ESO_RECORD_SOURCE: 1365 dip->mixer_class = ESO_RECORD_CLASS; 1366 dip->next = dip->prev = AUDIO_MIXER_LAST; 1367 strcpy(dip->label.name, AudioNsource); 1368 dip->type = AUDIO_MIXER_ENUM; 1369 dip->un.e.num_mem = 4; 1370 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1371 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1372 strcpy(dip->un.e.member[1].label.name, AudioNline); 1373 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1374 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1375 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1376 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1377 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1378 break; 1379 case ESO_DAC_REC_VOL: 1380 dip->mixer_class = ESO_RECORD_CLASS; 1381 dip->next = dip->prev = AUDIO_MIXER_LAST; 1382 strcpy(dip->label.name, AudioNdac); 1383 dip->type = AUDIO_MIXER_VALUE; 1384 dip->un.v.num_channels = 2; 1385 strcpy(dip->un.v.units.name, AudioNvolume); 1386 break; 1387 case ESO_MIC_REC_VOL: 1388 dip->mixer_class = ESO_RECORD_CLASS; 1389 dip->next = dip->prev = AUDIO_MIXER_LAST; 1390 strcpy(dip->label.name, AudioNmicrophone); 1391 dip->type = AUDIO_MIXER_VALUE; 1392 dip->un.v.num_channels = 2; 1393 strcpy(dip->un.v.units.name, AudioNvolume); 1394 break; 1395 case ESO_LINE_REC_VOL: 1396 dip->mixer_class = ESO_RECORD_CLASS; 1397 dip->next = dip->prev = AUDIO_MIXER_LAST; 1398 strcpy(dip->label.name, AudioNline); 1399 dip->type = AUDIO_MIXER_VALUE; 1400 dip->un.v.num_channels = 2; 1401 strcpy(dip->un.v.units.name, AudioNvolume); 1402 break; 1403 case ESO_SYNTH_REC_VOL: 1404 dip->mixer_class = ESO_RECORD_CLASS; 1405 dip->next = dip->prev = AUDIO_MIXER_LAST; 1406 strcpy(dip->label.name, AudioNfmsynth); 1407 dip->type = AUDIO_MIXER_VALUE; 1408 dip->un.v.num_channels = 2; 1409 strcpy(dip->un.v.units.name, AudioNvolume); 1410 break; 1411 case ESO_MONO_REC_VOL: 1412 dip->mixer_class = ESO_RECORD_CLASS; 1413 dip->next = dip->prev = AUDIO_MIXER_LAST; 1414 strcpy(dip->label.name, "mono_in"); 1415 dip->type = AUDIO_MIXER_VALUE; 1416 dip->un.v.num_channels = 1; /* No lies */ 1417 strcpy(dip->un.v.units.name, AudioNvolume); 1418 break; 1419 case ESO_CD_REC_VOL: 1420 dip->mixer_class = ESO_RECORD_CLASS; 1421 dip->next = dip->prev = AUDIO_MIXER_LAST; 1422 strcpy(dip->label.name, AudioNcd); 1423 dip->type = AUDIO_MIXER_VALUE; 1424 dip->un.v.num_channels = 2; 1425 strcpy(dip->un.v.units.name, AudioNvolume); 1426 break; 1427 case ESO_AUXB_REC_VOL: 1428 dip->mixer_class = ESO_RECORD_CLASS; 1429 dip->next = dip->prev = AUDIO_MIXER_LAST; 1430 strcpy(dip->label.name, "auxb"); 1431 dip->type = AUDIO_MIXER_VALUE; 1432 dip->un.v.num_channels = 2; 1433 strcpy(dip->un.v.units.name, AudioNvolume); 1434 break; 1435 case ESO_RECORD_CLASS: 1436 dip->mixer_class = ESO_RECORD_CLASS; 1437 dip->next = dip->prev = AUDIO_MIXER_LAST; 1438 strcpy(dip->label.name, AudioCrecord); 1439 dip->type = AUDIO_MIXER_CLASS; 1440 break; 1441 1442 default: 1443 return (ENXIO); 1444 } 1445 1446 return (0); 1447 } 1448 1449 static int 1450 eso_allocmem(sc, size, align, boundary, flags, ed) 1451 struct eso_softc *sc; 1452 size_t size; 1453 size_t align; 1454 size_t boundary; 1455 int flags; 1456 struct eso_dma *ed; 1457 { 1458 int error, wait; 1459 1460 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1461 ed->ed_size = size; 1462 1463 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1464 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1465 &ed->ed_nsegs, wait); 1466 if (error) 1467 goto out; 1468 1469 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1470 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT); 1471 if (error) 1472 goto free; 1473 1474 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1475 wait, &ed->ed_map); 1476 if (error) 1477 goto unmap; 1478 1479 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr, 1480 ed->ed_size, NULL, wait); 1481 if (error) 1482 goto destroy; 1483 1484 return (0); 1485 1486 destroy: 1487 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1488 unmap: 1489 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1490 free: 1491 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1492 out: 1493 return (error); 1494 } 1495 1496 static void 1497 eso_freemem(ed) 1498 struct eso_dma *ed; 1499 { 1500 1501 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1502 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1503 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1504 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1505 } 1506 1507 static void * 1508 eso_allocm(hdl, direction, size, type, flags) 1509 void *hdl; 1510 int direction; 1511 size_t size; 1512 int type, flags; 1513 { 1514 struct eso_softc *sc = hdl; 1515 struct eso_dma *ed; 1516 size_t boundary; 1517 int error; 1518 1519 if ((ed = malloc(size, type, flags)) == NULL) 1520 return (NULL); 1521 1522 /* 1523 * Apparently the Audio 1 DMA controller's current address 1524 * register can't roll over a 64K address boundary, so we have to 1525 * take care of that ourselves. The second channel DMA controller 1526 * doesn't have that restriction, however. 1527 */ 1528 if (direction == AUMODE_RECORD) 1529 boundary = 0x10000; 1530 else 1531 boundary = 0; 1532 1533 #ifdef alpha 1534 /* 1535 * XXX For Audio 1, which implements the 24 low address bits only, 1536 * XXX force allocation through the (ISA) SGMAP. 1537 */ 1538 if (direction == AUMODE_RECORD) 1539 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1540 else 1541 #endif 1542 ed->ed_dmat = sc->sc_dmat; 1543 1544 error = eso_allocmem(sc, size, 32, boundary, flags, ed); 1545 if (error) { 1546 free(ed, type); 1547 return (NULL); 1548 } 1549 ed->ed_next = sc->sc_dmas; 1550 sc->sc_dmas = ed; 1551 1552 return (KVADDR(ed)); 1553 } 1554 1555 static void 1556 eso_freem(hdl, addr, type) 1557 void *hdl; 1558 void *addr; 1559 int type; 1560 { 1561 struct eso_softc *sc = hdl; 1562 struct eso_dma *p, **pp; 1563 1564 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) { 1565 if (KVADDR(p) == addr) { 1566 eso_freemem(p); 1567 *pp = p->ed_next; 1568 free(p, type); 1569 return; 1570 } 1571 } 1572 } 1573 1574 static size_t 1575 eso_round_buffersize(hdl, direction, bufsize) 1576 void *hdl; 1577 int direction; 1578 size_t bufsize; 1579 { 1580 size_t maxsize; 1581 1582 /* 1583 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1584 * bytes. This is because IO_A2DMAC is a two byte value 1585 * indicating the literal byte count, and the 4 least significant 1586 * bits are read-only. Zero is not used as a special case for 1587 * 0x10000. 1588 * 1589 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1590 * be represented. 1591 */ 1592 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1593 1594 if (bufsize > maxsize) 1595 bufsize = maxsize; 1596 1597 return (bufsize); 1598 } 1599 1600 static paddr_t 1601 eso_mappage(hdl, addr, offs, prot) 1602 void *hdl; 1603 void *addr; 1604 off_t offs; 1605 int prot; 1606 { 1607 struct eso_softc *sc = hdl; 1608 struct eso_dma *ed; 1609 1610 if (offs < 0) 1611 return (-1); 1612 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr; 1613 ed = ed->ed_next) 1614 ; 1615 if (ed == NULL) 1616 return (-1); 1617 1618 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1619 offs, prot, BUS_DMA_WAITOK)); 1620 } 1621 1622 /* ARGSUSED */ 1623 static int 1624 eso_get_props(hdl) 1625 void *hdl; 1626 { 1627 1628 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1629 AUDIO_PROP_FULLDUPLEX); 1630 } 1631 1632 static int 1633 eso_trigger_output(hdl, start, end, blksize, intr, arg, param) 1634 void *hdl; 1635 void *start, *end; 1636 int blksize; 1637 void (*intr) __P((void *)); 1638 void *arg; 1639 struct audio_params *param; 1640 { 1641 struct eso_softc *sc = hdl; 1642 struct eso_dma *ed; 1643 uint8_t a2c1; 1644 1645 DPRINTF(( 1646 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1647 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1648 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1649 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1650 param->precision, param->channels, param->sw_code, param->factor)); 1651 1652 /* Find DMA buffer. */ 1653 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1654 ed = ed->ed_next) 1655 ; 1656 if (ed == NULL) { 1657 printf("%s: trigger_output: bad addr %p\n", 1658 sc->sc_dev.dv_xname, start); 1659 return (EINVAL); 1660 } 1661 1662 sc->sc_pintr = intr; 1663 sc->sc_parg = arg; 1664 1665 /* Compute drain timeout. */ 1666 sc->sc_pdrain = (blksize * NBBY * hz) / 1667 (param->sample_rate * param->channels * 1668 param->precision * param->factor) + 2; /* slop */ 1669 1670 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1671 blksize = -(blksize >> 1); 1672 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1673 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1674 1675 /* Update DAC to reflect DMA count and audio parameters. */ 1676 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1677 if (param->precision * param->factor == 16) 1678 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1679 else 1680 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1681 if (param->channels == 2) 1682 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1683 else 1684 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1685 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1686 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1687 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1688 else 1689 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1690 /* Unmask IRQ. */ 1691 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1692 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1693 1694 /* Set up DMA controller. */ 1695 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1696 DMAADDR(ed)); 1697 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1698 (uint8_t *)end - (uint8_t *)start); 1699 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1700 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1701 1702 /* Start DMA. */ 1703 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1704 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1705 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1706 ESO_MIXREG_A2C1_AUTO; 1707 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1708 1709 return (0); 1710 } 1711 1712 static int 1713 eso_trigger_input(hdl, start, end, blksize, intr, arg, param) 1714 void *hdl; 1715 void *start, *end; 1716 int blksize; 1717 void (*intr) __P((void *)); 1718 void *arg; 1719 struct audio_params *param; 1720 { 1721 struct eso_softc *sc = hdl; 1722 struct eso_dma *ed; 1723 uint8_t actl, a1c1; 1724 1725 DPRINTF(( 1726 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1727 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1728 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1729 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1730 param->precision, param->channels, param->sw_code, param->factor)); 1731 1732 /* 1733 * If we failed to configure the Audio 1 DMA controller, bail here 1734 * while retaining availability of the DAC direction (in Audio 2). 1735 */ 1736 if (!sc->sc_dmac_configured) 1737 return (EIO); 1738 1739 /* Find DMA buffer. */ 1740 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1741 ed = ed->ed_next) 1742 ; 1743 if (ed == NULL) { 1744 printf("%s: trigger_output: bad addr %p\n", 1745 sc->sc_dev.dv_xname, start); 1746 return (EINVAL); 1747 } 1748 1749 sc->sc_rintr = intr; 1750 sc->sc_rarg = arg; 1751 1752 /* Compute drain timeout. */ 1753 sc->sc_rdrain = (blksize * NBBY * hz) / 1754 (param->sample_rate * param->channels * 1755 param->precision * param->factor) + 2; /* slop */ 1756 1757 /* Set up ADC DMA converter parameters. */ 1758 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1759 if (param->channels == 2) { 1760 actl &= ~ESO_CTLREG_ACTL_MONO; 1761 actl |= ESO_CTLREG_ACTL_STEREO; 1762 } else { 1763 actl &= ~ESO_CTLREG_ACTL_STEREO; 1764 actl |= ESO_CTLREG_ACTL_MONO; 1765 } 1766 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1767 1768 /* Set up Transfer Type: maybe move to attach time? */ 1769 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1770 1771 /* DMA transfer count reload using 2's complement. */ 1772 blksize = -blksize; 1773 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1774 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1775 1776 /* Set up and enable Audio 1 DMA FIFO. */ 1777 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1778 if (param->precision * param->factor == 16) 1779 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1780 if (param->channels == 2) 1781 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1782 else 1783 a1c1 |= ESO_CTLREG_A1C1_MONO; 1784 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1785 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1786 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1787 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1788 1789 /* Set up ADC IRQ/DRQ parameters. */ 1790 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1791 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1792 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1793 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1794 1795 /* Set up and enable DMA controller. */ 1796 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1797 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1798 ESO_DMAC_MASK_MASK); 1799 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1800 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1801 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1802 DMAADDR(ed)); 1803 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1804 (uint8_t *)end - (uint8_t *)start - 1); 1805 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1806 1807 /* Start DMA. */ 1808 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1809 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1810 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1811 1812 return (0); 1813 } 1814 1815 static int 1816 eso_set_monooutsrc(sc, monooutsrc) 1817 struct eso_softc *sc; 1818 unsigned int monooutsrc; 1819 { 1820 mixer_devinfo_t di; 1821 int i; 1822 uint8_t mpm; 1823 1824 di.index = ESO_MONOOUT_SOURCE; 1825 if (eso_query_devinfo(sc, &di) != 0) 1826 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1827 1828 for (i = 0; i < di.un.e.num_mem; i++) { 1829 if (monooutsrc == di.un.e.member[i].ord) { 1830 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1831 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1832 mpm |= monooutsrc; 1833 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1834 sc->sc_monooutsrc = monooutsrc; 1835 return (0); 1836 } 1837 } 1838 1839 return (EINVAL); 1840 } 1841 1842 static int 1843 eso_set_recsrc(sc, recsrc) 1844 struct eso_softc *sc; 1845 unsigned int recsrc; 1846 { 1847 mixer_devinfo_t di; 1848 int i; 1849 1850 di.index = ESO_RECORD_SOURCE; 1851 if (eso_query_devinfo(sc, &di) != 0) 1852 panic("eso_set_recsrc: eso_query_devinfo failed"); 1853 1854 for (i = 0; i < di.un.e.num_mem; i++) { 1855 if (recsrc == di.un.e.member[i].ord) { 1856 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1857 sc->sc_recsrc = recsrc; 1858 return (0); 1859 } 1860 } 1861 1862 return (EINVAL); 1863 } 1864 1865 /* 1866 * Reload Master Volume and Mute values in softc from mixer; used when 1867 * those have previously been invalidated by use of hardware volume controls. 1868 */ 1869 static void 1870 eso_reload_master_vol(sc) 1871 struct eso_softc *sc; 1872 { 1873 uint8_t mv; 1874 1875 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1876 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 1877 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 1878 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1879 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 1880 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 1881 /* Currently both channels are muted simultaneously; either is OK. */ 1882 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 1883 } 1884 1885 static void 1886 eso_set_gain(sc, port) 1887 struct eso_softc *sc; 1888 unsigned int port; 1889 { 1890 uint8_t mixreg, tmp; 1891 1892 switch (port) { 1893 case ESO_DAC_PLAY_VOL: 1894 mixreg = ESO_MIXREG_PVR_A2; 1895 break; 1896 case ESO_MIC_PLAY_VOL: 1897 mixreg = ESO_MIXREG_PVR_MIC; 1898 break; 1899 case ESO_LINE_PLAY_VOL: 1900 mixreg = ESO_MIXREG_PVR_LINE; 1901 break; 1902 case ESO_SYNTH_PLAY_VOL: 1903 mixreg = ESO_MIXREG_PVR_SYNTH; 1904 break; 1905 case ESO_CD_PLAY_VOL: 1906 mixreg = ESO_MIXREG_PVR_CD; 1907 break; 1908 case ESO_AUXB_PLAY_VOL: 1909 mixreg = ESO_MIXREG_PVR_AUXB; 1910 break; 1911 1912 case ESO_DAC_REC_VOL: 1913 mixreg = ESO_MIXREG_RVR_A2; 1914 break; 1915 case ESO_MIC_REC_VOL: 1916 mixreg = ESO_MIXREG_RVR_MIC; 1917 break; 1918 case ESO_LINE_REC_VOL: 1919 mixreg = ESO_MIXREG_RVR_LINE; 1920 break; 1921 case ESO_SYNTH_REC_VOL: 1922 mixreg = ESO_MIXREG_RVR_SYNTH; 1923 break; 1924 case ESO_CD_REC_VOL: 1925 mixreg = ESO_MIXREG_RVR_CD; 1926 break; 1927 case ESO_AUXB_REC_VOL: 1928 mixreg = ESO_MIXREG_RVR_AUXB; 1929 break; 1930 case ESO_MONO_PLAY_VOL: 1931 mixreg = ESO_MIXREG_PVR_MONO; 1932 break; 1933 case ESO_MONO_REC_VOL: 1934 mixreg = ESO_MIXREG_RVR_MONO; 1935 break; 1936 1937 case ESO_PCSPEAKER_VOL: 1938 /* Special case - only 3-bit, mono, and reserved bits. */ 1939 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 1940 tmp &= ESO_MIXREG_PCSVR_RESV; 1941 /* Map bits 7:5 -> 2:0. */ 1942 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 1943 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 1944 return; 1945 1946 case ESO_MASTER_VOL: 1947 /* Special case - separate regs, and 6-bit precision. */ 1948 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 1949 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1950 (sc->sc_gain[port][ESO_LEFT] >> 2) | 1951 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 1952 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1953 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 1954 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 1955 return; 1956 1957 case ESO_SPATIALIZER: 1958 /* Special case - only `mono', and higher precision. */ 1959 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 1960 sc->sc_gain[port][ESO_LEFT]); 1961 return; 1962 1963 case ESO_RECORD_VOL: 1964 /* Very Special case, controller register. */ 1965 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 1966 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1967 return; 1968 1969 default: 1970 #ifdef DIAGNOSTIC 1971 panic("eso_set_gain: bad port %u", port); 1972 /* NOTREACHED */ 1973 #else 1974 return; 1975 #endif 1976 } 1977 1978 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 1979 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1980 } 1981