1 /* $NetBSD: eso.c,v 1.53 2008/04/10 19:13:36 cegger Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.53 2008/04/10 19:13:36 cegger Exp $"); 37 38 #include "mpu.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/device.h> 45 #include <sys/queue.h> 46 #include <sys/proc.h> 47 48 #include <dev/pci/pcidevs.h> 49 #include <dev/pci/pcivar.h> 50 51 #include <sys/audioio.h> 52 #include <dev/audio_if.h> 53 #include <dev/midi_if.h> 54 55 #include <dev/mulaw.h> 56 #include <dev/auconv.h> 57 58 #include <dev/ic/mpuvar.h> 59 #include <dev/ic/i8237reg.h> 60 #include <dev/pci/esoreg.h> 61 #include <dev/pci/esovar.h> 62 63 #include <sys/bus.h> 64 #include <sys/intr.h> 65 66 /* 67 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA 68 * XXX engine by allocating through the ISA DMA tag. 69 */ 70 #if defined(amd64) || defined(i386) 71 #include "isa.h" 72 #if NISA > 0 73 #include <dev/isa/isavar.h> 74 #endif 75 #endif 76 77 #if defined(AUDIO_DEBUG) || defined(DEBUG) 78 #define DPRINTF(x) printf x 79 #else 80 #define DPRINTF(x) 81 #endif 82 83 struct eso_dma { 84 bus_dma_tag_t ed_dmat; 85 bus_dmamap_t ed_map; 86 void * ed_kva; 87 bus_dma_segment_t ed_segs[1]; 88 int ed_nsegs; 89 size_t ed_size; 90 SLIST_ENTRY(eso_dma) ed_slist; 91 }; 92 93 #define KVADDR(dma) ((void *)(dma)->ed_kva) 94 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 95 96 /* Autoconfiguration interface */ 97 static int eso_match(struct device *, struct cfdata *, void *); 98 static void eso_attach(struct device *, struct device *, void *); 99 static void eso_defer(struct device *); 100 static int eso_print(void *, const char *); 101 102 CFATTACH_DECL(eso, sizeof (struct eso_softc), 103 eso_match, eso_attach, NULL, NULL); 104 105 /* PCI interface */ 106 static int eso_intr(void *); 107 108 /* MI audio layer interface */ 109 static int eso_query_encoding(void *, struct audio_encoding *); 110 static int eso_set_params(void *, int, int, audio_params_t *, 111 audio_params_t *, stream_filter_list_t *, 112 stream_filter_list_t *); 113 static int eso_round_blocksize(void *, int, int, const audio_params_t *); 114 static int eso_halt_output(void *); 115 static int eso_halt_input(void *); 116 static int eso_getdev(void *, struct audio_device *); 117 static int eso_set_port(void *, mixer_ctrl_t *); 118 static int eso_get_port(void *, mixer_ctrl_t *); 119 static int eso_query_devinfo(void *, mixer_devinfo_t *); 120 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int); 121 static void eso_freem(void *, void *, struct malloc_type *); 122 static size_t eso_round_buffersize(void *, int, size_t); 123 static paddr_t eso_mappage(void *, void *, off_t, int); 124 static int eso_get_props(void *); 125 static int eso_trigger_output(void *, void *, void *, int, 126 void (*)(void *), void *, const audio_params_t *); 127 static int eso_trigger_input(void *, void *, void *, int, 128 void (*)(void *), void *, const audio_params_t *); 129 130 static const struct audio_hw_if eso_hw_if = { 131 NULL, /* open */ 132 NULL, /* close */ 133 NULL, /* drain */ 134 eso_query_encoding, 135 eso_set_params, 136 eso_round_blocksize, 137 NULL, /* commit_settings */ 138 NULL, /* init_output */ 139 NULL, /* init_input */ 140 NULL, /* start_output */ 141 NULL, /* start_input */ 142 eso_halt_output, 143 eso_halt_input, 144 NULL, /* speaker_ctl */ 145 eso_getdev, 146 NULL, /* setfd */ 147 eso_set_port, 148 eso_get_port, 149 eso_query_devinfo, 150 eso_allocm, 151 eso_freem, 152 eso_round_buffersize, 153 eso_mappage, 154 eso_get_props, 155 eso_trigger_output, 156 eso_trigger_input, 157 NULL, /* dev_ioctl */ 158 NULL, /* powerstate */ 159 }; 160 161 static const char * const eso_rev2model[] = { 162 "ES1938", 163 "ES1946", 164 "ES1946 Revision E" 165 }; 166 167 #define ESO_NFORMATS 8 168 static const struct audio_format eso_formats[ESO_NFORMATS] = { 169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 172 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, 174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, 176 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, 178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, 180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, 181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 182 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, 183 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}} 185 }; 186 187 188 /* 189 * Utility routines 190 */ 191 /* Register access etc. */ 192 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t); 193 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t); 194 static uint8_t eso_read_rdr(struct eso_softc *); 195 static void eso_reload_master_vol(struct eso_softc *); 196 static int eso_reset(struct eso_softc *); 197 static void eso_set_gain(struct eso_softc *, unsigned int); 198 static int eso_set_recsrc(struct eso_softc *, unsigned int); 199 static int eso_set_monooutsrc(struct eso_softc *, unsigned int); 200 static int eso_set_monoinbypass(struct eso_softc *, unsigned int); 201 static int eso_set_preamp(struct eso_softc *, unsigned int); 202 static void eso_write_cmd(struct eso_softc *, uint8_t); 203 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t); 204 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t); 205 /* DMA memory allocation */ 206 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t, 207 int, int, struct eso_dma *); 208 static void eso_freemem(struct eso_dma *); 209 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *); 210 211 212 static int 213 eso_match(struct device *parent, struct cfdata *match, 214 void *aux) 215 { 216 struct pci_attach_args *pa; 217 218 pa = aux; 219 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 220 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 221 return 1; 222 223 return 0; 224 } 225 226 static void 227 eso_attach(struct device *parent, struct device *self, void *aux) 228 { 229 struct eso_softc *sc; 230 struct pci_attach_args *pa; 231 struct audio_attach_args aa; 232 pci_intr_handle_t ih; 233 bus_addr_t vcbase; 234 const char *intrstring; 235 int idx; 236 uint8_t a2mode, mvctl; 237 238 sc = (struct eso_softc *)self; 239 pa = aux; 240 aprint_naive(": Audio controller\n"); 241 242 sc->sc_revision = PCI_REVISION(pa->pa_class); 243 244 aprint_normal(": ESS Solo-1 PCI AudioDrive "); 245 if (sc->sc_revision < 246 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 247 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]); 248 else 249 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision); 250 251 /* Map I/O registers. */ 252 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 253 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 254 aprint_error_dev(&sc->sc_dev, "can't map I/O space\n"); 255 return; 256 } 257 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 258 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 259 aprint_error_dev(&sc->sc_dev, "can't map SB I/O space\n"); 260 return; 261 } 262 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 263 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 264 aprint_error_dev(&sc->sc_dev, "can't map VC I/O space\n"); 265 /* Don't bail out yet: we can map it later, see below. */ 266 vcbase = 0; 267 sc->sc_vcsize = 0x10; /* From the data sheet. */ 268 } 269 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 270 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 271 aprint_error_dev(&sc->sc_dev, "can't map MPU I/O space\n"); 272 return; 273 } 274 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 275 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 276 aprint_error_dev(&sc->sc_dev, "can't map Game I/O space\n"); 277 return; 278 } 279 280 sc->sc_dmat = pa->pa_dmat; 281 SLIST_INIT(&sc->sc_dmas); 282 sc->sc_dmac_configured = 0; 283 284 /* Enable bus mastering. */ 285 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 286 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 287 PCI_COMMAND_MASTER_ENABLE); 288 289 /* Reset the device; bail out upon failure. */ 290 if (eso_reset(sc) != 0) { 291 aprint_error_dev(&sc->sc_dev, "can't reset\n"); 292 return; 293 } 294 295 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 296 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 297 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 298 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 299 300 /* Enable the relevant (DMA) interrupts. */ 301 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 302 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 303 ESO_IO_IRQCTL_MPUIRQ); 304 305 /* Set up A1's sample rate generator for new-style parameters. */ 306 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 307 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 308 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 309 310 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/ 311 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 312 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 313 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 314 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 315 316 /* Set mixer regs to something reasonable, needs work. */ 317 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 318 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE); 319 eso_set_monoinbypass(sc, 0); 320 eso_set_preamp(sc, 1); 321 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 322 int v; 323 324 switch (idx) { 325 case ESO_MIC_PLAY_VOL: 326 case ESO_LINE_PLAY_VOL: 327 case ESO_CD_PLAY_VOL: 328 case ESO_MONO_PLAY_VOL: 329 case ESO_AUXB_PLAY_VOL: 330 case ESO_DAC_REC_VOL: 331 case ESO_LINE_REC_VOL: 332 case ESO_SYNTH_REC_VOL: 333 case ESO_CD_REC_VOL: 334 case ESO_MONO_REC_VOL: 335 case ESO_AUXB_REC_VOL: 336 case ESO_SPATIALIZER: 337 v = 0; 338 break; 339 case ESO_MASTER_VOL: 340 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 341 break; 342 default: 343 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 344 break; 345 } 346 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 347 eso_set_gain(sc, idx); 348 } 349 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 350 351 /* Map and establish the interrupt. */ 352 if (pci_intr_map(pa, &ih)) { 353 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n"); 354 return; 355 } 356 intrstring = pci_intr_string(pa->pa_pc, ih); 357 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 358 if (sc->sc_ih == NULL) { 359 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt"); 360 if (intrstring != NULL) 361 aprint_normal(" at %s", intrstring); 362 aprint_normal("\n"); 363 return; 364 } 365 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", 366 intrstring); 367 368 /* 369 * Set up the DDMA Control register; a suitable I/O region has been 370 * supposedly mapped in the VC base address register. 371 * 372 * The Solo-1 has an ... interesting silicon bug that causes it to 373 * not respond to I/O space accesses to the Audio 1 DMA controller 374 * if the latter's mapping base address is aligned on a 1K boundary. 375 * As a consequence, it is quite possible for the mapping provided 376 * in the VC BAR to be useless. To work around this, we defer this 377 * part until all autoconfiguration on our parent bus is completed 378 * and then try to map it ourselves in fulfillment of the constraint. 379 * 380 * According to the register map we may write to the low 16 bits 381 * only, but experimenting has shown we're safe. 382 * -kjk 383 */ 384 if (ESO_VALID_DDMAC_BASE(vcbase)) { 385 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 386 vcbase | ESO_PCI_DDMAC_DE); 387 sc->sc_dmac_configured = 1; 388 389 aprint_normal_dev(&sc->sc_dev, 390 "mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 391 (unsigned long)vcbase); 392 } else { 393 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 394 device_xname(&sc->sc_dev), (unsigned long)vcbase)); 395 sc->sc_pa = *pa; 396 config_defer(self, eso_defer); 397 } 398 399 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 400 401 aa.type = AUDIODEV_TYPE_OPL; 402 aa.hwif = NULL; 403 aa.hdl = NULL; 404 (void)config_found(&sc->sc_dev, &aa, audioprint); 405 406 aa.type = AUDIODEV_TYPE_MPU; 407 aa.hwif = NULL; 408 aa.hdl = NULL; 409 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 410 if (sc->sc_mpudev != NULL) { 411 /* Unmask the MPU irq. */ 412 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 413 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 414 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 415 } 416 417 aa.type = AUDIODEV_TYPE_AUX; 418 aa.hwif = NULL; 419 aa.hdl = NULL; 420 (void)config_found(&sc->sc_dev, &aa, eso_print); 421 } 422 423 static void 424 eso_defer(struct device *self) 425 { 426 struct eso_softc *sc; 427 struct pci_attach_args *pa; 428 bus_addr_t addr, start; 429 430 sc = (struct eso_softc *)self; 431 pa = &sc->sc_pa; 432 aprint_normal_dev(&sc->sc_dev, ""); 433 434 /* 435 * This is outright ugly, but since we must not make assumptions 436 * on the underlying allocator's behaviour it's the most straight- 437 * forward way to implement it. Note that we skip over the first 438 * 1K region, which is typically occupied by an attached ISA bus. 439 */ 440 for (start = 0x0400; start < 0xffff; start += 0x0400) { 441 if (bus_space_alloc(sc->sc_iot, 442 start + sc->sc_vcsize, start + 0x0400 - 1, 443 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 444 &sc->sc_dmac_ioh) != 0) 445 continue; 446 447 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 448 addr | ESO_PCI_DDMAC_DE); 449 sc->sc_dmac_iot = sc->sc_iot; 450 sc->sc_dmac_configured = 1; 451 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n", 452 (unsigned long)addr); 453 454 return; 455 } 456 457 aprint_error("can't map Audio 1 DMA into I/O space\n"); 458 } 459 460 /* ARGSUSED */ 461 static int 462 eso_print(void *aux, const char *pnp) 463 { 464 465 /* Only joys can attach via this; easy. */ 466 if (pnp) 467 aprint_normal("joy at %s:", pnp); 468 469 return UNCONF; 470 } 471 472 static void 473 eso_write_cmd(struct eso_softc *sc, uint8_t cmd) 474 { 475 int i; 476 477 /* Poll for busy indicator to become clear. */ 478 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 479 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 480 & ESO_SB_RSR_BUSY) == 0) { 481 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 482 ESO_SB_WDR, cmd); 483 return; 484 } else { 485 delay(10); 486 } 487 } 488 489 printf("%s: WDR timeout\n", device_xname(&sc->sc_dev)); 490 return; 491 } 492 493 /* Write to a controller register */ 494 static void 495 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val) 496 { 497 498 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 499 500 eso_write_cmd(sc, reg); 501 eso_write_cmd(sc, val); 502 } 503 504 /* Read out the Read Data Register */ 505 static uint8_t 506 eso_read_rdr(struct eso_softc *sc) 507 { 508 int i; 509 510 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 511 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 512 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 513 return (bus_space_read_1(sc->sc_sb_iot, 514 sc->sc_sb_ioh, ESO_SB_RDR)); 515 } else { 516 delay(10); 517 } 518 } 519 520 printf("%s: RDR timeout\n", device_xname(&sc->sc_dev)); 521 return (-1); 522 } 523 524 static uint8_t 525 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg) 526 { 527 528 eso_write_cmd(sc, ESO_CMD_RCR); 529 eso_write_cmd(sc, reg); 530 return eso_read_rdr(sc); 531 } 532 533 static void 534 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val) 535 { 536 int s; 537 538 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 539 540 s = splaudio(); 541 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 542 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 543 splx(s); 544 } 545 546 static uint8_t 547 eso_read_mixreg(struct eso_softc *sc, uint8_t reg) 548 { 549 int s; 550 uint8_t val; 551 552 s = splaudio(); 553 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 554 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 555 splx(s); 556 557 return val; 558 } 559 560 static int 561 eso_intr(void *hdl) 562 { 563 struct eso_softc *sc = hdl; 564 #if NMPU > 0 565 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev); 566 #endif 567 uint8_t irqctl; 568 569 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 570 571 /* If it wasn't ours, that's all she wrote. */ 572 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 573 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 574 return 0; 575 576 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 577 /* Clear interrupt. */ 578 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 579 ESO_SB_RBSR); 580 581 if (sc->sc_rintr) 582 sc->sc_rintr(sc->sc_rarg); 583 else 584 wakeup(&sc->sc_rintr); 585 } 586 587 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 588 /* 589 * Clear the A2 IRQ latch: the cached value reflects the 590 * current DAC settings with the IRQ latch bit not set. 591 */ 592 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 593 594 if (sc->sc_pintr) 595 sc->sc_pintr(sc->sc_parg); 596 else 597 wakeup(&sc->sc_pintr); 598 } 599 600 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 601 /* Clear interrupt. */ 602 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 603 604 /* 605 * Raise a flag to cause a lazy update of the in-softc gain 606 * values the next time the software mixer is read to keep 607 * interrupt service cost low. ~0 cannot occur otherwise 608 * as the master volume has a precision of 6 bits only. 609 */ 610 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 611 } 612 613 #if NMPU > 0 614 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL) 615 mpu_intr(sc_mpu); 616 #endif 617 618 return 1; 619 } 620 621 /* Perform a software reset, including DMA FIFOs. */ 622 static int 623 eso_reset(struct eso_softc *sc) 624 { 625 int i; 626 627 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 628 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 629 /* `Delay' suggested in the data sheet. */ 630 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 631 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 632 633 /* Wait for reset to take effect. */ 634 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 635 /* Poll for data to become available. */ 636 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 637 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 638 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 639 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 640 641 /* Activate Solo-1 extension commands. */ 642 eso_write_cmd(sc, ESO_CMD_EXTENB); 643 /* Reset mixer registers. */ 644 eso_write_mixreg(sc, ESO_MIXREG_RESET, 645 ESO_MIXREG_RESET_RESET); 646 647 return 0; 648 } else { 649 delay(1000); 650 } 651 } 652 653 printf("%s: reset timeout\n", device_xname(&sc->sc_dev)); 654 return -1; 655 } 656 657 static int 658 eso_query_encoding(void *hdl, struct audio_encoding *fp) 659 { 660 661 switch (fp->index) { 662 case 0: 663 strcpy(fp->name, AudioEulinear); 664 fp->encoding = AUDIO_ENCODING_ULINEAR; 665 fp->precision = 8; 666 fp->flags = 0; 667 break; 668 case 1: 669 strcpy(fp->name, AudioEmulaw); 670 fp->encoding = AUDIO_ENCODING_ULAW; 671 fp->precision = 8; 672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 673 break; 674 case 2: 675 strcpy(fp->name, AudioEalaw); 676 fp->encoding = AUDIO_ENCODING_ALAW; 677 fp->precision = 8; 678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 679 break; 680 case 3: 681 strcpy(fp->name, AudioEslinear); 682 fp->encoding = AUDIO_ENCODING_SLINEAR; 683 fp->precision = 8; 684 fp->flags = 0; 685 break; 686 case 4: 687 strcpy(fp->name, AudioEslinear_le); 688 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 689 fp->precision = 16; 690 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 691 break; 692 case 5: 693 strcpy(fp->name, AudioEulinear_le); 694 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 695 fp->precision = 16; 696 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 697 break; 698 case 6: 699 strcpy(fp->name, AudioEslinear_be); 700 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 701 fp->precision = 16; 702 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 703 break; 704 case 7: 705 strcpy(fp->name, AudioEulinear_be); 706 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 707 fp->precision = 16; 708 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 709 break; 710 default: 711 return EINVAL; 712 } 713 714 return 0; 715 } 716 717 static int 718 eso_set_params(void *hdl, int setmode, int usemode, 719 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil, 720 stream_filter_list_t *rfil) 721 { 722 struct eso_softc *sc; 723 struct audio_params *p; 724 stream_filter_list_t *fil; 725 int mode, r[2], rd[2], ar[2], clk; 726 unsigned int srg, fltdiv; 727 int i; 728 729 sc = hdl; 730 for (mode = AUMODE_RECORD; mode != -1; 731 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 732 if ((setmode & mode) == 0) 733 continue; 734 735 p = (mode == AUMODE_PLAY) ? play : rec; 736 737 if (p->sample_rate < ESO_MINRATE || 738 p->sample_rate > ESO_MAXRATE || 739 (p->precision != 8 && p->precision != 16) || 740 (p->channels != 1 && p->channels != 2)) 741 return EINVAL; 742 743 /* 744 * We'll compute both possible sample rate dividers and pick 745 * the one with the least error. 746 */ 747 #define ABS(x) ((x) < 0 ? -(x) : (x)) 748 r[0] = ESO_CLK0 / 749 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 750 r[1] = ESO_CLK1 / 751 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 752 753 ar[0] = p->sample_rate - r[0]; 754 ar[1] = p->sample_rate - r[1]; 755 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0; 756 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 757 758 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 759 fltdiv = 256 - 200279L / r[clk]; 760 761 /* Update to reflect the possibly inexact rate. */ 762 p->sample_rate = r[clk]; 763 764 fil = (mode == AUMODE_PLAY) ? pfil : rfil; 765 i = auconv_set_converter(eso_formats, ESO_NFORMATS, 766 mode, p, FALSE, fil); 767 if (i < 0) 768 return EINVAL; 769 if (mode == AUMODE_RECORD) { 770 /* Audio 1 */ 771 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 772 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 773 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 774 } else { 775 /* Audio 2 */ 776 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 777 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 778 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 779 } 780 #undef ABS 781 782 } 783 784 return 0; 785 } 786 787 static int 788 eso_round_blocksize(void *hdl, int blk, int mode, 789 const audio_params_t *param) 790 { 791 792 return blk & -32; /* keep good alignment; at least 16 req'd */ 793 } 794 795 static int 796 eso_halt_output(void *hdl) 797 { 798 struct eso_softc *sc; 799 int error, s; 800 801 sc = hdl; 802 DPRINTF(("%s: halt_output\n", device_xname(&sc->sc_dev))); 803 804 /* 805 * Disable auto-initialize DMA, allowing the FIFO to drain and then 806 * stop. The interrupt callback pointer is cleared at this 807 * point so that an outstanding FIFO interrupt for the remaining data 808 * will be acknowledged without further processing. 809 * 810 * This does not immediately `abort' an operation in progress (c.f. 811 * audio(9)) but is the method to leave the FIFO behind in a clean 812 * state with the least hair. (Besides, that item needs to be 813 * rephrased for trigger_*()-based DMA environments.) 814 */ 815 s = splaudio(); 816 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 817 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 818 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 819 ESO_IO_A2DMAM_DMAENB); 820 821 sc->sc_pintr = NULL; 822 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 823 splx(s); 824 825 /* Shut down DMA completely. */ 826 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 827 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 828 829 return error == EWOULDBLOCK ? 0 : error; 830 } 831 832 static int 833 eso_halt_input(void *hdl) 834 { 835 struct eso_softc *sc; 836 int error, s; 837 838 sc = hdl; 839 DPRINTF(("%s: halt_input\n", device_xname(&sc->sc_dev))); 840 841 /* Just like eso_halt_output(), but for Audio 1. */ 842 s = splaudio(); 843 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 844 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 845 ESO_CTLREG_A1C2_DMAENB); 846 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 847 DMA37MD_WRITE | DMA37MD_DEMAND); 848 849 sc->sc_rintr = NULL; 850 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 851 splx(s); 852 853 /* Shut down DMA completely. */ 854 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 855 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 856 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 857 ESO_DMAC_MASK_MASK); 858 859 return error == EWOULDBLOCK ? 0 : error; 860 } 861 862 static int 863 eso_getdev(void *hdl, struct audio_device *retp) 864 { 865 struct eso_softc *sc; 866 867 sc = hdl; 868 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 869 snprintf(retp->version, sizeof (retp->version), "0x%02x", 870 sc->sc_revision); 871 if (sc->sc_revision < 872 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 873 strncpy(retp->config, eso_rev2model[sc->sc_revision], 874 sizeof (retp->config)); 875 else 876 strncpy(retp->config, "unknown", sizeof (retp->config)); 877 878 return 0; 879 } 880 881 static int 882 eso_set_port(void *hdl, mixer_ctrl_t *cp) 883 { 884 struct eso_softc *sc; 885 unsigned int lgain, rgain; 886 uint8_t tmp; 887 888 sc = hdl; 889 switch (cp->dev) { 890 case ESO_DAC_PLAY_VOL: 891 case ESO_MIC_PLAY_VOL: 892 case ESO_LINE_PLAY_VOL: 893 case ESO_SYNTH_PLAY_VOL: 894 case ESO_CD_PLAY_VOL: 895 case ESO_AUXB_PLAY_VOL: 896 case ESO_RECORD_VOL: 897 case ESO_DAC_REC_VOL: 898 case ESO_MIC_REC_VOL: 899 case ESO_LINE_REC_VOL: 900 case ESO_SYNTH_REC_VOL: 901 case ESO_CD_REC_VOL: 902 case ESO_AUXB_REC_VOL: 903 if (cp->type != AUDIO_MIXER_VALUE) 904 return EINVAL; 905 906 /* 907 * Stereo-capable mixer ports: if we get a single-channel 908 * gain value passed in, then we duplicate it to both left 909 * and right channels. 910 */ 911 switch (cp->un.value.num_channels) { 912 case 1: 913 lgain = rgain = ESO_GAIN_TO_4BIT( 914 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 915 break; 916 case 2: 917 lgain = ESO_GAIN_TO_4BIT( 918 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 919 rgain = ESO_GAIN_TO_4BIT( 920 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 921 break; 922 default: 923 return EINVAL; 924 } 925 926 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 927 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 928 eso_set_gain(sc, cp->dev); 929 break; 930 931 case ESO_MASTER_VOL: 932 if (cp->type != AUDIO_MIXER_VALUE) 933 return EINVAL; 934 935 /* Like above, but a precision of 6 bits. */ 936 switch (cp->un.value.num_channels) { 937 case 1: 938 lgain = rgain = ESO_GAIN_TO_6BIT( 939 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 940 break; 941 case 2: 942 lgain = ESO_GAIN_TO_6BIT( 943 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 944 rgain = ESO_GAIN_TO_6BIT( 945 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 946 break; 947 default: 948 return EINVAL; 949 } 950 951 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 952 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 953 eso_set_gain(sc, cp->dev); 954 break; 955 956 case ESO_SPATIALIZER: 957 if (cp->type != AUDIO_MIXER_VALUE || 958 cp->un.value.num_channels != 1) 959 return EINVAL; 960 961 sc->sc_gain[cp->dev][ESO_LEFT] = 962 sc->sc_gain[cp->dev][ESO_RIGHT] = 963 ESO_GAIN_TO_6BIT( 964 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 965 eso_set_gain(sc, cp->dev); 966 break; 967 968 case ESO_MONO_PLAY_VOL: 969 case ESO_MONO_REC_VOL: 970 if (cp->type != AUDIO_MIXER_VALUE || 971 cp->un.value.num_channels != 1) 972 return EINVAL; 973 974 sc->sc_gain[cp->dev][ESO_LEFT] = 975 sc->sc_gain[cp->dev][ESO_RIGHT] = 976 ESO_GAIN_TO_4BIT( 977 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 978 eso_set_gain(sc, cp->dev); 979 break; 980 981 case ESO_PCSPEAKER_VOL: 982 if (cp->type != AUDIO_MIXER_VALUE || 983 cp->un.value.num_channels != 1) 984 return EINVAL; 985 986 sc->sc_gain[cp->dev][ESO_LEFT] = 987 sc->sc_gain[cp->dev][ESO_RIGHT] = 988 ESO_GAIN_TO_3BIT( 989 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 990 eso_set_gain(sc, cp->dev); 991 break; 992 993 case ESO_SPATIALIZER_ENABLE: 994 if (cp->type != AUDIO_MIXER_ENUM) 995 return EINVAL; 996 997 sc->sc_spatializer = (cp->un.ord != 0); 998 999 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1000 if (sc->sc_spatializer) 1001 tmp |= ESO_MIXREG_SPAT_ENB; 1002 else 1003 tmp &= ~ESO_MIXREG_SPAT_ENB; 1004 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1005 tmp | ESO_MIXREG_SPAT_RSTREL); 1006 break; 1007 1008 case ESO_MASTER_MUTE: 1009 if (cp->type != AUDIO_MIXER_ENUM) 1010 return EINVAL; 1011 1012 sc->sc_mvmute = (cp->un.ord != 0); 1013 1014 if (sc->sc_mvmute) { 1015 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1016 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1017 ESO_MIXREG_LMVM_MUTE); 1018 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1019 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1020 ESO_MIXREG_RMVM_MUTE); 1021 } else { 1022 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1023 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1024 ~ESO_MIXREG_LMVM_MUTE); 1025 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1026 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1027 ~ESO_MIXREG_RMVM_MUTE); 1028 } 1029 break; 1030 1031 case ESO_MONOOUT_SOURCE: 1032 if (cp->type != AUDIO_MIXER_ENUM) 1033 return EINVAL; 1034 1035 return eso_set_monooutsrc(sc, cp->un.ord); 1036 1037 case ESO_MONOIN_BYPASS: 1038 if (cp->type != AUDIO_MIXER_ENUM) 1039 return EINVAL; 1040 1041 return (eso_set_monoinbypass(sc, cp->un.ord)); 1042 1043 case ESO_RECORD_MONITOR: 1044 if (cp->type != AUDIO_MIXER_ENUM) 1045 return EINVAL; 1046 1047 sc->sc_recmon = (cp->un.ord != 0); 1048 1049 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1050 if (sc->sc_recmon) 1051 tmp |= ESO_CTLREG_ACTL_RECMON; 1052 else 1053 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1054 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1055 break; 1056 1057 case ESO_RECORD_SOURCE: 1058 if (cp->type != AUDIO_MIXER_ENUM) 1059 return EINVAL; 1060 1061 return eso_set_recsrc(sc, cp->un.ord); 1062 1063 case ESO_MIC_PREAMP: 1064 if (cp->type != AUDIO_MIXER_ENUM) 1065 return EINVAL; 1066 1067 return eso_set_preamp(sc, cp->un.ord); 1068 1069 default: 1070 return EINVAL; 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int 1077 eso_get_port(void *hdl, mixer_ctrl_t *cp) 1078 { 1079 struct eso_softc *sc; 1080 1081 sc = hdl; 1082 switch (cp->dev) { 1083 case ESO_MASTER_VOL: 1084 /* Reload from mixer after hardware volume control use. */ 1085 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1086 eso_reload_master_vol(sc); 1087 /* FALLTHROUGH */ 1088 case ESO_DAC_PLAY_VOL: 1089 case ESO_MIC_PLAY_VOL: 1090 case ESO_LINE_PLAY_VOL: 1091 case ESO_SYNTH_PLAY_VOL: 1092 case ESO_CD_PLAY_VOL: 1093 case ESO_AUXB_PLAY_VOL: 1094 case ESO_RECORD_VOL: 1095 case ESO_DAC_REC_VOL: 1096 case ESO_MIC_REC_VOL: 1097 case ESO_LINE_REC_VOL: 1098 case ESO_SYNTH_REC_VOL: 1099 case ESO_CD_REC_VOL: 1100 case ESO_AUXB_REC_VOL: 1101 /* 1102 * Stereo-capable ports: if a single-channel query is made, 1103 * just return the left channel's value (since single-channel 1104 * settings themselves are applied to both channels). 1105 */ 1106 switch (cp->un.value.num_channels) { 1107 case 1: 1108 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1109 sc->sc_gain[cp->dev][ESO_LEFT]; 1110 break; 1111 case 2: 1112 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1113 sc->sc_gain[cp->dev][ESO_LEFT]; 1114 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1115 sc->sc_gain[cp->dev][ESO_RIGHT]; 1116 break; 1117 default: 1118 return EINVAL; 1119 } 1120 break; 1121 1122 case ESO_MONO_PLAY_VOL: 1123 case ESO_PCSPEAKER_VOL: 1124 case ESO_MONO_REC_VOL: 1125 case ESO_SPATIALIZER: 1126 if (cp->un.value.num_channels != 1) 1127 return EINVAL; 1128 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1129 sc->sc_gain[cp->dev][ESO_LEFT]; 1130 break; 1131 1132 case ESO_RECORD_MONITOR: 1133 cp->un.ord = sc->sc_recmon; 1134 break; 1135 1136 case ESO_RECORD_SOURCE: 1137 cp->un.ord = sc->sc_recsrc; 1138 break; 1139 1140 case ESO_MONOOUT_SOURCE: 1141 cp->un.ord = sc->sc_monooutsrc; 1142 break; 1143 1144 case ESO_MONOIN_BYPASS: 1145 cp->un.ord = sc->sc_monoinbypass; 1146 break; 1147 1148 case ESO_SPATIALIZER_ENABLE: 1149 cp->un.ord = sc->sc_spatializer; 1150 break; 1151 1152 case ESO_MIC_PREAMP: 1153 cp->un.ord = sc->sc_preamp; 1154 break; 1155 1156 case ESO_MASTER_MUTE: 1157 /* Reload from mixer after hardware volume control use. */ 1158 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0) 1159 eso_reload_master_vol(sc); 1160 cp->un.ord = sc->sc_mvmute; 1161 break; 1162 1163 default: 1164 return EINVAL; 1165 } 1166 1167 return 0; 1168 } 1169 1170 static int 1171 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip) 1172 { 1173 1174 switch (dip->index) { 1175 case ESO_DAC_PLAY_VOL: 1176 dip->mixer_class = ESO_INPUT_CLASS; 1177 dip->next = dip->prev = AUDIO_MIXER_LAST; 1178 strcpy(dip->label.name, AudioNdac); 1179 dip->type = AUDIO_MIXER_VALUE; 1180 dip->un.v.num_channels = 2; 1181 strcpy(dip->un.v.units.name, AudioNvolume); 1182 break; 1183 case ESO_MIC_PLAY_VOL: 1184 dip->mixer_class = ESO_INPUT_CLASS; 1185 dip->next = dip->prev = AUDIO_MIXER_LAST; 1186 strcpy(dip->label.name, AudioNmicrophone); 1187 dip->type = AUDIO_MIXER_VALUE; 1188 dip->un.v.num_channels = 2; 1189 strcpy(dip->un.v.units.name, AudioNvolume); 1190 break; 1191 case ESO_LINE_PLAY_VOL: 1192 dip->mixer_class = ESO_INPUT_CLASS; 1193 dip->next = dip->prev = AUDIO_MIXER_LAST; 1194 strcpy(dip->label.name, AudioNline); 1195 dip->type = AUDIO_MIXER_VALUE; 1196 dip->un.v.num_channels = 2; 1197 strcpy(dip->un.v.units.name, AudioNvolume); 1198 break; 1199 case ESO_SYNTH_PLAY_VOL: 1200 dip->mixer_class = ESO_INPUT_CLASS; 1201 dip->next = dip->prev = AUDIO_MIXER_LAST; 1202 strcpy(dip->label.name, AudioNfmsynth); 1203 dip->type = AUDIO_MIXER_VALUE; 1204 dip->un.v.num_channels = 2; 1205 strcpy(dip->un.v.units.name, AudioNvolume); 1206 break; 1207 case ESO_MONO_PLAY_VOL: 1208 dip->mixer_class = ESO_INPUT_CLASS; 1209 dip->next = dip->prev = AUDIO_MIXER_LAST; 1210 strcpy(dip->label.name, "mono_in"); 1211 dip->type = AUDIO_MIXER_VALUE; 1212 dip->un.v.num_channels = 1; 1213 strcpy(dip->un.v.units.name, AudioNvolume); 1214 break; 1215 case ESO_CD_PLAY_VOL: 1216 dip->mixer_class = ESO_INPUT_CLASS; 1217 dip->next = dip->prev = AUDIO_MIXER_LAST; 1218 strcpy(dip->label.name, AudioNcd); 1219 dip->type = AUDIO_MIXER_VALUE; 1220 dip->un.v.num_channels = 2; 1221 strcpy(dip->un.v.units.name, AudioNvolume); 1222 break; 1223 case ESO_AUXB_PLAY_VOL: 1224 dip->mixer_class = ESO_INPUT_CLASS; 1225 dip->next = dip->prev = AUDIO_MIXER_LAST; 1226 strcpy(dip->label.name, "auxb"); 1227 dip->type = AUDIO_MIXER_VALUE; 1228 dip->un.v.num_channels = 2; 1229 strcpy(dip->un.v.units.name, AudioNvolume); 1230 break; 1231 1232 case ESO_MIC_PREAMP: 1233 dip->mixer_class = ESO_MICROPHONE_CLASS; 1234 dip->next = dip->prev = AUDIO_MIXER_LAST; 1235 strcpy(dip->label.name, AudioNpreamp); 1236 dip->type = AUDIO_MIXER_ENUM; 1237 dip->un.e.num_mem = 2; 1238 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1239 dip->un.e.member[0].ord = 0; 1240 strcpy(dip->un.e.member[1].label.name, AudioNon); 1241 dip->un.e.member[1].ord = 1; 1242 break; 1243 case ESO_MICROPHONE_CLASS: 1244 dip->mixer_class = ESO_MICROPHONE_CLASS; 1245 dip->next = dip->prev = AUDIO_MIXER_LAST; 1246 strcpy(dip->label.name, AudioNmicrophone); 1247 dip->type = AUDIO_MIXER_CLASS; 1248 break; 1249 1250 case ESO_INPUT_CLASS: 1251 dip->mixer_class = ESO_INPUT_CLASS; 1252 dip->next = dip->prev = AUDIO_MIXER_LAST; 1253 strcpy(dip->label.name, AudioCinputs); 1254 dip->type = AUDIO_MIXER_CLASS; 1255 break; 1256 1257 case ESO_MASTER_VOL: 1258 dip->mixer_class = ESO_OUTPUT_CLASS; 1259 dip->prev = AUDIO_MIXER_LAST; 1260 dip->next = ESO_MASTER_MUTE; 1261 strcpy(dip->label.name, AudioNmaster); 1262 dip->type = AUDIO_MIXER_VALUE; 1263 dip->un.v.num_channels = 2; 1264 strcpy(dip->un.v.units.name, AudioNvolume); 1265 break; 1266 case ESO_MASTER_MUTE: 1267 dip->mixer_class = ESO_OUTPUT_CLASS; 1268 dip->prev = ESO_MASTER_VOL; 1269 dip->next = AUDIO_MIXER_LAST; 1270 strcpy(dip->label.name, AudioNmute); 1271 dip->type = AUDIO_MIXER_ENUM; 1272 dip->un.e.num_mem = 2; 1273 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1274 dip->un.e.member[0].ord = 0; 1275 strcpy(dip->un.e.member[1].label.name, AudioNon); 1276 dip->un.e.member[1].ord = 1; 1277 break; 1278 1279 case ESO_PCSPEAKER_VOL: 1280 dip->mixer_class = ESO_OUTPUT_CLASS; 1281 dip->next = dip->prev = AUDIO_MIXER_LAST; 1282 strcpy(dip->label.name, "pc_speaker"); 1283 dip->type = AUDIO_MIXER_VALUE; 1284 dip->un.v.num_channels = 1; 1285 strcpy(dip->un.v.units.name, AudioNvolume); 1286 break; 1287 case ESO_MONOOUT_SOURCE: 1288 dip->mixer_class = ESO_OUTPUT_CLASS; 1289 dip->next = dip->prev = AUDIO_MIXER_LAST; 1290 strcpy(dip->label.name, "mono_out"); 1291 dip->type = AUDIO_MIXER_ENUM; 1292 dip->un.e.num_mem = 3; 1293 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1294 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1295 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1296 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1297 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1298 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1299 break; 1300 1301 case ESO_MONOIN_BYPASS: 1302 dip->mixer_class = ESO_MONOIN_CLASS; 1303 dip->next = dip->prev = AUDIO_MIXER_LAST; 1304 strcpy(dip->label.name, "bypass"); 1305 dip->type = AUDIO_MIXER_ENUM; 1306 dip->un.e.num_mem = 2; 1307 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1308 dip->un.e.member[0].ord = 0; 1309 strcpy(dip->un.e.member[1].label.name, AudioNon); 1310 dip->un.e.member[1].ord = 1; 1311 break; 1312 case ESO_MONOIN_CLASS: 1313 dip->mixer_class = ESO_MONOIN_CLASS; 1314 dip->next = dip->prev = AUDIO_MIXER_LAST; 1315 strcpy(dip->label.name, "mono_in"); 1316 dip->type = AUDIO_MIXER_CLASS; 1317 break; 1318 1319 case ESO_SPATIALIZER: 1320 dip->mixer_class = ESO_OUTPUT_CLASS; 1321 dip->prev = AUDIO_MIXER_LAST; 1322 dip->next = ESO_SPATIALIZER_ENABLE; 1323 strcpy(dip->label.name, AudioNspatial); 1324 dip->type = AUDIO_MIXER_VALUE; 1325 dip->un.v.num_channels = 1; 1326 strcpy(dip->un.v.units.name, "level"); 1327 break; 1328 case ESO_SPATIALIZER_ENABLE: 1329 dip->mixer_class = ESO_OUTPUT_CLASS; 1330 dip->prev = ESO_SPATIALIZER; 1331 dip->next = AUDIO_MIXER_LAST; 1332 strcpy(dip->label.name, "enable"); 1333 dip->type = AUDIO_MIXER_ENUM; 1334 dip->un.e.num_mem = 2; 1335 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1336 dip->un.e.member[0].ord = 0; 1337 strcpy(dip->un.e.member[1].label.name, AudioNon); 1338 dip->un.e.member[1].ord = 1; 1339 break; 1340 1341 case ESO_OUTPUT_CLASS: 1342 dip->mixer_class = ESO_OUTPUT_CLASS; 1343 dip->next = dip->prev = AUDIO_MIXER_LAST; 1344 strcpy(dip->label.name, AudioCoutputs); 1345 dip->type = AUDIO_MIXER_CLASS; 1346 break; 1347 1348 case ESO_RECORD_MONITOR: 1349 dip->mixer_class = ESO_MONITOR_CLASS; 1350 dip->next = dip->prev = AUDIO_MIXER_LAST; 1351 strcpy(dip->label.name, AudioNmute); 1352 dip->type = AUDIO_MIXER_ENUM; 1353 dip->un.e.num_mem = 2; 1354 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1355 dip->un.e.member[0].ord = 0; 1356 strcpy(dip->un.e.member[1].label.name, AudioNon); 1357 dip->un.e.member[1].ord = 1; 1358 break; 1359 case ESO_MONITOR_CLASS: 1360 dip->mixer_class = ESO_MONITOR_CLASS; 1361 dip->next = dip->prev = AUDIO_MIXER_LAST; 1362 strcpy(dip->label.name, AudioCmonitor); 1363 dip->type = AUDIO_MIXER_CLASS; 1364 break; 1365 1366 case ESO_RECORD_VOL: 1367 dip->mixer_class = ESO_RECORD_CLASS; 1368 dip->next = dip->prev = AUDIO_MIXER_LAST; 1369 strcpy(dip->label.name, AudioNrecord); 1370 dip->type = AUDIO_MIXER_VALUE; 1371 strcpy(dip->un.v.units.name, AudioNvolume); 1372 break; 1373 case ESO_RECORD_SOURCE: 1374 dip->mixer_class = ESO_RECORD_CLASS; 1375 dip->next = dip->prev = AUDIO_MIXER_LAST; 1376 strcpy(dip->label.name, AudioNsource); 1377 dip->type = AUDIO_MIXER_ENUM; 1378 dip->un.e.num_mem = 4; 1379 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1380 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1381 strcpy(dip->un.e.member[1].label.name, AudioNline); 1382 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1383 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1384 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1385 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1386 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1387 break; 1388 case ESO_DAC_REC_VOL: 1389 dip->mixer_class = ESO_RECORD_CLASS; 1390 dip->next = dip->prev = AUDIO_MIXER_LAST; 1391 strcpy(dip->label.name, AudioNdac); 1392 dip->type = AUDIO_MIXER_VALUE; 1393 dip->un.v.num_channels = 2; 1394 strcpy(dip->un.v.units.name, AudioNvolume); 1395 break; 1396 case ESO_MIC_REC_VOL: 1397 dip->mixer_class = ESO_RECORD_CLASS; 1398 dip->next = dip->prev = AUDIO_MIXER_LAST; 1399 strcpy(dip->label.name, AudioNmicrophone); 1400 dip->type = AUDIO_MIXER_VALUE; 1401 dip->un.v.num_channels = 2; 1402 strcpy(dip->un.v.units.name, AudioNvolume); 1403 break; 1404 case ESO_LINE_REC_VOL: 1405 dip->mixer_class = ESO_RECORD_CLASS; 1406 dip->next = dip->prev = AUDIO_MIXER_LAST; 1407 strcpy(dip->label.name, AudioNline); 1408 dip->type = AUDIO_MIXER_VALUE; 1409 dip->un.v.num_channels = 2; 1410 strcpy(dip->un.v.units.name, AudioNvolume); 1411 break; 1412 case ESO_SYNTH_REC_VOL: 1413 dip->mixer_class = ESO_RECORD_CLASS; 1414 dip->next = dip->prev = AUDIO_MIXER_LAST; 1415 strcpy(dip->label.name, AudioNfmsynth); 1416 dip->type = AUDIO_MIXER_VALUE; 1417 dip->un.v.num_channels = 2; 1418 strcpy(dip->un.v.units.name, AudioNvolume); 1419 break; 1420 case ESO_MONO_REC_VOL: 1421 dip->mixer_class = ESO_RECORD_CLASS; 1422 dip->next = dip->prev = AUDIO_MIXER_LAST; 1423 strcpy(dip->label.name, "mono_in"); 1424 dip->type = AUDIO_MIXER_VALUE; 1425 dip->un.v.num_channels = 1; /* No lies */ 1426 strcpy(dip->un.v.units.name, AudioNvolume); 1427 break; 1428 case ESO_CD_REC_VOL: 1429 dip->mixer_class = ESO_RECORD_CLASS; 1430 dip->next = dip->prev = AUDIO_MIXER_LAST; 1431 strcpy(dip->label.name, AudioNcd); 1432 dip->type = AUDIO_MIXER_VALUE; 1433 dip->un.v.num_channels = 2; 1434 strcpy(dip->un.v.units.name, AudioNvolume); 1435 break; 1436 case ESO_AUXB_REC_VOL: 1437 dip->mixer_class = ESO_RECORD_CLASS; 1438 dip->next = dip->prev = AUDIO_MIXER_LAST; 1439 strcpy(dip->label.name, "auxb"); 1440 dip->type = AUDIO_MIXER_VALUE; 1441 dip->un.v.num_channels = 2; 1442 strcpy(dip->un.v.units.name, AudioNvolume); 1443 break; 1444 case ESO_RECORD_CLASS: 1445 dip->mixer_class = ESO_RECORD_CLASS; 1446 dip->next = dip->prev = AUDIO_MIXER_LAST; 1447 strcpy(dip->label.name, AudioCrecord); 1448 dip->type = AUDIO_MIXER_CLASS; 1449 break; 1450 1451 default: 1452 return ENXIO; 1453 } 1454 1455 return 0; 1456 } 1457 1458 static int 1459 eso_allocmem(struct eso_softc *sc, size_t size, size_t align, 1460 size_t boundary, int flags, int direction, struct eso_dma *ed) 1461 { 1462 int error, wait; 1463 1464 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1465 ed->ed_size = size; 1466 1467 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1468 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1469 &ed->ed_nsegs, wait); 1470 if (error) 1471 goto out; 1472 1473 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1474 ed->ed_size, &ed->ed_kva, wait | BUS_DMA_COHERENT); 1475 if (error) 1476 goto free; 1477 1478 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1479 wait, &ed->ed_map); 1480 if (error) 1481 goto unmap; 1482 1483 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva, 1484 ed->ed_size, NULL, wait | 1485 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 1486 if (error) 1487 goto destroy; 1488 1489 return 0; 1490 1491 destroy: 1492 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1493 unmap: 1494 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); 1495 free: 1496 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1497 out: 1498 return error; 1499 } 1500 1501 static void 1502 eso_freemem(struct eso_dma *ed) 1503 { 1504 1505 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1506 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1507 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); 1508 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1509 } 1510 1511 static struct eso_dma * 1512 eso_kva2dma(const struct eso_softc *sc, const void *kva) 1513 { 1514 struct eso_dma *p; 1515 1516 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) { 1517 if (KVADDR(p) == kva) 1518 return p; 1519 } 1520 1521 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva); 1522 /* NOTREACHED */ 1523 } 1524 1525 static void * 1526 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type, 1527 int flags) 1528 { 1529 struct eso_softc *sc; 1530 struct eso_dma *ed; 1531 size_t boundary; 1532 int error; 1533 1534 sc = hdl; 1535 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL) 1536 return NULL; 1537 1538 /* 1539 * Apparently the Audio 1 DMA controller's current address 1540 * register can't roll over a 64K address boundary, so we have to 1541 * take care of that ourselves. Similarly, the Audio 2 DMA 1542 * controller needs a 1M address boundary. 1543 */ 1544 if (direction == AUMODE_RECORD) 1545 boundary = 0x10000; 1546 else 1547 boundary = 0x100000; 1548 1549 /* 1550 * XXX Work around allocation problems for Audio 1, which 1551 * XXX implements the 24 low address bits only, with 1552 * XXX machine-specific DMA tag use. 1553 */ 1554 #ifdef alpha 1555 /* 1556 * XXX Force allocation through the (ISA) SGMAP. 1557 */ 1558 if (direction == AUMODE_RECORD) 1559 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1560 else 1561 #elif defined(amd64) || defined(i386) 1562 /* 1563 * XXX Force allocation through the ISA DMA tag. 1564 */ 1565 if (direction == AUMODE_RECORD) 1566 ed->ed_dmat = &isa_bus_dma_tag; 1567 else 1568 #endif 1569 ed->ed_dmat = sc->sc_dmat; 1570 1571 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed); 1572 if (error) { 1573 free(ed, type); 1574 return NULL; 1575 } 1576 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist); 1577 1578 return KVADDR(ed); 1579 } 1580 1581 static void 1582 eso_freem(void *hdl, void *addr, struct malloc_type *type) 1583 { 1584 struct eso_softc *sc; 1585 struct eso_dma *p; 1586 1587 sc = hdl; 1588 p = eso_kva2dma(sc, addr); 1589 1590 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist); 1591 eso_freemem(p); 1592 free(p, type); 1593 } 1594 1595 static size_t 1596 eso_round_buffersize(void *hdl, int direction, size_t bufsize) 1597 { 1598 size_t maxsize; 1599 1600 /* 1601 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1602 * bytes. This is because IO_A2DMAC is a two byte value 1603 * indicating the literal byte count, and the 4 least significant 1604 * bits are read-only. Zero is not used as a special case for 1605 * 0x10000. 1606 * 1607 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1608 * be represented. 1609 */ 1610 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1611 1612 if (bufsize > maxsize) 1613 bufsize = maxsize; 1614 1615 return bufsize; 1616 } 1617 1618 static paddr_t 1619 eso_mappage(void *hdl, void *addr, off_t offs, int prot) 1620 { 1621 struct eso_softc *sc; 1622 struct eso_dma *ed; 1623 1624 sc = hdl; 1625 if (offs < 0) 1626 return -1; 1627 ed = eso_kva2dma(sc, addr); 1628 1629 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1630 offs, prot, BUS_DMA_WAITOK); 1631 } 1632 1633 /* ARGSUSED */ 1634 static int 1635 eso_get_props(void *hdl) 1636 { 1637 1638 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1639 AUDIO_PROP_FULLDUPLEX; 1640 } 1641 1642 static int 1643 eso_trigger_output(void *hdl, void *start, void *end, int blksize, 1644 void (*intr)(void *), void *arg, const audio_params_t *param) 1645 { 1646 struct eso_softc *sc; 1647 struct eso_dma *ed; 1648 uint8_t a2c1; 1649 1650 sc = hdl; 1651 DPRINTF(( 1652 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1653 device_xname(&sc->sc_dev), start, end, blksize, intr, arg)); 1654 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n", 1655 device_xname(&sc->sc_dev), param->sample_rate, param->encoding, 1656 param->precision, param->channels)); 1657 1658 /* Find DMA buffer. */ 1659 ed = eso_kva2dma(sc, start); 1660 DPRINTF(("%s: dmaaddr %lx\n", 1661 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed))); 1662 1663 sc->sc_pintr = intr; 1664 sc->sc_parg = arg; 1665 1666 /* Compute drain timeout. */ 1667 sc->sc_pdrain = (blksize * NBBY * hz) / 1668 (param->sample_rate * param->channels * 1669 param->precision) + 2; /* slop */ 1670 1671 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1672 blksize = -(blksize >> 1); 1673 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1674 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1675 1676 /* Update DAC to reflect DMA count and audio parameters. */ 1677 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1678 if (param->precision == 16) 1679 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1680 else 1681 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1682 if (param->channels == 2) 1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1684 else 1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1686 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1687 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1688 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1689 else 1690 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1691 /* Unmask IRQ. */ 1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1693 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1694 1695 /* Set up DMA controller. */ 1696 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1697 DMAADDR(ed)); 1698 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1699 (uint8_t *)end - (uint8_t *)start); 1700 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1701 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1702 1703 /* Start DMA. */ 1704 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1705 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1706 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1707 ESO_MIXREG_A2C1_AUTO; 1708 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1709 1710 return 0; 1711 } 1712 1713 static int 1714 eso_trigger_input(void *hdl, void *start, void *end, int blksize, 1715 void (*intr)(void *), void *arg, const audio_params_t *param) 1716 { 1717 struct eso_softc *sc; 1718 struct eso_dma *ed; 1719 uint8_t actl, a1c1; 1720 1721 sc = hdl; 1722 DPRINTF(( 1723 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1724 device_xname(&sc->sc_dev), start, end, blksize, intr, arg)); 1725 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n", 1726 device_xname(&sc->sc_dev), param->sample_rate, param->encoding, 1727 param->precision, param->channels)); 1728 1729 /* 1730 * If we failed to configure the Audio 1 DMA controller, bail here 1731 * while retaining availability of the DAC direction (in Audio 2). 1732 */ 1733 if (!sc->sc_dmac_configured) 1734 return EIO; 1735 1736 /* Find DMA buffer. */ 1737 ed = eso_kva2dma(sc, start); 1738 DPRINTF(("%s: dmaaddr %lx\n", 1739 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed))); 1740 1741 sc->sc_rintr = intr; 1742 sc->sc_rarg = arg; 1743 1744 /* Compute drain timeout. */ 1745 sc->sc_rdrain = (blksize * NBBY * hz) / 1746 (param->sample_rate * param->channels * 1747 param->precision) + 2; /* slop */ 1748 1749 /* Set up ADC DMA converter parameters. */ 1750 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1751 if (param->channels == 2) { 1752 actl &= ~ESO_CTLREG_ACTL_MONO; 1753 actl |= ESO_CTLREG_ACTL_STEREO; 1754 } else { 1755 actl &= ~ESO_CTLREG_ACTL_STEREO; 1756 actl |= ESO_CTLREG_ACTL_MONO; 1757 } 1758 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1759 1760 /* Set up Transfer Type: maybe move to attach time? */ 1761 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1762 1763 /* DMA transfer count reload using 2's complement. */ 1764 blksize = -blksize; 1765 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1766 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1767 1768 /* Set up and enable Audio 1 DMA FIFO. */ 1769 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1770 if (param->precision == 16) 1771 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1772 if (param->channels == 2) 1773 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1774 else 1775 a1c1 |= ESO_CTLREG_A1C1_MONO; 1776 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1777 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1778 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1779 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1780 1781 /* Set up ADC IRQ/DRQ parameters. */ 1782 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1783 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1784 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1785 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1786 1787 /* Set up and enable DMA controller. */ 1788 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1789 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1790 ESO_DMAC_MASK_MASK); 1791 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1792 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1793 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1794 DMAADDR(ed)); 1795 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1796 (uint8_t *)end - (uint8_t *)start - 1); 1797 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1798 1799 /* Start DMA. */ 1800 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1801 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1802 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * Mixer utility functions. 1809 */ 1810 static int 1811 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc) 1812 { 1813 mixer_devinfo_t di; 1814 int i; 1815 1816 di.index = ESO_RECORD_SOURCE; 1817 if (eso_query_devinfo(sc, &di) != 0) 1818 panic("eso_set_recsrc: eso_query_devinfo failed"); 1819 1820 for (i = 0; i < di.un.e.num_mem; i++) { 1821 if (recsrc == di.un.e.member[i].ord) { 1822 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1823 sc->sc_recsrc = recsrc; 1824 return 0; 1825 } 1826 } 1827 1828 return EINVAL; 1829 } 1830 1831 static int 1832 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc) 1833 { 1834 mixer_devinfo_t di; 1835 int i; 1836 uint8_t mpm; 1837 1838 di.index = ESO_MONOOUT_SOURCE; 1839 if (eso_query_devinfo(sc, &di) != 0) 1840 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1841 1842 for (i = 0; i < di.un.e.num_mem; i++) { 1843 if (monooutsrc == di.un.e.member[i].ord) { 1844 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1845 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1846 mpm |= monooutsrc; 1847 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1848 sc->sc_monooutsrc = monooutsrc; 1849 return 0; 1850 } 1851 } 1852 1853 return EINVAL; 1854 } 1855 1856 static int 1857 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass) 1858 { 1859 mixer_devinfo_t di; 1860 int i; 1861 uint8_t mpm; 1862 1863 di.index = ESO_MONOIN_BYPASS; 1864 if (eso_query_devinfo(sc, &di) != 0) 1865 panic("eso_set_monoinbypass: eso_query_devinfo failed"); 1866 1867 for (i = 0; i < di.un.e.num_mem; i++) { 1868 if (monoinbypass == di.un.e.member[i].ord) { 1869 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1870 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0); 1871 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0); 1872 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1873 sc->sc_monoinbypass = monoinbypass; 1874 return 0; 1875 } 1876 } 1877 1878 return EINVAL; 1879 } 1880 1881 static int 1882 eso_set_preamp(struct eso_softc *sc, unsigned int preamp) 1883 { 1884 mixer_devinfo_t di; 1885 int i; 1886 uint8_t mpm; 1887 1888 di.index = ESO_MIC_PREAMP; 1889 if (eso_query_devinfo(sc, &di) != 0) 1890 panic("eso_set_preamp: eso_query_devinfo failed"); 1891 1892 for (i = 0; i < di.un.e.num_mem; i++) { 1893 if (preamp == di.un.e.member[i].ord) { 1894 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1895 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0); 1896 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0); 1897 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1898 sc->sc_preamp = preamp; 1899 return 0; 1900 } 1901 } 1902 1903 return EINVAL; 1904 } 1905 1906 /* 1907 * Reload Master Volume and Mute values in softc from mixer; used when 1908 * those have previously been invalidated by use of hardware volume controls. 1909 */ 1910 static void 1911 eso_reload_master_vol(struct eso_softc *sc) 1912 { 1913 uint8_t mv; 1914 1915 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1916 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 1917 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 1918 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1919 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 1920 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 1921 /* Currently both channels are muted simultaneously; either is OK. */ 1922 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 1923 } 1924 1925 static void 1926 eso_set_gain(struct eso_softc *sc, unsigned int port) 1927 { 1928 uint8_t mixreg, tmp; 1929 1930 switch (port) { 1931 case ESO_DAC_PLAY_VOL: 1932 mixreg = ESO_MIXREG_PVR_A2; 1933 break; 1934 case ESO_MIC_PLAY_VOL: 1935 mixreg = ESO_MIXREG_PVR_MIC; 1936 break; 1937 case ESO_LINE_PLAY_VOL: 1938 mixreg = ESO_MIXREG_PVR_LINE; 1939 break; 1940 case ESO_SYNTH_PLAY_VOL: 1941 mixreg = ESO_MIXREG_PVR_SYNTH; 1942 break; 1943 case ESO_CD_PLAY_VOL: 1944 mixreg = ESO_MIXREG_PVR_CD; 1945 break; 1946 case ESO_AUXB_PLAY_VOL: 1947 mixreg = ESO_MIXREG_PVR_AUXB; 1948 break; 1949 1950 case ESO_DAC_REC_VOL: 1951 mixreg = ESO_MIXREG_RVR_A2; 1952 break; 1953 case ESO_MIC_REC_VOL: 1954 mixreg = ESO_MIXREG_RVR_MIC; 1955 break; 1956 case ESO_LINE_REC_VOL: 1957 mixreg = ESO_MIXREG_RVR_LINE; 1958 break; 1959 case ESO_SYNTH_REC_VOL: 1960 mixreg = ESO_MIXREG_RVR_SYNTH; 1961 break; 1962 case ESO_CD_REC_VOL: 1963 mixreg = ESO_MIXREG_RVR_CD; 1964 break; 1965 case ESO_AUXB_REC_VOL: 1966 mixreg = ESO_MIXREG_RVR_AUXB; 1967 break; 1968 case ESO_MONO_PLAY_VOL: 1969 mixreg = ESO_MIXREG_PVR_MONO; 1970 break; 1971 case ESO_MONO_REC_VOL: 1972 mixreg = ESO_MIXREG_RVR_MONO; 1973 break; 1974 1975 case ESO_PCSPEAKER_VOL: 1976 /* Special case - only 3-bit, mono, and reserved bits. */ 1977 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 1978 tmp &= ESO_MIXREG_PCSVR_RESV; 1979 /* Map bits 7:5 -> 2:0. */ 1980 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 1981 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 1982 return; 1983 1984 case ESO_MASTER_VOL: 1985 /* Special case - separate regs, and 6-bit precision. */ 1986 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 1987 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1988 (sc->sc_gain[port][ESO_LEFT] >> 2) | 1989 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 1990 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1991 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 1992 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 1993 return; 1994 1995 case ESO_SPATIALIZER: 1996 /* Special case - only `mono', and higher precision. */ 1997 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 1998 sc->sc_gain[port][ESO_LEFT]); 1999 return; 2000 2001 case ESO_RECORD_VOL: 2002 /* Very Special case, controller register. */ 2003 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 2004 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2005 return; 2006 2007 default: 2008 #ifdef DIAGNOSTIC 2009 panic("eso_set_gain: bad port %u", port); 2010 /* NOTREACHED */ 2011 #else 2012 return; 2013 #endif 2014 } 2015 2016 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 2017 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2018 } 2019