1 /* $NetBSD: eso.c,v 1.37 2004/10/29 12:57:18 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.37 2004/10/29 12:57:18 yamt Exp $"); 37 38 #include "mpu.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/device.h> 45 #include <sys/proc.h> 46 47 #include <dev/pci/pcidevs.h> 48 #include <dev/pci/pcivar.h> 49 50 #include <sys/audioio.h> 51 #include <dev/audio_if.h> 52 #include <dev/midi_if.h> 53 54 #include <dev/mulaw.h> 55 #include <dev/auconv.h> 56 57 #include <dev/ic/mpuvar.h> 58 #include <dev/ic/i8237reg.h> 59 #include <dev/pci/esoreg.h> 60 #include <dev/pci/esovar.h> 61 62 #include <machine/bus.h> 63 #include <machine/intr.h> 64 65 /* 66 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA 67 * XXX engine by allocating through the ISA DMA tag. 68 */ 69 #if defined(amd64) || defined(i386) 70 #include "isa.h" 71 #if NISA > 0 72 #include <dev/isa/isavar.h> 73 #endif 74 #endif 75 76 #if defined(AUDIO_DEBUG) || defined(DEBUG) 77 #define DPRINTF(x) printf x 78 #else 79 #define DPRINTF(x) 80 #endif 81 82 struct eso_dma { 83 bus_dma_tag_t ed_dmat; 84 bus_dmamap_t ed_map; 85 caddr_t ed_addr; 86 bus_dma_segment_t ed_segs[1]; 87 int ed_nsegs; 88 size_t ed_size; 89 struct eso_dma * ed_next; 90 }; 91 92 #define KVADDR(dma) ((void *)(dma)->ed_addr) 93 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 94 95 /* Autoconfiguration interface */ 96 static int eso_match __P((struct device *, struct cfdata *, void *)); 97 static void eso_attach __P((struct device *, struct device *, void *)); 98 static void eso_defer __P((struct device *)); 99 static int eso_print __P((void *, const char *)); 100 101 CFATTACH_DECL(eso, sizeof (struct eso_softc), 102 eso_match, eso_attach, NULL, NULL); 103 104 /* PCI interface */ 105 static int eso_intr __P((void *)); 106 107 /* MI audio layer interface */ 108 static int eso_open __P((void *, int)); 109 static void eso_close __P((void *)); 110 static int eso_query_encoding __P((void *, struct audio_encoding *)); 111 static int eso_set_params __P((void *, int, int, struct audio_params *, 112 struct audio_params *)); 113 static int eso_round_blocksize __P((void *, int)); 114 static int eso_halt_output __P((void *)); 115 static int eso_halt_input __P((void *)); 116 static int eso_getdev __P((void *, struct audio_device *)); 117 static int eso_set_port __P((void *, mixer_ctrl_t *)); 118 static int eso_get_port __P((void *, mixer_ctrl_t *)); 119 static int eso_query_devinfo __P((void *, mixer_devinfo_t *)); 120 static void * eso_allocm __P((void *, int, size_t, struct malloc_type *, int)); 121 static void eso_freem __P((void *, void *, struct malloc_type *)); 122 static size_t eso_round_buffersize __P((void *, int, size_t)); 123 static paddr_t eso_mappage __P((void *, void *, off_t, int)); 124 static int eso_get_props __P((void *)); 125 static int eso_trigger_output __P((void *, void *, void *, int, 126 void (*)(void *), void *, struct audio_params *)); 127 static int eso_trigger_input __P((void *, void *, void *, int, 128 void (*)(void *), void *, struct audio_params *)); 129 130 static const struct audio_hw_if eso_hw_if = { 131 eso_open, 132 eso_close, 133 NULL, /* drain */ 134 eso_query_encoding, 135 eso_set_params, 136 eso_round_blocksize, 137 NULL, /* commit_settings */ 138 NULL, /* init_output */ 139 NULL, /* init_input */ 140 NULL, /* start_output */ 141 NULL, /* start_input */ 142 eso_halt_output, 143 eso_halt_input, 144 NULL, /* speaker_ctl */ 145 eso_getdev, 146 NULL, /* setfd */ 147 eso_set_port, 148 eso_get_port, 149 eso_query_devinfo, 150 eso_allocm, 151 eso_freem, 152 eso_round_buffersize, 153 eso_mappage, 154 eso_get_props, 155 eso_trigger_output, 156 eso_trigger_input, 157 NULL, /* dev_ioctl */ 158 }; 159 160 static const char * const eso_rev2model[] = { 161 "ES1938", 162 "ES1946", 163 "ES1946 Revision E" 164 }; 165 166 167 /* 168 * Utility routines 169 */ 170 /* Register access etc. */ 171 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t)); 172 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t)); 173 static uint8_t eso_read_rdr __P((struct eso_softc *)); 174 static void eso_reload_master_vol __P((struct eso_softc *)); 175 static int eso_reset __P((struct eso_softc *)); 176 static void eso_set_gain __P((struct eso_softc *, unsigned int)); 177 static int eso_set_recsrc __P((struct eso_softc *, unsigned int)); 178 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int)); 179 static int eso_set_monoinbypass __P((struct eso_softc *, unsigned int)); 180 static int eso_set_preamp __P((struct eso_softc *, unsigned int)); 181 static void eso_write_cmd __P((struct eso_softc *, uint8_t)); 182 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t)); 183 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t)); 184 /* DMA memory allocation */ 185 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t, 186 int, int, struct eso_dma *)); 187 static void eso_freemem __P((struct eso_dma *)); 188 189 190 static int 191 eso_match(parent, match, aux) 192 struct device *parent; 193 struct cfdata *match; 194 void *aux; 195 { 196 struct pci_attach_args *pa = aux; 197 198 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 199 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 200 return (1); 201 202 return (0); 203 } 204 205 static void 206 eso_attach(parent, self, aux) 207 struct device *parent, *self; 208 void *aux; 209 { 210 struct eso_softc *sc = (struct eso_softc *)self; 211 struct pci_attach_args *pa = aux; 212 struct audio_attach_args aa; 213 pci_intr_handle_t ih; 214 bus_addr_t vcbase; 215 const char *intrstring; 216 int idx; 217 uint8_t a2mode, mvctl; 218 219 aprint_naive(": Audio controller\n"); 220 221 sc->sc_revision = PCI_REVISION(pa->pa_class); 222 223 aprint_normal(": ESS Solo-1 PCI AudioDrive "); 224 if (sc->sc_revision < 225 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 226 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]); 227 else 228 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision); 229 230 /* Map I/O registers. */ 231 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 232 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 233 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname); 234 return; 235 } 236 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 237 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 238 aprint_error("%s: can't map SB I/O space\n", 239 sc->sc_dev.dv_xname); 240 return; 241 } 242 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 243 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 244 aprint_error("%s: can't map VC I/O space\n", 245 sc->sc_dev.dv_xname); 246 /* Don't bail out yet: we can map it later, see below. */ 247 vcbase = 0; 248 sc->sc_vcsize = 0x10; /* From the data sheet. */ 249 } 250 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 251 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 252 aprint_error("%s: can't map MPU I/O space\n", 253 sc->sc_dev.dv_xname); 254 return; 255 } 256 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 257 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 258 aprint_error("%s: can't map Game I/O space\n", 259 sc->sc_dev.dv_xname); 260 return; 261 } 262 263 sc->sc_dmat = pa->pa_dmat; 264 sc->sc_dmas = NULL; 265 sc->sc_dmac_configured = 0; 266 267 /* Enable bus mastering. */ 268 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 269 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 270 PCI_COMMAND_MASTER_ENABLE); 271 272 /* Reset the device; bail out upon failure. */ 273 if (eso_reset(sc) != 0) { 274 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname); 275 return; 276 } 277 278 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 279 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 280 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 281 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 282 283 /* Enable the relevant (DMA) interrupts. */ 284 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 285 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 286 ESO_IO_IRQCTL_MPUIRQ); 287 288 /* Set up A1's sample rate generator for new-style parameters. */ 289 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 290 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 291 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 292 293 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/ 294 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 295 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 296 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 297 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 298 299 /* Set mixer regs to something reasonable, needs work. */ 300 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 301 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE); 302 eso_set_monoinbypass(sc, 0); 303 eso_set_preamp(sc, 1); 304 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 305 int v; 306 307 switch (idx) { 308 case ESO_MIC_PLAY_VOL: 309 case ESO_LINE_PLAY_VOL: 310 case ESO_CD_PLAY_VOL: 311 case ESO_MONO_PLAY_VOL: 312 case ESO_AUXB_PLAY_VOL: 313 case ESO_DAC_REC_VOL: 314 case ESO_LINE_REC_VOL: 315 case ESO_SYNTH_REC_VOL: 316 case ESO_CD_REC_VOL: 317 case ESO_MONO_REC_VOL: 318 case ESO_AUXB_REC_VOL: 319 case ESO_SPATIALIZER: 320 v = 0; 321 break; 322 case ESO_MASTER_VOL: 323 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 324 break; 325 default: 326 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 327 break; 328 } 329 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 330 eso_set_gain(sc, idx); 331 } 332 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 333 334 /* Map and establish the interrupt. */ 335 if (pci_intr_map(pa, &ih)) { 336 aprint_error("%s: couldn't map interrupt\n", 337 sc->sc_dev.dv_xname); 338 return; 339 } 340 intrstring = pci_intr_string(pa->pa_pc, ih); 341 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 342 if (sc->sc_ih == NULL) { 343 aprint_error("%s: couldn't establish interrupt", 344 sc->sc_dev.dv_xname); 345 if (intrstring != NULL) 346 aprint_normal(" at %s", intrstring); 347 aprint_normal("\n"); 348 return; 349 } 350 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, 351 intrstring); 352 353 /* 354 * Set up the DDMA Control register; a suitable I/O region has been 355 * supposedly mapped in the VC base address register. 356 * 357 * The Solo-1 has an ... interesting silicon bug that causes it to 358 * not respond to I/O space accesses to the Audio 1 DMA controller 359 * if the latter's mapping base address is aligned on a 1K boundary. 360 * As a consequence, it is quite possible for the mapping provided 361 * in the VC BAR to be useless. To work around this, we defer this 362 * part until all autoconfiguration on our parent bus is completed 363 * and then try to map it ourselves in fulfillment of the constraint. 364 * 365 * According to the register map we may write to the low 16 bits 366 * only, but experimenting has shown we're safe. 367 * -kjk 368 */ 369 if (ESO_VALID_DDMAC_BASE(vcbase)) { 370 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 371 vcbase | ESO_PCI_DDMAC_DE); 372 sc->sc_dmac_configured = 1; 373 374 aprint_normal( 375 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 376 sc->sc_dev.dv_xname, (unsigned long)vcbase); 377 } else { 378 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 379 sc->sc_dev.dv_xname, (unsigned long)vcbase)); 380 sc->sc_pa = *pa; 381 config_defer(self, eso_defer); 382 } 383 384 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 385 386 aa.type = AUDIODEV_TYPE_OPL; 387 aa.hwif = NULL; 388 aa.hdl = NULL; 389 (void)config_found(&sc->sc_dev, &aa, audioprint); 390 391 aa.type = AUDIODEV_TYPE_MPU; 392 aa.hwif = NULL; 393 aa.hdl = NULL; 394 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 395 if (sc->sc_mpudev != NULL) { 396 /* Unmask the MPU irq. */ 397 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 398 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 399 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 400 } 401 402 aa.type = AUDIODEV_TYPE_AUX; 403 aa.hwif = NULL; 404 aa.hdl = NULL; 405 (void)config_found(&sc->sc_dev, &aa, eso_print); 406 } 407 408 static void 409 eso_defer(self) 410 struct device *self; 411 { 412 struct eso_softc *sc = (struct eso_softc *)self; 413 struct pci_attach_args *pa = &sc->sc_pa; 414 bus_addr_t addr, start; 415 416 aprint_normal("%s: ", sc->sc_dev.dv_xname); 417 418 /* 419 * This is outright ugly, but since we must not make assumptions 420 * on the underlying allocator's behaviour it's the most straight- 421 * forward way to implement it. Note that we skip over the first 422 * 1K region, which is typically occupied by an attached ISA bus. 423 */ 424 for (start = 0x0400; start < 0xffff; start += 0x0400) { 425 if (bus_space_alloc(sc->sc_iot, 426 start + sc->sc_vcsize, start + 0x0400 - 1, 427 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 428 &sc->sc_dmac_ioh) != 0) 429 continue; 430 431 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 432 addr | ESO_PCI_DDMAC_DE); 433 sc->sc_dmac_iot = sc->sc_iot; 434 sc->sc_dmac_configured = 1; 435 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n", 436 (unsigned long)addr); 437 438 return; 439 } 440 441 aprint_error("can't map Audio 1 DMA into I/O space\n"); 442 } 443 444 /* ARGSUSED */ 445 static int 446 eso_print(aux, pnp) 447 void *aux; 448 const char *pnp; 449 { 450 451 /* Only joys can attach via this; easy. */ 452 if (pnp) 453 aprint_normal("joy at %s:", pnp); 454 455 return (UNCONF); 456 } 457 458 static void 459 eso_write_cmd(sc, cmd) 460 struct eso_softc *sc; 461 uint8_t cmd; 462 { 463 int i; 464 465 /* Poll for busy indicator to become clear. */ 466 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 467 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 468 & ESO_SB_RSR_BUSY) == 0) { 469 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 470 ESO_SB_WDR, cmd); 471 return; 472 } else { 473 delay(10); 474 } 475 } 476 477 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); 478 return; 479 } 480 481 /* Write to a controller register */ 482 static void 483 eso_write_ctlreg(sc, reg, val) 484 struct eso_softc *sc; 485 uint8_t reg, val; 486 { 487 488 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 489 490 eso_write_cmd(sc, reg); 491 eso_write_cmd(sc, val); 492 } 493 494 /* Read out the Read Data Register */ 495 static uint8_t 496 eso_read_rdr(sc) 497 struct eso_softc *sc; 498 { 499 int i; 500 501 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 502 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 503 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 504 return (bus_space_read_1(sc->sc_sb_iot, 505 sc->sc_sb_ioh, ESO_SB_RDR)); 506 } else { 507 delay(10); 508 } 509 } 510 511 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); 512 return (-1); 513 } 514 515 516 static uint8_t 517 eso_read_ctlreg(sc, reg) 518 struct eso_softc *sc; 519 uint8_t reg; 520 { 521 522 eso_write_cmd(sc, ESO_CMD_RCR); 523 eso_write_cmd(sc, reg); 524 return (eso_read_rdr(sc)); 525 } 526 527 static void 528 eso_write_mixreg(sc, reg, val) 529 struct eso_softc *sc; 530 uint8_t reg, val; 531 { 532 int s; 533 534 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 535 536 s = splaudio(); 537 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 538 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 539 splx(s); 540 } 541 542 static uint8_t 543 eso_read_mixreg(sc, reg) 544 struct eso_softc *sc; 545 uint8_t reg; 546 { 547 int s; 548 uint8_t val; 549 550 s = splaudio(); 551 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 552 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 553 splx(s); 554 555 return (val); 556 } 557 558 static int 559 eso_intr(hdl) 560 void *hdl; 561 { 562 struct eso_softc *sc = hdl; 563 uint8_t irqctl; 564 565 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 566 567 /* If it wasn't ours, that's all she wrote. */ 568 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 569 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 570 return (0); 571 572 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 573 /* Clear interrupt. */ 574 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 575 ESO_SB_RBSR); 576 577 if (sc->sc_rintr) 578 sc->sc_rintr(sc->sc_rarg); 579 else 580 wakeup(&sc->sc_rintr); 581 } 582 583 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 584 /* 585 * Clear the A2 IRQ latch: the cached value reflects the 586 * current DAC settings with the IRQ latch bit not set. 587 */ 588 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 589 590 if (sc->sc_pintr) 591 sc->sc_pintr(sc->sc_parg); 592 else 593 wakeup(&sc->sc_pintr); 594 } 595 596 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 597 /* Clear interrupt. */ 598 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 599 600 /* 601 * Raise a flag to cause a lazy update of the in-softc gain 602 * values the next time the software mixer is read to keep 603 * interrupt service cost low. ~0 cannot occur otherwise 604 * as the master volume has a precision of 6 bits only. 605 */ 606 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 607 } 608 609 #if NMPU > 0 610 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) 611 mpu_intr(sc->sc_mpudev); 612 #endif 613 614 return (1); 615 } 616 617 /* Perform a software reset, including DMA FIFOs. */ 618 static int 619 eso_reset(sc) 620 struct eso_softc *sc; 621 { 622 int i; 623 624 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 625 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 626 /* `Delay' suggested in the data sheet. */ 627 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 628 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 629 630 /* Wait for reset to take effect. */ 631 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 632 /* Poll for data to become available. */ 633 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 634 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 635 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 636 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 637 638 /* Activate Solo-1 extension commands. */ 639 eso_write_cmd(sc, ESO_CMD_EXTENB); 640 /* Reset mixer registers. */ 641 eso_write_mixreg(sc, ESO_MIXREG_RESET, 642 ESO_MIXREG_RESET_RESET); 643 644 return (0); 645 } else { 646 delay(1000); 647 } 648 } 649 650 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 651 return (-1); 652 } 653 654 655 /* ARGSUSED */ 656 static int 657 eso_open(hdl, flags) 658 void *hdl; 659 int flags; 660 { 661 return (0); 662 } 663 664 static void 665 eso_close(hdl) 666 void *hdl; 667 { 668 } 669 670 static int 671 eso_query_encoding(hdl, fp) 672 void *hdl; 673 struct audio_encoding *fp; 674 { 675 676 switch (fp->index) { 677 case 0: 678 strcpy(fp->name, AudioEulinear); 679 fp->encoding = AUDIO_ENCODING_ULINEAR; 680 fp->precision = 8; 681 fp->flags = 0; 682 break; 683 case 1: 684 strcpy(fp->name, AudioEmulaw); 685 fp->encoding = AUDIO_ENCODING_ULAW; 686 fp->precision = 8; 687 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 688 break; 689 case 2: 690 strcpy(fp->name, AudioEalaw); 691 fp->encoding = AUDIO_ENCODING_ALAW; 692 fp->precision = 8; 693 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 694 break; 695 case 3: 696 strcpy(fp->name, AudioEslinear); 697 fp->encoding = AUDIO_ENCODING_SLINEAR; 698 fp->precision = 8; 699 fp->flags = 0; 700 break; 701 case 4: 702 strcpy(fp->name, AudioEslinear_le); 703 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 704 fp->precision = 16; 705 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 706 break; 707 case 5: 708 strcpy(fp->name, AudioEulinear_le); 709 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 710 fp->precision = 16; 711 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 712 break; 713 case 6: 714 strcpy(fp->name, AudioEslinear_be); 715 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 716 fp->precision = 16; 717 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 718 break; 719 case 7: 720 strcpy(fp->name, AudioEulinear_be); 721 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 722 fp->precision = 16; 723 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 724 break; 725 default: 726 return (EINVAL); 727 } 728 729 return (0); 730 } 731 732 static int 733 eso_set_params(hdl, setmode, usemode, play, rec) 734 void *hdl; 735 int setmode, usemode; 736 struct audio_params *play, *rec; 737 { 738 struct eso_softc *sc = hdl; 739 struct audio_params *p; 740 int mode, r[2], rd[2], clk; 741 unsigned int srg, fltdiv; 742 743 for (mode = AUMODE_RECORD; mode != -1; 744 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 745 if ((setmode & mode) == 0) 746 continue; 747 748 p = (mode == AUMODE_PLAY) ? play : rec; 749 750 if (p->sample_rate < ESO_MINRATE || 751 p->sample_rate > ESO_MAXRATE || 752 (p->precision != 8 && p->precision != 16) || 753 (p->channels != 1 && p->channels != 2)) 754 return (EINVAL); 755 756 p->factor = 1; 757 p->sw_code = NULL; 758 switch (p->encoding) { 759 case AUDIO_ENCODING_SLINEAR_BE: 760 case AUDIO_ENCODING_ULINEAR_BE: 761 if (mode == AUMODE_PLAY && p->precision == 16) 762 p->sw_code = swap_bytes; 763 break; 764 case AUDIO_ENCODING_SLINEAR_LE: 765 case AUDIO_ENCODING_ULINEAR_LE: 766 if (mode == AUMODE_RECORD && p->precision == 16) 767 p->sw_code = swap_bytes; 768 break; 769 case AUDIO_ENCODING_ULAW: 770 if (mode == AUMODE_PLAY) { 771 p->factor = 2; 772 p->sw_code = mulaw_to_ulinear16_le; 773 } else { 774 p->sw_code = ulinear8_to_mulaw; 775 } 776 break; 777 case AUDIO_ENCODING_ALAW: 778 if (mode == AUMODE_PLAY) { 779 p->factor = 2; 780 p->sw_code = alaw_to_ulinear16_le; 781 } else { 782 p->sw_code = ulinear8_to_alaw; 783 } 784 break; 785 default: 786 return (EINVAL); 787 } 788 789 /* 790 * We'll compute both possible sample rate dividers and pick 791 * the one with the least error. 792 */ 793 #define ABS(x) ((x) < 0 ? -(x) : (x)) 794 r[0] = ESO_CLK0 / 795 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 796 r[1] = ESO_CLK1 / 797 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 798 799 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]); 800 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 801 802 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 803 fltdiv = 256 - 200279L / r[clk]; 804 805 /* Update to reflect the possibly inexact rate. */ 806 p->sample_rate = r[clk]; 807 808 if (mode == AUMODE_RECORD) { 809 /* Audio 1 */ 810 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 811 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 812 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 813 } else { 814 /* Audio 2 */ 815 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 816 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 817 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 818 } 819 #undef ABS 820 821 } 822 823 return (0); 824 } 825 826 static int 827 eso_round_blocksize(hdl, blk) 828 void *hdl; 829 int blk; 830 { 831 832 return (blk & -32); /* keep good alignment; at least 16 req'd */ 833 } 834 835 static int 836 eso_halt_output(hdl) 837 void *hdl; 838 { 839 struct eso_softc *sc = hdl; 840 int error, s; 841 842 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); 843 844 /* 845 * Disable auto-initialize DMA, allowing the FIFO to drain and then 846 * stop. The interrupt callback pointer is cleared at this 847 * point so that an outstanding FIFO interrupt for the remaining data 848 * will be acknowledged without further processing. 849 * 850 * This does not immediately `abort' an operation in progress (c.f. 851 * audio(9)) but is the method to leave the FIFO behind in a clean 852 * state with the least hair. (Besides, that item needs to be 853 * rephrased for trigger_*()-based DMA environments.) 854 */ 855 s = splaudio(); 856 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 857 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 858 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 859 ESO_IO_A2DMAM_DMAENB); 860 861 sc->sc_pintr = NULL; 862 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 863 splx(s); 864 865 /* Shut down DMA completely. */ 866 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 867 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 868 869 return (error == EWOULDBLOCK ? 0 : error); 870 } 871 872 static int 873 eso_halt_input(hdl) 874 void *hdl; 875 { 876 struct eso_softc *sc = hdl; 877 int error, s; 878 879 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); 880 881 /* Just like eso_halt_output(), but for Audio 1. */ 882 s = splaudio(); 883 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 884 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 885 ESO_CTLREG_A1C2_DMAENB); 886 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 887 DMA37MD_WRITE | DMA37MD_DEMAND); 888 889 sc->sc_rintr = NULL; 890 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 891 splx(s); 892 893 /* Shut down DMA completely. */ 894 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 895 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 896 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 897 ESO_DMAC_MASK_MASK); 898 899 return (error == EWOULDBLOCK ? 0 : error); 900 } 901 902 static int 903 eso_getdev(hdl, retp) 904 void *hdl; 905 struct audio_device *retp; 906 { 907 struct eso_softc *sc = hdl; 908 909 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 910 snprintf(retp->version, sizeof (retp->version), "0x%02x", 911 sc->sc_revision); 912 if (sc->sc_revision < 913 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 914 strncpy(retp->config, eso_rev2model[sc->sc_revision], 915 sizeof (retp->config)); 916 else 917 strncpy(retp->config, "unknown", sizeof (retp->config)); 918 919 return (0); 920 } 921 922 static int 923 eso_set_port(hdl, cp) 924 void *hdl; 925 mixer_ctrl_t *cp; 926 { 927 struct eso_softc *sc = hdl; 928 unsigned int lgain, rgain; 929 uint8_t tmp; 930 931 switch (cp->dev) { 932 case ESO_DAC_PLAY_VOL: 933 case ESO_MIC_PLAY_VOL: 934 case ESO_LINE_PLAY_VOL: 935 case ESO_SYNTH_PLAY_VOL: 936 case ESO_CD_PLAY_VOL: 937 case ESO_AUXB_PLAY_VOL: 938 case ESO_RECORD_VOL: 939 case ESO_DAC_REC_VOL: 940 case ESO_MIC_REC_VOL: 941 case ESO_LINE_REC_VOL: 942 case ESO_SYNTH_REC_VOL: 943 case ESO_CD_REC_VOL: 944 case ESO_AUXB_REC_VOL: 945 if (cp->type != AUDIO_MIXER_VALUE) 946 return (EINVAL); 947 948 /* 949 * Stereo-capable mixer ports: if we get a single-channel 950 * gain value passed in, then we duplicate it to both left 951 * and right channels. 952 */ 953 switch (cp->un.value.num_channels) { 954 case 1: 955 lgain = rgain = ESO_GAIN_TO_4BIT( 956 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 957 break; 958 case 2: 959 lgain = ESO_GAIN_TO_4BIT( 960 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 961 rgain = ESO_GAIN_TO_4BIT( 962 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 963 break; 964 default: 965 return (EINVAL); 966 } 967 968 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 969 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 970 eso_set_gain(sc, cp->dev); 971 break; 972 973 case ESO_MASTER_VOL: 974 if (cp->type != AUDIO_MIXER_VALUE) 975 return (EINVAL); 976 977 /* Like above, but a precision of 6 bits. */ 978 switch (cp->un.value.num_channels) { 979 case 1: 980 lgain = rgain = ESO_GAIN_TO_6BIT( 981 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 982 break; 983 case 2: 984 lgain = ESO_GAIN_TO_6BIT( 985 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 986 rgain = ESO_GAIN_TO_6BIT( 987 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 988 break; 989 default: 990 return (EINVAL); 991 } 992 993 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 994 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 995 eso_set_gain(sc, cp->dev); 996 break; 997 998 case ESO_SPATIALIZER: 999 if (cp->type != AUDIO_MIXER_VALUE || 1000 cp->un.value.num_channels != 1) 1001 return (EINVAL); 1002 1003 sc->sc_gain[cp->dev][ESO_LEFT] = 1004 sc->sc_gain[cp->dev][ESO_RIGHT] = 1005 ESO_GAIN_TO_6BIT( 1006 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1007 eso_set_gain(sc, cp->dev); 1008 break; 1009 1010 case ESO_MONO_PLAY_VOL: 1011 case ESO_MONO_REC_VOL: 1012 if (cp->type != AUDIO_MIXER_VALUE || 1013 cp->un.value.num_channels != 1) 1014 return (EINVAL); 1015 1016 sc->sc_gain[cp->dev][ESO_LEFT] = 1017 sc->sc_gain[cp->dev][ESO_RIGHT] = 1018 ESO_GAIN_TO_4BIT( 1019 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1020 eso_set_gain(sc, cp->dev); 1021 break; 1022 1023 case ESO_PCSPEAKER_VOL: 1024 if (cp->type != AUDIO_MIXER_VALUE || 1025 cp->un.value.num_channels != 1) 1026 return (EINVAL); 1027 1028 sc->sc_gain[cp->dev][ESO_LEFT] = 1029 sc->sc_gain[cp->dev][ESO_RIGHT] = 1030 ESO_GAIN_TO_3BIT( 1031 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1032 eso_set_gain(sc, cp->dev); 1033 break; 1034 1035 case ESO_SPATIALIZER_ENABLE: 1036 if (cp->type != AUDIO_MIXER_ENUM) 1037 return (EINVAL); 1038 1039 sc->sc_spatializer = (cp->un.ord != 0); 1040 1041 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1042 if (sc->sc_spatializer) 1043 tmp |= ESO_MIXREG_SPAT_ENB; 1044 else 1045 tmp &= ~ESO_MIXREG_SPAT_ENB; 1046 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1047 tmp | ESO_MIXREG_SPAT_RSTREL); 1048 break; 1049 1050 case ESO_MASTER_MUTE: 1051 if (cp->type != AUDIO_MIXER_ENUM) 1052 return (EINVAL); 1053 1054 sc->sc_mvmute = (cp->un.ord != 0); 1055 1056 if (sc->sc_mvmute) { 1057 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1058 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1059 ESO_MIXREG_LMVM_MUTE); 1060 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1061 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1062 ESO_MIXREG_RMVM_MUTE); 1063 } else { 1064 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1065 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1066 ~ESO_MIXREG_LMVM_MUTE); 1067 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1068 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1069 ~ESO_MIXREG_RMVM_MUTE); 1070 } 1071 break; 1072 1073 case ESO_MONOOUT_SOURCE: 1074 if (cp->type != AUDIO_MIXER_ENUM) 1075 return (EINVAL); 1076 1077 return (eso_set_monooutsrc(sc, cp->un.ord)); 1078 1079 case ESO_MONOIN_BYPASS: 1080 if (cp->type != AUDIO_MIXER_ENUM) 1081 return (EINVAL); 1082 1083 return (eso_set_monoinbypass(sc, cp->un.ord)); 1084 1085 case ESO_RECORD_MONITOR: 1086 if (cp->type != AUDIO_MIXER_ENUM) 1087 return (EINVAL); 1088 1089 sc->sc_recmon = (cp->un.ord != 0); 1090 1091 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1092 if (sc->sc_recmon) 1093 tmp |= ESO_CTLREG_ACTL_RECMON; 1094 else 1095 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1096 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1097 break; 1098 1099 case ESO_RECORD_SOURCE: 1100 if (cp->type != AUDIO_MIXER_ENUM) 1101 return (EINVAL); 1102 1103 return (eso_set_recsrc(sc, cp->un.ord)); 1104 1105 case ESO_MIC_PREAMP: 1106 if (cp->type != AUDIO_MIXER_ENUM) 1107 return (EINVAL); 1108 1109 return (eso_set_preamp(sc, cp->un.ord)); 1110 1111 default: 1112 return (EINVAL); 1113 } 1114 1115 return (0); 1116 } 1117 1118 static int 1119 eso_get_port(hdl, cp) 1120 void *hdl; 1121 mixer_ctrl_t *cp; 1122 { 1123 struct eso_softc *sc = hdl; 1124 1125 switch (cp->dev) { 1126 case ESO_MASTER_VOL: 1127 /* Reload from mixer after hardware volume control use. */ 1128 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1129 eso_reload_master_vol(sc); 1130 /* FALLTHROUGH */ 1131 case ESO_DAC_PLAY_VOL: 1132 case ESO_MIC_PLAY_VOL: 1133 case ESO_LINE_PLAY_VOL: 1134 case ESO_SYNTH_PLAY_VOL: 1135 case ESO_CD_PLAY_VOL: 1136 case ESO_AUXB_PLAY_VOL: 1137 case ESO_RECORD_VOL: 1138 case ESO_DAC_REC_VOL: 1139 case ESO_MIC_REC_VOL: 1140 case ESO_LINE_REC_VOL: 1141 case ESO_SYNTH_REC_VOL: 1142 case ESO_CD_REC_VOL: 1143 case ESO_AUXB_REC_VOL: 1144 /* 1145 * Stereo-capable ports: if a single-channel query is made, 1146 * just return the left channel's value (since single-channel 1147 * settings themselves are applied to both channels). 1148 */ 1149 switch (cp->un.value.num_channels) { 1150 case 1: 1151 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1152 sc->sc_gain[cp->dev][ESO_LEFT]; 1153 break; 1154 case 2: 1155 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1156 sc->sc_gain[cp->dev][ESO_LEFT]; 1157 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1158 sc->sc_gain[cp->dev][ESO_RIGHT]; 1159 break; 1160 default: 1161 return (EINVAL); 1162 } 1163 break; 1164 1165 case ESO_MONO_PLAY_VOL: 1166 case ESO_PCSPEAKER_VOL: 1167 case ESO_MONO_REC_VOL: 1168 case ESO_SPATIALIZER: 1169 if (cp->un.value.num_channels != 1) 1170 return (EINVAL); 1171 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1172 sc->sc_gain[cp->dev][ESO_LEFT]; 1173 break; 1174 1175 case ESO_RECORD_MONITOR: 1176 cp->un.ord = sc->sc_recmon; 1177 break; 1178 1179 case ESO_RECORD_SOURCE: 1180 cp->un.ord = sc->sc_recsrc; 1181 break; 1182 1183 case ESO_MONOOUT_SOURCE: 1184 cp->un.ord = sc->sc_monooutsrc; 1185 break; 1186 1187 case ESO_MONOIN_BYPASS: 1188 cp->un.ord = sc->sc_monoinbypass; 1189 break; 1190 1191 case ESO_SPATIALIZER_ENABLE: 1192 cp->un.ord = sc->sc_spatializer; 1193 break; 1194 1195 case ESO_MIC_PREAMP: 1196 cp->un.ord = sc->sc_preamp; 1197 break; 1198 1199 case ESO_MASTER_MUTE: 1200 /* Reload from mixer after hardware volume control use. */ 1201 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1202 eso_reload_master_vol(sc); 1203 cp->un.ord = sc->sc_mvmute; 1204 break; 1205 1206 default: 1207 return (EINVAL); 1208 } 1209 1210 1211 return (0); 1212 1213 } 1214 1215 static int 1216 eso_query_devinfo(hdl, dip) 1217 void *hdl; 1218 mixer_devinfo_t *dip; 1219 { 1220 1221 switch (dip->index) { 1222 case ESO_DAC_PLAY_VOL: 1223 dip->mixer_class = ESO_INPUT_CLASS; 1224 dip->next = dip->prev = AUDIO_MIXER_LAST; 1225 strcpy(dip->label.name, AudioNdac); 1226 dip->type = AUDIO_MIXER_VALUE; 1227 dip->un.v.num_channels = 2; 1228 strcpy(dip->un.v.units.name, AudioNvolume); 1229 break; 1230 case ESO_MIC_PLAY_VOL: 1231 dip->mixer_class = ESO_INPUT_CLASS; 1232 dip->next = dip->prev = AUDIO_MIXER_LAST; 1233 strcpy(dip->label.name, AudioNmicrophone); 1234 dip->type = AUDIO_MIXER_VALUE; 1235 dip->un.v.num_channels = 2; 1236 strcpy(dip->un.v.units.name, AudioNvolume); 1237 break; 1238 case ESO_LINE_PLAY_VOL: 1239 dip->mixer_class = ESO_INPUT_CLASS; 1240 dip->next = dip->prev = AUDIO_MIXER_LAST; 1241 strcpy(dip->label.name, AudioNline); 1242 dip->type = AUDIO_MIXER_VALUE; 1243 dip->un.v.num_channels = 2; 1244 strcpy(dip->un.v.units.name, AudioNvolume); 1245 break; 1246 case ESO_SYNTH_PLAY_VOL: 1247 dip->mixer_class = ESO_INPUT_CLASS; 1248 dip->next = dip->prev = AUDIO_MIXER_LAST; 1249 strcpy(dip->label.name, AudioNfmsynth); 1250 dip->type = AUDIO_MIXER_VALUE; 1251 dip->un.v.num_channels = 2; 1252 strcpy(dip->un.v.units.name, AudioNvolume); 1253 break; 1254 case ESO_MONO_PLAY_VOL: 1255 dip->mixer_class = ESO_INPUT_CLASS; 1256 dip->next = dip->prev = AUDIO_MIXER_LAST; 1257 strcpy(dip->label.name, "mono_in"); 1258 dip->type = AUDIO_MIXER_VALUE; 1259 dip->un.v.num_channels = 1; 1260 strcpy(dip->un.v.units.name, AudioNvolume); 1261 break; 1262 case ESO_CD_PLAY_VOL: 1263 dip->mixer_class = ESO_INPUT_CLASS; 1264 dip->next = dip->prev = AUDIO_MIXER_LAST; 1265 strcpy(dip->label.name, AudioNcd); 1266 dip->type = AUDIO_MIXER_VALUE; 1267 dip->un.v.num_channels = 2; 1268 strcpy(dip->un.v.units.name, AudioNvolume); 1269 break; 1270 case ESO_AUXB_PLAY_VOL: 1271 dip->mixer_class = ESO_INPUT_CLASS; 1272 dip->next = dip->prev = AUDIO_MIXER_LAST; 1273 strcpy(dip->label.name, "auxb"); 1274 dip->type = AUDIO_MIXER_VALUE; 1275 dip->un.v.num_channels = 2; 1276 strcpy(dip->un.v.units.name, AudioNvolume); 1277 break; 1278 1279 case ESO_MIC_PREAMP: 1280 dip->mixer_class = ESO_MICROPHONE_CLASS; 1281 dip->next = dip->prev = AUDIO_MIXER_LAST; 1282 strcpy(dip->label.name, AudioNpreamp); 1283 dip->type = AUDIO_MIXER_ENUM; 1284 dip->un.e.num_mem = 2; 1285 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1286 dip->un.e.member[0].ord = 0; 1287 strcpy(dip->un.e.member[1].label.name, AudioNon); 1288 dip->un.e.member[1].ord = 1; 1289 break; 1290 case ESO_MICROPHONE_CLASS: 1291 dip->mixer_class = ESO_MICROPHONE_CLASS; 1292 dip->next = dip->prev = AUDIO_MIXER_LAST; 1293 strcpy(dip->label.name, AudioNmicrophone); 1294 dip->type = AUDIO_MIXER_CLASS; 1295 break; 1296 1297 case ESO_INPUT_CLASS: 1298 dip->mixer_class = ESO_INPUT_CLASS; 1299 dip->next = dip->prev = AUDIO_MIXER_LAST; 1300 strcpy(dip->label.name, AudioCinputs); 1301 dip->type = AUDIO_MIXER_CLASS; 1302 break; 1303 1304 case ESO_MASTER_VOL: 1305 dip->mixer_class = ESO_OUTPUT_CLASS; 1306 dip->prev = AUDIO_MIXER_LAST; 1307 dip->next = ESO_MASTER_MUTE; 1308 strcpy(dip->label.name, AudioNmaster); 1309 dip->type = AUDIO_MIXER_VALUE; 1310 dip->un.v.num_channels = 2; 1311 strcpy(dip->un.v.units.name, AudioNvolume); 1312 break; 1313 case ESO_MASTER_MUTE: 1314 dip->mixer_class = ESO_OUTPUT_CLASS; 1315 dip->prev = ESO_MASTER_VOL; 1316 dip->next = AUDIO_MIXER_LAST; 1317 strcpy(dip->label.name, AudioNmute); 1318 dip->type = AUDIO_MIXER_ENUM; 1319 dip->un.e.num_mem = 2; 1320 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1321 dip->un.e.member[0].ord = 0; 1322 strcpy(dip->un.e.member[1].label.name, AudioNon); 1323 dip->un.e.member[1].ord = 1; 1324 break; 1325 1326 case ESO_PCSPEAKER_VOL: 1327 dip->mixer_class = ESO_OUTPUT_CLASS; 1328 dip->next = dip->prev = AUDIO_MIXER_LAST; 1329 strcpy(dip->label.name, "pc_speaker"); 1330 dip->type = AUDIO_MIXER_VALUE; 1331 dip->un.v.num_channels = 1; 1332 strcpy(dip->un.v.units.name, AudioNvolume); 1333 break; 1334 case ESO_MONOOUT_SOURCE: 1335 dip->mixer_class = ESO_OUTPUT_CLASS; 1336 dip->next = dip->prev = AUDIO_MIXER_LAST; 1337 strcpy(dip->label.name, "mono_out"); 1338 dip->type = AUDIO_MIXER_ENUM; 1339 dip->un.e.num_mem = 3; 1340 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1341 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1342 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1343 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1344 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1345 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1346 break; 1347 1348 case ESO_MONOIN_BYPASS: 1349 dip->mixer_class = ESO_MONOIN_CLASS; 1350 dip->next = dip->prev = AUDIO_MIXER_LAST; 1351 strcpy(dip->label.name, "bypass"); 1352 dip->type = AUDIO_MIXER_ENUM; 1353 dip->un.e.num_mem = 2; 1354 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1355 dip->un.e.member[0].ord = 0; 1356 strcpy(dip->un.e.member[1].label.name, AudioNon); 1357 dip->un.e.member[1].ord = 1; 1358 break; 1359 case ESO_MONOIN_CLASS: 1360 dip->mixer_class = ESO_MONOIN_CLASS; 1361 dip->next = dip->prev = AUDIO_MIXER_LAST; 1362 strcpy(dip->label.name, "mono_in"); 1363 dip->type = AUDIO_MIXER_CLASS; 1364 break; 1365 1366 case ESO_SPATIALIZER: 1367 dip->mixer_class = ESO_OUTPUT_CLASS; 1368 dip->prev = AUDIO_MIXER_LAST; 1369 dip->next = ESO_SPATIALIZER_ENABLE; 1370 strcpy(dip->label.name, AudioNspatial); 1371 dip->type = AUDIO_MIXER_VALUE; 1372 dip->un.v.num_channels = 1; 1373 strcpy(dip->un.v.units.name, "level"); 1374 break; 1375 case ESO_SPATIALIZER_ENABLE: 1376 dip->mixer_class = ESO_OUTPUT_CLASS; 1377 dip->prev = ESO_SPATIALIZER; 1378 dip->next = AUDIO_MIXER_LAST; 1379 strcpy(dip->label.name, "enable"); 1380 dip->type = AUDIO_MIXER_ENUM; 1381 dip->un.e.num_mem = 2; 1382 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1383 dip->un.e.member[0].ord = 0; 1384 strcpy(dip->un.e.member[1].label.name, AudioNon); 1385 dip->un.e.member[1].ord = 1; 1386 break; 1387 1388 case ESO_OUTPUT_CLASS: 1389 dip->mixer_class = ESO_OUTPUT_CLASS; 1390 dip->next = dip->prev = AUDIO_MIXER_LAST; 1391 strcpy(dip->label.name, AudioCoutputs); 1392 dip->type = AUDIO_MIXER_CLASS; 1393 break; 1394 1395 case ESO_RECORD_MONITOR: 1396 dip->mixer_class = ESO_MONITOR_CLASS; 1397 dip->next = dip->prev = AUDIO_MIXER_LAST; 1398 strcpy(dip->label.name, AudioNmute); 1399 dip->type = AUDIO_MIXER_ENUM; 1400 dip->un.e.num_mem = 2; 1401 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1402 dip->un.e.member[0].ord = 0; 1403 strcpy(dip->un.e.member[1].label.name, AudioNon); 1404 dip->un.e.member[1].ord = 1; 1405 break; 1406 case ESO_MONITOR_CLASS: 1407 dip->mixer_class = ESO_MONITOR_CLASS; 1408 dip->next = dip->prev = AUDIO_MIXER_LAST; 1409 strcpy(dip->label.name, AudioCmonitor); 1410 dip->type = AUDIO_MIXER_CLASS; 1411 break; 1412 1413 case ESO_RECORD_VOL: 1414 dip->mixer_class = ESO_RECORD_CLASS; 1415 dip->next = dip->prev = AUDIO_MIXER_LAST; 1416 strcpy(dip->label.name, AudioNrecord); 1417 dip->type = AUDIO_MIXER_VALUE; 1418 strcpy(dip->un.v.units.name, AudioNvolume); 1419 break; 1420 case ESO_RECORD_SOURCE: 1421 dip->mixer_class = ESO_RECORD_CLASS; 1422 dip->next = dip->prev = AUDIO_MIXER_LAST; 1423 strcpy(dip->label.name, AudioNsource); 1424 dip->type = AUDIO_MIXER_ENUM; 1425 dip->un.e.num_mem = 4; 1426 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1427 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1428 strcpy(dip->un.e.member[1].label.name, AudioNline); 1429 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1430 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1431 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1432 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1433 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1434 break; 1435 case ESO_DAC_REC_VOL: 1436 dip->mixer_class = ESO_RECORD_CLASS; 1437 dip->next = dip->prev = AUDIO_MIXER_LAST; 1438 strcpy(dip->label.name, AudioNdac); 1439 dip->type = AUDIO_MIXER_VALUE; 1440 dip->un.v.num_channels = 2; 1441 strcpy(dip->un.v.units.name, AudioNvolume); 1442 break; 1443 case ESO_MIC_REC_VOL: 1444 dip->mixer_class = ESO_RECORD_CLASS; 1445 dip->next = dip->prev = AUDIO_MIXER_LAST; 1446 strcpy(dip->label.name, AudioNmicrophone); 1447 dip->type = AUDIO_MIXER_VALUE; 1448 dip->un.v.num_channels = 2; 1449 strcpy(dip->un.v.units.name, AudioNvolume); 1450 break; 1451 case ESO_LINE_REC_VOL: 1452 dip->mixer_class = ESO_RECORD_CLASS; 1453 dip->next = dip->prev = AUDIO_MIXER_LAST; 1454 strcpy(dip->label.name, AudioNline); 1455 dip->type = AUDIO_MIXER_VALUE; 1456 dip->un.v.num_channels = 2; 1457 strcpy(dip->un.v.units.name, AudioNvolume); 1458 break; 1459 case ESO_SYNTH_REC_VOL: 1460 dip->mixer_class = ESO_RECORD_CLASS; 1461 dip->next = dip->prev = AUDIO_MIXER_LAST; 1462 strcpy(dip->label.name, AudioNfmsynth); 1463 dip->type = AUDIO_MIXER_VALUE; 1464 dip->un.v.num_channels = 2; 1465 strcpy(dip->un.v.units.name, AudioNvolume); 1466 break; 1467 case ESO_MONO_REC_VOL: 1468 dip->mixer_class = ESO_RECORD_CLASS; 1469 dip->next = dip->prev = AUDIO_MIXER_LAST; 1470 strcpy(dip->label.name, "mono_in"); 1471 dip->type = AUDIO_MIXER_VALUE; 1472 dip->un.v.num_channels = 1; /* No lies */ 1473 strcpy(dip->un.v.units.name, AudioNvolume); 1474 break; 1475 case ESO_CD_REC_VOL: 1476 dip->mixer_class = ESO_RECORD_CLASS; 1477 dip->next = dip->prev = AUDIO_MIXER_LAST; 1478 strcpy(dip->label.name, AudioNcd); 1479 dip->type = AUDIO_MIXER_VALUE; 1480 dip->un.v.num_channels = 2; 1481 strcpy(dip->un.v.units.name, AudioNvolume); 1482 break; 1483 case ESO_AUXB_REC_VOL: 1484 dip->mixer_class = ESO_RECORD_CLASS; 1485 dip->next = dip->prev = AUDIO_MIXER_LAST; 1486 strcpy(dip->label.name, "auxb"); 1487 dip->type = AUDIO_MIXER_VALUE; 1488 dip->un.v.num_channels = 2; 1489 strcpy(dip->un.v.units.name, AudioNvolume); 1490 break; 1491 case ESO_RECORD_CLASS: 1492 dip->mixer_class = ESO_RECORD_CLASS; 1493 dip->next = dip->prev = AUDIO_MIXER_LAST; 1494 strcpy(dip->label.name, AudioCrecord); 1495 dip->type = AUDIO_MIXER_CLASS; 1496 break; 1497 1498 default: 1499 return (ENXIO); 1500 } 1501 1502 return (0); 1503 } 1504 1505 static int 1506 eso_allocmem(sc, size, align, boundary, flags, direction, ed) 1507 struct eso_softc *sc; 1508 size_t size; 1509 size_t align; 1510 size_t boundary; 1511 int flags; 1512 int direction; 1513 struct eso_dma *ed; 1514 { 1515 int error, wait; 1516 1517 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1518 ed->ed_size = size; 1519 1520 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1521 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1522 &ed->ed_nsegs, wait); 1523 if (error) 1524 goto out; 1525 1526 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1527 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT); 1528 if (error) 1529 goto free; 1530 1531 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1532 wait, &ed->ed_map); 1533 if (error) 1534 goto unmap; 1535 1536 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr, 1537 ed->ed_size, NULL, wait | 1538 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 1539 if (error) 1540 goto destroy; 1541 1542 return (0); 1543 1544 destroy: 1545 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1546 unmap: 1547 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1548 free: 1549 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1550 out: 1551 return (error); 1552 } 1553 1554 static void 1555 eso_freemem(ed) 1556 struct eso_dma *ed; 1557 { 1558 1559 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1560 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1561 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1562 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1563 } 1564 1565 static void * 1566 eso_allocm(hdl, direction, size, type, flags) 1567 void *hdl; 1568 int direction; 1569 size_t size; 1570 struct malloc_type *type; 1571 int flags; 1572 { 1573 struct eso_softc *sc = hdl; 1574 struct eso_dma *ed; 1575 size_t boundary; 1576 int error; 1577 1578 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL) 1579 return (NULL); 1580 1581 /* 1582 * Apparently the Audio 1 DMA controller's current address 1583 * register can't roll over a 64K address boundary, so we have to 1584 * take care of that ourselves. Similarly, the Audio 2 DMA 1585 * controller needs a 1M address boundary. 1586 */ 1587 if (direction == AUMODE_RECORD) 1588 boundary = 0x10000; 1589 else 1590 boundary = 0x100000; 1591 1592 /* 1593 * XXX Work around allocation problems for Audio 1, which 1594 * XXX implements the 24 low address bits only, with 1595 * XXX machine-specific DMA tag use. 1596 */ 1597 #ifdef alpha 1598 /* 1599 * XXX Force allocation through the (ISA) SGMAP. 1600 */ 1601 if (direction == AUMODE_RECORD) 1602 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1603 else 1604 #elif defined(amd64) || defined(i386) 1605 /* 1606 * XXX Force allocation through the ISA DMA tag. 1607 */ 1608 if (direction == AUMODE_RECORD) 1609 ed->ed_dmat = &isa_bus_dma_tag; 1610 else 1611 #endif 1612 ed->ed_dmat = sc->sc_dmat; 1613 1614 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed); 1615 if (error) { 1616 free(ed, type); 1617 return (NULL); 1618 } 1619 ed->ed_next = sc->sc_dmas; 1620 sc->sc_dmas = ed; 1621 1622 return (KVADDR(ed)); 1623 } 1624 1625 static void 1626 eso_freem(hdl, addr, type) 1627 void *hdl; 1628 void *addr; 1629 struct malloc_type *type; 1630 { 1631 struct eso_softc *sc = hdl; 1632 struct eso_dma *p, **pp; 1633 1634 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) { 1635 if (KVADDR(p) == addr) { 1636 eso_freemem(p); 1637 *pp = p->ed_next; 1638 free(p, type); 1639 return; 1640 } 1641 } 1642 } 1643 1644 static size_t 1645 eso_round_buffersize(hdl, direction, bufsize) 1646 void *hdl; 1647 int direction; 1648 size_t bufsize; 1649 { 1650 size_t maxsize; 1651 1652 /* 1653 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1654 * bytes. This is because IO_A2DMAC is a two byte value 1655 * indicating the literal byte count, and the 4 least significant 1656 * bits are read-only. Zero is not used as a special case for 1657 * 0x10000. 1658 * 1659 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1660 * be represented. 1661 */ 1662 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1663 1664 if (bufsize > maxsize) 1665 bufsize = maxsize; 1666 1667 return (bufsize); 1668 } 1669 1670 static paddr_t 1671 eso_mappage(hdl, addr, offs, prot) 1672 void *hdl; 1673 void *addr; 1674 off_t offs; 1675 int prot; 1676 { 1677 struct eso_softc *sc = hdl; 1678 struct eso_dma *ed; 1679 1680 if (offs < 0) 1681 return (-1); 1682 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr; 1683 ed = ed->ed_next) 1684 ; 1685 if (ed == NULL) 1686 return (-1); 1687 1688 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1689 offs, prot, BUS_DMA_WAITOK)); 1690 } 1691 1692 /* ARGSUSED */ 1693 static int 1694 eso_get_props(hdl) 1695 void *hdl; 1696 { 1697 1698 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1699 AUDIO_PROP_FULLDUPLEX); 1700 } 1701 1702 static int 1703 eso_trigger_output(hdl, start, end, blksize, intr, arg, param) 1704 void *hdl; 1705 void *start, *end; 1706 int blksize; 1707 void (*intr) __P((void *)); 1708 void *arg; 1709 struct audio_params *param; 1710 { 1711 struct eso_softc *sc = hdl; 1712 struct eso_dma *ed; 1713 uint8_t a2c1; 1714 1715 DPRINTF(( 1716 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1717 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1718 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1719 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1720 param->precision, param->channels, param->sw_code, param->factor)); 1721 1722 /* Find DMA buffer. */ 1723 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1724 ed = ed->ed_next) 1725 ; 1726 if (ed == NULL) { 1727 printf("%s: trigger_output: bad addr %p\n", 1728 sc->sc_dev.dv_xname, start); 1729 return (EINVAL); 1730 } 1731 DPRINTF(("%s: dmaaddr %lx\n", 1732 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed))); 1733 1734 sc->sc_pintr = intr; 1735 sc->sc_parg = arg; 1736 1737 /* Compute drain timeout. */ 1738 sc->sc_pdrain = (blksize * NBBY * hz) / 1739 (param->sample_rate * param->channels * 1740 param->precision * param->factor) + 2; /* slop */ 1741 1742 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1743 blksize = -(blksize >> 1); 1744 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1745 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1746 1747 /* Update DAC to reflect DMA count and audio parameters. */ 1748 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1749 if (param->precision * param->factor == 16) 1750 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1751 else 1752 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1753 if (param->channels == 2) 1754 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1755 else 1756 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1757 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1758 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1759 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1760 else 1761 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1762 /* Unmask IRQ. */ 1763 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1764 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1765 1766 /* Set up DMA controller. */ 1767 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1768 DMAADDR(ed)); 1769 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1770 (uint8_t *)end - (uint8_t *)start); 1771 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1772 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1773 1774 /* Start DMA. */ 1775 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1776 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1777 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1778 ESO_MIXREG_A2C1_AUTO; 1779 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1780 1781 return (0); 1782 } 1783 1784 static int 1785 eso_trigger_input(hdl, start, end, blksize, intr, arg, param) 1786 void *hdl; 1787 void *start, *end; 1788 int blksize; 1789 void (*intr) __P((void *)); 1790 void *arg; 1791 struct audio_params *param; 1792 { 1793 struct eso_softc *sc = hdl; 1794 struct eso_dma *ed; 1795 uint8_t actl, a1c1; 1796 1797 DPRINTF(( 1798 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1799 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1800 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1801 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1802 param->precision, param->channels, param->sw_code, param->factor)); 1803 1804 /* 1805 * If we failed to configure the Audio 1 DMA controller, bail here 1806 * while retaining availability of the DAC direction (in Audio 2). 1807 */ 1808 if (!sc->sc_dmac_configured) 1809 return (EIO); 1810 1811 /* Find DMA buffer. */ 1812 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1813 ed = ed->ed_next) 1814 ; 1815 if (ed == NULL) { 1816 printf("%s: trigger_output: bad addr %p\n", 1817 sc->sc_dev.dv_xname, start); 1818 return (EINVAL); 1819 } 1820 DPRINTF(("%s: dmaaddr %lx\n", 1821 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed))); 1822 1823 sc->sc_rintr = intr; 1824 sc->sc_rarg = arg; 1825 1826 /* Compute drain timeout. */ 1827 sc->sc_rdrain = (blksize * NBBY * hz) / 1828 (param->sample_rate * param->channels * 1829 param->precision * param->factor) + 2; /* slop */ 1830 1831 /* Set up ADC DMA converter parameters. */ 1832 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1833 if (param->channels == 2) { 1834 actl &= ~ESO_CTLREG_ACTL_MONO; 1835 actl |= ESO_CTLREG_ACTL_STEREO; 1836 } else { 1837 actl &= ~ESO_CTLREG_ACTL_STEREO; 1838 actl |= ESO_CTLREG_ACTL_MONO; 1839 } 1840 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1841 1842 /* Set up Transfer Type: maybe move to attach time? */ 1843 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1844 1845 /* DMA transfer count reload using 2's complement. */ 1846 blksize = -blksize; 1847 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1848 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1849 1850 /* Set up and enable Audio 1 DMA FIFO. */ 1851 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1852 if (param->precision * param->factor == 16) 1853 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1854 if (param->channels == 2) 1855 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1856 else 1857 a1c1 |= ESO_CTLREG_A1C1_MONO; 1858 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1859 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1860 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1861 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1862 1863 /* Set up ADC IRQ/DRQ parameters. */ 1864 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1865 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1866 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1867 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1868 1869 /* Set up and enable DMA controller. */ 1870 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1871 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1872 ESO_DMAC_MASK_MASK); 1873 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1874 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1875 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1876 DMAADDR(ed)); 1877 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1878 (uint8_t *)end - (uint8_t *)start - 1); 1879 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1880 1881 /* Start DMA. */ 1882 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1883 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1884 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1885 1886 return (0); 1887 } 1888 1889 /* 1890 * Mixer utility functions. 1891 */ 1892 static int 1893 eso_set_recsrc(sc, recsrc) 1894 struct eso_softc *sc; 1895 unsigned int recsrc; 1896 { 1897 mixer_devinfo_t di; 1898 int i; 1899 1900 di.index = ESO_RECORD_SOURCE; 1901 if (eso_query_devinfo(sc, &di) != 0) 1902 panic("eso_set_recsrc: eso_query_devinfo failed"); 1903 1904 for (i = 0; i < di.un.e.num_mem; i++) { 1905 if (recsrc == di.un.e.member[i].ord) { 1906 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1907 sc->sc_recsrc = recsrc; 1908 return (0); 1909 } 1910 } 1911 1912 return (EINVAL); 1913 } 1914 1915 static int 1916 eso_set_monooutsrc(sc, monooutsrc) 1917 struct eso_softc *sc; 1918 unsigned int monooutsrc; 1919 { 1920 mixer_devinfo_t di; 1921 int i; 1922 uint8_t mpm; 1923 1924 di.index = ESO_MONOOUT_SOURCE; 1925 if (eso_query_devinfo(sc, &di) != 0) 1926 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1927 1928 for (i = 0; i < di.un.e.num_mem; i++) { 1929 if (monooutsrc == di.un.e.member[i].ord) { 1930 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1931 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1932 mpm |= monooutsrc; 1933 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1934 sc->sc_monooutsrc = monooutsrc; 1935 return (0); 1936 } 1937 } 1938 1939 return (EINVAL); 1940 } 1941 1942 static int 1943 eso_set_monoinbypass(sc, monoinbypass) 1944 struct eso_softc *sc; 1945 unsigned int monoinbypass; 1946 { 1947 mixer_devinfo_t di; 1948 int i; 1949 uint8_t mpm; 1950 1951 di.index = ESO_MONOIN_BYPASS; 1952 if (eso_query_devinfo(sc, &di) != 0) 1953 panic("eso_set_monoinbypass: eso_query_devinfo failed"); 1954 1955 for (i = 0; i < di.un.e.num_mem; i++) { 1956 if (monoinbypass == di.un.e.member[i].ord) { 1957 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1958 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0); 1959 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0); 1960 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1961 sc->sc_monoinbypass = monoinbypass; 1962 return (0); 1963 } 1964 } 1965 1966 return (EINVAL); 1967 } 1968 1969 static int 1970 eso_set_preamp(sc, preamp) 1971 struct eso_softc *sc; 1972 unsigned int preamp; 1973 { 1974 mixer_devinfo_t di; 1975 int i; 1976 uint8_t mpm; 1977 1978 di.index = ESO_MIC_PREAMP; 1979 if (eso_query_devinfo(sc, &di) != 0) 1980 panic("eso_set_preamp: eso_query_devinfo failed"); 1981 1982 for (i = 0; i < di.un.e.num_mem; i++) { 1983 if (preamp == di.un.e.member[i].ord) { 1984 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1985 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0); 1986 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0); 1987 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1988 sc->sc_preamp = preamp; 1989 return (0); 1990 } 1991 } 1992 1993 return (EINVAL); 1994 } 1995 1996 /* 1997 * Reload Master Volume and Mute values in softc from mixer; used when 1998 * those have previously been invalidated by use of hardware volume controls. 1999 */ 2000 static void 2001 eso_reload_master_vol(sc) 2002 struct eso_softc *sc; 2003 { 2004 uint8_t mv; 2005 2006 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 2007 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 2008 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 2009 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 2010 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 2011 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 2012 /* Currently both channels are muted simultaneously; either is OK. */ 2013 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 2014 } 2015 2016 static void 2017 eso_set_gain(sc, port) 2018 struct eso_softc *sc; 2019 unsigned int port; 2020 { 2021 uint8_t mixreg, tmp; 2022 2023 switch (port) { 2024 case ESO_DAC_PLAY_VOL: 2025 mixreg = ESO_MIXREG_PVR_A2; 2026 break; 2027 case ESO_MIC_PLAY_VOL: 2028 mixreg = ESO_MIXREG_PVR_MIC; 2029 break; 2030 case ESO_LINE_PLAY_VOL: 2031 mixreg = ESO_MIXREG_PVR_LINE; 2032 break; 2033 case ESO_SYNTH_PLAY_VOL: 2034 mixreg = ESO_MIXREG_PVR_SYNTH; 2035 break; 2036 case ESO_CD_PLAY_VOL: 2037 mixreg = ESO_MIXREG_PVR_CD; 2038 break; 2039 case ESO_AUXB_PLAY_VOL: 2040 mixreg = ESO_MIXREG_PVR_AUXB; 2041 break; 2042 2043 case ESO_DAC_REC_VOL: 2044 mixreg = ESO_MIXREG_RVR_A2; 2045 break; 2046 case ESO_MIC_REC_VOL: 2047 mixreg = ESO_MIXREG_RVR_MIC; 2048 break; 2049 case ESO_LINE_REC_VOL: 2050 mixreg = ESO_MIXREG_RVR_LINE; 2051 break; 2052 case ESO_SYNTH_REC_VOL: 2053 mixreg = ESO_MIXREG_RVR_SYNTH; 2054 break; 2055 case ESO_CD_REC_VOL: 2056 mixreg = ESO_MIXREG_RVR_CD; 2057 break; 2058 case ESO_AUXB_REC_VOL: 2059 mixreg = ESO_MIXREG_RVR_AUXB; 2060 break; 2061 case ESO_MONO_PLAY_VOL: 2062 mixreg = ESO_MIXREG_PVR_MONO; 2063 break; 2064 case ESO_MONO_REC_VOL: 2065 mixreg = ESO_MIXREG_RVR_MONO; 2066 break; 2067 2068 case ESO_PCSPEAKER_VOL: 2069 /* Special case - only 3-bit, mono, and reserved bits. */ 2070 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 2071 tmp &= ESO_MIXREG_PCSVR_RESV; 2072 /* Map bits 7:5 -> 2:0. */ 2073 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 2074 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 2075 return; 2076 2077 case ESO_MASTER_VOL: 2078 /* Special case - separate regs, and 6-bit precision. */ 2079 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 2080 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 2081 (sc->sc_gain[port][ESO_LEFT] >> 2) | 2082 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 2083 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 2084 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 2085 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 2086 return; 2087 2088 case ESO_SPATIALIZER: 2089 /* Special case - only `mono', and higher precision. */ 2090 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 2091 sc->sc_gain[port][ESO_LEFT]); 2092 return; 2093 2094 case ESO_RECORD_VOL: 2095 /* Very Special case, controller register. */ 2096 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 2097 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2098 return; 2099 2100 default: 2101 #ifdef DIAGNOSTIC 2102 panic("eso_set_gain: bad port %u", port); 2103 /* NOTREACHED */ 2104 #else 2105 return; 2106 #endif 2107 } 2108 2109 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 2110 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 2111 } 2112