xref: /netbsd-src/sys/dev/pci/eso.c (revision 220b5c059a84c51ea44107ea8951a57ffaecdc8c)
1 /*	$NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1999, 2000 Klaus J. Klein
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $");
37 
38 #include "mpu.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46 
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49 
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53 
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56 
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70 
71 struct eso_dma {
72 	bus_dma_tag_t		ed_dmat;
73 	bus_dmamap_t		ed_map;
74 	caddr_t			ed_addr;
75 	bus_dma_segment_t	ed_segs[1];
76 	int			ed_nsegs;
77 	size_t			ed_size;
78 	struct eso_dma *	ed_next;
79 };
80 
81 #define KVADDR(dma)	((void *)(dma)->ed_addr)
82 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
83 
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 
89 struct cfattach eso_ca = {
90 	sizeof (struct eso_softc), eso_match, eso_attach
91 };
92 
93 /* PCI interface */
94 static int eso_intr __P((void *));
95 
96 /* MI audio layer interface */
97 static int	eso_open __P((void *, int));
98 static void	eso_close __P((void *));
99 static int	eso_query_encoding __P((void *, struct audio_encoding *));
100 static int	eso_set_params __P((void *, int, int, struct audio_params *,
101 		    struct audio_params *));
102 static int	eso_round_blocksize __P((void *, int));
103 static int	eso_halt_output __P((void *));
104 static int	eso_halt_input __P((void *));
105 static int	eso_getdev __P((void *, struct audio_device *));
106 static int	eso_set_port __P((void *, mixer_ctrl_t *));
107 static int	eso_get_port __P((void *, mixer_ctrl_t *));
108 static int	eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void *	eso_allocm __P((void *, int, size_t, int, int));
110 static void	eso_freem __P((void *, void *, int));
111 static size_t	eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t	eso_mappage __P((void *, void *, off_t, int));
113 static int	eso_get_props __P((void *));
114 static int	eso_trigger_output __P((void *, void *, void *, int,
115 		    void (*)(void *), void *, struct audio_params *));
116 static int	eso_trigger_input __P((void *, void *, void *, int,
117 		    void (*)(void *), void *, struct audio_params *));
118 
119 static struct audio_hw_if eso_hw_if = {
120 	eso_open,
121 	eso_close,
122 	NULL,			/* drain */
123 	eso_query_encoding,
124 	eso_set_params,
125 	eso_round_blocksize,
126 	NULL,			/* commit_settings */
127 	NULL,			/* init_output */
128 	NULL,			/* init_input */
129 	NULL,			/* start_output */
130 	NULL,			/* start_input */
131 	eso_halt_output,
132 	eso_halt_input,
133 	NULL,			/* speaker_ctl */
134 	eso_getdev,
135 	NULL,			/* setfd */
136 	eso_set_port,
137 	eso_get_port,
138 	eso_query_devinfo,
139 	eso_allocm,
140 	eso_freem,
141 	eso_round_buffersize,
142 	eso_mappage,
143 	eso_get_props,
144 	eso_trigger_output,
145 	eso_trigger_input,
146 	NULL,			/* dev_ioctl */
147 };
148 
149 static const char * const eso_rev2model[] = {
150 	"ES1938",
151 	"ES1946",
152 	"ES1946 Revision E"
153 };
154 
155 
156 /*
157  * Utility routines
158  */
159 /* Register access etc. */
160 static uint8_t	eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t	eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t	eso_read_rdr __P((struct eso_softc *));
163 static void	eso_reload_master_vol __P((struct eso_softc *));
164 static int	eso_reset __P((struct eso_softc *));
165 static void	eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int	eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
167 static int	eso_set_recsrc __P((struct eso_softc *, unsigned int));
168 static void	eso_write_cmd __P((struct eso_softc *, uint8_t));
169 static void	eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
170 static void	eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
171 /* DMA memory allocation */
172 static int	eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
173 		    int, int, struct eso_dma *));
174 static void	eso_freemem __P((struct eso_dma *));
175 
176 
177 static int
178 eso_match(parent, match, aux)
179 	struct device *parent;
180 	struct cfdata *match;
181 	void *aux;
182 {
183 	struct pci_attach_args *pa = aux;
184 
185 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
186 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
187 		return (1);
188 
189 	return (0);
190 }
191 
192 static void
193 eso_attach(parent, self, aux)
194 	struct device *parent, *self;
195 	void *aux;
196 {
197 	struct eso_softc *sc = (struct eso_softc *)self;
198 	struct pci_attach_args *pa = aux;
199 	struct audio_attach_args aa;
200 	pci_intr_handle_t ih;
201 	bus_addr_t vcbase;
202 	const char *intrstring;
203 	int idx;
204 	uint8_t a2mode, mvctl;
205 
206 	sc->sc_revision = PCI_REVISION(pa->pa_class);
207 
208 	printf(": ESS Solo-1 PCI AudioDrive ");
209 	if (sc->sc_revision <
210 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
211 		printf("%s\n", eso_rev2model[sc->sc_revision]);
212 	else
213 		printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
214 
215 	/* Map I/O registers. */
216 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
217 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
218 		printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
219 		return;
220 	}
221 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
222 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
223 		printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
224 		return;
225 	}
226 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
227 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
228 		printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
229 		/* Don't bail out yet: we can map it later, see below. */
230 		vcbase = 0;
231 		sc->sc_vcsize = 0x10; /* From the data sheet. */
232 	}
233 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
234 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
235 		printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
236 		return;
237 	}
238 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
239 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
240 		printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
241 		return;
242 	}
243 
244 	sc->sc_dmat = pa->pa_dmat;
245 	sc->sc_dmas = NULL;
246 	sc->sc_dmac_configured = 0;
247 
248 	/* Enable bus mastering. */
249 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
250 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
251 	    PCI_COMMAND_MASTER_ENABLE);
252 
253 	/* Reset the device; bail out upon failure. */
254 	if (eso_reset(sc) != 0) {
255 		printf("%s: can't reset\n", sc->sc_dev.dv_xname);
256 		return;
257 	}
258 
259 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
260 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
261 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
262 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
263 
264 	/* Enable the relevant (DMA) interrupts. */
265 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
266 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
267 	    ESO_IO_IRQCTL_MPUIRQ);
268 
269 	/* Set up A1's sample rate generator for new-style parameters. */
270 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
271 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
272 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
273 
274 	/* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
275 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
276 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
277 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
278 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
279 
280 	/* Set mixer regs to something reasonable, needs work. */
281 	sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
282 	sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
283 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
284 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
285 		int v;
286 
287 		switch (idx) {
288  		case ESO_MIC_PLAY_VOL:
289 		case ESO_LINE_PLAY_VOL:
290 		case ESO_CD_PLAY_VOL:
291 		case ESO_MONO_PLAY_VOL:
292 		case ESO_AUXB_PLAY_VOL:
293 		case ESO_DAC_REC_VOL:
294 		case ESO_LINE_REC_VOL:
295 		case ESO_SYNTH_REC_VOL:
296 		case ESO_CD_REC_VOL:
297 		case ESO_MONO_REC_VOL:
298 		case ESO_AUXB_REC_VOL:
299 		case ESO_SPATIALIZER:
300 			v = 0;
301 			break;
302 		case ESO_MASTER_VOL:
303 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
304 			break;
305 		default:
306 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
307 			break;
308 		}
309 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
310 		eso_set_gain(sc, idx);
311 	}
312 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
313 
314 	/* Map and establish the interrupt. */
315 	if (pci_intr_map(pa, &ih)) {
316 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
317 		return;
318 	}
319 	intrstring = pci_intr_string(pa->pa_pc, ih);
320 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
321 	if (sc->sc_ih == NULL) {
322 		printf("%s: couldn't establish interrupt",
323 		    sc->sc_dev.dv_xname);
324 		if (intrstring != NULL)
325 			printf(" at %s", intrstring);
326 		printf("\n");
327 		return;
328 	}
329 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
330 
331 	/*
332 	 * Set up the DDMA Control register; a suitable I/O region has been
333 	 * supposedly mapped in the VC base address register.
334 	 *
335 	 * The Solo-1 has an ... interesting silicon bug that causes it to
336 	 * not respond to I/O space accesses to the Audio 1 DMA controller
337 	 * if the latter's mapping base address is aligned on a 1K boundary.
338 	 * As a consequence, it is quite possible for the mapping provided
339 	 * in the VC BAR to be useless.  To work around this, we defer this
340 	 * part until all autoconfiguration on our parent bus is completed
341 	 * and then try to map it ourselves in fulfillment of the constraint.
342 	 *
343 	 * According to the register map we may write to the low 16 bits
344 	 * only, but experimenting has shown we're safe.
345 	 * -kjk
346 	 */
347 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
348 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
349 		    vcbase | ESO_PCI_DDMAC_DE);
350 		sc->sc_dmac_configured = 1;
351 
352 		printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
353 		    sc->sc_dev.dv_xname, (unsigned long)vcbase);
354 	} else {
355 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
356 		    sc->sc_dev.dv_xname, (unsigned long)vcbase));
357 		sc->sc_pa = *pa;
358 		config_defer(self, eso_defer);
359 	}
360 
361 	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
362 
363 	aa.type = AUDIODEV_TYPE_OPL;
364 	aa.hwif = NULL;
365 	aa.hdl = NULL;
366 	(void)config_found(&sc->sc_dev, &aa, audioprint);
367 
368 	aa.type = AUDIODEV_TYPE_MPU;
369 	aa.hwif = NULL;
370 	aa.hdl = NULL;
371 	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
372 	if (sc->sc_mpudev != NULL) {
373 		/* Unmask the MPU irq. */
374 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
375 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
376 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
377 	}
378 }
379 
380 static void
381 eso_defer(self)
382 	struct device *self;
383 {
384 	struct eso_softc *sc = (struct eso_softc *)self;
385 	struct pci_attach_args *pa = &sc->sc_pa;
386 	bus_addr_t addr, start;
387 
388 	printf("%s: ", sc->sc_dev.dv_xname);
389 
390 	/*
391 	 * This is outright ugly, but since we must not make assumptions
392 	 * on the underlying allocator's behaviour it's the most straight-
393 	 * forward way to implement it.  Note that we skip over the first
394 	 * 1K region, which is typically occupied by an attached ISA bus.
395 	 */
396 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
397 		if (bus_space_alloc(sc->sc_iot,
398 		    start + sc->sc_vcsize, start + 0x0400 - 1,
399 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
400 		    &sc->sc_dmac_ioh) != 0)
401 			continue;
402 
403 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
404 		    addr | ESO_PCI_DDMAC_DE);
405 		sc->sc_dmac_iot = sc->sc_iot;
406 		sc->sc_dmac_configured = 1;
407 		printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
408 		    (unsigned long)addr);
409 
410 		return;
411 	}
412 
413 	printf("can't map Audio 1 DMA into I/O space\n");
414 }
415 
416 static void
417 eso_write_cmd(sc, cmd)
418 	struct eso_softc *sc;
419 	uint8_t cmd;
420 {
421 	int i;
422 
423 	/* Poll for busy indicator to become clear. */
424 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
425 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
426 		    & ESO_SB_RSR_BUSY) == 0) {
427 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
428 			    ESO_SB_WDR, cmd);
429 			return;
430 		} else {
431 			delay(10);
432 		}
433 	}
434 
435 	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
436 	return;
437 }
438 
439 /* Write to a controller register */
440 static void
441 eso_write_ctlreg(sc, reg, val)
442 	struct eso_softc *sc;
443 	uint8_t reg, val;
444 {
445 
446 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
447 
448 	eso_write_cmd(sc, reg);
449 	eso_write_cmd(sc, val);
450 }
451 
452 /* Read out the Read Data Register */
453 static uint8_t
454 eso_read_rdr(sc)
455 	struct eso_softc *sc;
456 {
457 	int i;
458 
459 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
460 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
461 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
462 			return (bus_space_read_1(sc->sc_sb_iot,
463 			    sc->sc_sb_ioh, ESO_SB_RDR));
464 		} else {
465 			delay(10);
466 		}
467 	}
468 
469 	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
470 	return (-1);
471 }
472 
473 
474 static uint8_t
475 eso_read_ctlreg(sc, reg)
476 	struct eso_softc *sc;
477 	uint8_t reg;
478 {
479 
480 	eso_write_cmd(sc, ESO_CMD_RCR);
481 	eso_write_cmd(sc, reg);
482 	return (eso_read_rdr(sc));
483 }
484 
485 static void
486 eso_write_mixreg(sc, reg, val)
487 	struct eso_softc *sc;
488 	uint8_t reg, val;
489 {
490 	int s;
491 
492 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
493 
494 	s = splaudio();
495 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
496 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
497 	splx(s);
498 }
499 
500 static uint8_t
501 eso_read_mixreg(sc, reg)
502 	struct eso_softc *sc;
503 	uint8_t reg;
504 {
505 	int s;
506 	uint8_t val;
507 
508 	s = splaudio();
509 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
510 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
511 	splx(s);
512 
513 	return (val);
514 }
515 
516 static int
517 eso_intr(hdl)
518 	void *hdl;
519 {
520 	struct eso_softc *sc = hdl;
521 	uint8_t irqctl;
522 
523 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
524 
525 	/* If it wasn't ours, that's all she wrote. */
526 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
527 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
528 		return (0);
529 
530 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
531 		/* Clear interrupt. */
532 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
533 		    ESO_SB_RBSR);
534 
535 		if (sc->sc_rintr)
536 			sc->sc_rintr(sc->sc_rarg);
537 		else
538 			wakeup(&sc->sc_rintr);
539 	}
540 
541 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
542 		/*
543 		 * Clear the A2 IRQ latch: the cached value reflects the
544 		 * current DAC settings with the IRQ latch bit not set.
545 		 */
546 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
547 
548 		if (sc->sc_pintr)
549 			sc->sc_pintr(sc->sc_parg);
550 		else
551 			wakeup(&sc->sc_pintr);
552 	}
553 
554 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
555 		/* Clear interrupt. */
556 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
557 
558 		/*
559 		 * Raise a flag to cause a lazy update of the in-softc gain
560 		 * values the next time the software mixer is read to keep
561 		 * interrupt service cost low.  ~0 cannot occur otherwise
562 		 * as the master volume has a precision of 6 bits only.
563 		 */
564 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
565 	}
566 
567 #if NMPU > 0
568 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
569 		mpu_intr(sc->sc_mpudev);
570 #endif
571 
572 	return (1);
573 }
574 
575 /* Perform a software reset, including DMA FIFOs. */
576 static int
577 eso_reset(sc)
578 	struct eso_softc *sc;
579 {
580 	int i;
581 
582 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
583 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
584 	/* `Delay' suggested in the data sheet. */
585 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
586 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
587 
588 	/* Wait for reset to take effect. */
589 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
590 		/* Poll for data to become available. */
591 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
592 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
593 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
594 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
595 
596 			/* Activate Solo-1 extension commands. */
597 			eso_write_cmd(sc, ESO_CMD_EXTENB);
598 			/* Reset mixer registers. */
599 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
600 			    ESO_MIXREG_RESET_RESET);
601 
602 			return (0);
603 		} else {
604 			delay(1000);
605 		}
606 	}
607 
608 	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
609 	return (-1);
610 }
611 
612 
613 /* ARGSUSED */
614 static int
615 eso_open(hdl, flags)
616 	void *hdl;
617 	int flags;
618 {
619 	struct eso_softc *sc = hdl;
620 
621 	DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
622 
623 	sc->sc_pintr = NULL;
624 	sc->sc_rintr = NULL;
625 
626 	return (0);
627 }
628 
629 static void
630 eso_close(hdl)
631 	void *hdl;
632 {
633 
634 	DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
635 }
636 
637 static int
638 eso_query_encoding(hdl, fp)
639 	void *hdl;
640 	struct audio_encoding *fp;
641 {
642 
643 	switch (fp->index) {
644 	case 0:
645 		strcpy(fp->name, AudioEulinear);
646 		fp->encoding = AUDIO_ENCODING_ULINEAR;
647 		fp->precision = 8;
648 		fp->flags = 0;
649 		break;
650 	case 1:
651 		strcpy(fp->name, AudioEmulaw);
652 		fp->encoding = AUDIO_ENCODING_ULAW;
653 		fp->precision = 8;
654 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
655 		break;
656 	case 2:
657 		strcpy(fp->name, AudioEalaw);
658 		fp->encoding = AUDIO_ENCODING_ALAW;
659 		fp->precision = 8;
660 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 		break;
662 	case 3:
663 		strcpy(fp->name, AudioEslinear);
664 		fp->encoding = AUDIO_ENCODING_SLINEAR;
665 		fp->precision = 8;
666 		fp->flags = 0;
667 		break;
668 	case 4:
669 		strcpy(fp->name, AudioEslinear_le);
670 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
671 		fp->precision = 16;
672 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 		break;
674 	case 5:
675 		strcpy(fp->name, AudioEulinear_le);
676 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
677 		fp->precision = 16;
678 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
679 		break;
680 	case 6:
681 		strcpy(fp->name, AudioEslinear_be);
682 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
683 		fp->precision = 16;
684 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
685 		break;
686 	case 7:
687 		strcpy(fp->name, AudioEulinear_be);
688 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
689 		fp->precision = 16;
690 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
691 		break;
692 	default:
693 		return (EINVAL);
694 	}
695 
696 	return (0);
697 }
698 
699 static int
700 eso_set_params(hdl, setmode, usemode, play, rec)
701 	void *hdl;
702 	int setmode, usemode;
703 	struct audio_params *play, *rec;
704 {
705 	struct eso_softc *sc = hdl;
706 	struct audio_params *p;
707 	int mode, r[2], rd[2], clk;
708 	unsigned int srg, fltdiv;
709 
710 	for (mode = AUMODE_RECORD; mode != -1;
711 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
712 		if ((setmode & mode) == 0)
713 			continue;
714 
715 		p = (mode == AUMODE_PLAY) ? play : rec;
716 
717 		if (p->sample_rate < ESO_MINRATE ||
718 		    p->sample_rate > ESO_MAXRATE ||
719 		    (p->precision != 8 && p->precision != 16) ||
720 		    (p->channels != 1 && p->channels != 2))
721 			return (EINVAL);
722 
723 		p->factor = 1;
724 		p->sw_code = NULL;
725 		switch (p->encoding) {
726 		case AUDIO_ENCODING_SLINEAR_BE:
727 		case AUDIO_ENCODING_ULINEAR_BE:
728 			if (mode == AUMODE_PLAY && p->precision == 16)
729 				p->sw_code = swap_bytes;
730 			break;
731 		case AUDIO_ENCODING_SLINEAR_LE:
732 		case AUDIO_ENCODING_ULINEAR_LE:
733 			if (mode == AUMODE_RECORD && p->precision == 16)
734 				p->sw_code = swap_bytes;
735 			break;
736 		case AUDIO_ENCODING_ULAW:
737 			if (mode == AUMODE_PLAY) {
738 				p->factor = 2;
739 				p->sw_code = mulaw_to_ulinear16_le;
740 			} else {
741 				p->sw_code = ulinear8_to_mulaw;
742 			}
743 			break;
744 		case AUDIO_ENCODING_ALAW:
745 			if (mode == AUMODE_PLAY) {
746 				p->factor = 2;
747 				p->sw_code = alaw_to_ulinear16_le;
748 			} else {
749 				p->sw_code = ulinear8_to_alaw;
750 			}
751 			break;
752 		default:
753 			return (EINVAL);
754 		}
755 
756 		/*
757 		 * We'll compute both possible sample rate dividers and pick
758 		 * the one with the least error.
759 		 */
760 #define ABS(x) ((x) < 0 ? -(x) : (x))
761 		r[0] = ESO_CLK0 /
762 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
763 		r[1] = ESO_CLK1 /
764 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
765 
766 		clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
767 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
768 
769 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
770 		fltdiv = 256 - 200279L / r[clk];
771 
772 		/* Update to reflect the possibly inexact rate. */
773 		p->sample_rate = r[clk];
774 
775 		if (mode == AUMODE_RECORD) {
776 			/* Audio 1 */
777 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
778 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
779 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
780 		} else {
781 			/* Audio 2 */
782 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
783 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
784 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
785 		}
786 #undef ABS
787 
788 	}
789 
790 	return (0);
791 }
792 
793 static int
794 eso_round_blocksize(hdl, blk)
795 	void *hdl;
796 	int blk;
797 {
798 
799 	return (blk & -32);	/* keep good alignment; at least 16 req'd */
800 }
801 
802 static int
803 eso_halt_output(hdl)
804 	void *hdl;
805 {
806 	struct eso_softc *sc = hdl;
807 	int error, s;
808 
809 	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
810 
811 	/*
812 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
813 	 * stop.  The interrupt callback pointer is cleared at this
814 	 * point so that an outstanding FIFO interrupt for the remaining data
815 	 * will be acknowledged without further processing.
816 	 *
817 	 * This does not immediately `abort' an operation in progress (c.f.
818 	 * audio(9)) but is the method to leave the FIFO behind in a clean
819 	 * state with the least hair.  (Besides, that item needs to be
820 	 * rephrased for trigger_*()-based DMA environments.)
821 	 */
822 	s = splaudio();
823 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
824 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
825 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
826 	    ESO_IO_A2DMAM_DMAENB);
827 
828 	sc->sc_pintr = NULL;
829 	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
830 	splx(s);
831 
832 	/* Shut down DMA completely. */
833 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
834 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
835 
836 	return (error == EWOULDBLOCK ? 0 : error);
837 }
838 
839 static int
840 eso_halt_input(hdl)
841 	void *hdl;
842 {
843 	struct eso_softc *sc = hdl;
844 	int error, s;
845 
846 	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
847 
848 	/* Just like eso_halt_output(), but for Audio 1. */
849 	s = splaudio();
850 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
851 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
852 	    ESO_CTLREG_A1C2_DMAENB);
853 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
854 	    DMA37MD_WRITE | DMA37MD_DEMAND);
855 
856 	sc->sc_rintr = NULL;
857 	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
858 	splx(s);
859 
860 	/* Shut down DMA completely. */
861 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
862 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
863 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
864 	    ESO_DMAC_MASK_MASK);
865 
866 	return (error == EWOULDBLOCK ? 0 : error);
867 }
868 
869 static int
870 eso_getdev(hdl, retp)
871 	void *hdl;
872 	struct audio_device *retp;
873 {
874 	struct eso_softc *sc = hdl;
875 
876 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
877 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
878 	    sc->sc_revision);
879 	if (sc->sc_revision <
880 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
881 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
882 		    sizeof (retp->config));
883 	else
884 		strncpy(retp->config, "unknown", sizeof (retp->config));
885 
886 	return (0);
887 }
888 
889 static int
890 eso_set_port(hdl, cp)
891 	void *hdl;
892 	mixer_ctrl_t *cp;
893 {
894 	struct eso_softc *sc = hdl;
895 	unsigned int lgain, rgain;
896 	uint8_t tmp;
897 
898 	switch (cp->dev) {
899 	case ESO_DAC_PLAY_VOL:
900 	case ESO_MIC_PLAY_VOL:
901 	case ESO_LINE_PLAY_VOL:
902 	case ESO_SYNTH_PLAY_VOL:
903 	case ESO_CD_PLAY_VOL:
904 	case ESO_AUXB_PLAY_VOL:
905 	case ESO_RECORD_VOL:
906 	case ESO_DAC_REC_VOL:
907 	case ESO_MIC_REC_VOL:
908 	case ESO_LINE_REC_VOL:
909 	case ESO_SYNTH_REC_VOL:
910 	case ESO_CD_REC_VOL:
911 	case ESO_AUXB_REC_VOL:
912 		if (cp->type != AUDIO_MIXER_VALUE)
913 			return (EINVAL);
914 
915 		/*
916 		 * Stereo-capable mixer ports: if we get a single-channel
917 		 * gain value passed in, then we duplicate it to both left
918 		 * and right channels.
919 		 */
920 		switch (cp->un.value.num_channels) {
921 		case 1:
922 			lgain = rgain = ESO_GAIN_TO_4BIT(
923 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
924 			break;
925 		case 2:
926 			lgain = ESO_GAIN_TO_4BIT(
927 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
928 			rgain = ESO_GAIN_TO_4BIT(
929 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
930 			break;
931 		default:
932 			return (EINVAL);
933 		}
934 
935 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
936 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
937 		eso_set_gain(sc, cp->dev);
938 		break;
939 
940 	case ESO_MASTER_VOL:
941 		if (cp->type != AUDIO_MIXER_VALUE)
942 			return (EINVAL);
943 
944 		/* Like above, but a precision of 6 bits. */
945 		switch (cp->un.value.num_channels) {
946 		case 1:
947 			lgain = rgain = ESO_GAIN_TO_6BIT(
948 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
949 			break;
950 		case 2:
951 			lgain = ESO_GAIN_TO_6BIT(
952 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
953 			rgain = ESO_GAIN_TO_6BIT(
954 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
955 			break;
956 		default:
957 			return (EINVAL);
958 		}
959 
960 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
961 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
962 		eso_set_gain(sc, cp->dev);
963 		break;
964 
965 	case ESO_SPATIALIZER:
966 		if (cp->type != AUDIO_MIXER_VALUE ||
967 		    cp->un.value.num_channels != 1)
968 			return (EINVAL);
969 
970 		sc->sc_gain[cp->dev][ESO_LEFT] =
971 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
972 		    ESO_GAIN_TO_6BIT(
973 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
974 		eso_set_gain(sc, cp->dev);
975 		break;
976 
977 	case ESO_MONO_PLAY_VOL:
978 	case ESO_MONO_REC_VOL:
979 		if (cp->type != AUDIO_MIXER_VALUE ||
980 		    cp->un.value.num_channels != 1)
981 			return (EINVAL);
982 
983 		sc->sc_gain[cp->dev][ESO_LEFT] =
984 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
985 		    ESO_GAIN_TO_4BIT(
986 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
987 		eso_set_gain(sc, cp->dev);
988 		break;
989 
990 	case ESO_PCSPEAKER_VOL:
991 		if (cp->type != AUDIO_MIXER_VALUE ||
992 		    cp->un.value.num_channels != 1)
993 			return (EINVAL);
994 
995 		sc->sc_gain[cp->dev][ESO_LEFT] =
996 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
997 		    ESO_GAIN_TO_3BIT(
998 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
999 		eso_set_gain(sc, cp->dev);
1000 		break;
1001 
1002 	case ESO_SPATIALIZER_ENABLE:
1003 		if (cp->type != AUDIO_MIXER_ENUM)
1004 			return (EINVAL);
1005 
1006 		sc->sc_spatializer = (cp->un.ord != 0);
1007 
1008 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1009 		if (sc->sc_spatializer)
1010 			tmp |= ESO_MIXREG_SPAT_ENB;
1011 		else
1012 			tmp &= ~ESO_MIXREG_SPAT_ENB;
1013 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1014 		    tmp | ESO_MIXREG_SPAT_RSTREL);
1015 		break;
1016 
1017 	case ESO_MASTER_MUTE:
1018 		if (cp->type != AUDIO_MIXER_ENUM)
1019 			return (EINVAL);
1020 
1021 		sc->sc_mvmute = (cp->un.ord != 0);
1022 
1023 		if (sc->sc_mvmute) {
1024 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1025 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1026 			    ESO_MIXREG_LMVM_MUTE);
1027 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1028 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1029 			    ESO_MIXREG_RMVM_MUTE);
1030 		} else {
1031 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1032 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1033 			    ~ESO_MIXREG_LMVM_MUTE);
1034 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1035 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1036 			    ~ESO_MIXREG_RMVM_MUTE);
1037 		}
1038 		break;
1039 
1040 	case ESO_MONOOUT_SOURCE:
1041 		if (cp->type != AUDIO_MIXER_ENUM)
1042 			return (EINVAL);
1043 
1044 		return (eso_set_monooutsrc(sc, cp->un.ord));
1045 
1046 	case ESO_RECORD_MONITOR:
1047 		if (cp->type != AUDIO_MIXER_ENUM)
1048 			return (EINVAL);
1049 
1050 		sc->sc_recmon = (cp->un.ord != 0);
1051 
1052 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1053 		if (sc->sc_recmon)
1054 			tmp |= ESO_CTLREG_ACTL_RECMON;
1055 		else
1056 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1057 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1058 		break;
1059 
1060 	case ESO_RECORD_SOURCE:
1061 		if (cp->type != AUDIO_MIXER_ENUM)
1062 			return (EINVAL);
1063 
1064 		return (eso_set_recsrc(sc, cp->un.ord));
1065 
1066 	case ESO_MIC_PREAMP:
1067 		if (cp->type != AUDIO_MIXER_ENUM)
1068 			return (EINVAL);
1069 
1070 		sc->sc_preamp = (cp->un.ord != 0);
1071 
1072 		tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1073 		tmp &= ~ESO_MIXREG_MPM_RESV0;
1074 		if (sc->sc_preamp)
1075 			tmp |= ESO_MIXREG_MPM_PREAMP;
1076 		else
1077 			tmp &= ~ESO_MIXREG_MPM_PREAMP;
1078 		eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1079 		break;
1080 
1081 	default:
1082 		return (EINVAL);
1083 	}
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 eso_get_port(hdl, cp)
1090 	void *hdl;
1091 	mixer_ctrl_t *cp;
1092 {
1093 	struct eso_softc *sc = hdl;
1094 
1095 	switch (cp->dev) {
1096 	case ESO_MASTER_VOL:
1097 		/* Reload from mixer after hardware volume control use. */
1098 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1099 			eso_reload_master_vol(sc);
1100 		/* FALLTHROUGH */
1101 	case ESO_DAC_PLAY_VOL:
1102 	case ESO_MIC_PLAY_VOL:
1103 	case ESO_LINE_PLAY_VOL:
1104 	case ESO_SYNTH_PLAY_VOL:
1105 	case ESO_CD_PLAY_VOL:
1106 	case ESO_AUXB_PLAY_VOL:
1107 	case ESO_RECORD_VOL:
1108 	case ESO_DAC_REC_VOL:
1109 	case ESO_MIC_REC_VOL:
1110 	case ESO_LINE_REC_VOL:
1111 	case ESO_SYNTH_REC_VOL:
1112 	case ESO_CD_REC_VOL:
1113 	case ESO_AUXB_REC_VOL:
1114 		/*
1115 		 * Stereo-capable ports: if a single-channel query is made,
1116 		 * just return the left channel's value (since single-channel
1117 		 * settings themselves are applied to both channels).
1118 		 */
1119 		switch (cp->un.value.num_channels) {
1120 		case 1:
1121 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1122 			    sc->sc_gain[cp->dev][ESO_LEFT];
1123 			break;
1124 		case 2:
1125 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1126 			    sc->sc_gain[cp->dev][ESO_LEFT];
1127 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1128 			    sc->sc_gain[cp->dev][ESO_RIGHT];
1129 			break;
1130 		default:
1131 			return (EINVAL);
1132 		}
1133 		break;
1134 
1135 	case ESO_MONO_PLAY_VOL:
1136 	case ESO_PCSPEAKER_VOL:
1137 	case ESO_MONO_REC_VOL:
1138 	case ESO_SPATIALIZER:
1139 		if (cp->un.value.num_channels != 1)
1140 			return (EINVAL);
1141 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1142 		    sc->sc_gain[cp->dev][ESO_LEFT];
1143 		break;
1144 
1145 	case ESO_RECORD_MONITOR:
1146 		cp->un.ord = sc->sc_recmon;
1147 		break;
1148 
1149 	case ESO_RECORD_SOURCE:
1150 		cp->un.ord = sc->sc_recsrc;
1151 		break;
1152 
1153 	case ESO_MONOOUT_SOURCE:
1154 		cp->un.ord = sc->sc_monooutsrc;
1155 		break;
1156 
1157 	case ESO_SPATIALIZER_ENABLE:
1158 		cp->un.ord = sc->sc_spatializer;
1159 		break;
1160 
1161 	case ESO_MIC_PREAMP:
1162 		cp->un.ord = sc->sc_preamp;
1163 		break;
1164 
1165 	case ESO_MASTER_MUTE:
1166 		/* Reload from mixer after hardware volume control use. */
1167 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1168 			eso_reload_master_vol(sc);
1169 		cp->un.ord = sc->sc_mvmute;
1170 		break;
1171 
1172 	default:
1173 		return (EINVAL);
1174 	}
1175 
1176 
1177 	return (0);
1178 
1179 }
1180 
1181 static int
1182 eso_query_devinfo(hdl, dip)
1183 	void *hdl;
1184 	mixer_devinfo_t *dip;
1185 {
1186 
1187 	switch (dip->index) {
1188 	case ESO_DAC_PLAY_VOL:
1189 		dip->mixer_class = ESO_INPUT_CLASS;
1190 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1191 		strcpy(dip->label.name, AudioNdac);
1192 		dip->type = AUDIO_MIXER_VALUE;
1193 		dip->un.v.num_channels = 2;
1194 		strcpy(dip->un.v.units.name, AudioNvolume);
1195 		break;
1196 	case ESO_MIC_PLAY_VOL:
1197 		dip->mixer_class = ESO_INPUT_CLASS;
1198 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1199 		strcpy(dip->label.name, AudioNmicrophone);
1200 		dip->type = AUDIO_MIXER_VALUE;
1201 		dip->un.v.num_channels = 2;
1202 		strcpy(dip->un.v.units.name, AudioNvolume);
1203 		break;
1204 	case ESO_LINE_PLAY_VOL:
1205 		dip->mixer_class = ESO_INPUT_CLASS;
1206 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1207 		strcpy(dip->label.name, AudioNline);
1208 		dip->type = AUDIO_MIXER_VALUE;
1209 		dip->un.v.num_channels = 2;
1210 		strcpy(dip->un.v.units.name, AudioNvolume);
1211 		break;
1212 	case ESO_SYNTH_PLAY_VOL:
1213 		dip->mixer_class = ESO_INPUT_CLASS;
1214 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1215 		strcpy(dip->label.name, AudioNfmsynth);
1216 		dip->type = AUDIO_MIXER_VALUE;
1217 		dip->un.v.num_channels = 2;
1218 		strcpy(dip->un.v.units.name, AudioNvolume);
1219 		break;
1220 	case ESO_MONO_PLAY_VOL:
1221 		dip->mixer_class = ESO_INPUT_CLASS;
1222 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1223 		strcpy(dip->label.name, "mono_in");
1224 		dip->type = AUDIO_MIXER_VALUE;
1225 		dip->un.v.num_channels = 1;
1226 		strcpy(dip->un.v.units.name, AudioNvolume);
1227 		break;
1228 	case ESO_CD_PLAY_VOL:
1229 		dip->mixer_class = ESO_INPUT_CLASS;
1230 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1231 		strcpy(dip->label.name, AudioNcd);
1232 		dip->type = AUDIO_MIXER_VALUE;
1233 		dip->un.v.num_channels = 2;
1234 		strcpy(dip->un.v.units.name, AudioNvolume);
1235 		break;
1236 	case ESO_AUXB_PLAY_VOL:
1237 		dip->mixer_class = ESO_INPUT_CLASS;
1238 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1239 		strcpy(dip->label.name, "auxb");
1240 		dip->type = AUDIO_MIXER_VALUE;
1241 		dip->un.v.num_channels = 2;
1242 		strcpy(dip->un.v.units.name, AudioNvolume);
1243 		break;
1244 
1245 	case ESO_MIC_PREAMP:
1246 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1247 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1248 		strcpy(dip->label.name, AudioNpreamp);
1249 		dip->type = AUDIO_MIXER_ENUM;
1250 		dip->un.e.num_mem = 2;
1251 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1252 		dip->un.e.member[0].ord = 0;
1253 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1254 		dip->un.e.member[1].ord = 1;
1255 		break;
1256 	case ESO_MICROPHONE_CLASS:
1257 		dip->mixer_class = ESO_MICROPHONE_CLASS;
1258 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 		strcpy(dip->label.name, AudioNmicrophone);
1260 		dip->type = AUDIO_MIXER_CLASS;
1261 		break;
1262 
1263 	case ESO_INPUT_CLASS:
1264 		dip->mixer_class = ESO_INPUT_CLASS;
1265 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1266 		strcpy(dip->label.name, AudioCinputs);
1267 		dip->type = AUDIO_MIXER_CLASS;
1268 		break;
1269 
1270 	case ESO_MASTER_VOL:
1271 		dip->mixer_class = ESO_OUTPUT_CLASS;
1272 		dip->prev = AUDIO_MIXER_LAST;
1273 		dip->next = ESO_MASTER_MUTE;
1274 		strcpy(dip->label.name, AudioNmaster);
1275 		dip->type = AUDIO_MIXER_VALUE;
1276 		dip->un.v.num_channels = 2;
1277 		strcpy(dip->un.v.units.name, AudioNvolume);
1278 		break;
1279 	case ESO_MASTER_MUTE:
1280 		dip->mixer_class = ESO_OUTPUT_CLASS;
1281 		dip->prev = ESO_MASTER_VOL;
1282 		dip->next = AUDIO_MIXER_LAST;
1283 		strcpy(dip->label.name, AudioNmute);
1284 		dip->type = AUDIO_MIXER_ENUM;
1285 		dip->un.e.num_mem = 2;
1286 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1287 		dip->un.e.member[0].ord = 0;
1288 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1289 		dip->un.e.member[1].ord = 1;
1290 		break;
1291 
1292 	case ESO_PCSPEAKER_VOL:
1293 		dip->mixer_class = ESO_OUTPUT_CLASS;
1294 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1295 		strcpy(dip->label.name, "pc_speaker");
1296 		dip->type = AUDIO_MIXER_VALUE;
1297 		dip->un.v.num_channels = 1;
1298 		strcpy(dip->un.v.units.name, AudioNvolume);
1299 		break;
1300 	case ESO_MONOOUT_SOURCE:
1301 		dip->mixer_class = ESO_OUTPUT_CLASS;
1302 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 		strcpy(dip->label.name, "mono_out");
1304 		dip->type = AUDIO_MIXER_ENUM;
1305 		dip->un.e.num_mem = 3;
1306 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
1307 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1308 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
1309 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1310 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1311 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1312 		break;
1313 	case ESO_SPATIALIZER:
1314 		dip->mixer_class = ESO_OUTPUT_CLASS;
1315 		dip->prev = AUDIO_MIXER_LAST;
1316 		dip->next = ESO_SPATIALIZER_ENABLE;
1317 		strcpy(dip->label.name, AudioNspatial);
1318 		dip->type = AUDIO_MIXER_VALUE;
1319 		dip->un.v.num_channels = 1;
1320 		strcpy(dip->un.v.units.name, "level");
1321 		break;
1322 	case ESO_SPATIALIZER_ENABLE:
1323 		dip->mixer_class = ESO_OUTPUT_CLASS;
1324 		dip->prev = ESO_SPATIALIZER;
1325 		dip->next = AUDIO_MIXER_LAST;
1326 		strcpy(dip->label.name, "enable");
1327 		dip->type = AUDIO_MIXER_ENUM;
1328 		dip->un.e.num_mem = 2;
1329 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1330 		dip->un.e.member[0].ord = 0;
1331 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1332 		dip->un.e.member[1].ord = 1;
1333 		break;
1334 
1335 	case ESO_OUTPUT_CLASS:
1336 		dip->mixer_class = ESO_OUTPUT_CLASS;
1337 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1338 		strcpy(dip->label.name, AudioCoutputs);
1339 		dip->type = AUDIO_MIXER_CLASS;
1340 		break;
1341 
1342 	case ESO_RECORD_MONITOR:
1343 		dip->mixer_class = ESO_MONITOR_CLASS;
1344 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1345 		strcpy(dip->label.name, AudioNmute);
1346 		dip->type = AUDIO_MIXER_ENUM;
1347 		dip->un.e.num_mem = 2;
1348 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1349 		dip->un.e.member[0].ord = 0;
1350 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1351 		dip->un.e.member[1].ord = 1;
1352 		break;
1353 	case ESO_MONITOR_CLASS:
1354 		dip->mixer_class = ESO_MONITOR_CLASS;
1355 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1356 		strcpy(dip->label.name, AudioCmonitor);
1357 		dip->type = AUDIO_MIXER_CLASS;
1358 		break;
1359 
1360 	case ESO_RECORD_VOL:
1361 		dip->mixer_class = ESO_RECORD_CLASS;
1362 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 		strcpy(dip->label.name, AudioNrecord);
1364 		dip->type = AUDIO_MIXER_VALUE;
1365 		strcpy(dip->un.v.units.name, AudioNvolume);
1366 		break;
1367 	case ESO_RECORD_SOURCE:
1368 		dip->mixer_class = ESO_RECORD_CLASS;
1369 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1370 		strcpy(dip->label.name, AudioNsource);
1371 		dip->type = AUDIO_MIXER_ENUM;
1372 		dip->un.e.num_mem = 4;
1373 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1374 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1375 		strcpy(dip->un.e.member[1].label.name, AudioNline);
1376 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1377 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
1378 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1379 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1380 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1381 		break;
1382 	case ESO_DAC_REC_VOL:
1383 		dip->mixer_class = ESO_RECORD_CLASS;
1384 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1385 		strcpy(dip->label.name, AudioNdac);
1386 		dip->type = AUDIO_MIXER_VALUE;
1387 		dip->un.v.num_channels = 2;
1388 		strcpy(dip->un.v.units.name, AudioNvolume);
1389 		break;
1390 	case ESO_MIC_REC_VOL:
1391 		dip->mixer_class = ESO_RECORD_CLASS;
1392 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1393 		strcpy(dip->label.name, AudioNmicrophone);
1394 		dip->type = AUDIO_MIXER_VALUE;
1395 		dip->un.v.num_channels = 2;
1396 		strcpy(dip->un.v.units.name, AudioNvolume);
1397 		break;
1398 	case ESO_LINE_REC_VOL:
1399 		dip->mixer_class = ESO_RECORD_CLASS;
1400 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1401 		strcpy(dip->label.name, AudioNline);
1402 		dip->type = AUDIO_MIXER_VALUE;
1403 		dip->un.v.num_channels = 2;
1404 		strcpy(dip->un.v.units.name, AudioNvolume);
1405 		break;
1406 	case ESO_SYNTH_REC_VOL:
1407 		dip->mixer_class = ESO_RECORD_CLASS;
1408 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1409 		strcpy(dip->label.name, AudioNfmsynth);
1410 		dip->type = AUDIO_MIXER_VALUE;
1411 		dip->un.v.num_channels = 2;
1412 		strcpy(dip->un.v.units.name, AudioNvolume);
1413 		break;
1414 	case ESO_MONO_REC_VOL:
1415 		dip->mixer_class = ESO_RECORD_CLASS;
1416 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1417 		strcpy(dip->label.name, "mono_in");
1418 		dip->type = AUDIO_MIXER_VALUE;
1419 		dip->un.v.num_channels = 1; /* No lies */
1420 		strcpy(dip->un.v.units.name, AudioNvolume);
1421 		break;
1422 	case ESO_CD_REC_VOL:
1423 		dip->mixer_class = ESO_RECORD_CLASS;
1424 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 		strcpy(dip->label.name, AudioNcd);
1426 		dip->type = AUDIO_MIXER_VALUE;
1427 		dip->un.v.num_channels = 2;
1428 		strcpy(dip->un.v.units.name, AudioNvolume);
1429 		break;
1430 	case ESO_AUXB_REC_VOL:
1431 		dip->mixer_class = ESO_RECORD_CLASS;
1432 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1433 		strcpy(dip->label.name, "auxb");
1434 		dip->type = AUDIO_MIXER_VALUE;
1435 		dip->un.v.num_channels = 2;
1436 		strcpy(dip->un.v.units.name, AudioNvolume);
1437 		break;
1438 	case ESO_RECORD_CLASS:
1439 		dip->mixer_class = ESO_RECORD_CLASS;
1440 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1441 		strcpy(dip->label.name, AudioCrecord);
1442 		dip->type = AUDIO_MIXER_CLASS;
1443 		break;
1444 
1445 	default:
1446 		return (ENXIO);
1447 	}
1448 
1449 	return (0);
1450 }
1451 
1452 static int
1453 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1454 	struct eso_softc *sc;
1455 	size_t size;
1456 	size_t align;
1457 	size_t boundary;
1458 	int flags;
1459 	int direction;
1460 	struct eso_dma *ed;
1461 {
1462 	int error, wait;
1463 
1464 	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1465 	ed->ed_size = size;
1466 
1467 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1468 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1469 	    &ed->ed_nsegs, wait);
1470 	if (error)
1471 		goto out;
1472 
1473 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1474 	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1475 	if (error)
1476 		goto free;
1477 
1478 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1479 	    wait, &ed->ed_map);
1480 	if (error)
1481 		goto unmap;
1482 
1483 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1484 	    ed->ed_size, NULL, wait |
1485 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1486 	if (error)
1487 		goto destroy;
1488 
1489 	return (0);
1490 
1491  destroy:
1492 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1493  unmap:
1494 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1495  free:
1496 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1497  out:
1498 	return (error);
1499 }
1500 
1501 static void
1502 eso_freemem(ed)
1503 	struct eso_dma *ed;
1504 {
1505 
1506 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1507 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1508 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1509 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1510 }
1511 
1512 static void *
1513 eso_allocm(hdl, direction, size, type, flags)
1514 	void *hdl;
1515 	int direction;
1516 	size_t size;
1517 	int type, flags;
1518 {
1519 	struct eso_softc *sc = hdl;
1520 	struct eso_dma *ed;
1521 	size_t boundary;
1522 	int error;
1523 
1524 	if ((ed = malloc(size, type, flags)) == NULL)
1525 		return (NULL);
1526 
1527 	/*
1528 	 * Apparently the Audio 1 DMA controller's current address
1529 	 * register can't roll over a 64K address boundary, so we have to
1530 	 * take care of that ourselves.  The second channel DMA controller
1531 	 * doesn't have that restriction, however.
1532 	 */
1533 	if (direction == AUMODE_RECORD)
1534 		boundary = 0x10000;
1535 	else
1536 		boundary = 0;
1537 
1538 #ifdef alpha
1539 	/*
1540 	 * XXX For Audio 1, which implements the 24 low address bits only,
1541 	 * XXX force allocation through the (ISA) SGMAP.
1542 	 */
1543 	if (direction == AUMODE_RECORD)
1544 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1545 	else
1546 #endif
1547 		ed->ed_dmat = sc->sc_dmat;
1548 
1549 	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1550 	if (error) {
1551 		free(ed, type);
1552 		return (NULL);
1553 	}
1554 	ed->ed_next = sc->sc_dmas;
1555 	sc->sc_dmas = ed;
1556 
1557 	return (KVADDR(ed));
1558 }
1559 
1560 static void
1561 eso_freem(hdl, addr, type)
1562 	void *hdl;
1563 	void *addr;
1564 	int type;
1565 {
1566 	struct eso_softc *sc = hdl;
1567 	struct eso_dma *p, **pp;
1568 
1569 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1570 		if (KVADDR(p) == addr) {
1571 			eso_freemem(p);
1572 			*pp = p->ed_next;
1573 			free(p, type);
1574 			return;
1575 		}
1576 	}
1577 }
1578 
1579 static size_t
1580 eso_round_buffersize(hdl, direction, bufsize)
1581 	void *hdl;
1582 	int direction;
1583 	size_t bufsize;
1584 {
1585 	size_t maxsize;
1586 
1587 	/*
1588 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1589 	 * bytes.  This is because IO_A2DMAC is a two byte value
1590 	 * indicating the literal byte count, and the 4 least significant
1591 	 * bits are read-only.  Zero is not used as a special case for
1592 	 * 0x10000.
1593 	 *
1594 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1595 	 * be represented.
1596 	 */
1597 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1598 
1599 	if (bufsize > maxsize)
1600 		bufsize = maxsize;
1601 
1602 	return (bufsize);
1603 }
1604 
1605 static paddr_t
1606 eso_mappage(hdl, addr, offs, prot)
1607 	void *hdl;
1608 	void *addr;
1609 	off_t offs;
1610 	int prot;
1611 {
1612 	struct eso_softc *sc = hdl;
1613 	struct eso_dma *ed;
1614 
1615 	if (offs < 0)
1616 		return (-1);
1617 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1618 	     ed = ed->ed_next)
1619 		;
1620 	if (ed == NULL)
1621 		return (-1);
1622 
1623 	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1624 	    offs, prot, BUS_DMA_WAITOK));
1625 }
1626 
1627 /* ARGSUSED */
1628 static int
1629 eso_get_props(hdl)
1630 	void *hdl;
1631 {
1632 
1633 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1634 	    AUDIO_PROP_FULLDUPLEX);
1635 }
1636 
1637 static int
1638 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1639 	void *hdl;
1640 	void *start, *end;
1641 	int blksize;
1642 	void (*intr) __P((void *));
1643 	void *arg;
1644 	struct audio_params *param;
1645 {
1646 	struct eso_softc *sc = hdl;
1647 	struct eso_dma *ed;
1648 	uint8_t a2c1;
1649 
1650 	DPRINTF((
1651 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1652 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1653 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1654 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1655 	    param->precision, param->channels, param->sw_code, param->factor));
1656 
1657 	/* Find DMA buffer. */
1658 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1659 	     ed = ed->ed_next)
1660 		;
1661 	if (ed == NULL) {
1662 		printf("%s: trigger_output: bad addr %p\n",
1663 		    sc->sc_dev.dv_xname, start);
1664 		return (EINVAL);
1665 	}
1666 
1667 	sc->sc_pintr = intr;
1668 	sc->sc_parg = arg;
1669 
1670 	/* Compute drain timeout. */
1671 	sc->sc_pdrain = (blksize * NBBY * hz) /
1672 	    (param->sample_rate * param->channels *
1673 	     param->precision * param->factor) + 2;	/* slop */
1674 
1675 	/* DMA transfer count (in `words'!) reload using 2's complement. */
1676 	blksize = -(blksize >> 1);
1677 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1678 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1679 
1680 	/* Update DAC to reflect DMA count and audio parameters. */
1681 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1682 	if (param->precision * param->factor == 16)
1683 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1684 	else
1685 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1686 	if (param->channels == 2)
1687 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1688 	else
1689 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1690 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1691 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1692 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1693 	else
1694 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1695 	/* Unmask IRQ. */
1696 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1697 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1698 
1699 	/* Set up DMA controller. */
1700 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1701 	    DMAADDR(ed));
1702 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1703 	    (uint8_t *)end - (uint8_t *)start);
1704 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1705 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1706 
1707 	/* Start DMA. */
1708 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1709 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1710 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1711 	    ESO_MIXREG_A2C1_AUTO;
1712 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1713 
1714 	return (0);
1715 }
1716 
1717 static int
1718 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1719 	void *hdl;
1720 	void *start, *end;
1721 	int blksize;
1722 	void (*intr) __P((void *));
1723 	void *arg;
1724 	struct audio_params *param;
1725 {
1726 	struct eso_softc *sc = hdl;
1727 	struct eso_dma *ed;
1728 	uint8_t actl, a1c1;
1729 
1730 	DPRINTF((
1731 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1732 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1733 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1734 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1735 	    param->precision, param->channels, param->sw_code, param->factor));
1736 
1737 	/*
1738 	 * If we failed to configure the Audio 1 DMA controller, bail here
1739 	 * while retaining availability of the DAC direction (in Audio 2).
1740 	 */
1741 	if (!sc->sc_dmac_configured)
1742 		return (EIO);
1743 
1744 	/* Find DMA buffer. */
1745 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1746 	     ed = ed->ed_next)
1747 		;
1748 	if (ed == NULL) {
1749 		printf("%s: trigger_output: bad addr %p\n",
1750 		    sc->sc_dev.dv_xname, start);
1751 		return (EINVAL);
1752 	}
1753 
1754 	sc->sc_rintr = intr;
1755 	sc->sc_rarg = arg;
1756 
1757 	/* Compute drain timeout. */
1758 	sc->sc_rdrain = (blksize * NBBY * hz) /
1759 	    (param->sample_rate * param->channels *
1760 	     param->precision * param->factor) + 2;	/* slop */
1761 
1762 	/* Set up ADC DMA converter parameters. */
1763 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1764 	if (param->channels == 2) {
1765 		actl &= ~ESO_CTLREG_ACTL_MONO;
1766 		actl |= ESO_CTLREG_ACTL_STEREO;
1767 	} else {
1768 		actl &= ~ESO_CTLREG_ACTL_STEREO;
1769 		actl |= ESO_CTLREG_ACTL_MONO;
1770 	}
1771 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1772 
1773 	/* Set up Transfer Type: maybe move to attach time? */
1774 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1775 
1776 	/* DMA transfer count reload using 2's complement. */
1777 	blksize = -blksize;
1778 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1779 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1780 
1781 	/* Set up and enable Audio 1 DMA FIFO. */
1782 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1783 	if (param->precision * param->factor == 16)
1784 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1785 	if (param->channels == 2)
1786 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1787 	else
1788 		a1c1 |= ESO_CTLREG_A1C1_MONO;
1789 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1790 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1791 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1792 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1793 
1794 	/* Set up ADC IRQ/DRQ parameters. */
1795 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1796 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1797 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1798 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1799 
1800 	/* Set up and enable DMA controller. */
1801 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1802 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1803 	    ESO_DMAC_MASK_MASK);
1804 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1805 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1806 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1807 	    DMAADDR(ed));
1808 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1809 	    (uint8_t *)end - (uint8_t *)start - 1);
1810 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1811 
1812 	/* Start DMA. */
1813 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1814 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1815 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1816 
1817 	return (0);
1818 }
1819 
1820 static int
1821 eso_set_monooutsrc(sc, monooutsrc)
1822 	struct eso_softc *sc;
1823 	unsigned int monooutsrc;
1824 {
1825 	mixer_devinfo_t di;
1826 	int i;
1827 	uint8_t mpm;
1828 
1829 	di.index = ESO_MONOOUT_SOURCE;
1830 	if (eso_query_devinfo(sc, &di) != 0)
1831 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
1832 
1833 	for (i = 0; i < di.un.e.num_mem; i++) {
1834 		if (monooutsrc == di.un.e.member[i].ord) {
1835 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1836 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1837 			mpm |= monooutsrc;
1838 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1839 			sc->sc_monooutsrc = monooutsrc;
1840 			return (0);
1841 		}
1842 	}
1843 
1844 	return (EINVAL);
1845 }
1846 
1847 static int
1848 eso_set_recsrc(sc, recsrc)
1849 	struct eso_softc *sc;
1850 	unsigned int recsrc;
1851 {
1852 	mixer_devinfo_t di;
1853 	int i;
1854 
1855 	di.index = ESO_RECORD_SOURCE;
1856 	if (eso_query_devinfo(sc, &di) != 0)
1857 		panic("eso_set_recsrc: eso_query_devinfo failed");
1858 
1859 	for (i = 0; i < di.un.e.num_mem; i++) {
1860 		if (recsrc == di.un.e.member[i].ord) {
1861 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1862 			sc->sc_recsrc = recsrc;
1863 			return (0);
1864 		}
1865 	}
1866 
1867 	return (EINVAL);
1868 }
1869 
1870 /*
1871  * Reload Master Volume and Mute values in softc from mixer; used when
1872  * those have previously been invalidated by use of hardware volume controls.
1873  */
1874 static void
1875 eso_reload_master_vol(sc)
1876 	struct eso_softc *sc;
1877 {
1878 	uint8_t mv;
1879 
1880 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1881 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1882 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1883 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1884 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1885 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1886 	/* Currently both channels are muted simultaneously; either is OK. */
1887 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1888 }
1889 
1890 static void
1891 eso_set_gain(sc, port)
1892 	struct eso_softc *sc;
1893 	unsigned int port;
1894 {
1895 	uint8_t mixreg, tmp;
1896 
1897 	switch (port) {
1898 	case ESO_DAC_PLAY_VOL:
1899 		mixreg = ESO_MIXREG_PVR_A2;
1900 		break;
1901 	case ESO_MIC_PLAY_VOL:
1902 		mixreg = ESO_MIXREG_PVR_MIC;
1903 		break;
1904 	case ESO_LINE_PLAY_VOL:
1905 		mixreg = ESO_MIXREG_PVR_LINE;
1906 		break;
1907 	case ESO_SYNTH_PLAY_VOL:
1908 		mixreg = ESO_MIXREG_PVR_SYNTH;
1909 		break;
1910 	case ESO_CD_PLAY_VOL:
1911 		mixreg = ESO_MIXREG_PVR_CD;
1912 		break;
1913 	case ESO_AUXB_PLAY_VOL:
1914 		mixreg = ESO_MIXREG_PVR_AUXB;
1915 		break;
1916 
1917 	case ESO_DAC_REC_VOL:
1918 		mixreg = ESO_MIXREG_RVR_A2;
1919 		break;
1920 	case ESO_MIC_REC_VOL:
1921 		mixreg = ESO_MIXREG_RVR_MIC;
1922 		break;
1923 	case ESO_LINE_REC_VOL:
1924 		mixreg = ESO_MIXREG_RVR_LINE;
1925 		break;
1926 	case ESO_SYNTH_REC_VOL:
1927 		mixreg = ESO_MIXREG_RVR_SYNTH;
1928 		break;
1929 	case ESO_CD_REC_VOL:
1930 		mixreg = ESO_MIXREG_RVR_CD;
1931 		break;
1932 	case ESO_AUXB_REC_VOL:
1933 		mixreg = ESO_MIXREG_RVR_AUXB;
1934 		break;
1935 	case ESO_MONO_PLAY_VOL:
1936 		mixreg = ESO_MIXREG_PVR_MONO;
1937 		break;
1938 	case ESO_MONO_REC_VOL:
1939 		mixreg = ESO_MIXREG_RVR_MONO;
1940 		break;
1941 
1942 	case ESO_PCSPEAKER_VOL:
1943 		/* Special case - only 3-bit, mono, and reserved bits. */
1944 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1945 		tmp &= ESO_MIXREG_PCSVR_RESV;
1946 		/* Map bits 7:5 -> 2:0. */
1947 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1948 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1949 		return;
1950 
1951 	case ESO_MASTER_VOL:
1952 		/* Special case - separate regs, and 6-bit precision. */
1953 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
1954 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1955 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
1956 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1957 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1958 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1959 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1960 		return;
1961 
1962 	case ESO_SPATIALIZER:
1963 		/* Special case - only `mono', and higher precision. */
1964 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1965 		    sc->sc_gain[port][ESO_LEFT]);
1966 		return;
1967 
1968 	case ESO_RECORD_VOL:
1969 		/* Very Special case, controller register. */
1970 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1971 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1972 		return;
1973 
1974 	default:
1975 #ifdef DIAGNOSTIC
1976 		panic("eso_set_gain: bad port %u", port);
1977 		/* NOTREACHED */
1978 #else
1979 		return;
1980 #endif
1981 		}
1982 
1983 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1984 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1985 }
1986