1 /* $NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 1999, 2000 Klaus J. Klein 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $"); 37 38 #include "mpu.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/device.h> 45 #include <sys/proc.h> 46 47 #include <dev/pci/pcidevs.h> 48 #include <dev/pci/pcivar.h> 49 50 #include <sys/audioio.h> 51 #include <dev/audio_if.h> 52 #include <dev/midi_if.h> 53 54 #include <dev/mulaw.h> 55 #include <dev/auconv.h> 56 57 #include <dev/ic/mpuvar.h> 58 #include <dev/ic/i8237reg.h> 59 #include <dev/pci/esoreg.h> 60 #include <dev/pci/esovar.h> 61 62 #include <machine/bus.h> 63 #include <machine/intr.h> 64 65 #if defined(AUDIO_DEBUG) || defined(DEBUG) 66 #define DPRINTF(x) printf x 67 #else 68 #define DPRINTF(x) 69 #endif 70 71 struct eso_dma { 72 bus_dma_tag_t ed_dmat; 73 bus_dmamap_t ed_map; 74 caddr_t ed_addr; 75 bus_dma_segment_t ed_segs[1]; 76 int ed_nsegs; 77 size_t ed_size; 78 struct eso_dma * ed_next; 79 }; 80 81 #define KVADDR(dma) ((void *)(dma)->ed_addr) 82 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) 83 84 /* Autoconfiguration interface */ 85 static int eso_match __P((struct device *, struct cfdata *, void *)); 86 static void eso_attach __P((struct device *, struct device *, void *)); 87 static void eso_defer __P((struct device *)); 88 89 struct cfattach eso_ca = { 90 sizeof (struct eso_softc), eso_match, eso_attach 91 }; 92 93 /* PCI interface */ 94 static int eso_intr __P((void *)); 95 96 /* MI audio layer interface */ 97 static int eso_open __P((void *, int)); 98 static void eso_close __P((void *)); 99 static int eso_query_encoding __P((void *, struct audio_encoding *)); 100 static int eso_set_params __P((void *, int, int, struct audio_params *, 101 struct audio_params *)); 102 static int eso_round_blocksize __P((void *, int)); 103 static int eso_halt_output __P((void *)); 104 static int eso_halt_input __P((void *)); 105 static int eso_getdev __P((void *, struct audio_device *)); 106 static int eso_set_port __P((void *, mixer_ctrl_t *)); 107 static int eso_get_port __P((void *, mixer_ctrl_t *)); 108 static int eso_query_devinfo __P((void *, mixer_devinfo_t *)); 109 static void * eso_allocm __P((void *, int, size_t, int, int)); 110 static void eso_freem __P((void *, void *, int)); 111 static size_t eso_round_buffersize __P((void *, int, size_t)); 112 static paddr_t eso_mappage __P((void *, void *, off_t, int)); 113 static int eso_get_props __P((void *)); 114 static int eso_trigger_output __P((void *, void *, void *, int, 115 void (*)(void *), void *, struct audio_params *)); 116 static int eso_trigger_input __P((void *, void *, void *, int, 117 void (*)(void *), void *, struct audio_params *)); 118 119 static struct audio_hw_if eso_hw_if = { 120 eso_open, 121 eso_close, 122 NULL, /* drain */ 123 eso_query_encoding, 124 eso_set_params, 125 eso_round_blocksize, 126 NULL, /* commit_settings */ 127 NULL, /* init_output */ 128 NULL, /* init_input */ 129 NULL, /* start_output */ 130 NULL, /* start_input */ 131 eso_halt_output, 132 eso_halt_input, 133 NULL, /* speaker_ctl */ 134 eso_getdev, 135 NULL, /* setfd */ 136 eso_set_port, 137 eso_get_port, 138 eso_query_devinfo, 139 eso_allocm, 140 eso_freem, 141 eso_round_buffersize, 142 eso_mappage, 143 eso_get_props, 144 eso_trigger_output, 145 eso_trigger_input, 146 NULL, /* dev_ioctl */ 147 }; 148 149 static const char * const eso_rev2model[] = { 150 "ES1938", 151 "ES1946", 152 "ES1946 Revision E" 153 }; 154 155 156 /* 157 * Utility routines 158 */ 159 /* Register access etc. */ 160 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t)); 161 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t)); 162 static uint8_t eso_read_rdr __P((struct eso_softc *)); 163 static void eso_reload_master_vol __P((struct eso_softc *)); 164 static int eso_reset __P((struct eso_softc *)); 165 static void eso_set_gain __P((struct eso_softc *, unsigned int)); 166 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int)); 167 static int eso_set_recsrc __P((struct eso_softc *, unsigned int)); 168 static void eso_write_cmd __P((struct eso_softc *, uint8_t)); 169 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t)); 170 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t)); 171 /* DMA memory allocation */ 172 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t, 173 int, int, struct eso_dma *)); 174 static void eso_freemem __P((struct eso_dma *)); 175 176 177 static int 178 eso_match(parent, match, aux) 179 struct device *parent; 180 struct cfdata *match; 181 void *aux; 182 { 183 struct pci_attach_args *pa = aux; 184 185 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && 186 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) 187 return (1); 188 189 return (0); 190 } 191 192 static void 193 eso_attach(parent, self, aux) 194 struct device *parent, *self; 195 void *aux; 196 { 197 struct eso_softc *sc = (struct eso_softc *)self; 198 struct pci_attach_args *pa = aux; 199 struct audio_attach_args aa; 200 pci_intr_handle_t ih; 201 bus_addr_t vcbase; 202 const char *intrstring; 203 int idx; 204 uint8_t a2mode, mvctl; 205 206 sc->sc_revision = PCI_REVISION(pa->pa_class); 207 208 printf(": ESS Solo-1 PCI AudioDrive "); 209 if (sc->sc_revision < 210 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 211 printf("%s\n", eso_rev2model[sc->sc_revision]); 212 else 213 printf("(unknown rev. 0x%02x)\n", sc->sc_revision); 214 215 /* Map I/O registers. */ 216 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, 217 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 218 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname); 219 return; 220 } 221 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, 222 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { 223 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname); 224 return; 225 } 226 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, 227 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { 228 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname); 229 /* Don't bail out yet: we can map it later, see below. */ 230 vcbase = 0; 231 sc->sc_vcsize = 0x10; /* From the data sheet. */ 232 } 233 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, 234 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { 235 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname); 236 return; 237 } 238 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, 239 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { 240 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname); 241 return; 242 } 243 244 sc->sc_dmat = pa->pa_dmat; 245 sc->sc_dmas = NULL; 246 sc->sc_dmac_configured = 0; 247 248 /* Enable bus mastering. */ 249 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 250 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 251 PCI_COMMAND_MASTER_ENABLE); 252 253 /* Reset the device; bail out upon failure. */ 254 if (eso_reset(sc) != 0) { 255 printf("%s: can't reset\n", sc->sc_dev.dv_xname); 256 return; 257 } 258 259 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ 260 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, 261 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & 262 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); 263 264 /* Enable the relevant (DMA) interrupts. */ 265 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, 266 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | 267 ESO_IO_IRQCTL_MPUIRQ); 268 269 /* Set up A1's sample rate generator for new-style parameters. */ 270 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); 271 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; 272 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); 273 274 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */ 275 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 276 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; 277 mvctl |= ESO_MIXREG_MVCTL_HVIRQM; 278 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 279 280 /* Set mixer regs to something reasonable, needs work. */ 281 sc->sc_recsrc = ESO_MIXREG_ERS_LINE; 282 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE; 283 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; 284 for (idx = 0; idx < ESO_NGAINDEVS; idx++) { 285 int v; 286 287 switch (idx) { 288 case ESO_MIC_PLAY_VOL: 289 case ESO_LINE_PLAY_VOL: 290 case ESO_CD_PLAY_VOL: 291 case ESO_MONO_PLAY_VOL: 292 case ESO_AUXB_PLAY_VOL: 293 case ESO_DAC_REC_VOL: 294 case ESO_LINE_REC_VOL: 295 case ESO_SYNTH_REC_VOL: 296 case ESO_CD_REC_VOL: 297 case ESO_MONO_REC_VOL: 298 case ESO_AUXB_REC_VOL: 299 case ESO_SPATIALIZER: 300 v = 0; 301 break; 302 case ESO_MASTER_VOL: 303 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); 304 break; 305 default: 306 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); 307 break; 308 } 309 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; 310 eso_set_gain(sc, idx); 311 } 312 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); 313 314 /* Map and establish the interrupt. */ 315 if (pci_intr_map(pa, &ih)) { 316 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 317 return; 318 } 319 intrstring = pci_intr_string(pa->pa_pc, ih); 320 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); 321 if (sc->sc_ih == NULL) { 322 printf("%s: couldn't establish interrupt", 323 sc->sc_dev.dv_xname); 324 if (intrstring != NULL) 325 printf(" at %s", intrstring); 326 printf("\n"); 327 return; 328 } 329 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring); 330 331 /* 332 * Set up the DDMA Control register; a suitable I/O region has been 333 * supposedly mapped in the VC base address register. 334 * 335 * The Solo-1 has an ... interesting silicon bug that causes it to 336 * not respond to I/O space accesses to the Audio 1 DMA controller 337 * if the latter's mapping base address is aligned on a 1K boundary. 338 * As a consequence, it is quite possible for the mapping provided 339 * in the VC BAR to be useless. To work around this, we defer this 340 * part until all autoconfiguration on our parent bus is completed 341 * and then try to map it ourselves in fulfillment of the constraint. 342 * 343 * According to the register map we may write to the low 16 bits 344 * only, but experimenting has shown we're safe. 345 * -kjk 346 */ 347 if (ESO_VALID_DDMAC_BASE(vcbase)) { 348 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 349 vcbase | ESO_PCI_DDMAC_DE); 350 sc->sc_dmac_configured = 1; 351 352 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n", 353 sc->sc_dev.dv_xname, (unsigned long)vcbase); 354 } else { 355 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n", 356 sc->sc_dev.dv_xname, (unsigned long)vcbase)); 357 sc->sc_pa = *pa; 358 config_defer(self, eso_defer); 359 } 360 361 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev); 362 363 aa.type = AUDIODEV_TYPE_OPL; 364 aa.hwif = NULL; 365 aa.hdl = NULL; 366 (void)config_found(&sc->sc_dev, &aa, audioprint); 367 368 aa.type = AUDIODEV_TYPE_MPU; 369 aa.hwif = NULL; 370 aa.hdl = NULL; 371 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); 372 if (sc->sc_mpudev != NULL) { 373 /* Unmask the MPU irq. */ 374 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); 375 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; 376 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); 377 } 378 } 379 380 static void 381 eso_defer(self) 382 struct device *self; 383 { 384 struct eso_softc *sc = (struct eso_softc *)self; 385 struct pci_attach_args *pa = &sc->sc_pa; 386 bus_addr_t addr, start; 387 388 printf("%s: ", sc->sc_dev.dv_xname); 389 390 /* 391 * This is outright ugly, but since we must not make assumptions 392 * on the underlying allocator's behaviour it's the most straight- 393 * forward way to implement it. Note that we skip over the first 394 * 1K region, which is typically occupied by an attached ISA bus. 395 */ 396 for (start = 0x0400; start < 0xffff; start += 0x0400) { 397 if (bus_space_alloc(sc->sc_iot, 398 start + sc->sc_vcsize, start + 0x0400 - 1, 399 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, 400 &sc->sc_dmac_ioh) != 0) 401 continue; 402 403 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, 404 addr | ESO_PCI_DDMAC_DE); 405 sc->sc_dmac_iot = sc->sc_iot; 406 sc->sc_dmac_configured = 1; 407 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n", 408 (unsigned long)addr); 409 410 return; 411 } 412 413 printf("can't map Audio 1 DMA into I/O space\n"); 414 } 415 416 static void 417 eso_write_cmd(sc, cmd) 418 struct eso_softc *sc; 419 uint8_t cmd; 420 { 421 int i; 422 423 /* Poll for busy indicator to become clear. */ 424 for (i = 0; i < ESO_WDR_TIMEOUT; i++) { 425 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) 426 & ESO_SB_RSR_BUSY) == 0) { 427 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, 428 ESO_SB_WDR, cmd); 429 return; 430 } else { 431 delay(10); 432 } 433 } 434 435 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname); 436 return; 437 } 438 439 /* Write to a controller register */ 440 static void 441 eso_write_ctlreg(sc, reg, val) 442 struct eso_softc *sc; 443 uint8_t reg, val; 444 { 445 446 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ 447 448 eso_write_cmd(sc, reg); 449 eso_write_cmd(sc, val); 450 } 451 452 /* Read out the Read Data Register */ 453 static uint8_t 454 eso_read_rdr(sc) 455 struct eso_softc *sc; 456 { 457 int i; 458 459 for (i = 0; i < ESO_RDR_TIMEOUT; i++) { 460 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 461 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { 462 return (bus_space_read_1(sc->sc_sb_iot, 463 sc->sc_sb_ioh, ESO_SB_RDR)); 464 } else { 465 delay(10); 466 } 467 } 468 469 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname); 470 return (-1); 471 } 472 473 474 static uint8_t 475 eso_read_ctlreg(sc, reg) 476 struct eso_softc *sc; 477 uint8_t reg; 478 { 479 480 eso_write_cmd(sc, ESO_CMD_RCR); 481 eso_write_cmd(sc, reg); 482 return (eso_read_rdr(sc)); 483 } 484 485 static void 486 eso_write_mixreg(sc, reg, val) 487 struct eso_softc *sc; 488 uint8_t reg, val; 489 { 490 int s; 491 492 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ 493 494 s = splaudio(); 495 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 496 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); 497 splx(s); 498 } 499 500 static uint8_t 501 eso_read_mixreg(sc, reg) 502 struct eso_softc *sc; 503 uint8_t reg; 504 { 505 int s; 506 uint8_t val; 507 508 s = splaudio(); 509 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); 510 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); 511 splx(s); 512 513 return (val); 514 } 515 516 static int 517 eso_intr(hdl) 518 void *hdl; 519 { 520 struct eso_softc *sc = hdl; 521 uint8_t irqctl; 522 523 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); 524 525 /* If it wasn't ours, that's all she wrote. */ 526 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | 527 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) 528 return (0); 529 530 if (irqctl & ESO_IO_IRQCTL_A1IRQ) { 531 /* Clear interrupt. */ 532 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 533 ESO_SB_RBSR); 534 535 if (sc->sc_rintr) 536 sc->sc_rintr(sc->sc_rarg); 537 else 538 wakeup(&sc->sc_rintr); 539 } 540 541 if (irqctl & ESO_IO_IRQCTL_A2IRQ) { 542 /* 543 * Clear the A2 IRQ latch: the cached value reflects the 544 * current DAC settings with the IRQ latch bit not set. 545 */ 546 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 547 548 if (sc->sc_pintr) 549 sc->sc_pintr(sc->sc_parg); 550 else 551 wakeup(&sc->sc_pintr); 552 } 553 554 if (irqctl & ESO_IO_IRQCTL_HVIRQ) { 555 /* Clear interrupt. */ 556 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); 557 558 /* 559 * Raise a flag to cause a lazy update of the in-softc gain 560 * values the next time the software mixer is read to keep 561 * interrupt service cost low. ~0 cannot occur otherwise 562 * as the master volume has a precision of 6 bits only. 563 */ 564 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; 565 } 566 567 #if NMPU > 0 568 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL) 569 mpu_intr(sc->sc_mpudev); 570 #endif 571 572 return (1); 573 } 574 575 /* Perform a software reset, including DMA FIFOs. */ 576 static int 577 eso_reset(sc) 578 struct eso_softc *sc; 579 { 580 int i; 581 582 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 583 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); 584 /* `Delay' suggested in the data sheet. */ 585 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); 586 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); 587 588 /* Wait for reset to take effect. */ 589 for (i = 0; i < ESO_RESET_TIMEOUT; i++) { 590 /* Poll for data to become available. */ 591 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 592 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && 593 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, 594 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { 595 596 /* Activate Solo-1 extension commands. */ 597 eso_write_cmd(sc, ESO_CMD_EXTENB); 598 /* Reset mixer registers. */ 599 eso_write_mixreg(sc, ESO_MIXREG_RESET, 600 ESO_MIXREG_RESET_RESET); 601 602 return (0); 603 } else { 604 delay(1000); 605 } 606 } 607 608 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 609 return (-1); 610 } 611 612 613 /* ARGSUSED */ 614 static int 615 eso_open(hdl, flags) 616 void *hdl; 617 int flags; 618 { 619 struct eso_softc *sc = hdl; 620 621 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname)); 622 623 sc->sc_pintr = NULL; 624 sc->sc_rintr = NULL; 625 626 return (0); 627 } 628 629 static void 630 eso_close(hdl) 631 void *hdl; 632 { 633 634 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname)); 635 } 636 637 static int 638 eso_query_encoding(hdl, fp) 639 void *hdl; 640 struct audio_encoding *fp; 641 { 642 643 switch (fp->index) { 644 case 0: 645 strcpy(fp->name, AudioEulinear); 646 fp->encoding = AUDIO_ENCODING_ULINEAR; 647 fp->precision = 8; 648 fp->flags = 0; 649 break; 650 case 1: 651 strcpy(fp->name, AudioEmulaw); 652 fp->encoding = AUDIO_ENCODING_ULAW; 653 fp->precision = 8; 654 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 655 break; 656 case 2: 657 strcpy(fp->name, AudioEalaw); 658 fp->encoding = AUDIO_ENCODING_ALAW; 659 fp->precision = 8; 660 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 661 break; 662 case 3: 663 strcpy(fp->name, AudioEslinear); 664 fp->encoding = AUDIO_ENCODING_SLINEAR; 665 fp->precision = 8; 666 fp->flags = 0; 667 break; 668 case 4: 669 strcpy(fp->name, AudioEslinear_le); 670 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 671 fp->precision = 16; 672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 673 break; 674 case 5: 675 strcpy(fp->name, AudioEulinear_le); 676 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 677 fp->precision = 16; 678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 679 break; 680 case 6: 681 strcpy(fp->name, AudioEslinear_be); 682 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 683 fp->precision = 16; 684 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 685 break; 686 case 7: 687 strcpy(fp->name, AudioEulinear_be); 688 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 689 fp->precision = 16; 690 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 691 break; 692 default: 693 return (EINVAL); 694 } 695 696 return (0); 697 } 698 699 static int 700 eso_set_params(hdl, setmode, usemode, play, rec) 701 void *hdl; 702 int setmode, usemode; 703 struct audio_params *play, *rec; 704 { 705 struct eso_softc *sc = hdl; 706 struct audio_params *p; 707 int mode, r[2], rd[2], clk; 708 unsigned int srg, fltdiv; 709 710 for (mode = AUMODE_RECORD; mode != -1; 711 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 712 if ((setmode & mode) == 0) 713 continue; 714 715 p = (mode == AUMODE_PLAY) ? play : rec; 716 717 if (p->sample_rate < ESO_MINRATE || 718 p->sample_rate > ESO_MAXRATE || 719 (p->precision != 8 && p->precision != 16) || 720 (p->channels != 1 && p->channels != 2)) 721 return (EINVAL); 722 723 p->factor = 1; 724 p->sw_code = NULL; 725 switch (p->encoding) { 726 case AUDIO_ENCODING_SLINEAR_BE: 727 case AUDIO_ENCODING_ULINEAR_BE: 728 if (mode == AUMODE_PLAY && p->precision == 16) 729 p->sw_code = swap_bytes; 730 break; 731 case AUDIO_ENCODING_SLINEAR_LE: 732 case AUDIO_ENCODING_ULINEAR_LE: 733 if (mode == AUMODE_RECORD && p->precision == 16) 734 p->sw_code = swap_bytes; 735 break; 736 case AUDIO_ENCODING_ULAW: 737 if (mode == AUMODE_PLAY) { 738 p->factor = 2; 739 p->sw_code = mulaw_to_ulinear16_le; 740 } else { 741 p->sw_code = ulinear8_to_mulaw; 742 } 743 break; 744 case AUDIO_ENCODING_ALAW: 745 if (mode == AUMODE_PLAY) { 746 p->factor = 2; 747 p->sw_code = alaw_to_ulinear16_le; 748 } else { 749 p->sw_code = ulinear8_to_alaw; 750 } 751 break; 752 default: 753 return (EINVAL); 754 } 755 756 /* 757 * We'll compute both possible sample rate dividers and pick 758 * the one with the least error. 759 */ 760 #define ABS(x) ((x) < 0 ? -(x) : (x)) 761 r[0] = ESO_CLK0 / 762 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); 763 r[1] = ESO_CLK1 / 764 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); 765 766 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]); 767 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); 768 769 /* Roll-off frequency of 87%, as in the ES1888 driver. */ 770 fltdiv = 256 - 200279L / r[clk]; 771 772 /* Update to reflect the possibly inexact rate. */ 773 p->sample_rate = r[clk]; 774 775 if (mode == AUMODE_RECORD) { 776 /* Audio 1 */ 777 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 778 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); 779 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); 780 } else { 781 /* Audio 2 */ 782 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv)); 783 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); 784 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); 785 } 786 #undef ABS 787 788 } 789 790 return (0); 791 } 792 793 static int 794 eso_round_blocksize(hdl, blk) 795 void *hdl; 796 int blk; 797 { 798 799 return (blk & -32); /* keep good alignment; at least 16 req'd */ 800 } 801 802 static int 803 eso_halt_output(hdl) 804 void *hdl; 805 { 806 struct eso_softc *sc = hdl; 807 int error, s; 808 809 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname)); 810 811 /* 812 * Disable auto-initialize DMA, allowing the FIFO to drain and then 813 * stop. The interrupt callback pointer is cleared at this 814 * point so that an outstanding FIFO interrupt for the remaining data 815 * will be acknowledged without further processing. 816 * 817 * This does not immediately `abort' an operation in progress (c.f. 818 * audio(9)) but is the method to leave the FIFO behind in a clean 819 * state with the least hair. (Besides, that item needs to be 820 * rephrased for trigger_*()-based DMA environments.) 821 */ 822 s = splaudio(); 823 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 824 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); 825 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 826 ESO_IO_A2DMAM_DMAENB); 827 828 sc->sc_pintr = NULL; 829 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain); 830 splx(s); 831 832 /* Shut down DMA completely. */ 833 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); 834 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); 835 836 return (error == EWOULDBLOCK ? 0 : error); 837 } 838 839 static int 840 eso_halt_input(hdl) 841 void *hdl; 842 { 843 struct eso_softc *sc = hdl; 844 int error, s; 845 846 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname)); 847 848 /* Just like eso_halt_output(), but for Audio 1. */ 849 s = splaudio(); 850 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 851 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | 852 ESO_CTLREG_A1C2_DMAENB); 853 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 854 DMA37MD_WRITE | DMA37MD_DEMAND); 855 856 sc->sc_rintr = NULL; 857 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain); 858 splx(s); 859 860 /* Shut down DMA completely. */ 861 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 862 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); 863 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 864 ESO_DMAC_MASK_MASK); 865 866 return (error == EWOULDBLOCK ? 0 : error); 867 } 868 869 static int 870 eso_getdev(hdl, retp) 871 void *hdl; 872 struct audio_device *retp; 873 { 874 struct eso_softc *sc = hdl; 875 876 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name)); 877 snprintf(retp->version, sizeof (retp->version), "0x%02x", 878 sc->sc_revision); 879 if (sc->sc_revision < 880 sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) 881 strncpy(retp->config, eso_rev2model[sc->sc_revision], 882 sizeof (retp->config)); 883 else 884 strncpy(retp->config, "unknown", sizeof (retp->config)); 885 886 return (0); 887 } 888 889 static int 890 eso_set_port(hdl, cp) 891 void *hdl; 892 mixer_ctrl_t *cp; 893 { 894 struct eso_softc *sc = hdl; 895 unsigned int lgain, rgain; 896 uint8_t tmp; 897 898 switch (cp->dev) { 899 case ESO_DAC_PLAY_VOL: 900 case ESO_MIC_PLAY_VOL: 901 case ESO_LINE_PLAY_VOL: 902 case ESO_SYNTH_PLAY_VOL: 903 case ESO_CD_PLAY_VOL: 904 case ESO_AUXB_PLAY_VOL: 905 case ESO_RECORD_VOL: 906 case ESO_DAC_REC_VOL: 907 case ESO_MIC_REC_VOL: 908 case ESO_LINE_REC_VOL: 909 case ESO_SYNTH_REC_VOL: 910 case ESO_CD_REC_VOL: 911 case ESO_AUXB_REC_VOL: 912 if (cp->type != AUDIO_MIXER_VALUE) 913 return (EINVAL); 914 915 /* 916 * Stereo-capable mixer ports: if we get a single-channel 917 * gain value passed in, then we duplicate it to both left 918 * and right channels. 919 */ 920 switch (cp->un.value.num_channels) { 921 case 1: 922 lgain = rgain = ESO_GAIN_TO_4BIT( 923 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 924 break; 925 case 2: 926 lgain = ESO_GAIN_TO_4BIT( 927 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 928 rgain = ESO_GAIN_TO_4BIT( 929 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 930 break; 931 default: 932 return (EINVAL); 933 } 934 935 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 936 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 937 eso_set_gain(sc, cp->dev); 938 break; 939 940 case ESO_MASTER_VOL: 941 if (cp->type != AUDIO_MIXER_VALUE) 942 return (EINVAL); 943 944 /* Like above, but a precision of 6 bits. */ 945 switch (cp->un.value.num_channels) { 946 case 1: 947 lgain = rgain = ESO_GAIN_TO_6BIT( 948 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 949 break; 950 case 2: 951 lgain = ESO_GAIN_TO_6BIT( 952 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 953 rgain = ESO_GAIN_TO_6BIT( 954 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 955 break; 956 default: 957 return (EINVAL); 958 } 959 960 sc->sc_gain[cp->dev][ESO_LEFT] = lgain; 961 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; 962 eso_set_gain(sc, cp->dev); 963 break; 964 965 case ESO_SPATIALIZER: 966 if (cp->type != AUDIO_MIXER_VALUE || 967 cp->un.value.num_channels != 1) 968 return (EINVAL); 969 970 sc->sc_gain[cp->dev][ESO_LEFT] = 971 sc->sc_gain[cp->dev][ESO_RIGHT] = 972 ESO_GAIN_TO_6BIT( 973 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 974 eso_set_gain(sc, cp->dev); 975 break; 976 977 case ESO_MONO_PLAY_VOL: 978 case ESO_MONO_REC_VOL: 979 if (cp->type != AUDIO_MIXER_VALUE || 980 cp->un.value.num_channels != 1) 981 return (EINVAL); 982 983 sc->sc_gain[cp->dev][ESO_LEFT] = 984 sc->sc_gain[cp->dev][ESO_RIGHT] = 985 ESO_GAIN_TO_4BIT( 986 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 987 eso_set_gain(sc, cp->dev); 988 break; 989 990 case ESO_PCSPEAKER_VOL: 991 if (cp->type != AUDIO_MIXER_VALUE || 992 cp->un.value.num_channels != 1) 993 return (EINVAL); 994 995 sc->sc_gain[cp->dev][ESO_LEFT] = 996 sc->sc_gain[cp->dev][ESO_RIGHT] = 997 ESO_GAIN_TO_3BIT( 998 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 999 eso_set_gain(sc, cp->dev); 1000 break; 1001 1002 case ESO_SPATIALIZER_ENABLE: 1003 if (cp->type != AUDIO_MIXER_ENUM) 1004 return (EINVAL); 1005 1006 sc->sc_spatializer = (cp->un.ord != 0); 1007 1008 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); 1009 if (sc->sc_spatializer) 1010 tmp |= ESO_MIXREG_SPAT_ENB; 1011 else 1012 tmp &= ~ESO_MIXREG_SPAT_ENB; 1013 eso_write_mixreg(sc, ESO_MIXREG_SPAT, 1014 tmp | ESO_MIXREG_SPAT_RSTREL); 1015 break; 1016 1017 case ESO_MASTER_MUTE: 1018 if (cp->type != AUDIO_MIXER_ENUM) 1019 return (EINVAL); 1020 1021 sc->sc_mvmute = (cp->un.ord != 0); 1022 1023 if (sc->sc_mvmute) { 1024 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1025 eso_read_mixreg(sc, ESO_MIXREG_LMVM) | 1026 ESO_MIXREG_LMVM_MUTE); 1027 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1028 eso_read_mixreg(sc, ESO_MIXREG_RMVM) | 1029 ESO_MIXREG_RMVM_MUTE); 1030 } else { 1031 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1032 eso_read_mixreg(sc, ESO_MIXREG_LMVM) & 1033 ~ESO_MIXREG_LMVM_MUTE); 1034 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1035 eso_read_mixreg(sc, ESO_MIXREG_RMVM) & 1036 ~ESO_MIXREG_RMVM_MUTE); 1037 } 1038 break; 1039 1040 case ESO_MONOOUT_SOURCE: 1041 if (cp->type != AUDIO_MIXER_ENUM) 1042 return (EINVAL); 1043 1044 return (eso_set_monooutsrc(sc, cp->un.ord)); 1045 1046 case ESO_RECORD_MONITOR: 1047 if (cp->type != AUDIO_MIXER_ENUM) 1048 return (EINVAL); 1049 1050 sc->sc_recmon = (cp->un.ord != 0); 1051 1052 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1053 if (sc->sc_recmon) 1054 tmp |= ESO_CTLREG_ACTL_RECMON; 1055 else 1056 tmp &= ~ESO_CTLREG_ACTL_RECMON; 1057 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); 1058 break; 1059 1060 case ESO_RECORD_SOURCE: 1061 if (cp->type != AUDIO_MIXER_ENUM) 1062 return (EINVAL); 1063 1064 return (eso_set_recsrc(sc, cp->un.ord)); 1065 1066 case ESO_MIC_PREAMP: 1067 if (cp->type != AUDIO_MIXER_ENUM) 1068 return (EINVAL); 1069 1070 sc->sc_preamp = (cp->un.ord != 0); 1071 1072 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1073 tmp &= ~ESO_MIXREG_MPM_RESV0; 1074 if (sc->sc_preamp) 1075 tmp |= ESO_MIXREG_MPM_PREAMP; 1076 else 1077 tmp &= ~ESO_MIXREG_MPM_PREAMP; 1078 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp); 1079 break; 1080 1081 default: 1082 return (EINVAL); 1083 } 1084 1085 return (0); 1086 } 1087 1088 static int 1089 eso_get_port(hdl, cp) 1090 void *hdl; 1091 mixer_ctrl_t *cp; 1092 { 1093 struct eso_softc *sc = hdl; 1094 1095 switch (cp->dev) { 1096 case ESO_MASTER_VOL: 1097 /* Reload from mixer after hardware volume control use. */ 1098 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1099 eso_reload_master_vol(sc); 1100 /* FALLTHROUGH */ 1101 case ESO_DAC_PLAY_VOL: 1102 case ESO_MIC_PLAY_VOL: 1103 case ESO_LINE_PLAY_VOL: 1104 case ESO_SYNTH_PLAY_VOL: 1105 case ESO_CD_PLAY_VOL: 1106 case ESO_AUXB_PLAY_VOL: 1107 case ESO_RECORD_VOL: 1108 case ESO_DAC_REC_VOL: 1109 case ESO_MIC_REC_VOL: 1110 case ESO_LINE_REC_VOL: 1111 case ESO_SYNTH_REC_VOL: 1112 case ESO_CD_REC_VOL: 1113 case ESO_AUXB_REC_VOL: 1114 /* 1115 * Stereo-capable ports: if a single-channel query is made, 1116 * just return the left channel's value (since single-channel 1117 * settings themselves are applied to both channels). 1118 */ 1119 switch (cp->un.value.num_channels) { 1120 case 1: 1121 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1122 sc->sc_gain[cp->dev][ESO_LEFT]; 1123 break; 1124 case 2: 1125 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1126 sc->sc_gain[cp->dev][ESO_LEFT]; 1127 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1128 sc->sc_gain[cp->dev][ESO_RIGHT]; 1129 break; 1130 default: 1131 return (EINVAL); 1132 } 1133 break; 1134 1135 case ESO_MONO_PLAY_VOL: 1136 case ESO_PCSPEAKER_VOL: 1137 case ESO_MONO_REC_VOL: 1138 case ESO_SPATIALIZER: 1139 if (cp->un.value.num_channels != 1) 1140 return (EINVAL); 1141 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1142 sc->sc_gain[cp->dev][ESO_LEFT]; 1143 break; 1144 1145 case ESO_RECORD_MONITOR: 1146 cp->un.ord = sc->sc_recmon; 1147 break; 1148 1149 case ESO_RECORD_SOURCE: 1150 cp->un.ord = sc->sc_recsrc; 1151 break; 1152 1153 case ESO_MONOOUT_SOURCE: 1154 cp->un.ord = sc->sc_monooutsrc; 1155 break; 1156 1157 case ESO_SPATIALIZER_ENABLE: 1158 cp->un.ord = sc->sc_spatializer; 1159 break; 1160 1161 case ESO_MIC_PREAMP: 1162 cp->un.ord = sc->sc_preamp; 1163 break; 1164 1165 case ESO_MASTER_MUTE: 1166 /* Reload from mixer after hardware volume control use. */ 1167 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) 1168 eso_reload_master_vol(sc); 1169 cp->un.ord = sc->sc_mvmute; 1170 break; 1171 1172 default: 1173 return (EINVAL); 1174 } 1175 1176 1177 return (0); 1178 1179 } 1180 1181 static int 1182 eso_query_devinfo(hdl, dip) 1183 void *hdl; 1184 mixer_devinfo_t *dip; 1185 { 1186 1187 switch (dip->index) { 1188 case ESO_DAC_PLAY_VOL: 1189 dip->mixer_class = ESO_INPUT_CLASS; 1190 dip->next = dip->prev = AUDIO_MIXER_LAST; 1191 strcpy(dip->label.name, AudioNdac); 1192 dip->type = AUDIO_MIXER_VALUE; 1193 dip->un.v.num_channels = 2; 1194 strcpy(dip->un.v.units.name, AudioNvolume); 1195 break; 1196 case ESO_MIC_PLAY_VOL: 1197 dip->mixer_class = ESO_INPUT_CLASS; 1198 dip->next = dip->prev = AUDIO_MIXER_LAST; 1199 strcpy(dip->label.name, AudioNmicrophone); 1200 dip->type = AUDIO_MIXER_VALUE; 1201 dip->un.v.num_channels = 2; 1202 strcpy(dip->un.v.units.name, AudioNvolume); 1203 break; 1204 case ESO_LINE_PLAY_VOL: 1205 dip->mixer_class = ESO_INPUT_CLASS; 1206 dip->next = dip->prev = AUDIO_MIXER_LAST; 1207 strcpy(dip->label.name, AudioNline); 1208 dip->type = AUDIO_MIXER_VALUE; 1209 dip->un.v.num_channels = 2; 1210 strcpy(dip->un.v.units.name, AudioNvolume); 1211 break; 1212 case ESO_SYNTH_PLAY_VOL: 1213 dip->mixer_class = ESO_INPUT_CLASS; 1214 dip->next = dip->prev = AUDIO_MIXER_LAST; 1215 strcpy(dip->label.name, AudioNfmsynth); 1216 dip->type = AUDIO_MIXER_VALUE; 1217 dip->un.v.num_channels = 2; 1218 strcpy(dip->un.v.units.name, AudioNvolume); 1219 break; 1220 case ESO_MONO_PLAY_VOL: 1221 dip->mixer_class = ESO_INPUT_CLASS; 1222 dip->next = dip->prev = AUDIO_MIXER_LAST; 1223 strcpy(dip->label.name, "mono_in"); 1224 dip->type = AUDIO_MIXER_VALUE; 1225 dip->un.v.num_channels = 1; 1226 strcpy(dip->un.v.units.name, AudioNvolume); 1227 break; 1228 case ESO_CD_PLAY_VOL: 1229 dip->mixer_class = ESO_INPUT_CLASS; 1230 dip->next = dip->prev = AUDIO_MIXER_LAST; 1231 strcpy(dip->label.name, AudioNcd); 1232 dip->type = AUDIO_MIXER_VALUE; 1233 dip->un.v.num_channels = 2; 1234 strcpy(dip->un.v.units.name, AudioNvolume); 1235 break; 1236 case ESO_AUXB_PLAY_VOL: 1237 dip->mixer_class = ESO_INPUT_CLASS; 1238 dip->next = dip->prev = AUDIO_MIXER_LAST; 1239 strcpy(dip->label.name, "auxb"); 1240 dip->type = AUDIO_MIXER_VALUE; 1241 dip->un.v.num_channels = 2; 1242 strcpy(dip->un.v.units.name, AudioNvolume); 1243 break; 1244 1245 case ESO_MIC_PREAMP: 1246 dip->mixer_class = ESO_MICROPHONE_CLASS; 1247 dip->next = dip->prev = AUDIO_MIXER_LAST; 1248 strcpy(dip->label.name, AudioNpreamp); 1249 dip->type = AUDIO_MIXER_ENUM; 1250 dip->un.e.num_mem = 2; 1251 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1252 dip->un.e.member[0].ord = 0; 1253 strcpy(dip->un.e.member[1].label.name, AudioNon); 1254 dip->un.e.member[1].ord = 1; 1255 break; 1256 case ESO_MICROPHONE_CLASS: 1257 dip->mixer_class = ESO_MICROPHONE_CLASS; 1258 dip->next = dip->prev = AUDIO_MIXER_LAST; 1259 strcpy(dip->label.name, AudioNmicrophone); 1260 dip->type = AUDIO_MIXER_CLASS; 1261 break; 1262 1263 case ESO_INPUT_CLASS: 1264 dip->mixer_class = ESO_INPUT_CLASS; 1265 dip->next = dip->prev = AUDIO_MIXER_LAST; 1266 strcpy(dip->label.name, AudioCinputs); 1267 dip->type = AUDIO_MIXER_CLASS; 1268 break; 1269 1270 case ESO_MASTER_VOL: 1271 dip->mixer_class = ESO_OUTPUT_CLASS; 1272 dip->prev = AUDIO_MIXER_LAST; 1273 dip->next = ESO_MASTER_MUTE; 1274 strcpy(dip->label.name, AudioNmaster); 1275 dip->type = AUDIO_MIXER_VALUE; 1276 dip->un.v.num_channels = 2; 1277 strcpy(dip->un.v.units.name, AudioNvolume); 1278 break; 1279 case ESO_MASTER_MUTE: 1280 dip->mixer_class = ESO_OUTPUT_CLASS; 1281 dip->prev = ESO_MASTER_VOL; 1282 dip->next = AUDIO_MIXER_LAST; 1283 strcpy(dip->label.name, AudioNmute); 1284 dip->type = AUDIO_MIXER_ENUM; 1285 dip->un.e.num_mem = 2; 1286 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1287 dip->un.e.member[0].ord = 0; 1288 strcpy(dip->un.e.member[1].label.name, AudioNon); 1289 dip->un.e.member[1].ord = 1; 1290 break; 1291 1292 case ESO_PCSPEAKER_VOL: 1293 dip->mixer_class = ESO_OUTPUT_CLASS; 1294 dip->next = dip->prev = AUDIO_MIXER_LAST; 1295 strcpy(dip->label.name, "pc_speaker"); 1296 dip->type = AUDIO_MIXER_VALUE; 1297 dip->un.v.num_channels = 1; 1298 strcpy(dip->un.v.units.name, AudioNvolume); 1299 break; 1300 case ESO_MONOOUT_SOURCE: 1301 dip->mixer_class = ESO_OUTPUT_CLASS; 1302 dip->next = dip->prev = AUDIO_MIXER_LAST; 1303 strcpy(dip->label.name, "mono_out"); 1304 dip->type = AUDIO_MIXER_ENUM; 1305 dip->un.e.num_mem = 3; 1306 strcpy(dip->un.e.member[0].label.name, AudioNmute); 1307 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; 1308 strcpy(dip->un.e.member[1].label.name, AudioNdac); 1309 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; 1310 strcpy(dip->un.e.member[2].label.name, AudioNmixerout); 1311 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; 1312 break; 1313 case ESO_SPATIALIZER: 1314 dip->mixer_class = ESO_OUTPUT_CLASS; 1315 dip->prev = AUDIO_MIXER_LAST; 1316 dip->next = ESO_SPATIALIZER_ENABLE; 1317 strcpy(dip->label.name, AudioNspatial); 1318 dip->type = AUDIO_MIXER_VALUE; 1319 dip->un.v.num_channels = 1; 1320 strcpy(dip->un.v.units.name, "level"); 1321 break; 1322 case ESO_SPATIALIZER_ENABLE: 1323 dip->mixer_class = ESO_OUTPUT_CLASS; 1324 dip->prev = ESO_SPATIALIZER; 1325 dip->next = AUDIO_MIXER_LAST; 1326 strcpy(dip->label.name, "enable"); 1327 dip->type = AUDIO_MIXER_ENUM; 1328 dip->un.e.num_mem = 2; 1329 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1330 dip->un.e.member[0].ord = 0; 1331 strcpy(dip->un.e.member[1].label.name, AudioNon); 1332 dip->un.e.member[1].ord = 1; 1333 break; 1334 1335 case ESO_OUTPUT_CLASS: 1336 dip->mixer_class = ESO_OUTPUT_CLASS; 1337 dip->next = dip->prev = AUDIO_MIXER_LAST; 1338 strcpy(dip->label.name, AudioCoutputs); 1339 dip->type = AUDIO_MIXER_CLASS; 1340 break; 1341 1342 case ESO_RECORD_MONITOR: 1343 dip->mixer_class = ESO_MONITOR_CLASS; 1344 dip->next = dip->prev = AUDIO_MIXER_LAST; 1345 strcpy(dip->label.name, AudioNmute); 1346 dip->type = AUDIO_MIXER_ENUM; 1347 dip->un.e.num_mem = 2; 1348 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1349 dip->un.e.member[0].ord = 0; 1350 strcpy(dip->un.e.member[1].label.name, AudioNon); 1351 dip->un.e.member[1].ord = 1; 1352 break; 1353 case ESO_MONITOR_CLASS: 1354 dip->mixer_class = ESO_MONITOR_CLASS; 1355 dip->next = dip->prev = AUDIO_MIXER_LAST; 1356 strcpy(dip->label.name, AudioCmonitor); 1357 dip->type = AUDIO_MIXER_CLASS; 1358 break; 1359 1360 case ESO_RECORD_VOL: 1361 dip->mixer_class = ESO_RECORD_CLASS; 1362 dip->next = dip->prev = AUDIO_MIXER_LAST; 1363 strcpy(dip->label.name, AudioNrecord); 1364 dip->type = AUDIO_MIXER_VALUE; 1365 strcpy(dip->un.v.units.name, AudioNvolume); 1366 break; 1367 case ESO_RECORD_SOURCE: 1368 dip->mixer_class = ESO_RECORD_CLASS; 1369 dip->next = dip->prev = AUDIO_MIXER_LAST; 1370 strcpy(dip->label.name, AudioNsource); 1371 dip->type = AUDIO_MIXER_ENUM; 1372 dip->un.e.num_mem = 4; 1373 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1374 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; 1375 strcpy(dip->un.e.member[1].label.name, AudioNline); 1376 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; 1377 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1378 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; 1379 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1380 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; 1381 break; 1382 case ESO_DAC_REC_VOL: 1383 dip->mixer_class = ESO_RECORD_CLASS; 1384 dip->next = dip->prev = AUDIO_MIXER_LAST; 1385 strcpy(dip->label.name, AudioNdac); 1386 dip->type = AUDIO_MIXER_VALUE; 1387 dip->un.v.num_channels = 2; 1388 strcpy(dip->un.v.units.name, AudioNvolume); 1389 break; 1390 case ESO_MIC_REC_VOL: 1391 dip->mixer_class = ESO_RECORD_CLASS; 1392 dip->next = dip->prev = AUDIO_MIXER_LAST; 1393 strcpy(dip->label.name, AudioNmicrophone); 1394 dip->type = AUDIO_MIXER_VALUE; 1395 dip->un.v.num_channels = 2; 1396 strcpy(dip->un.v.units.name, AudioNvolume); 1397 break; 1398 case ESO_LINE_REC_VOL: 1399 dip->mixer_class = ESO_RECORD_CLASS; 1400 dip->next = dip->prev = AUDIO_MIXER_LAST; 1401 strcpy(dip->label.name, AudioNline); 1402 dip->type = AUDIO_MIXER_VALUE; 1403 dip->un.v.num_channels = 2; 1404 strcpy(dip->un.v.units.name, AudioNvolume); 1405 break; 1406 case ESO_SYNTH_REC_VOL: 1407 dip->mixer_class = ESO_RECORD_CLASS; 1408 dip->next = dip->prev = AUDIO_MIXER_LAST; 1409 strcpy(dip->label.name, AudioNfmsynth); 1410 dip->type = AUDIO_MIXER_VALUE; 1411 dip->un.v.num_channels = 2; 1412 strcpy(dip->un.v.units.name, AudioNvolume); 1413 break; 1414 case ESO_MONO_REC_VOL: 1415 dip->mixer_class = ESO_RECORD_CLASS; 1416 dip->next = dip->prev = AUDIO_MIXER_LAST; 1417 strcpy(dip->label.name, "mono_in"); 1418 dip->type = AUDIO_MIXER_VALUE; 1419 dip->un.v.num_channels = 1; /* No lies */ 1420 strcpy(dip->un.v.units.name, AudioNvolume); 1421 break; 1422 case ESO_CD_REC_VOL: 1423 dip->mixer_class = ESO_RECORD_CLASS; 1424 dip->next = dip->prev = AUDIO_MIXER_LAST; 1425 strcpy(dip->label.name, AudioNcd); 1426 dip->type = AUDIO_MIXER_VALUE; 1427 dip->un.v.num_channels = 2; 1428 strcpy(dip->un.v.units.name, AudioNvolume); 1429 break; 1430 case ESO_AUXB_REC_VOL: 1431 dip->mixer_class = ESO_RECORD_CLASS; 1432 dip->next = dip->prev = AUDIO_MIXER_LAST; 1433 strcpy(dip->label.name, "auxb"); 1434 dip->type = AUDIO_MIXER_VALUE; 1435 dip->un.v.num_channels = 2; 1436 strcpy(dip->un.v.units.name, AudioNvolume); 1437 break; 1438 case ESO_RECORD_CLASS: 1439 dip->mixer_class = ESO_RECORD_CLASS; 1440 dip->next = dip->prev = AUDIO_MIXER_LAST; 1441 strcpy(dip->label.name, AudioCrecord); 1442 dip->type = AUDIO_MIXER_CLASS; 1443 break; 1444 1445 default: 1446 return (ENXIO); 1447 } 1448 1449 return (0); 1450 } 1451 1452 static int 1453 eso_allocmem(sc, size, align, boundary, flags, direction, ed) 1454 struct eso_softc *sc; 1455 size_t size; 1456 size_t align; 1457 size_t boundary; 1458 int flags; 1459 int direction; 1460 struct eso_dma *ed; 1461 { 1462 int error, wait; 1463 1464 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; 1465 ed->ed_size = size; 1466 1467 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, 1468 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), 1469 &ed->ed_nsegs, wait); 1470 if (error) 1471 goto out; 1472 1473 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1474 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT); 1475 if (error) 1476 goto free; 1477 1478 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, 1479 wait, &ed->ed_map); 1480 if (error) 1481 goto unmap; 1482 1483 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr, 1484 ed->ed_size, NULL, wait | 1485 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 1486 if (error) 1487 goto destroy; 1488 1489 return (0); 1490 1491 destroy: 1492 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1493 unmap: 1494 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1495 free: 1496 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1497 out: 1498 return (error); 1499 } 1500 1501 static void 1502 eso_freemem(ed) 1503 struct eso_dma *ed; 1504 { 1505 1506 bus_dmamap_unload(ed->ed_dmat, ed->ed_map); 1507 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); 1508 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size); 1509 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); 1510 } 1511 1512 static void * 1513 eso_allocm(hdl, direction, size, type, flags) 1514 void *hdl; 1515 int direction; 1516 size_t size; 1517 int type, flags; 1518 { 1519 struct eso_softc *sc = hdl; 1520 struct eso_dma *ed; 1521 size_t boundary; 1522 int error; 1523 1524 if ((ed = malloc(size, type, flags)) == NULL) 1525 return (NULL); 1526 1527 /* 1528 * Apparently the Audio 1 DMA controller's current address 1529 * register can't roll over a 64K address boundary, so we have to 1530 * take care of that ourselves. The second channel DMA controller 1531 * doesn't have that restriction, however. 1532 */ 1533 if (direction == AUMODE_RECORD) 1534 boundary = 0x10000; 1535 else 1536 boundary = 0; 1537 1538 #ifdef alpha 1539 /* 1540 * XXX For Audio 1, which implements the 24 low address bits only, 1541 * XXX force allocation through the (ISA) SGMAP. 1542 */ 1543 if (direction == AUMODE_RECORD) 1544 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); 1545 else 1546 #endif 1547 ed->ed_dmat = sc->sc_dmat; 1548 1549 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed); 1550 if (error) { 1551 free(ed, type); 1552 return (NULL); 1553 } 1554 ed->ed_next = sc->sc_dmas; 1555 sc->sc_dmas = ed; 1556 1557 return (KVADDR(ed)); 1558 } 1559 1560 static void 1561 eso_freem(hdl, addr, type) 1562 void *hdl; 1563 void *addr; 1564 int type; 1565 { 1566 struct eso_softc *sc = hdl; 1567 struct eso_dma *p, **pp; 1568 1569 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) { 1570 if (KVADDR(p) == addr) { 1571 eso_freemem(p); 1572 *pp = p->ed_next; 1573 free(p, type); 1574 return; 1575 } 1576 } 1577 } 1578 1579 static size_t 1580 eso_round_buffersize(hdl, direction, bufsize) 1581 void *hdl; 1582 int direction; 1583 size_t bufsize; 1584 { 1585 size_t maxsize; 1586 1587 /* 1588 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 1589 * bytes. This is because IO_A2DMAC is a two byte value 1590 * indicating the literal byte count, and the 4 least significant 1591 * bits are read-only. Zero is not used as a special case for 1592 * 0x10000. 1593 * 1594 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can 1595 * be represented. 1596 */ 1597 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; 1598 1599 if (bufsize > maxsize) 1600 bufsize = maxsize; 1601 1602 return (bufsize); 1603 } 1604 1605 static paddr_t 1606 eso_mappage(hdl, addr, offs, prot) 1607 void *hdl; 1608 void *addr; 1609 off_t offs; 1610 int prot; 1611 { 1612 struct eso_softc *sc = hdl; 1613 struct eso_dma *ed; 1614 1615 if (offs < 0) 1616 return (-1); 1617 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr; 1618 ed = ed->ed_next) 1619 ; 1620 if (ed == NULL) 1621 return (-1); 1622 1623 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, 1624 offs, prot, BUS_DMA_WAITOK)); 1625 } 1626 1627 /* ARGSUSED */ 1628 static int 1629 eso_get_props(hdl) 1630 void *hdl; 1631 { 1632 1633 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 1634 AUDIO_PROP_FULLDUPLEX); 1635 } 1636 1637 static int 1638 eso_trigger_output(hdl, start, end, blksize, intr, arg, param) 1639 void *hdl; 1640 void *start, *end; 1641 int blksize; 1642 void (*intr) __P((void *)); 1643 void *arg; 1644 struct audio_params *param; 1645 { 1646 struct eso_softc *sc = hdl; 1647 struct eso_dma *ed; 1648 uint8_t a2c1; 1649 1650 DPRINTF(( 1651 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n", 1652 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1653 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1654 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1655 param->precision, param->channels, param->sw_code, param->factor)); 1656 1657 /* Find DMA buffer. */ 1658 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1659 ed = ed->ed_next) 1660 ; 1661 if (ed == NULL) { 1662 printf("%s: trigger_output: bad addr %p\n", 1663 sc->sc_dev.dv_xname, start); 1664 return (EINVAL); 1665 } 1666 1667 sc->sc_pintr = intr; 1668 sc->sc_parg = arg; 1669 1670 /* Compute drain timeout. */ 1671 sc->sc_pdrain = (blksize * NBBY * hz) / 1672 (param->sample_rate * param->channels * 1673 param->precision * param->factor) + 2; /* slop */ 1674 1675 /* DMA transfer count (in `words'!) reload using 2's complement. */ 1676 blksize = -(blksize >> 1); 1677 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); 1678 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); 1679 1680 /* Update DAC to reflect DMA count and audio parameters. */ 1681 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ 1682 if (param->precision * param->factor == 16) 1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; 1684 else 1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; 1686 if (param->channels == 2) 1687 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; 1688 else 1689 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; 1690 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1691 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; 1693 else 1694 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; 1695 /* Unmask IRQ. */ 1696 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; 1697 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); 1698 1699 /* Set up DMA controller. */ 1700 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, 1701 DMAADDR(ed)); 1702 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, 1703 (uint8_t *)end - (uint8_t *)start); 1704 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 1705 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); 1706 1707 /* Start DMA. */ 1708 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); 1709 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ 1710 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | 1711 ESO_MIXREG_A2C1_AUTO; 1712 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); 1713 1714 return (0); 1715 } 1716 1717 static int 1718 eso_trigger_input(hdl, start, end, blksize, intr, arg, param) 1719 void *hdl; 1720 void *start, *end; 1721 int blksize; 1722 void (*intr) __P((void *)); 1723 void *arg; 1724 struct audio_params *param; 1725 { 1726 struct eso_softc *sc = hdl; 1727 struct eso_dma *ed; 1728 uint8_t actl, a1c1; 1729 1730 DPRINTF(( 1731 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n", 1732 sc->sc_dev.dv_xname, start, end, blksize, intr, arg)); 1733 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n", 1734 sc->sc_dev.dv_xname, param->sample_rate, param->encoding, 1735 param->precision, param->channels, param->sw_code, param->factor)); 1736 1737 /* 1738 * If we failed to configure the Audio 1 DMA controller, bail here 1739 * while retaining availability of the DAC direction (in Audio 2). 1740 */ 1741 if (!sc->sc_dmac_configured) 1742 return (EIO); 1743 1744 /* Find DMA buffer. */ 1745 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start; 1746 ed = ed->ed_next) 1747 ; 1748 if (ed == NULL) { 1749 printf("%s: trigger_output: bad addr %p\n", 1750 sc->sc_dev.dv_xname, start); 1751 return (EINVAL); 1752 } 1753 1754 sc->sc_rintr = intr; 1755 sc->sc_rarg = arg; 1756 1757 /* Compute drain timeout. */ 1758 sc->sc_rdrain = (blksize * NBBY * hz) / 1759 (param->sample_rate * param->channels * 1760 param->precision * param->factor) + 2; /* slop */ 1761 1762 /* Set up ADC DMA converter parameters. */ 1763 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); 1764 if (param->channels == 2) { 1765 actl &= ~ESO_CTLREG_ACTL_MONO; 1766 actl |= ESO_CTLREG_ACTL_STEREO; 1767 } else { 1768 actl &= ~ESO_CTLREG_ACTL_STEREO; 1769 actl |= ESO_CTLREG_ACTL_MONO; 1770 } 1771 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); 1772 1773 /* Set up Transfer Type: maybe move to attach time? */ 1774 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); 1775 1776 /* DMA transfer count reload using 2's complement. */ 1777 blksize = -blksize; 1778 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); 1779 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); 1780 1781 /* Set up and enable Audio 1 DMA FIFO. */ 1782 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; 1783 if (param->precision * param->factor == 16) 1784 a1c1 |= ESO_CTLREG_A1C1_16BIT; 1785 if (param->channels == 2) 1786 a1c1 |= ESO_CTLREG_A1C1_STEREO; 1787 else 1788 a1c1 |= ESO_CTLREG_A1C1_MONO; 1789 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1790 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1791 a1c1 |= ESO_CTLREG_A1C1_SIGNED; 1792 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); 1793 1794 /* Set up ADC IRQ/DRQ parameters. */ 1795 eso_write_ctlreg(sc, ESO_CTLREG_LAIC, 1796 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); 1797 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, 1798 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); 1799 1800 /* Set up and enable DMA controller. */ 1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); 1802 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 1803 ESO_DMAC_MASK_MASK); 1804 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, 1805 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); 1806 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, 1807 DMAADDR(ed)); 1808 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, 1809 (uint8_t *)end - (uint8_t *)start - 1); 1810 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); 1811 1812 /* Start DMA. */ 1813 eso_write_ctlreg(sc, ESO_CTLREG_A1C2, 1814 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | 1815 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); 1816 1817 return (0); 1818 } 1819 1820 static int 1821 eso_set_monooutsrc(sc, monooutsrc) 1822 struct eso_softc *sc; 1823 unsigned int monooutsrc; 1824 { 1825 mixer_devinfo_t di; 1826 int i; 1827 uint8_t mpm; 1828 1829 di.index = ESO_MONOOUT_SOURCE; 1830 if (eso_query_devinfo(sc, &di) != 0) 1831 panic("eso_set_monooutsrc: eso_query_devinfo failed"); 1832 1833 for (i = 0; i < di.un.e.num_mem; i++) { 1834 if (monooutsrc == di.un.e.member[i].ord) { 1835 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); 1836 mpm &= ~ESO_MIXREG_MPM_MOMASK; 1837 mpm |= monooutsrc; 1838 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); 1839 sc->sc_monooutsrc = monooutsrc; 1840 return (0); 1841 } 1842 } 1843 1844 return (EINVAL); 1845 } 1846 1847 static int 1848 eso_set_recsrc(sc, recsrc) 1849 struct eso_softc *sc; 1850 unsigned int recsrc; 1851 { 1852 mixer_devinfo_t di; 1853 int i; 1854 1855 di.index = ESO_RECORD_SOURCE; 1856 if (eso_query_devinfo(sc, &di) != 0) 1857 panic("eso_set_recsrc: eso_query_devinfo failed"); 1858 1859 for (i = 0; i < di.un.e.num_mem; i++) { 1860 if (recsrc == di.un.e.member[i].ord) { 1861 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); 1862 sc->sc_recsrc = recsrc; 1863 return (0); 1864 } 1865 } 1866 1867 return (EINVAL); 1868 } 1869 1870 /* 1871 * Reload Master Volume and Mute values in softc from mixer; used when 1872 * those have previously been invalidated by use of hardware volume controls. 1873 */ 1874 static void 1875 eso_reload_master_vol(sc) 1876 struct eso_softc *sc; 1877 { 1878 uint8_t mv; 1879 1880 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1881 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = 1882 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; 1883 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); 1884 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = 1885 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; 1886 /* Currently both channels are muted simultaneously; either is OK. */ 1887 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; 1888 } 1889 1890 static void 1891 eso_set_gain(sc, port) 1892 struct eso_softc *sc; 1893 unsigned int port; 1894 { 1895 uint8_t mixreg, tmp; 1896 1897 switch (port) { 1898 case ESO_DAC_PLAY_VOL: 1899 mixreg = ESO_MIXREG_PVR_A2; 1900 break; 1901 case ESO_MIC_PLAY_VOL: 1902 mixreg = ESO_MIXREG_PVR_MIC; 1903 break; 1904 case ESO_LINE_PLAY_VOL: 1905 mixreg = ESO_MIXREG_PVR_LINE; 1906 break; 1907 case ESO_SYNTH_PLAY_VOL: 1908 mixreg = ESO_MIXREG_PVR_SYNTH; 1909 break; 1910 case ESO_CD_PLAY_VOL: 1911 mixreg = ESO_MIXREG_PVR_CD; 1912 break; 1913 case ESO_AUXB_PLAY_VOL: 1914 mixreg = ESO_MIXREG_PVR_AUXB; 1915 break; 1916 1917 case ESO_DAC_REC_VOL: 1918 mixreg = ESO_MIXREG_RVR_A2; 1919 break; 1920 case ESO_MIC_REC_VOL: 1921 mixreg = ESO_MIXREG_RVR_MIC; 1922 break; 1923 case ESO_LINE_REC_VOL: 1924 mixreg = ESO_MIXREG_RVR_LINE; 1925 break; 1926 case ESO_SYNTH_REC_VOL: 1927 mixreg = ESO_MIXREG_RVR_SYNTH; 1928 break; 1929 case ESO_CD_REC_VOL: 1930 mixreg = ESO_MIXREG_RVR_CD; 1931 break; 1932 case ESO_AUXB_REC_VOL: 1933 mixreg = ESO_MIXREG_RVR_AUXB; 1934 break; 1935 case ESO_MONO_PLAY_VOL: 1936 mixreg = ESO_MIXREG_PVR_MONO; 1937 break; 1938 case ESO_MONO_REC_VOL: 1939 mixreg = ESO_MIXREG_RVR_MONO; 1940 break; 1941 1942 case ESO_PCSPEAKER_VOL: 1943 /* Special case - only 3-bit, mono, and reserved bits. */ 1944 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); 1945 tmp &= ESO_MIXREG_PCSVR_RESV; 1946 /* Map bits 7:5 -> 2:0. */ 1947 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); 1948 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); 1949 return; 1950 1951 case ESO_MASTER_VOL: 1952 /* Special case - separate regs, and 6-bit precision. */ 1953 /* Map bits 7:2 -> 5:0, reflect mute settings. */ 1954 eso_write_mixreg(sc, ESO_MIXREG_LMVM, 1955 (sc->sc_gain[port][ESO_LEFT] >> 2) | 1956 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); 1957 eso_write_mixreg(sc, ESO_MIXREG_RMVM, 1958 (sc->sc_gain[port][ESO_RIGHT] >> 2) | 1959 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); 1960 return; 1961 1962 case ESO_SPATIALIZER: 1963 /* Special case - only `mono', and higher precision. */ 1964 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, 1965 sc->sc_gain[port][ESO_LEFT]); 1966 return; 1967 1968 case ESO_RECORD_VOL: 1969 /* Very Special case, controller register. */ 1970 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( 1971 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1972 return; 1973 1974 default: 1975 #ifdef DIAGNOSTIC 1976 panic("eso_set_gain: bad port %u", port); 1977 /* NOTREACHED */ 1978 #else 1979 return; 1980 #endif 1981 } 1982 1983 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( 1984 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); 1985 } 1986