xref: /netbsd-src/sys/dev/pci/esmvar.h (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: esmvar.h,v 1.10 2004/09/22 12:20:25 kent Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 Matt Fredette
5  * All rights reserved.
6  *
7  * Copyright (c) 2000, 2001 Rene Hexel <rh@NetBSD.org>
8  * All rights reserved.
9  *
10  * Copyright (c) 2000 Taku YAMAMOTO <taku@cent.saitama-u.ac.jp>
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Taku Id: maestro.c,v 1.12 2000/09/06 03:32:34 taku Exp
35  * FreeBSD: /c/ncvs/src/sys/dev/sound/pci/maestro.c,v 1.4 2000/12/18 01:36:35 cg Exp
36  *
37  */
38 
39 /*
40  * Credits:
41  *
42  * This code is based on the FreeBSD driver written by Taku YAMAMOTO
43  *
44  *
45  * Original credits from the FreeBSD driver:
46  *
47  * Part of this code (especially in many magic numbers) was heavily inspired
48  * by the Linux driver originally written by
49  * Alan Cox <alan.cox@linux.org>, modified heavily by
50  * Zach Brown <zab@zabbo.net>.
51  *
52  * busdma()-ize and buffer size reduction were suggested by
53  * Cameron Grant <gandalf@vilnya.demon.co.uk>.
54  * Also he showed me the way to use busdma() suite.
55  *
56  * Internal speaker problems on NEC VersaPro's and Dell Inspiron 7500
57  * were looked at by
58  * Munehiro Matsuda <haro@tk.kubota.co.jp>,
59  * who brought patches based on the Linux driver with some simplification.
60  */
61 
62 /* IRQ timer fequency limits */
63 #define MAESTRO_MINFREQ	24
64 #define MAESTRO_MAXFREQ	48000
65 
66 /*
67  * This driver allocates a contiguous 256KB region of memory.
68  * The Maestro's DMA interface, called the WaveCache, is weak
69  * (or at least incorrectly documented), and forces us to keep
70  * things very simple.  This region is very carefully divided up
71  * into 64KB quarters, making 64KB a fundamental constant for
72  * this implementation - and this is as large as we can allow
73  * the upper-layer playback and record buffers to become.
74  */
75 #define	MAESTRO_QUARTER_SZ	(64 * 1024)
76 
77 /*
78  * The first quarter of memory is used while recording.  The
79  * first 512 bytes of it is reserved as a scratch area for the
80  * APUs that want to write (uninteresting, to us) FIFO status
81  * information.  After some guard space, another 512 bytes is
82  * reserved for the APUs doing mixing.  The remainder of this
83  * quarter of memory is wasted.
84  */
85 #define	MAESTRO_FIFO_OFF	(MAESTRO_QUARTER_SZ * 0)
86 #define	MAESTRO_FIFO_SZ		(512)
87 #define	MAESTRO_MIXBUF_OFF	(MAESTRO_FIFO_OFF + 4096)
88 #define	MAESTRO_MIXBUF_SZ	(512)
89 
90 /*
91  * The second quarter of memory is the playback buffer.
92  */
93 #define	MAESTRO_PLAYBUF_OFF	(MAESTRO_QUARTER_SZ * 1)
94 #define	MAESTRO_PLAYBUF_SZ	MAESTRO_QUARTER_SZ
95 
96 /*
97  * The third quarter of memory is the mono record buffer.
98  * This is the only record buffer that the upper layer knows.
99  * When recording in stereo, our driver combines (in software)
100  * separately recorded left and right buffers here.
101  */
102 #define	MAESTRO_RECBUF_OFF	(MAESTRO_QUARTER_SZ * 2)
103 #define	MAESTRO_RECBUF_SZ	MAESTRO_QUARTER_SZ
104 
105 /*
106  * The fourth quarter of memory is the stereo record buffer.
107  * When recording in stereo, the left and right channels are
108  * recorded separately into the two halves of this buffer.
109  */
110 #define	MAESTRO_RECBUF_L_OFF	(MAESTRO_QUARTER_SZ * 3)
111 #define	MAESTRO_RECBUF_L_SZ	(MAESTRO_QUARTER_SZ / 2)
112 #define	MAESTRO_RECBUF_R_OFF	(MAESTRO_RECBUF_L_OFF + MAESTRO_RECBUF_L_SZ)
113 #define	MAESTRO_RECBUF_R_SZ	(MAESTRO_QUARTER_SZ / 2)
114 
115 /*
116  * The size and alignment of the entire region.  We keep
117  * the region aligned to a 128KB boundary, since this should
118  * force A16..A0 on all chip-generated addresses to correspond
119  * exactly to APU register contents.
120  */
121 #define	MAESTRO_DMA_SZ		(MAESTRO_QUARTER_SZ * 4)
122 #define	MAESTRO_DMA_ALIGN	(128 * 1024)
123 
124 struct esm_dma {
125 	bus_dmamap_t		map;
126 	caddr_t			addr;
127 	bus_dma_segment_t	segs[1];
128 	int			nsegs;
129 	size_t			size;
130 	struct esm_dma		*next;
131 };
132 
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135 
136 struct esm_chinfo {
137 	u_int32_t		base;		/* DMA base */
138 	caddr_t			buffer;		/* upper layer buffer */
139 	u_int32_t		offset;		/* offset into buffer */
140 	u_int32_t		blocksize;	/* block size in bytes */
141 	u_int32_t		bufsize;	/* buffer size in bytes */
142 	unsigned		num;		/* logical channel number */
143 	u_int16_t		aputype;	/* APU channel type */
144 	u_int16_t		apubase;	/* first sample number */
145 	u_int16_t		apublk;		/* blk size in samples per ch */
146 	u_int16_t		apubuf;		/* buf size in samples per ch */
147 	u_int16_t		nextirq;	/* pos to trigger next IRQ at */
148 	u_int16_t		wcreg_tpl;	/* wavecache tag and format */
149 	u_int16_t		sample_rate;
150 };
151 
152 struct esm_softc {
153 	struct device		sc_dev;
154 
155 	bus_space_tag_t		st;
156 	bus_space_handle_t	sh;
157 
158 	pcitag_t		tag;
159 	pci_chipset_tag_t	pc;
160 	bus_dma_tag_t		dmat;
161 	pcireg_t		subid;
162 
163 	void			*ih;
164 
165 	struct ac97_codec_if	*codec_if;
166 	struct ac97_host_if	host_if;
167 	enum ac97_host_flags	codec_flags;
168 
169 	struct esm_dma		sc_dma;
170 	int			rings_alloced;
171 
172 	int			pactive, ractive;
173 	struct esm_chinfo	pch;
174 	struct esm_chinfo	rch;
175 
176 	void (*sc_pintr)(void *);
177 	void *sc_parg;
178 
179 	void (*sc_rintr)(void *);
180 	void *sc_rarg;
181 
182 	/* Power Management */
183 	char	esm_suspend;
184 	void   *esm_powerhook;
185 };
186 
187 enum esm_quirk_flags {
188 	ESM_QUIRKF_GPIO = 0x1,		/* needs GPIO operation */
189 	ESM_QUIRKF_SWAPPEDCH = 0x2,	/* left/right is reversed */
190 };
191 
192 struct esm_quirks {
193 	pci_vendor_id_t		eq_vendor;	/* subsystem vendor */
194 	pci_product_id_t	eq_product;	/* and product */
195 
196 	enum esm_quirk_flags	eq_quirks;	/* needed quirks */
197 };
198 
199 int	esm_read_codec(void *, u_int8_t, u_int16_t *);
200 int	esm_write_codec(void *, u_int8_t, u_int16_t);
201 int	esm_attach_codec(void *, struct ac97_codec_if *);
202 int	esm_reset_codec(void *);
203 enum ac97_host_flags	esm_flags_codec(void *);
204 
205 void	esm_power(struct esm_softc *, int);
206 void	esm_init(struct esm_softc *);
207 void	esm_initcodec(struct esm_softc *);
208 
209 int	esm_init_output(void *, void *, int);
210 int	esm_init_input(void *, void *, int);
211 int	esm_trigger_output(void *, void *, void *, int, void (*)(void *),
212 	    void *, struct audio_params *);
213 int	esm_trigger_input(void *, void *, void *, int, void (*)(void *),
214 	    void *, struct audio_params *);
215 int	esm_halt_output(void *);
216 int	esm_halt_input(void *);
217 int	esm_open(void *, int);
218 void	esm_close(void *);
219 int	esm_getdev(void *, struct audio_device *);
220 int	esm_round_blocksize(void *, int);
221 int	esm_query_encoding(void *, struct audio_encoding *);
222 int	esm_set_params(void *, int, int, struct audio_params *,
223 	    struct audio_params *);
224 int	esm_set_port(void *, mixer_ctrl_t *);
225 int	esm_get_port(void *, mixer_ctrl_t *);
226 int	esm_query_devinfo(void *, mixer_devinfo_t *);
227 void	*esm_malloc(void *, int, size_t, struct malloc_type *, int);
228 void	esm_free(void *, void *, struct malloc_type *);
229 size_t	esm_round_buffersize(void *, int, size_t);
230 paddr_t	esm_mappage(void *, void *, off_t, int);
231 int	esm_get_props(void *);
232 
233 int	esm_match(struct device *, struct cfdata *, void *);
234 void	esm_attach(struct device *, struct device *, void *);
235 int	esm_intr(void *);
236 
237 int	esm_allocmem(struct esm_softc *, size_t, size_t,
238 	    struct esm_dma *);
239 
240 int	esm_suspend(struct esm_softc *);
241 int	esm_resume(struct esm_softc *);
242 int	esm_shutdown(struct esm_softc *);
243 
244 enum esm_quirk_flags	esm_get_quirks(pcireg_t);
245