xref: /netbsd-src/sys/dev/pci/cz.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: cz.c,v 1.6 2000/05/24 22:26:35 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Zembu Labs, Inc.
5  * All rights reserved.
6  *
7  * Authors: Jason R. Thorpe <thorpej@zembu.com>
8  *          Bill Studenmund <wrstuden@zembu.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by Zembu Labs, Inc.
21  * 4. Neither the name of Zembu Labs nor the names of its employees may
22  *    be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27  * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28  * CLAIMED.  IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39  *
40  * Some notes:
41  *
42  *	- The Cyclades-Z has fully automatic hardware (and software!)
43  *	  flow control.  We only utilize RTS/CTS flow control here,
44  *	  and it is implemented in a very simplistic manner.  This
45  *	  may be an area of future work.
46  *
47  *	- The PLX can map the either the board's RAM or host RAM
48  *	  into the MIPS's memory window.  This would enable us to
49  *	  use less expensive (for us) memory reads/writes to host
50  *	  RAM, rather than time-consuming reads/writes to PCI
51  *	  memory space.  However, the PLX can only map a 0-128M
52  *	  window, so we would have to ensure that the DMA address
53  *	  of the host RAM fits there.  This is kind of a pain,
54  *	  so we just don't bother right now.
55  *
56  *	- In a perfect world, we would use the autoconfiguration
57  *	  mechanism to attach the TTYs that we find.  However,
58  *	  that leads to somewhat icky looking autoconfiguration
59  *	  messages (one for every TTY, up to 64 per board!).  So
60  *	  we don't do it that way, but assign minors as if there
61  *	  were the max of 64 ports per board.
62  *
63  *	- We don't bother with PPS support here.  There are so many
64  *	  ports, each with a large amount of buffer space, that the
65  *	  normal mode of operation is to poll the boards regularly
66  *	  (generally, every 20ms or so).  This makes this driver
67  *	  unsuitable for PPS, as the latency will be generally too
68  *	  high.
69  */
70 /*
71  * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72  * for FreeBSD 3.2.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86 
87 #include <sys/callout.h>
88 
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93 
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96 
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98 
99 #define	CZ_DRIVER_VERSION	0x20000411
100 
101 #define CZ_POLL_MS			20
102 
103 /* These are the interrupts we always use. */
104 #define	CZ_INTERRUPTS							\
105 	(C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY |	\
106 	 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT |	\
107 	 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR |	\
108 	 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109 
110 /*
111  * cztty_softc:
112  *
113  *	Per-channel (TTY) state.
114  */
115 struct cztty_softc {
116 	struct cz_softc *sc_parent;
117 	struct tty *sc_tty;
118 
119 	struct callout sc_diag_ch;
120 
121 	int sc_channel;			/* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD	-1
123 
124 	bus_space_tag_t sc_chan_st;	/* channel space tag */
125 	bus_space_handle_t sc_chan_sh;	/* channel space handle */
126 	bus_space_handle_t sc_buf_sh;	/* buffer space handle */
127 
128 	u_int sc_overflows,
129 	      sc_parity_errors,
130 	      sc_framing_errors,
131 	      sc_errors;
132 
133 	int sc_swflags;
134 
135 	u_int32_t sc_rs_control_dtr,
136 		  sc_chanctl_hw_flow,
137 		  sc_chanctl_comm_baud,
138 		  sc_chanctl_rs_control,
139 		  sc_chanctl_comm_data_l,
140 		  sc_chanctl_comm_parity;
141 };
142 
143 /*
144  * cz_softc:
145  *
146  *	Per-board state.
147  */
148 struct cz_softc {
149 	struct device cz_dev;		/* generic device info */
150 	struct plx9060_config cz_plx;	/* PLX 9060 config info */
151 	bus_space_tag_t cz_win_st;	/* window space tag */
152 	bus_space_handle_t cz_win_sh;	/* window space handle */
153 	struct callout cz_callout;	/* callout for polling-mode */
154 
155 	void *cz_ih;			/* interrupt handle */
156 
157 	u_int32_t cz_mailbox0;		/* our MAILBOX0 value */
158 	int cz_nchannels;		/* number of channels */
159 	int cz_nopenchan;		/* number of open channels */
160 	struct cztty_softc *cz_ports;	/* our array of ports */
161 
162 	bus_addr_t cz_fwctl;		/* offset of firmware control */
163 };
164 
165 int	cz_match(struct device *, struct cfdata *, void *);
166 void	cz_attach(struct device *, struct device *, void *);
167 int	cz_wait_pci_doorbell(struct cz_softc *, const char *);
168 
169 struct cfattach cz_ca = {
170 	sizeof(struct cz_softc), cz_match, cz_attach
171 };
172 
173 void	cz_reset_board(struct cz_softc *);
174 int	cz_load_firmware(struct cz_softc *);
175 
176 int	cz_intr(void *);
177 void	cz_poll(void *);
178 int	cztty_transmit(struct cztty_softc *, struct tty *);
179 int	cztty_receive(struct cztty_softc *, struct tty *);
180 
181 int	cztty_findmajor(void);
182 int	cztty_major;
183 int	cz_timeout_ticks;
184 
185 cdev_decl(cztty);
186 
187 void    czttystart(struct tty *tp);
188 int	czttyparam(struct tty *tp, struct termios *t);
189 void    cztty_shutdown(struct cztty_softc *sc);
190 void	cztty_modem(struct cztty_softc *sc, int onoff);
191 void	cztty_break(struct cztty_softc *sc, int onoff);
192 void	tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
193 int	cztty_to_tiocm(struct cztty_softc *sc);
194 void	cztty_diag(void *arg);
195 
196 extern struct cfdriver cz_cd;
197 
198 /* Macros to clear/set/test flags. */
199 #define SET(t, f)       (t) |= (f)
200 #define CLR(t, f)       (t) &= ~(f)
201 #define ISSET(t, f)     ((t) & (f))
202 
203 /*
204  * Macros to read and write the PLX.
205  */
206 #define	CZ_PLX_READ(cz, reg)						\
207 	bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
208 #define	CZ_PLX_WRITE(cz, reg, val)					\
209 	bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh,	\
210 	    (reg), (val))
211 
212 /*
213  * Macros to read and write the FPGA.  We must already be in the FPGA
214  * window for this.
215  */
216 #define	CZ_FPGA_READ(cz, reg)						\
217 	bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
218 #define	CZ_FPGA_WRITE(cz, reg, val)					\
219 	bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
220 
221 /*
222  * Macros to read and write the firmware control structures in board RAM.
223  */
224 #define	CZ_FWCTL_READ(cz, off)						\
225 	bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh,		\
226 	    (cz)->cz_fwctl + (off))
227 
228 #define	CZ_FWCTL_WRITE(cz, off, val)					\
229 	bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh,		\
230 	    (cz)->cz_fwctl + (off), (val))
231 
232 /*
233  * Convenience macros for cztty routines.  PLX window MUST be to RAM.
234  */
235 #define CZTTY_CHAN_READ(sc, off)					\
236 	bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
237 
238 #define CZTTY_CHAN_WRITE(sc, off, val)					\
239 	bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh,		\
240 	    (off), (val))
241 
242 #define CZTTY_BUF_READ(sc, off)						\
243 	bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
244 
245 #define CZTTY_BUF_WRITE(sc, off, val)					\
246 	bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh,		\
247 	    (off), (val))
248 
249 /*
250  * Convenience macros.
251  */
252 #define	CZ_WIN_RAM(cz)							\
253 do {									\
254 	CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM);		\
255 	delay(100);							\
256 } while (0)
257 
258 #define	CZ_WIN_FPGA(cz)							\
259 do {									\
260 	CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA);		\
261 	delay(100);							\
262 } while (0)
263 
264 /*****************************************************************************
265  * Cyclades-Z controller code starts here...
266  *****************************************************************************/
267 
268 /*
269  * cz_match:
270  *
271  *	Determine if the given PCI device is a Cyclades-Z board.
272  */
273 int
274 cz_match(struct device *parent,
275     struct cfdata *match,
276     void *aux)
277 {
278 	struct pci_attach_args *pa = aux;
279 
280 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
281 		switch (PCI_PRODUCT(pa->pa_id)) {
282 		case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
283 			return (1);
284 		}
285 	}
286 
287 	return (0);
288 }
289 
290 /*
291  * cz_attach:
292  *
293  *	A Cyclades-Z board was found; attach it.
294  */
295 void
296 cz_attach(struct device *parent,
297     struct device *self,
298     void *aux)
299 {
300 	struct cz_softc *cz = (void *) self;
301 	struct pci_attach_args *pa = aux;
302 	pci_intr_handle_t ih;
303 	const char *intrstr = NULL;
304 	struct cztty_softc *sc;
305 	struct tty *tp;
306 	int i;
307 
308 	printf(": Cyclades-Z multiport serial\n");
309 
310 	cz->cz_plx.plx_pc = pa->pa_pc;
311 	cz->cz_plx.plx_tag = pa->pa_tag;
312 
313 	if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
314 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
315 	    &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
316 		printf("%s: unable to map PLX registers\n",
317 		    cz->cz_dev.dv_xname);
318 		return;
319 	}
320 	if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
321 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
322 	    &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
323 		printf("%s: unable to map device window\n",
324 		    cz->cz_dev.dv_xname);
325 		return;
326 	}
327 
328 	cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
329 	cz->cz_nopenchan = 0;
330 
331 	/*
332 	 * Make sure that the board is completely stopped.
333 	 */
334 	CZ_WIN_FPGA(cz);
335 	CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
336 
337 	/*
338 	 * Load the board's firmware.
339 	 */
340 	if (cz_load_firmware(cz) != 0)
341 		return;
342 
343 	/*
344 	 * Now that we're ready to roll, map and establish the interrupt
345 	 * handler.
346 	 */
347 	if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
348 	    pa->pa_intrline, &ih) != 0) {
349 		/*
350 		 * The common case is for Cyclades-Z boards to run
351 		 * in polling mode, and thus not have an interrupt
352 		 * mapped for them.  Don't bother reporting that
353 		 * the interrupt is not mappable, since this isn't
354 		 * really an error.
355 		 */
356 		cz->cz_ih = NULL;
357 		goto polling_mode;
358 	} else {
359 		intrstr = pci_intr_string(pa->pa_pc, ih);
360 		cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
361 		    cz_intr, cz);
362 	}
363 	if (cz->cz_ih == NULL) {
364 		printf("%s: unable to establish interrupt",
365 		    cz->cz_dev.dv_xname);
366 		if (intrstr != NULL)
367 			printf(" at %s", intrstr);
368 		printf("\n");
369 		/* We will fall-back on polling mode. */
370 	} else
371 		printf("%s: interrupting at %s\n",
372 		    cz->cz_dev.dv_xname, intrstr);
373 
374  polling_mode:
375 	if (cz->cz_ih == NULL) {
376 		callout_init(&cz->cz_callout);
377 		if (cz_timeout_ticks == 0)
378 			cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
379 		printf("%s: polling mode, %d ms interval (%d tick%s)\n",
380 		    cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
381 		    cz_timeout_ticks == 1 ? "" : "s");
382 	}
383 
384 	if (cztty_major == 0)
385 		cztty_major = cztty_findmajor();
386 	/*
387 	 * Allocate sufficient pointers for the children and
388 	 * attach them.  Set all ports to a reasonable initial
389 	 * configuration while we're at it:
390 	 *
391 	 *	disabled
392 	 *	8N1
393 	 *	default baud rate
394 	 *	hardware flow control.
395 	 */
396 	CZ_WIN_RAM(cz);
397 	cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
398 	    M_DEVBUF, M_WAITOK);
399 	memset(cz->cz_ports, 0,
400 	    sizeof(struct cztty_softc) * cz->cz_nchannels);
401 
402 	for (i = 0; i < cz->cz_nchannels; i++) {
403 		sc = &cz->cz_ports[i];
404 
405 		sc->sc_channel = i;
406 		sc->sc_chan_st = cz->cz_win_st;
407 		sc->sc_parent = cz;
408 
409 		if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
410 		    cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
411 		    ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
412 			printf("%s: unable to subregion channel %d control\n",
413 			    cz->cz_dev.dv_xname, i);
414 			sc->sc_channel = CZTTY_CHANNEL_DEAD;
415 			continue;
416 		}
417 		if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
418 		    cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
419 		    ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
420 			printf("%s: unable to subregion channel %d buffer\n",
421 			    cz->cz_dev.dv_xname, i);
422 			sc->sc_channel = CZTTY_CHANNEL_DEAD;
423 			continue;
424 		}
425 
426 		callout_init(&sc->sc_diag_ch);
427 
428 		tp = ttymalloc();
429 		tp->t_dev = makedev(cztty_major,
430 		    (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
431 		tp->t_oproc = czttystart;
432 		tp->t_param = czttyparam;
433 		tty_attach(tp);
434 
435 		sc->sc_tty = tp;
436 
437 		CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
438 		CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
439 		CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
440 		CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
441 		CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
442 		CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
443 		CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
444 		CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
445 		CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
446 		CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
447 		CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
448 	}
449 }
450 
451 /*
452  * cz_reset_board:
453  *
454  *	Reset the board via the PLX.
455  */
456 void
457 cz_reset_board(struct cz_softc *cz)
458 {
459 	u_int32_t reg;
460 
461 	reg = CZ_PLX_READ(cz, PLX_CONTROL);
462 	CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
463 	delay(1000);
464 
465 	CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
466 	delay(1000);
467 
468 	/* Now reload the PLX from its EEPROM. */
469 	reg = CZ_PLX_READ(cz, PLX_CONTROL);
470 	CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
471 	delay(1000);
472 	CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
473 }
474 
475 /*
476  * cz_load_firmware:
477  *
478  *	Load the ZFIRM firmware into the board's RAM and start it
479  *	running.
480  */
481 int
482 cz_load_firmware(struct cz_softc *cz)
483 {
484 	struct zfirm_header *zfh;
485 	struct zfirm_config *zfc;
486 	struct zfirm_block *zfb, *zblocks;
487 	const u_int8_t *cp;
488 	const char *board;
489 	u_int32_t fid;
490 	int i, j, nconfigs, nblocks, nbytes;
491 
492 	zfh = (struct zfirm_header *) cycladesz_firmware;
493 
494 	/* Find the config header. */
495 	if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
496 		printf("%s: bad ZFIRM config offset: 0x%x\n",
497 		    cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
498 		return (EIO);
499 	}
500 	zfc = (struct zfirm_config *)(cycladesz_firmware +
501 	    le32toh(zfh->zfh_configoff));
502 	nconfigs = le32toh(zfh->zfh_nconfig);
503 
504 	/* Locate the correct configuration for our board. */
505 	for (i = 0; i < nconfigs; i++, zfc++) {
506 		if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
507 		    le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
508 			break;
509 	}
510 	if (i == nconfigs) {
511 		printf("%s: unable to locate config header\n",
512 		    cz->cz_dev.dv_xname);
513 		return (EIO);
514 	}
515 
516 	nblocks = le32toh(zfc->zfc_nblocks);
517 	zblocks = (struct zfirm_block *)(cycladesz_firmware +
518 	    le32toh(zfh->zfh_blockoff));
519 
520 	/*
521 	 * 8Zo ver. 1 doesn't have an FPGA.  Load it on all others if
522 	 * necessary.
523 	 */
524 	if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
525 #if 0
526 	    && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
527 #endif
528 								) {
529 #ifdef CZ_DEBUG
530 		printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
531 #endif
532 		CZ_WIN_FPGA(cz);
533 		for (i = 0; i < nblocks; i++) {
534 			/* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
535 			zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
536 			if (zfb->zfb_type == ZFB_TYPE_FPGA) {
537 				nbytes = le32toh(zfb->zfb_size);
538 				cp = &cycladesz_firmware[
539 				    le32toh(zfb->zfb_fileoff)];
540 				for (j = 0; j < nbytes; j++, cp++) {
541 					bus_space_write_1(cz->cz_win_st,
542 					    cz->cz_win_sh, 0, *cp);
543 					/* FPGA needs 30-100us to settle. */
544 					delay(10);
545 				}
546 			}
547 		}
548 #ifdef CZ_DEBUG
549 		printf("done\n");
550 #endif
551 	}
552 
553 	/* Now load the firmware. */
554 	CZ_WIN_RAM(cz);
555 
556 	for (i = 0; i < nblocks; i++) {
557 		/* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
558 		zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
559 		if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
560 			const u_int32_t *lp;
561 			u_int32_t ro = le32toh(zfb->zfb_ramoff);
562 			nbytes = le32toh(zfb->zfb_size);
563 			lp = (const u_int32_t *)
564 			    &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
565 			for (j = 0; j < nbytes; j += 4, lp++) {
566 				bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
567 				    ro + j, *lp);
568 				delay(10);
569 			}
570 		}
571 	}
572 
573 	/* Now restart the MIPS. */
574 	CZ_WIN_FPGA(cz);
575 	CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
576 
577 	/* Wait for the MIPS to start, then report the results. */
578 	CZ_WIN_RAM(cz);
579 
580 #ifdef CZ_DEBUG
581 	printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
582 #endif
583 	for (i = 0; i < 100; i++) {
584 		fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
585 		    ZFIRM_SIG_OFF);
586 		if (fid == ZFIRM_SIG) {
587 			/* MIPS has booted. */
588 			break;
589 		} else if (fid == ZFIRM_HLT) {
590 			/*
591 			 * The MIPS has halted, usually due to a power
592 			 * shortage on the expansion module.
593 			 */
594 			printf("%s: MIPS halted; possible power supply "
595 			    "problem\n", cz->cz_dev.dv_xname);
596 			return (EIO);
597 		} else {
598 #ifdef CZ_DEBUG
599 			if ((i % 8) == 0)
600 				printf(".");
601 #endif
602 			delay(250000);
603 		}
604 	}
605 #ifdef CZ_DEBUG
606 	printf("\n");
607 #endif
608 	if (i == 100) {
609 		CZ_WIN_FPGA(cz);
610 		printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
611 		    cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
612 		printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
613 		    cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
614 		    CZ_FPGA_READ(cz, FPGA_VERSION));
615 		return (EIO);
616 	}
617 
618 	/*
619 	 * Locate the firmware control structures.
620 	 */
621 	cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
622 	    ZFIRM_CTRLADDR_OFF);
623 #ifdef CZ_DEBUG
624 	printf("%s: FWCTL structure at offset 0x%08lx\n",
625 	    cz->cz_dev.dv_xname, cz->cz_fwctl);
626 #endif
627 
628 	CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
629 	CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
630 
631 	cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
632 
633 	switch (cz->cz_mailbox0) {
634 	case MAILBOX0_8Zo_V1:
635 		board = "Cyclades-8Zo ver. 1";
636 		break;
637 
638 	case MAILBOX0_8Zo_V2:
639 		board = "Cyclades-8Zo ver. 2";
640 		break;
641 
642 	case MAILBOX0_Ze_V1:
643 		board = "Cyclades-Ze";
644 		break;
645 
646 	default:
647 		board = "unknown Cyclades Z-series";
648 		break;
649 	}
650 
651 	fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
652 	printf("%s: %s, %d channels (ttyCZ%04d..ttyCZ%04d), "
653 	    "firmware %x.%x.%x\n",
654 	    cz->cz_dev.dv_xname, board, cz->cz_nchannels,
655 	    (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS),
656 	    (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + (cz->cz_nchannels - 1),
657 	    (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
658 
659 	return (0);
660 }
661 
662 /*
663  * cz_poll:
664  *
665  * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
666  * ms.
667  */
668 void
669 cz_poll(void *arg)
670 {
671 	int s = spltty();
672 	struct cz_softc *cz = arg;
673 
674 	cz_intr(cz);
675 	callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
676 
677 	splx(s);
678 }
679 
680 /*
681  * cz_intr:
682  *
683  *	Interrupt service routine.
684  *
685  * We either are receiving an interrupt directly from the board, or we are
686  * in polling mode and it's time to poll.
687  */
688 int
689 cz_intr(void *arg)
690 {
691 	int	rval = 0;
692 	u_int	command, channel, param;
693 	struct	cz_softc *cz = arg;
694 	struct	cztty_softc *sc;
695 	struct	tty *tp;
696 
697 	while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
698 		rval = 1;
699 		channel = CZ_FWCTL_READ(cz, BRDCTL_HCMD_CHANNEL);
700 		param = CZ_FWCTL_READ(cz, BRDCTL_HCMD_PARAM);
701 
702 		/* now clear this interrupt, posslibly enabling another */
703 		CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
704 
705 		sc = &cz->cz_ports[channel];
706 
707 		if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
708 			break;
709 
710 		tp = sc->sc_tty;
711 
712 		switch (command) {
713 		case C_CM_TXFEMPTY:		/* transmit cases */
714 		case C_CM_TXBEMPTY:
715 		case C_CM_TXLOWWM:
716 		case C_CM_INTBACK:
717 			if (!ISSET(tp->t_state, TS_ISOPEN)) {
718 #ifdef CZ_DEBUG
719 				printf("%s: tx intr on closed channel %d\n",
720 				    cz->cz_dev.dv_xname, channel);
721 #endif
722 				break;
723 			}
724 
725 			if (cztty_transmit(sc, tp)) {
726 				/*
727 				 * Do wakeup stuff here.
728 				 */
729 				ttwakeup(tp);
730 				wakeup(tp);
731 			}
732 			break;
733 
734 		case C_CM_RXNNDT:		/* receive cases */
735 		case C_CM_RXHIWM:
736 		case C_CM_INTBACK2:		/* from restart ?? */
737 #if 0
738 		case C_CM_ICHAR:
739 #endif
740 			if (!ISSET(tp->t_state, TS_ISOPEN)) {
741 				CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
742 				    CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
743 				break;
744 			}
745 
746 			if (cztty_receive(sc, tp)) {
747 				/*
748 				 * Do wakeup stuff here.
749 				 */
750 				ttwakeup(tp);
751 				wakeup(tp);
752 			}
753 			break;
754 
755 		case C_CM_MDCD:
756 			if (!ISSET(tp->t_state, TS_ISOPEN))
757 				break;
758 
759 			(void) (*linesw[tp->t_line].l_modem)(tp,
760 			    ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
761 			    CHNCTL_RS_STATUS)));
762 			break;
763 
764 		case C_CM_MDSR:
765 		case C_CM_MRI:
766 		case C_CM_MCTS:
767 		case C_CM_MRTS:
768 			break;
769 
770 		case C_CM_IOCTLW:
771 			break;
772 
773 		case C_CM_PR_ERROR:
774 			sc->sc_parity_errors++;
775 			goto error_common;
776 
777 		case C_CM_FR_ERROR:
778 			sc->sc_framing_errors++;
779 			goto error_common;
780 
781 		case C_CM_OVR_ERROR:
782 			sc->sc_overflows++;
783  error_common:
784 			if (sc->sc_errors++ == 0)
785 				callout_reset(&sc->sc_diag_ch, 60 * hz,
786 				    cztty_diag, sc);
787 			break;
788 
789 		case C_CM_RXBRK:
790 			if (!ISSET(tp->t_state, TS_ISOPEN))
791 				break;
792 
793 			/*
794 			 * A break is a \000 character with TTY_FE error
795 			 * flags set. So TTY_FE by itself works.
796 			 */
797 			(*linesw[tp->t_line].l_rint)(TTY_FE, tp);
798 			ttwakeup(tp);
799 			wakeup(tp);
800 			break;
801 
802 		default:
803 #ifdef CZ_DEBUG
804 			printf("%s: channel %d: Unknown interrupt 0x%x\n",
805 			    cz->cz_dev.dv_xname, sc->sc_channel, command);
806 #endif
807 			break;
808 		}
809 	}
810 
811 	return (rval);
812 }
813 
814 /*
815  * cz_wait_pci_doorbell:
816  *
817  *	Wait for the pci doorbell to be clear - wait for pending
818  *	activity to drain.
819  */
820 int
821 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
822 {
823 	int	error;
824 
825 	while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
826 		error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
827 		if ((error != 0) && (error != EWOULDBLOCK))
828 			return (error);
829 	}
830 	return (0);
831 }
832 
833 /*****************************************************************************
834  * Cyclades-Z TTY code starts here...
835  *****************************************************************************/
836 
837 #define	CZTTYCHAN_MASK		0x0003f
838 #define	CZTTYBOARD_MASK		(0x7ffff & ~CZTTYCHAN_MASK)
839 #define	CZTTYBOARD_SHIFT	6
840 #define CZTTYDIALOUT_MASK	0x80000
841 
842 #define	CZTTY_CHAN(dev)		(minor((dev)) & CZTTYCHAN_MASK)
843 #define	CZTTY_BOARD(dev)	((minor((dev)) & CZTTYBOARD_MASK) >>	\
844 				 CZTTYBOARD_SHIFT)
845 #define	CZTTY_DIALOUT(dev)	(minor((dev)) & CZTTYDIALOUT_MASK)
846 #define	CZTTY_CZ(sc)		((sc)->sc_parent)
847 
848 #define	CZ_SOFTC(dev)							\
849 	((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ?	\
850 	  cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
851 
852 #define	CZTTY_SOFTC(dev)						\
853 	((CZ_SOFTC(dev) != NULL &&					\
854 	  CZTTY_CHAN(dev) < CZ_SOFTC(dev)->cz_nchannels) ?		\
855 	 &CZ_SOFTC(dev)->cz_ports[CZTTY_CHAN(dev)] : NULL)
856 
857 int
858 cztty_findmajor(void)
859 {
860 	int	maj;
861 
862 	for (maj = 0; maj < nchrdev; maj++) {
863 		if (cdevsw[maj].d_open == czttyopen)
864 			break;
865 	}
866 
867 	return (maj == nchrdev) ? 0 : maj;
868 }
869 
870 /*
871  * czttytty:
872  *
873  *	Return a pointer to our tty.
874  */
875 struct tty *
876 czttytty(dev_t dev)
877 {
878 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
879 
880 #ifdef DIAGNOSTIC
881 	if (sc == NULL)
882 		panic("czttytty");
883 #endif
884 
885 	return (sc->sc_tty);
886 }
887 
888 /*
889  * cztty_shutdown:
890  *
891  *	Shut down a port.
892  */
893 void
894 cztty_shutdown(struct cztty_softc *sc)
895 {
896 	struct cz_softc *cz = CZTTY_CZ(sc);
897 	struct tty *tp = sc->sc_tty;
898 	int s;
899 
900 	s = spltty();
901 
902 	/* Clear any break condition set with TIOCSBRK. */
903 	cztty_break(sc, 0);
904 
905 	/*
906 	 * Hang up if necessary.  Wait a bit, so the other side has time to
907 	 * notice even if we immediately open the port again.
908 	 */
909 	if (ISSET(tp->t_cflag, HUPCL)) {
910 		cztty_modem(sc, 0);
911 		(void) tsleep(tp, TTIPRI, ttclos, hz);
912 	}
913 
914 	/* Disable the channel. */
915 	cz_wait_pci_doorbell(cz, "czdis");
916 	CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
917 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
918 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
919 
920 	if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
921 #ifdef CZ_DEBUG
922 		printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
923 #endif
924 		callout_stop(&cz->cz_callout);
925 	}
926 
927 	splx(s);
928 }
929 
930 /*
931  * czttyopen:
932  *
933  *	Open a Cyclades-Z serial port.
934  */
935 int
936 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
937 {
938 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
939 	struct cz_softc *cz;
940 	struct tty *tp;
941 	int s, error;
942 
943 	if (sc == NULL)
944 		return (ENXIO);
945 
946 	if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
947 		return (ENXIO);
948 
949 	cz = CZTTY_CZ(sc);
950 	tp = sc->sc_tty;
951 
952 	if (ISSET(tp->t_state, TS_ISOPEN) &&
953 	    ISSET(tp->t_state, TS_XCLUDE) &&
954 	    p->p_ucred->cr_uid != 0)
955 		return (EBUSY);
956 
957 	s = spltty();
958 
959 	/*
960 	 * Do the following iff this is a first open.
961 	 */
962 	if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
963 		struct termios t;
964 
965 		tp->t_dev = dev;
966 
967 		/* If we're turning things on, enable interrupts */
968 		if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
969 #ifdef CZ_DEBUG
970 			printf("%s: Enabling polling.\n",
971 			    cz->cz_dev.dv_xname);
972 #endif
973 			callout_reset(&cz->cz_callout, cz_timeout_ticks,
974 			    cz_poll, cz);
975 		}
976 
977 		/*
978 		 * Enable the channel.  Don't actually ring the
979 		 * doorbell here; czttyparam() will do it for us.
980 		 */
981 		cz_wait_pci_doorbell(cz, "czopen");
982 
983 		CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
984 
985 		/*
986 		 * Initialize the termios status to the defaults.  Add in the
987 		 * sticky bits from TIOCSFLAGS.
988 		 */
989 		t.c_ispeed = 0;
990 		t.c_ospeed = TTYDEF_SPEED;
991 		t.c_cflag = TTYDEF_CFLAG;
992 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
993 			SET(t.c_cflag, CLOCAL);
994 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
995 			SET(t.c_cflag, CRTSCTS);
996 
997 		/*
998 		 * Reset the input and output rings.  Do this before
999 		 * we call czttyparam(), as that function enables
1000 		 * the channel.
1001 		 */
1002 		CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1003 		    CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1004 		CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1005 		    CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1006 
1007 		/* Make sure czttyparam() will see changes. */
1008 		tp->t_ospeed = 0;
1009 		(void) czttyparam(tp, &t);
1010 		tp->t_iflag = TTYDEF_IFLAG;
1011 		tp->t_oflag = TTYDEF_OFLAG;
1012 		tp->t_lflag = TTYDEF_LFLAG;
1013 		ttychars(tp);
1014 		ttsetwater(tp);
1015 
1016 		/*
1017 		 * Turn on DTR.  We must always do this, even if carrier is not
1018 		 * present, because otherwise we'd have to use TIOCSDTR
1019 		 * immediately after setting CLOCAL, which applications do not
1020 		 * expect.  We always assert DTR while the device is open
1021 		 * unless explicitly requested to deassert it.
1022 		 */
1023 		cztty_modem(sc, 1);
1024 	}
1025 
1026 	splx(s);
1027 
1028 	error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1029 	if (error)
1030 		goto bad;
1031 
1032 	error = (*linesw[tp->t_line].l_open)(dev, tp);
1033 	if (error)
1034 		goto bad;
1035 
1036 	return (0);
1037 
1038  bad:
1039 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1040 		/*
1041 		 * We failed to open the device, and nobody else had it opened.
1042 		 * Clean up the state as appropriate.
1043 		 */
1044 		cztty_shutdown(sc);
1045 	}
1046 
1047 	return (error);
1048 }
1049 
1050 /*
1051  * czttyclose:
1052  *
1053  *	Close a Cyclades-Z serial port.
1054  */
1055 int
1056 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1057 {
1058 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
1059 	struct tty *tp = sc->sc_tty;
1060 
1061 	/* XXX This is for cons.c. */
1062 	if (!ISSET(tp->t_state, TS_ISOPEN))
1063 		return (0);
1064 
1065 	(*linesw[tp->t_line].l_close)(tp, flags);
1066 	ttyclose(tp);
1067 
1068 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1069 		/*
1070 		 * Although we got a last close, the device may still be in
1071 		 * use; e.g. if this was the dialout node, and there are still
1072 		 * processes waiting for carrier on the non-dialout node.
1073 		 */
1074 		cztty_shutdown(sc);
1075 	}
1076 
1077 	return (0);
1078 }
1079 
1080 /*
1081  * czttyread:
1082  *
1083  *	Read from a Cyclades-Z serial port.
1084  */
1085 int
1086 czttyread(dev_t dev, struct uio *uio, int flags)
1087 {
1088 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
1089 	struct tty *tp = sc->sc_tty;
1090 
1091 	return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
1092 }
1093 
1094 /*
1095  * czttywrite:
1096  *
1097  *	Write to a Cyclades-Z serial port.
1098  */
1099 int
1100 czttywrite(dev_t dev, struct uio *uio, int flags)
1101 {
1102 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
1103 	struct tty *tp = sc->sc_tty;
1104 
1105 	return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
1106 }
1107 
1108 /*
1109  * czttyioctl:
1110  *
1111  *	Perform a control operation on a Cyclades-Z serial port.
1112  */
1113 int
1114 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1115 {
1116 	struct cztty_softc *sc = CZTTY_SOFTC(dev);
1117 	struct tty *tp = sc->sc_tty;
1118 	int s, error;
1119 
1120 	error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
1121 	if (error >= 0)
1122 		return (error);
1123 
1124 	error = ttioctl(tp, cmd, data, flag, p);
1125 	if (error >= 0)
1126 		return (error);
1127 
1128 	error = 0;
1129 
1130 	s = spltty();
1131 
1132 	switch (cmd) {
1133 	case TIOCSBRK:
1134 		cztty_break(sc, 1);
1135 		break;
1136 
1137 	case TIOCCBRK:
1138 		cztty_break(sc, 0);
1139 		break;
1140 
1141 	case TIOCGFLAGS:
1142 		*(int *)data = sc->sc_swflags;
1143 		break;
1144 
1145 	case TIOCSFLAGS:
1146 		error = suser(p->p_ucred, &p->p_acflag);
1147 		if (error)
1148 			break;
1149 		sc->sc_swflags = *(int *)data;
1150 		break;
1151 
1152 	case TIOCSDTR:
1153 		cztty_modem(sc, 1);
1154 		break;
1155 
1156 	case TIOCCDTR:
1157 		cztty_modem(sc, 0);
1158 		break;
1159 
1160 	case TIOCMSET:
1161 	case TIOCMBIS:
1162 	case TIOCMBIC:
1163 		tiocm_to_cztty(sc, cmd, *(int *)data);
1164 		break;
1165 
1166 	case TIOCMGET:
1167 		*(int *)data = cztty_to_tiocm(sc);
1168 		break;
1169 
1170 	default:
1171 		error = ENOTTY;
1172 		break;
1173 	}
1174 
1175 	splx(s);
1176 
1177 	return (error);
1178 }
1179 
1180 /*
1181  * cztty_break:
1182  *
1183  *	Set or clear BREAK on a port.
1184  */
1185 void
1186 cztty_break(struct cztty_softc *sc, int onoff)
1187 {
1188 	struct cz_softc *cz = CZTTY_CZ(sc);
1189 
1190 	cz_wait_pci_doorbell(cz, "czbreak");
1191 
1192 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1193 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1194 	    onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1195 }
1196 
1197 /*
1198  * cztty_modem:
1199  *
1200  *	Set or clear DTR on a port.
1201  */
1202 void
1203 cztty_modem(struct cztty_softc *sc, int onoff)
1204 {
1205 	struct cz_softc *cz = CZTTY_CZ(sc);
1206 
1207 	if (sc->sc_rs_control_dtr == 0)
1208 		return;
1209 
1210 	cz_wait_pci_doorbell(cz, "czmod");
1211 
1212 	if (onoff)
1213 		sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1214 	else
1215 		sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1216 	CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1217 
1218 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1219 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1220 }
1221 
1222 /*
1223  * tiocm_to_cztty:
1224  *
1225  *	Process TIOCM* ioctls.
1226  */
1227 void
1228 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1229 {
1230 	struct cz_softc *cz = CZTTY_CZ(sc);
1231 	u_int32_t czttybits;
1232 
1233 	czttybits = 0;
1234 	if (ISSET(ttybits, TIOCM_DTR))
1235 		SET(czttybits, C_RS_DTR);
1236 	if (ISSET(ttybits, TIOCM_RTS))
1237 		SET(czttybits, C_RS_RTS);
1238 
1239 	cz_wait_pci_doorbell(cz, "cztiocm");
1240 
1241 	switch (how) {
1242 	case TIOCMBIC:
1243 		CLR(sc->sc_chanctl_rs_control, czttybits);
1244 		break;
1245 
1246 	case TIOCMBIS:
1247 		SET(sc->sc_chanctl_rs_control, czttybits);
1248 		break;
1249 
1250 	case TIOCMSET:
1251 		CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1252 		SET(sc->sc_chanctl_rs_control, czttybits);
1253 		break;
1254 	}
1255 
1256 	CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1257 
1258 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1259 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1260 }
1261 
1262 /*
1263  * cztty_to_tiocm:
1264  *
1265  *	Process the TIOCMGET ioctl.
1266  */
1267 int
1268 cztty_to_tiocm(struct cztty_softc *sc)
1269 {
1270 	struct cz_softc *cz = CZTTY_CZ(sc);
1271 	u_int32_t rs_status, op_mode;
1272 	int ttybits = 0;
1273 
1274 	cz_wait_pci_doorbell(cz, "cztty");
1275 
1276 	rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1277 	op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1278 
1279 	if (ISSET(rs_status, C_RS_RTS))
1280 		SET(ttybits, TIOCM_RTS);
1281 	if (ISSET(rs_status, C_RS_CTS))
1282 		SET(ttybits, TIOCM_CTS);
1283 	if (ISSET(rs_status, C_RS_DCD))
1284 		SET(ttybits, TIOCM_CAR);
1285 	if (ISSET(rs_status, C_RS_DTR))
1286 		SET(ttybits, TIOCM_DTR);
1287 	if (ISSET(rs_status, C_RS_RI))
1288 		SET(ttybits, TIOCM_RNG);
1289 	if (ISSET(rs_status, C_RS_DSR))
1290 		SET(ttybits, TIOCM_DSR);
1291 
1292 	if (ISSET(op_mode, C_CH_ENABLE))
1293 		SET(ttybits, TIOCM_LE);
1294 
1295 	return (ttybits);
1296 }
1297 
1298 /*
1299  * czttyparam:
1300  *
1301  *	Set Cyclades-Z serial port parameters from termios.
1302  *
1303  *	XXX Should just copy the whole termios after making
1304  *	XXX sure all the changes could be done.
1305  */
1306 int
1307 czttyparam(struct tty *tp, struct termios *t)
1308 {
1309 	struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1310 	struct cz_softc *cz = CZTTY_CZ(sc);
1311 	u_int32_t rs_status;
1312 	int ospeed, cflag;
1313 
1314 	ospeed = t->c_ospeed;
1315 	cflag = t->c_cflag;
1316 
1317 	/* Check requested parameters. */
1318 	if (ospeed < 0)
1319 		return (EINVAL);
1320 	if (t->c_ispeed && t->c_ispeed != ospeed)
1321 		return (EINVAL);
1322 
1323 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1324 		SET(cflag, CLOCAL);
1325 		CLR(cflag, HUPCL);
1326 	}
1327 
1328 	/*
1329 	 * If there were no changes, don't do anything.  This avoids dropping
1330 	 * input and improves performance when all we did was frob things like
1331 	 * VMIN and VTIME.
1332 	 */
1333 	if (tp->t_ospeed == ospeed &&
1334 	    tp->t_cflag == cflag)
1335 		return (0);
1336 
1337 	/* Data bits. */
1338 	sc->sc_chanctl_comm_data_l = 0;
1339 	switch (t->c_cflag & CSIZE) {
1340 	case CS5:
1341 		sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1342 		break;
1343 
1344 	case CS6:
1345 		sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1346 		break;
1347 
1348 	case CS7:
1349 		sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1350 		break;
1351 
1352 	case CS8:
1353 		sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1354 		break;
1355 	}
1356 
1357 	/* Stop bits. */
1358 	if (t->c_cflag & CSTOPB) {
1359 		if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1360 			sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1361 		else
1362 			sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1363 	} else
1364 		sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1365 
1366 	/* Parity. */
1367 	if (t->c_cflag & PARENB) {
1368 		if (t->c_cflag & PARODD)
1369 			sc->sc_chanctl_comm_parity = C_PR_ODD;
1370 		else
1371 			sc->sc_chanctl_comm_parity = C_PR_EVEN;
1372 	} else
1373 		sc->sc_chanctl_comm_parity = C_PR_NONE;
1374 
1375 	/*
1376 	 * Initialize flow control pins depending on the current flow control
1377 	 * mode.
1378 	 */
1379 	if (ISSET(t->c_cflag, CRTSCTS)) {
1380 		sc->sc_rs_control_dtr = C_RS_DTR;
1381 		sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1382 	} else if (ISSET(t->c_cflag, MDMBUF)) {
1383 		sc->sc_rs_control_dtr = 0;
1384 		sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1385 	} else {
1386 		/*
1387 		 * If no flow control, then always set RTS.  This will make
1388 		 * the other side happy if it mistakenly thinks we're doing
1389 		 * RTS/CTS flow control.
1390 		 */
1391 		sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1392 		sc->sc_chanctl_hw_flow = 0;
1393 		if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1394 			SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1395 		else
1396 			CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1397 	}
1398 
1399 	/* Baud rate. */
1400 	sc->sc_chanctl_comm_baud = ospeed;
1401 
1402 	/* Copy to tty. */
1403 	tp->t_ispeed =  0;
1404 	tp->t_ospeed = t->c_ospeed;
1405 	tp->t_cflag = t->c_cflag;
1406 
1407 	/*
1408 	 * Now load the channel control structure.
1409 	 */
1410 
1411 	cz_wait_pci_doorbell(cz, "czparam");
1412 
1413 	CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1414 	CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1415 	CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1416 	CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1417 	CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1418 
1419 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1420 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1421 
1422 	cz_wait_pci_doorbell(cz, "czparam");
1423 
1424 	CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1425 	CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1426 
1427 	cz_wait_pci_doorbell(cz, "czparam");
1428 
1429 	/*
1430 	 * Update the tty layer's idea of the carrier bit, in case we changed
1431 	 * CLOCAL.  We don't hang up here; we only do that by explicit
1432 	 * request.
1433 	 */
1434 	rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1435 	(void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1436 
1437 	return (0);
1438 }
1439 
1440 /*
1441  * czttystart:
1442  *
1443  *	Start or restart transmission.
1444  */
1445 void
1446 czttystart(struct tty *tp)
1447 {
1448 	struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1449 	int s;
1450 
1451 	s = spltty();
1452 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1453 		goto out;
1454 
1455 	if (tp->t_outq.c_cc <= tp->t_lowat) {
1456 		if (ISSET(tp->t_state, TS_ASLEEP)) {
1457 			CLR(tp->t_state, TS_ASLEEP);
1458 			wakeup(&tp->t_outq);
1459 		}
1460 		selwakeup(&tp->t_wsel);
1461 		if (tp->t_outq.c_cc == 0)
1462 			goto out;
1463 	}
1464 
1465 	cztty_transmit(sc, tp);
1466  out:
1467 	splx(s);
1468 }
1469 
1470 /*
1471  * czttystop:
1472  *
1473  *	Stop output, e.g., for ^S or output flush.
1474  */
1475 void
1476 czttystop(struct tty *tp, int flag)
1477 {
1478 
1479 	/*
1480 	 * XXX We don't do anything here, yet.  Mostly, I don't know
1481 	 * XXX exactly how this should be implemented on this device.
1482 	 * XXX We've given a big chunk of data to the MIPS already,
1483 	 * XXX and I don't know how we request the MIPS to stop sending
1484 	 * XXX the data.  So, punt for now.  --thorpej
1485 	 */
1486 }
1487 
1488 /*
1489  * cztty_diag:
1490  *
1491  *	Issue a scheduled diagnostic message.
1492  */
1493 void
1494 cztty_diag(void *arg)
1495 {
1496 	struct cztty_softc *sc = arg;
1497 	struct cz_softc *cz = CZTTY_CZ(sc);
1498 	u_int overflows, parity_errors, framing_errors;
1499 	int s;
1500 
1501 	s = spltty();
1502 
1503 	overflows = sc->sc_overflows;
1504 	sc->sc_overflows = 0;
1505 
1506 	parity_errors = sc->sc_parity_errors;
1507 	sc->sc_parity_errors = 0;
1508 
1509 	framing_errors = sc->sc_framing_errors;
1510 	sc->sc_framing_errors = 0;
1511 
1512 	sc->sc_errors = 0;
1513 
1514 	splx(s);
1515 
1516 	log(LOG_WARNING,
1517 	    "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1518 	    cz->cz_dev.dv_xname, sc->sc_channel,
1519 	    overflows, overflows == 1 ? "" : "s",
1520 	    parity_errors,
1521 	    framing_errors, framing_errors == 1 ? "" : "s");
1522 }
1523 
1524 /*
1525  * tx and rx ring buffer size macros:
1526  *
1527  * The transmitter and receiver both use ring buffers. For each one, there
1528  * is a get (consumer) and a put (producer) offset. The get value is the
1529  * next byte to be read from the ring, and the put is the next one to be
1530  * put into the ring.  get == put means the ring is empty.
1531  *
1532  * For each ring, the firmware controls one of (get, put) and this driver
1533  * controls the other. For transmission, this driver updates put to point
1534  * past the valid data, and the firmware moves get as bytes are sent. Likewise
1535  * for receive, the driver controls put, and this driver controls get.
1536  */
1537 #define	TX_MOVEABLE(g, p, s)	(((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1538 #define RX_MOVEABLE(g, p, s)	(((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1539 
1540 /*
1541  * cztty_transmit()
1542  *
1543  * Look at the tty for this port and start sending.
1544  */
1545 int
1546 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1547 {
1548 	struct cz_softc *cz = CZTTY_CZ(sc);
1549 	u_int move, get, put, size, address;
1550 #ifdef HOSTRAMCODE
1551 	int error, done = 0;
1552 #else
1553 	int done = 0;
1554 #endif
1555 
1556 	size	= CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1557 	get	= CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1558 	put	= CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1559 	address	= CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1560 
1561 	while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1562 #ifdef HOSTRAMCODE
1563 		if (0) {
1564 			move = min(tp->t_outq.c_cc, move);
1565 			error = q_to_b(&tp->t_outq, 0, move);
1566 			if (error != move) {
1567 				printf("%s: channel %d: error moving to "
1568 				    "transmit buf\n", cz->cz_dev.dv_xname,
1569 				    sc->sc_channel);
1570 				move = error;
1571 			}
1572 		} else {
1573 #endif
1574 			move = min(ndqb(&tp->t_outq, 0), move);
1575 			bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1576 			    address + put, tp->t_outq.c_cf, move);
1577 			ndflush(&tp->t_outq, move);
1578 #ifdef HOSTRAMCODE
1579 		}
1580 #endif
1581 
1582 		put = ((put + move) % size);
1583 		done = 1;
1584 	}
1585 	if (done) {
1586 		CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1587 	}
1588 	return (done);
1589 }
1590 
1591 int
1592 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1593 {
1594 	struct cz_softc *cz = CZTTY_CZ(sc);
1595 	u_int get, put, size, address;
1596 	int done = 0, ch;
1597 
1598 	size	= CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1599 	get	= CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1600 	put	= CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1601 	address	= CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1602 
1603 	while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1604 #ifdef HOSTRAMCODE
1605 		if (hostram)
1606 			ch = ((char *)fifoaddr)[get];
1607 		} else {
1608 #endif
1609 			ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1610 			    address + get);
1611 #ifdef HOSTRAMCODE
1612 		}
1613 #endif
1614 		(*linesw[tp->t_line].l_rint)(ch, tp);
1615 		get = (get + 1) % size;
1616 		done = 1;
1617 	}
1618 	if (done) {
1619 		CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1620 	}
1621 	return (done);
1622 }
1623