xref: /netbsd-src/sys/dev/pci/cmpci.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: cmpci.c,v 1.9 2001/10/03 00:04:51 augustss Exp $	*/
2 
3 /*
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI <tshiozak@netbsd.org> .
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * C-Media CMI8x38 Audio Chip Support.
35  *
36  * TODO:
37  *   - Legacy MPU, OPL and Joystick support.
38  *
39  */
40 
41 #if defined(AUDIO_DEBUG) || defined(DEBUG)
42 #define DPRINTF(x) if (cmpcidebug) printf x
43 int cmpcidebug = 0;
44 #else
45 #define DPRINTF(x)
46 #endif
47 
48 #include "mpu.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/proc.h>
56 
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59 
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/midi_if.h>
63 
64 #include <dev/mulaw.h>
65 #include <dev/auconv.h>
66 #include <dev/pci/cmpcireg.h>
67 #include <dev/pci/cmpcivar.h>
68 
69 #include <dev/ic/mpuvar.h>
70 #include <machine/bus.h>
71 #include <machine/intr.h>
72 
73 /*
74  * Low-level HW interface
75  */
76 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
77 						 uint8_t));
78 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
79 					       uint8_t, uint8_t));
80 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
81 						    int, int,
82 						    uint32_t, uint32_t));
83 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
84 					  int, uint8_t));
85 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
86 					    int, uint8_t));
87 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
88 					  int, uint32_t));
89 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
90 					    int, uint32_t));
91 static int cmpci_rate_to_index __P((int));
92 static __inline int cmpci_index_to_rate __P((int));
93 static __inline int cmpci_index_to_divider __P((int));
94 
95 static int cmpci_adjust __P((int, int));
96 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
97 static void cmpci_set_out_ports __P((struct cmpci_softc *));
98 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
99 
100 
101 /*
102  * autoconf interface
103  */
104 static int cmpci_match __P((struct device *, struct cfdata *, void *));
105 static void cmpci_attach __P((struct device *, struct device *, void *));
106 
107 struct cfattach cmpci_ca = {
108 	sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
109 };
110 
111 /* interrupt */
112 static int cmpci_intr __P((void *));
113 
114 
115 /*
116  * DMA stuffs
117  */
118 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
119 				   size_t, int, int, caddr_t *));
120 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
121 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
122 						     caddr_t));
123 
124 
125 /*
126  * interface to machine independent layer
127  */
128 static int cmpci_open __P((void *, int));
129 static void cmpci_close __P((void *));
130 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
131 static int cmpci_set_params __P((void *, int, int,
132 				 struct audio_params *,
133 				 struct audio_params *));
134 static int cmpci_round_blocksize __P((void *, int));
135 static int cmpci_halt_output __P((void *));
136 static int cmpci_halt_input __P((void *));
137 static int cmpci_getdev __P((void *, struct audio_device *));
138 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
139 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
140 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
141 static void *cmpci_allocm __P((void *, int, size_t, int, int));
142 static void cmpci_freem __P((void *, void *, int));
143 static size_t cmpci_round_buffersize __P((void *, int, size_t));
144 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
145 static int cmpci_get_props __P((void *));
146 static int cmpci_trigger_output __P((void *, void *, void *, int,
147 				     void (*)(void *), void *,
148 				     struct audio_params *));
149 static int cmpci_trigger_input __P((void *, void *, void *, int,
150 				    void (*)(void *), void *,
151 				    struct audio_params *));
152 
153 static struct audio_hw_if cmpci_hw_if = {
154 	cmpci_open,		/* open */
155 	cmpci_close,		/* close */
156 	NULL,			/* drain */
157 	cmpci_query_encoding,	/* query_encoding */
158 	cmpci_set_params,	/* set_params */
159 	cmpci_round_blocksize,	/* round_blocksize */
160 	NULL,			/* commit_settings */
161 	NULL,			/* init_output */
162 	NULL,			/* init_input */
163 	NULL,			/* start_output */
164 	NULL,			/* start_input */
165 	cmpci_halt_output,	/* halt_output */
166 	cmpci_halt_input,	/* halt_input */
167 	NULL,			/* speaker_ctl */
168 	cmpci_getdev,		/* getdev */
169 	NULL,			/* setfd */
170 	cmpci_set_port,		/* set_port */
171 	cmpci_get_port,		/* get_port */
172 	cmpci_query_devinfo,	/* query_devinfo */
173 	cmpci_allocm,		/* allocm */
174 	cmpci_freem,		/* freem */
175 	cmpci_round_buffersize,/* round_buffersize */
176 	cmpci_mappage,		/* mappage */
177 	cmpci_get_props,	/* get_props */
178 	cmpci_trigger_output,	/* trigger_output */
179 	cmpci_trigger_input,	/* trigger_input */
180 	NULL,			/* dev_ioctl */
181 };
182 
183 
184 /*
185  * Low-level HW interface
186  */
187 
188 /* mixer register read/write */
189 static __inline uint8_t
190 cmpci_mixerreg_read(sc, no)
191 	struct cmpci_softc *sc;
192 	uint8_t no;
193 {
194 	uint8_t ret;
195 
196 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
197 	delay(10);
198 	ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
199 	delay(10);
200 	return ret;
201 }
202 
203 static __inline void
204 cmpci_mixerreg_write(sc, no, val)
205 	struct cmpci_softc *sc;
206 	uint8_t no, val;
207 {
208 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
209 	delay(10);
210 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
211 	delay(10);
212 }
213 
214 
215 /* register partial write */
216 static __inline void
217 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
218 	struct cmpci_softc *sc;
219 	int no, shift;
220 	uint32_t mask, val;
221 {
222 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
223 	    (val<<shift) |
224 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
225 	delay(10);
226 }
227 
228 /* register set/clear bit */
229 static __inline void
230 cmpci_reg_set_1(sc, no, mask)
231 	struct cmpci_softc *sc;
232 	int no;
233 	uint8_t mask;
234 {
235 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
236 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
237 	delay(10);
238 }
239 
240 static __inline void
241 cmpci_reg_clear_1(sc, no, mask)
242 	struct cmpci_softc *sc;
243 	int no;
244 	uint8_t mask;
245 {
246 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
247 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
248 	delay(10);
249 }
250 
251 
252 static __inline void
253 cmpci_reg_set_4(sc, no, mask)
254 	struct cmpci_softc *sc;
255 	int no;
256 	uint32_t mask;
257 {
258 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
259 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
260 	delay(10);
261 }
262 
263 static __inline void
264 cmpci_reg_clear_4(sc, no, mask)
265 	struct cmpci_softc *sc;
266 	int no;
267 	uint32_t mask;
268 {
269 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
270 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
271 	delay(10);
272 }
273 
274 
275 /* rate */
276 static const struct {
277 	int rate;
278 	int divider;
279 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
280 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
281 	_RATE(5512),
282 	_RATE(8000),
283 	_RATE(11025),
284 	_RATE(16000),
285 	_RATE(22050),
286 	_RATE(32000),
287 	_RATE(44100),
288 	_RATE(48000)
289 #undef	_RATE
290 };
291 
292 static int
293 cmpci_rate_to_index(rate)
294 	int rate;
295 {
296 	int i;
297 
298 	for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
299 		if (rate <=
300 		    (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
301 			return i;
302 	return i;  /* 48000 */
303 }
304 
305 static __inline int
306 cmpci_index_to_rate(index)
307 	int index;
308 {
309 	return cmpci_rate_table[index].rate;
310 }
311 
312 static __inline int
313 cmpci_index_to_divider(index)
314 	int index;
315 {
316 	return cmpci_rate_table[index].divider;
317 }
318 
319 
320 /*
321  * interface to configure the device.
322  */
323 
324 static int
325 cmpci_match(parent, match, aux)
326 	struct device *parent;
327 	struct cfdata *match;
328 	void *aux;
329 {
330 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
331 
332 	if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
333 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
334 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
335 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
336 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
337 		return 1;
338 
339 	return 0;
340 }
341 
342 static void
343 cmpci_attach(parent, self, aux)
344 	struct device *parent, *self;
345 	void *aux;
346 {
347 	struct cmpci_softc *sc = (struct cmpci_softc *)self;
348 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
349 	struct audio_attach_args aa;
350 	pci_intr_handle_t ih;
351 	char const *strintr;
352 	char devinfo[256];
353 	int i, v;
354 
355 	sc->sc_id = pa->pa_id;
356 	sc->sc_class = pa->pa_class;
357 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
358 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
359 	switch (PCI_PRODUCT(sc->sc_id)) {
360 	case PCI_PRODUCT_CMEDIA_CMI8338A:
361 		/*FALLTHROUGH*/
362 	case PCI_PRODUCT_CMEDIA_CMI8338B:
363 		sc->sc_capable = CMPCI_CAP_CMI8338;
364 		break;
365 	case PCI_PRODUCT_CMEDIA_CMI8738:
366 		/*FALLTHROUGH*/
367 	case PCI_PRODUCT_CMEDIA_CMI8738B:
368 		sc->sc_capable = CMPCI_CAP_CMI8738;
369 		break;
370 	}
371 
372 	/* map I/O space */
373 	if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
374 		&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
375 		printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
376 		return;
377 	}
378 
379 	/* interrupt */
380 	if (pci_intr_map(pa, &ih)) {
381 		printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
382 		return;
383 	}
384 	strintr = pci_intr_string(pa->pa_pc, ih);
385 	sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
386 	if (sc->sc_ih == NULL) {
387 		printf("%s: failed to establish interrupt",
388 		    sc->sc_dev.dv_xname);
389 		if (strintr != NULL)
390 			printf(" at %s", strintr);
391 		printf("\n");
392 		return;
393 	}
394 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
395 
396 	sc->sc_dmat = pa->pa_dmat;
397 
398 	audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
399 
400 	/* attach OPL device */
401 	aa.type = AUDIODEV_TYPE_OPL;
402 	aa.hwif = NULL;
403 	aa.hdl = NULL;
404 	(void)config_found(&sc->sc_dev, &aa, audioprint);
405 
406 	/* attach MPU-401 device */
407 	aa.type = AUDIODEV_TYPE_MPU;
408 	aa.hwif = NULL;
409 	aa.hdl = NULL;
410 	if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
411 	    CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
412 		sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
413 
414 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
415 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
416 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
417 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
418 	    CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
419 	for (i = 0; i < CMPCI_NDEVS; i++) {
420 		switch(i) {
421 		/* volumes */
422 		case CMPCI_MASTER_VOL:
423 		case CMPCI_FM_VOL:
424 		case CMPCI_CD_VOL:
425 		case CMPCI_VOICE_VOL:
426 		case CMPCI_BASS:
427 		case CMPCI_TREBLE:
428 		case CMPCI_PCSPEAKER:
429 		case CMPCI_INPUT_GAIN:
430 		case CMPCI_OUTPUT_GAIN:
431 			v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
432 			break;
433 		case CMPCI_MIC_VOL:
434 		case CMPCI_LINE_IN_VOL:
435 			v = 0;
436 			break;
437 
438 		/* booleans, set to true */
439 		case CMPCI_CD_OUT_MUTE:
440 		case CMPCI_MIC_OUT_MUTE:
441 		case CMPCI_LINE_OUT_MUTE:
442 		case CMPCI_SPDIF_IN_MUTE:
443 			v = 1;
444 			break;
445 		/* others are cleared */
446 		case CMPCI_RECORD_SOURCE:
447 		case CMPCI_CD_IN_MUTE:
448 		case CMPCI_MIC_IN_MUTE:
449 		case CMPCI_LINE_IN_MUTE:
450 		case CMPCI_FM_IN_MUTE:
451 		case CMPCI_CD_SWAP:
452 		case CMPCI_MIC_SWAP:
453 		case CMPCI_LINE_SWAP:
454 		case CMPCI_FM_SWAP:
455 		case CMPCI_SPDIF_LOOP:
456 		case CMPCI_SPDIF_LEGACY:
457 		case CMPCI_SPDIF_OUT_VOLTAGE:
458 		case CMPCI_SPDIF_IN_PHASE:
459 		case CMPCI_REAR:
460 		case CMPCI_INDIVIDUAL:
461 		case CMPCI_REVERSE:
462 		case CMPCI_SURROUND:
463 		default:
464 			v = 0;
465 			break;
466 		}
467 		sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
468 		cmpci_set_mixer_gain(sc, i);
469 	}
470 }
471 
472 
473 static int
474 cmpci_intr(handle)
475 	void *handle;
476 {
477 	struct cmpci_softc *sc = handle;
478 	uint32_t intrstat;
479 
480 	intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
481 	    CMPCI_REG_INTR_STATUS);
482 
483 	if (!(intrstat & CMPCI_REG_ANY_INTR))
484 		return 0;
485 
486 	delay(10);
487 
488 	/* disable and reset intr */
489 	if (intrstat & CMPCI_REG_CH0_INTR)
490 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
491 		   CMPCI_REG_CH0_INTR_ENABLE);
492 	if (intrstat & CMPCI_REG_CH1_INTR)
493 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
494 		    CMPCI_REG_CH1_INTR_ENABLE);
495 
496 	if (intrstat & CMPCI_REG_CH0_INTR) {
497 		if (sc->sc_play.intr != NULL)
498 			(*sc->sc_play.intr)(sc->sc_play.intr_arg);
499 	}
500 	if (intrstat & CMPCI_REG_CH1_INTR) {
501 		if (sc->sc_rec.intr != NULL)
502 			(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
503 	}
504 
505 	/* enable intr */
506 	if (intrstat & CMPCI_REG_CH0_INTR)
507 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
508 		    CMPCI_REG_CH0_INTR_ENABLE);
509 	if (intrstat & CMPCI_REG_CH1_INTR)
510 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
511 		    CMPCI_REG_CH1_INTR_ENABLE);
512 
513 #if NMPU > 0
514 	if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
515 		mpu_intr(sc->sc_mpudev);
516 #endif
517 
518 	return 1;
519 }
520 
521 
522 /* open/close */
523 static int
524 cmpci_open(handle, flags)
525 	void *handle;
526 	int flags;
527 {
528 	return 0;
529 }
530 
531 static void
532 cmpci_close(handle)
533 	void *handle;
534 {
535 }
536 
537 static int
538 cmpci_query_encoding(handle, fp)
539 	void *handle;
540 	struct audio_encoding *fp;
541 {
542 	switch (fp->index) {
543 	case 0:
544 		strcpy(fp->name, AudioEulinear);
545 		fp->encoding = AUDIO_ENCODING_ULINEAR;
546 		fp->precision = 8;
547 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
548 		break;
549 	case 1:
550 		strcpy(fp->name, AudioEmulaw);
551 		fp->encoding = AUDIO_ENCODING_ULAW;
552 		fp->precision = 8;
553 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
554 		break;
555 	case 2:
556 		strcpy(fp->name, AudioEalaw);
557 		fp->encoding = AUDIO_ENCODING_ALAW;
558 		fp->precision = 8;
559 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
560 		break;
561 	case 3:
562 		strcpy(fp->name, AudioEslinear);
563 		fp->encoding = AUDIO_ENCODING_SLINEAR;
564 		fp->precision = 8;
565 		fp->flags = 0;
566 		break;
567 	case 4:
568 		strcpy(fp->name, AudioEslinear_le);
569 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
570 		fp->precision = 16;
571 		fp->flags = 0;
572 		break;
573 	case 5:
574 		strcpy(fp->name, AudioEulinear_le);
575 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
576 		fp->precision = 16;
577 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
578 		break;
579 	case 6:
580 		strcpy(fp->name, AudioEslinear_be);
581 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
582 		fp->precision = 16;
583 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
584 		break;
585 	case 7:
586 		strcpy(fp->name, AudioEulinear_be);
587 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
588 		fp->precision = 16;
589 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
590 		break;
591 	default:
592 		return EINVAL;
593 	}
594 	return 0;
595 }
596 
597 
598 static int
599 cmpci_set_params(handle, setmode, usemode, play, rec)
600 	void *handle;
601 	int setmode, usemode;
602 	struct audio_params *play, *rec;
603 {
604 	int i;
605 	struct cmpci_softc *sc = handle;
606 
607 	for (i = 0; i < 2; i++) {
608 		int md_format;
609 		int md_divide;
610 		int md_index;
611 		int mode;
612 		struct audio_params *p;
613 
614 		switch (i) {
615 		case 0:
616 			mode = AUMODE_PLAY;
617 			p = play;
618 			break;
619 		case 1:
620 			mode = AUMODE_RECORD;
621 			p = rec;
622 			break;
623 		}
624 
625 		if (!(setmode & mode))
626 			continue;
627 
628 
629 		/* format */
630 		p->sw_code = NULL;
631 		switch ( p->channels ) {
632 		case 1:
633 			md_format = CMPCI_REG_FORMAT_MONO;
634 			break;
635 		case 2:
636 			md_format = CMPCI_REG_FORMAT_STEREO;
637 			break;
638 		default:
639 			return (EINVAL);
640 		}
641 		switch (p->encoding) {
642 		case AUDIO_ENCODING_ULAW:
643 			if (p->precision != 8)
644 				return (EINVAL);
645 			if (mode & AUMODE_PLAY) {
646 				p->factor = 2;
647 				p->sw_code = mulaw_to_slinear16_le;
648 				md_format |= CMPCI_REG_FORMAT_16BIT;
649 			} else {
650 				p->sw_code = ulinear8_to_mulaw;
651 				md_format |= CMPCI_REG_FORMAT_8BIT;
652 			}
653 			break;
654 		case AUDIO_ENCODING_ALAW:
655 			if (p->precision != 8)
656 				return (EINVAL);
657 			if (mode & AUMODE_PLAY) {
658 				p->factor = 2;
659 				p->sw_code = alaw_to_slinear16_le;
660 				md_format |= CMPCI_REG_FORMAT_16BIT;
661 			} else {
662 				p->sw_code = ulinear8_to_alaw;
663 				md_format |= CMPCI_REG_FORMAT_8BIT;
664 			}
665 			break;
666 		case AUDIO_ENCODING_SLINEAR_LE:
667 			switch (p->precision) {
668 			case 8:
669 				p->sw_code = change_sign8;
670 				md_format |= CMPCI_REG_FORMAT_8BIT;
671 				break;
672 			case 16:
673 				md_format |= CMPCI_REG_FORMAT_16BIT;
674 				break;
675 			default:
676 				return (EINVAL);
677 			}
678 			break;
679 		case AUDIO_ENCODING_SLINEAR_BE:
680 			switch (p->precision) {
681 			case 8:
682 				md_format |= CMPCI_REG_FORMAT_8BIT;
683 				p->sw_code = change_sign8;
684 				break;
685 			case 16:
686 				md_format |= CMPCI_REG_FORMAT_16BIT;
687 				p->sw_code = swap_bytes;
688 				break;
689 			default:
690 				return (EINVAL);
691 			}
692 			break;
693 		case AUDIO_ENCODING_ULINEAR_LE:
694 			switch (p->precision) {
695 			case 8:
696 				md_format |= CMPCI_REG_FORMAT_8BIT;
697 				break;
698 			case 16:
699 				md_format |= CMPCI_REG_FORMAT_16BIT;
700 				p->sw_code = change_sign16_le;
701 				break;
702 			default:
703 				return (EINVAL);
704 			}
705 			break;
706 		case AUDIO_ENCODING_ULINEAR_BE:
707 			switch (p->precision) {
708 			case 8:
709 				md_format |= CMPCI_REG_FORMAT_8BIT;
710 				break;
711 			case 16:
712 				md_format |= CMPCI_REG_FORMAT_16BIT;
713 				if (mode & AUMODE_PLAY)
714 					p->sw_code =
715 					    swap_bytes_change_sign16_le;
716 				else
717 					p->sw_code =
718 					    change_sign16_swap_bytes_le;
719 				break;
720 			default:
721 				return (EINVAL);
722 			}
723 			break;
724 		default:
725 			return (EINVAL);
726 		}
727 		if (mode & AUMODE_PLAY)
728 			cmpci_reg_partial_write_4(sc,
729 			   CMPCI_REG_CHANNEL_FORMAT,
730 			   CMPCI_REG_CH0_FORMAT_SHIFT,
731 			   CMPCI_REG_CH0_FORMAT_MASK, md_format);
732 		else
733 			cmpci_reg_partial_write_4(sc,
734 			   CMPCI_REG_CHANNEL_FORMAT,
735 			   CMPCI_REG_CH1_FORMAT_SHIFT,
736 			   CMPCI_REG_CH1_FORMAT_MASK, md_format);
737 		/* sample rate */
738 		md_index = cmpci_rate_to_index(p->sample_rate);
739 		md_divide = cmpci_index_to_divider(md_index);
740 		p->sample_rate = cmpci_index_to_rate(md_index);
741 		DPRINTF(("%s: sample:%d, divider=%d\n",
742 			 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
743 		if (mode & AUMODE_PLAY) {
744 			cmpci_reg_partial_write_4(sc,
745 			    CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
746 			    CMPCI_REG_DAC_FS_MASK, md_divide);
747 			sc->sc_play.md_divide = md_divide;
748 		} else {
749 			cmpci_reg_partial_write_4(sc,
750 			    CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
751 			    CMPCI_REG_ADC_FS_MASK, md_divide);
752 			sc->sc_rec.md_divide = md_divide;
753 		}
754 		cmpci_set_mixer_gain(sc, CMPCI_SPDIF_LOOP);
755 	}
756 	return 0;
757 }
758 
759 /* ARGSUSED */
760 static int
761 cmpci_round_blocksize(handle, block)
762 	void *handle;
763 	int block;
764 {
765 	return (block & -4);
766 }
767 
768 static int
769 cmpci_halt_output(handle)
770     void *handle;
771 {
772 	struct cmpci_softc *sc = handle;
773 	int s;
774 
775 	s = splaudio();
776 	sc->sc_play.intr = NULL;
777 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
778 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
779 	/* wait for reset DMA */
780 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
781 	delay(10);
782 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
783 	splx(s);
784 
785 	return 0;
786 }
787 
788 static int
789 cmpci_halt_input(handle)
790 	void *handle;
791 {
792 	struct cmpci_softc *sc = handle;
793 	int s;
794 
795 	s = splaudio();
796 	sc->sc_rec.intr = NULL;
797 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
798 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
799 	/* wait for reset DMA */
800 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
801 	delay(10);
802 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
803 	splx(s);
804 
805 	return 0;
806 }
807 
808 
809 /* get audio device information */
810 static int
811 cmpci_getdev(handle, ad)
812 	void *handle;
813 	struct audio_device *ad;
814 {
815 	struct cmpci_softc *sc = handle;
816 
817 	strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
818 	snprintf(ad->version, sizeof(ad->version), "0x%02x",
819 		 PCI_REVISION(sc->sc_class));
820 	switch (PCI_PRODUCT(sc->sc_id)) {
821 	case PCI_PRODUCT_CMEDIA_CMI8338A:
822 		strncpy(ad->config, "CMI8338A", sizeof(ad->config));
823 		break;
824 	case PCI_PRODUCT_CMEDIA_CMI8338B:
825 		strncpy(ad->config, "CMI8338B", sizeof(ad->config));
826 		break;
827 	case PCI_PRODUCT_CMEDIA_CMI8738:
828 		strncpy(ad->config, "CMI8738", sizeof(ad->config));
829 		break;
830 	case PCI_PRODUCT_CMEDIA_CMI8738B:
831 		strncpy(ad->config, "CMI8738B", sizeof(ad->config));
832 		break;
833 	default:
834 		strncpy(ad->config, "unknown", sizeof(ad->config));
835 	}
836 
837 	return 0;
838 }
839 
840 
841 /* mixer device information */
842 int
843 cmpci_query_devinfo(handle, dip)
844 	void *handle;
845 	mixer_devinfo_t *dip;
846 {
847 	switch (dip->index) {
848 	case CMPCI_MASTER_VOL:
849 		dip->type = AUDIO_MIXER_VALUE;
850 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
851 		dip->prev = dip->next = AUDIO_MIXER_LAST;
852 		strcpy(dip->label.name, AudioNmaster);
853 		dip->un.v.num_channels = 2;
854 		strcpy(dip->un.v.units.name, AudioNvolume);
855 		return 0;
856 	case CMPCI_FM_VOL:
857 		dip->type = AUDIO_MIXER_VALUE;
858 		dip->mixer_class = CMPCI_INPUT_CLASS;
859 		dip->prev = AUDIO_MIXER_LAST;
860 		dip->next = CMPCI_FM_IN_MUTE;
861 		strcpy(dip->label.name, AudioNfmsynth);
862 		dip->un.v.num_channels = 2;
863 		strcpy(dip->un.v.units.name, AudioNvolume);
864 		return 0;
865 	case CMPCI_CD_VOL:
866 		dip->type = AUDIO_MIXER_VALUE;
867 		dip->mixer_class = CMPCI_INPUT_CLASS;
868 		dip->prev = AUDIO_MIXER_LAST;
869 		dip->next = CMPCI_CD_IN_MUTE;
870 		strcpy(dip->label.name, AudioNcd);
871 		dip->un.v.num_channels = 2;
872 		strcpy(dip->un.v.units.name, AudioNvolume);
873 		return 0;
874 	case CMPCI_VOICE_VOL:
875 		dip->type = AUDIO_MIXER_VALUE;
876 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
877 		dip->prev = AUDIO_MIXER_LAST;
878 		dip->next = AUDIO_MIXER_LAST;
879 		strcpy(dip->label.name, AudioNdac);
880 		dip->un.v.num_channels = 2;
881 		strcpy(dip->un.v.units.name, AudioNvolume);
882 		return 0;
883 	case CMPCI_OUTPUT_CLASS:
884 		dip->type = AUDIO_MIXER_CLASS;
885 		dip->mixer_class = CMPCI_INPUT_CLASS;
886 		dip->next = dip->prev = AUDIO_MIXER_LAST;
887 		strcpy(dip->label.name, AudioCoutputs);
888 		return 0;
889 	case CMPCI_MIC_VOL:
890 		dip->type = AUDIO_MIXER_VALUE;
891 		dip->mixer_class = CMPCI_INPUT_CLASS;
892 		dip->prev = AUDIO_MIXER_LAST;
893 		dip->next = CMPCI_MIC_IN_MUTE;
894 		strcpy(dip->label.name, AudioNmicrophone);
895 		dip->un.v.num_channels = 1;
896 		strcpy(dip->un.v.units.name, AudioNvolume);
897 		return 0;
898 	case CMPCI_LINE_IN_VOL:
899 		dip->type = AUDIO_MIXER_VALUE;
900 		dip->mixer_class = CMPCI_INPUT_CLASS;
901 		dip->prev = AUDIO_MIXER_LAST;
902 		dip->next = CMPCI_LINE_IN_MUTE;
903 		strcpy(dip->label.name, AudioNline);
904 		dip->un.v.num_channels = 2;
905 		strcpy(dip->un.v.units.name, AudioNvolume);
906 		return 0;
907 	case CMPCI_RECORD_SOURCE:
908 		dip->mixer_class = CMPCI_RECORD_CLASS;
909 		dip->prev = dip->next = AUDIO_MIXER_LAST;
910 		strcpy(dip->label.name, AudioNsource);
911 		dip->type = AUDIO_MIXER_SET;
912 		dip->un.s.num_mem = 5;
913 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
914 		dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
915 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
916 		dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
917 		strcpy(dip->un.s.member[2].label.name, AudioNline);
918 		dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
919 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
920 		dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_FM;
921 		strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
922 		dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_SPDIF;
923 		return 0;
924 	case CMPCI_BASS:
925 		dip->prev = dip->next = AUDIO_MIXER_LAST;
926 		strcpy(dip->label.name, AudioNbass);
927 		dip->type = AUDIO_MIXER_VALUE;
928 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
929 		dip->un.v.num_channels = 2;
930 		strcpy(dip->un.v.units.name, AudioNbass);
931 		return 0;
932 	case CMPCI_TREBLE:
933 		dip->prev = dip->next = AUDIO_MIXER_LAST;
934 		strcpy(dip->label.name, AudioNtreble);
935 		dip->type = AUDIO_MIXER_VALUE;
936 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
937 		dip->un.v.num_channels = 2;
938 		strcpy(dip->un.v.units.name, AudioNtreble);
939 		return 0;
940 	case CMPCI_RECORD_CLASS:
941 		dip->type = AUDIO_MIXER_CLASS;
942 		dip->mixer_class = CMPCI_RECORD_CLASS;
943 		dip->next = dip->prev = AUDIO_MIXER_LAST;
944 		strcpy(dip->label.name, AudioCrecord);
945 		return 0;
946 	case CMPCI_INPUT_CLASS:
947 		dip->type = AUDIO_MIXER_CLASS;
948 		dip->mixer_class = CMPCI_INPUT_CLASS;
949 		dip->next = dip->prev = AUDIO_MIXER_LAST;
950 		strcpy(dip->label.name, AudioCinputs);
951 		return 0;
952 	case CMPCI_PCSPEAKER:
953 		dip->type = AUDIO_MIXER_VALUE;
954 		dip->mixer_class = CMPCI_INPUT_CLASS;
955 		dip->prev = dip->next = AUDIO_MIXER_LAST;
956 		strcpy(dip->label.name, "pc_speaker");
957 		dip->un.v.num_channels = 1;
958 		strcpy(dip->un.v.units.name, AudioNvolume);
959 		return 0;
960 	case CMPCI_INPUT_GAIN:
961 		dip->type = AUDIO_MIXER_VALUE;
962 		dip->mixer_class = CMPCI_INPUT_CLASS;
963 		dip->prev = dip->next = AUDIO_MIXER_LAST;
964 		strcpy(dip->label.name, AudioNinput);
965 		dip->un.v.num_channels = 2;
966 		strcpy(dip->un.v.units.name, AudioNvolume);
967 		return 0;
968 	case CMPCI_OUTPUT_GAIN:
969 		dip->type = AUDIO_MIXER_VALUE;
970 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
971 		dip->prev = dip->next = AUDIO_MIXER_LAST;
972 		strcpy(dip->label.name, AudioNoutput);
973 		dip->un.v.num_channels = 2;
974 		strcpy(dip->un.v.units.name, AudioNvolume);
975 		return 0;
976 	case CMPCI_AGC:
977 		dip->type = AUDIO_MIXER_ENUM;
978 		dip->mixer_class = CMPCI_INPUT_CLASS;
979 		dip->prev = dip->next = AUDIO_MIXER_LAST;
980 		strcpy(dip->label.name, "agc");
981 		goto on_off;
982 	case CMPCI_EQUALIZATION_CLASS:
983 		dip->type = AUDIO_MIXER_CLASS;
984 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
985 		dip->next = dip->prev = AUDIO_MIXER_LAST;
986 		strcpy(dip->label.name, AudioCequalization);
987 		return 0;
988 	case CMPCI_SPDIF_IN_MUTE:
989 		dip->type = AUDIO_MIXER_CLASS;
990 		dip->mixer_class = CMPCI_INPUT_CLASS;
991 		dip->next = dip->prev = AUDIO_MIXER_LAST;
992 		strcpy(dip->label.name, CmpciNspdif);
993 		return 0;
994 	case CMPCI_SPDIF_CLASS:
995 		dip->type = AUDIO_MIXER_CLASS;
996 		dip->mixer_class = CMPCI_SPDIF_CLASS;
997 		dip->next = dip->prev = AUDIO_MIXER_LAST;
998 		strcpy(dip->label.name, CmpciCspdif);
999 		return 0;
1000 	case CMPCI_SPDIF_LOOP:
1001 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1002 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1003 		strcpy(dip->label.name, CmpciNloop);
1004 		goto on_off;
1005 	case CMPCI_SPDIF_LEGACY:
1006 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1007 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1008 		strcpy(dip->label.name, CmpciNlegacy);
1009 		goto on_off;
1010 	case CMPCI_SPDIF_OUT_VOLTAGE:
1011 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1012 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1013 		strcpy(dip->label.name, CmpciNout_voltage);
1014 		dip->type = AUDIO_MIXER_ENUM;
1015 		dip->un.e.num_mem = 2;
1016 		strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1017 		dip->un.e.member[0].ord = 0;
1018 		strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1019 		dip->un.e.member[1].ord = 1;
1020 		return 0;
1021 	case CMPCI_SPDIF_IN_PHASE:
1022 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1023 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1024 		strcpy(dip->label.name, CmpciNin_phase);
1025 		goto on_off;
1026 	case CMPCI_REAR:
1027 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1028 		dip->prev = AUDIO_MIXER_LAST;
1029 		dip->next = CMPCI_INDIVIDUAL;
1030 		strcpy(dip->label.name, CmpciNrear);
1031 		goto on_off;
1032 	case CMPCI_INDIVIDUAL:
1033 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1034 		dip->prev = CMPCI_REAR;
1035 		dip->next = CMPCI_REVERSE;
1036 		strcpy(dip->label.name, CmpciNindividual);
1037 		goto on_off;
1038 	case CMPCI_REVERSE:
1039 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1040 		dip->prev = CMPCI_INDIVIDUAL;
1041 		dip->next = AUDIO_MIXER_LAST;
1042 		strcpy(dip->label.name, CmpciNreverse);
1043 		dip->type = AUDIO_MIXER_ENUM;
1044 		dip->un.e.num_mem = 2;
1045 		strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1046 		dip->un.e.member[0].ord = 0;
1047 		strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1048 		dip->un.e.member[1].ord = 1;
1049 		return 0;
1050 	case CMPCI_SURROUND:
1051 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1052 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1053 		strcpy(dip->label.name, CmpciNsurround);
1054 		goto on_off;
1055 
1056 	case CMPCI_CD_IN_MUTE:
1057 		dip->prev = CMPCI_CD_VOL;
1058 		dip->next = CMPCI_CD_SWAP;
1059 		dip->mixer_class = CMPCI_INPUT_CLASS;
1060 		goto mute;
1061 	case CMPCI_MIC_IN_MUTE:
1062 		dip->prev = CMPCI_MIC_VOL;
1063 		dip->next = CMPCI_MIC_SWAP;
1064 		dip->mixer_class = CMPCI_INPUT_CLASS;
1065 		goto mute;
1066 	case CMPCI_LINE_IN_MUTE:
1067 		dip->prev = CMPCI_LINE_IN_VOL;
1068 		dip->next = CMPCI_LINE_SWAP;
1069 		dip->mixer_class = CMPCI_INPUT_CLASS;
1070 		goto mute;
1071 	case CMPCI_FM_IN_MUTE:
1072 		dip->prev = CMPCI_FM_VOL;
1073 		dip->next = CMPCI_FM_SWAP;
1074 		dip->mixer_class = CMPCI_INPUT_CLASS;
1075 		goto mute;
1076 	case CMPCI_CD_SWAP:
1077 		dip->prev = CMPCI_CD_IN_MUTE;
1078 		dip->next = CMPCI_CD_OUT_MUTE;
1079 		goto swap;
1080 	case CMPCI_MIC_SWAP:
1081 		dip->prev = CMPCI_MIC_IN_MUTE;
1082 		dip->next = CMPCI_MIC_OUT_MUTE;
1083 		goto swap;
1084 	case CMPCI_LINE_SWAP:
1085 		dip->prev = CMPCI_LINE_IN_MUTE;
1086 		dip->next = CMPCI_LINE_OUT_MUTE;
1087 		goto swap;
1088 	case CMPCI_FM_SWAP:
1089 		dip->prev = CMPCI_FM_IN_MUTE;
1090 		dip->next = AUDIO_MIXER_LAST;
1091 	swap:
1092 		dip->mixer_class = CMPCI_INPUT_CLASS;
1093 		strcpy(dip->label.name, AudioNswap);
1094 		goto on_off;
1095 
1096 	case CMPCI_CD_OUT_MUTE:
1097 		dip->prev = CMPCI_CD_SWAP;
1098 		dip->next = AUDIO_MIXER_LAST;
1099 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1100 		goto mute;
1101 	case CMPCI_MIC_OUT_MUTE:
1102 		dip->prev = CMPCI_MIC_SWAP;
1103 		dip->next = AUDIO_MIXER_LAST;
1104 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1105 		goto mute;
1106 	case CMPCI_LINE_OUT_MUTE:
1107 		dip->prev = CMPCI_LINE_SWAP;
1108 		dip->next = AUDIO_MIXER_LAST;
1109 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1110 	mute:
1111 		strcpy(dip->label.name, AudioNmute);
1112 	on_off:
1113 		dip->type = AUDIO_MIXER_ENUM;
1114 		dip->un.e.num_mem = 2;
1115 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1116 		dip->un.e.member[0].ord = 0;
1117 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1118 		dip->un.e.member[1].ord = 1;
1119 		return 0;
1120 	}
1121 
1122 	return ENXIO;
1123 }
1124 
1125 static int
1126 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1127 	struct cmpci_softc *sc;
1128 	size_t size;
1129 	int type, flags;
1130 	caddr_t *r_addr;
1131 {
1132 	int error = 0;
1133 	struct cmpci_dmanode *n;
1134 	int w;
1135 
1136 	n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1137 	if (n == NULL) {
1138 		error = ENOMEM;
1139 		goto quit;
1140 	}
1141 
1142 	w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1143 #define CMPCI_DMABUF_ALIGN    0x4
1144 #define CMPCI_DMABUF_BOUNDARY 0x0
1145 	n->cd_tag = sc->sc_dmat;
1146 	n->cd_size = size;
1147 	error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1148 	    CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1149 	    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1150 	if (error)
1151 		goto mfree;
1152 	error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1153 	    &n->cd_addr, w | BUS_DMA_COHERENT);
1154 	if (error)
1155 		goto dmafree;
1156 	error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1157 	    w, &n->cd_map);
1158 	if (error)
1159 		goto unmap;
1160 	error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1161 	    NULL, w);
1162 	if (error)
1163 		goto destroy;
1164 
1165 	n->cd_next = sc->sc_dmap;
1166 	sc->sc_dmap = n;
1167 	*r_addr = KVADDR(n);
1168 	return 0;
1169 
1170  destroy:
1171 	bus_dmamap_destroy(n->cd_tag, n->cd_map);
1172  unmap:
1173 	bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1174  dmafree:
1175 	bus_dmamem_free(n->cd_tag,
1176 			n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1177  mfree:
1178 	free(n, type);
1179  quit:
1180 	return error;
1181 }
1182 
1183 static int
1184 cmpci_free_dmamem(sc, addr, type)
1185 	struct cmpci_softc *sc;
1186 	caddr_t addr;
1187 	int type;
1188 {
1189 	struct cmpci_dmanode **nnp;
1190 
1191 	for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1192 		if ((*nnp)->cd_addr == addr) {
1193 			struct cmpci_dmanode *n = *nnp;
1194 			bus_dmamap_unload(n->cd_tag, n->cd_map);
1195 			bus_dmamap_destroy(n->cd_tag, n->cd_map);
1196 			bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1197 			bus_dmamem_free(n->cd_tag, n->cd_segs,
1198 			    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1199 			free(n, type);
1200 			return 0;
1201 		}
1202 	}
1203 	return -1;
1204 }
1205 
1206 static struct cmpci_dmanode *
1207 cmpci_find_dmamem(sc, addr)
1208 	struct cmpci_softc *sc;
1209 	caddr_t addr;
1210 {
1211 	struct cmpci_dmanode *p;
1212 	for (p=sc->sc_dmap; p; p=p->cd_next)
1213 		if ( KVADDR(p) == (void *)addr )
1214 			break;
1215 	return p;
1216 }
1217 
1218 
1219 #if 0
1220 static void
1221 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1222 static void
1223 cmpci_print_dmamem(p)
1224 	struct cmpci_dmanode *p;
1225 {
1226 	DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1227 		 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1228 		 (void *)DMAADDR(p), (void *)p->cd_size));
1229 }
1230 #endif /* DEBUG */
1231 
1232 
1233 static void *
1234 cmpci_allocm(handle, direction, size, type, flags)
1235 	void  *handle;
1236 	int    direction;
1237 	size_t size;
1238 	int    type, flags;
1239 {
1240 	struct cmpci_softc *sc = handle;
1241 	caddr_t addr;
1242 
1243 	if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1244 		return NULL;
1245 	return addr;
1246 }
1247 
1248 static void
1249 cmpci_freem(handle, addr, type)
1250 	void	*handle;
1251 	void	*addr;
1252 	int	type;
1253 {
1254 	struct cmpci_softc *sc = handle;
1255 
1256 	cmpci_free_dmamem(sc, addr, type);
1257 }
1258 
1259 
1260 #define MAXVAL 256
1261 static int
1262 cmpci_adjust(val, mask)
1263 	int val, mask;
1264 {
1265 	val += (MAXVAL - mask) >> 1;
1266 	if (val >= MAXVAL)
1267 		val = MAXVAL-1;
1268 	return val & mask;
1269 }
1270 
1271 static void
1272 cmpci_set_mixer_gain(sc, port)
1273 	struct cmpci_softc *sc;
1274 	int port;
1275 {
1276 	int src;
1277 
1278 	switch (port) {
1279 	case CMPCI_MIC_VOL:
1280 		src = CMPCI_SB16_MIXER_MIC;
1281 		break;
1282 	case CMPCI_MASTER_VOL:
1283 		src = CMPCI_SB16_MIXER_MASTER_L;
1284 		break;
1285 	case CMPCI_LINE_IN_VOL:
1286 		src = CMPCI_SB16_MIXER_LINE_L;
1287 		break;
1288 	case CMPCI_VOICE_VOL:
1289 		src = CMPCI_SB16_MIXER_VOICE_L;
1290 		break;
1291 	case CMPCI_FM_VOL:
1292 		src = CMPCI_SB16_MIXER_FM_L;
1293 		break;
1294 	case CMPCI_CD_VOL:
1295 		src = CMPCI_SB16_MIXER_CDDA_L;
1296 		break;
1297 	case CMPCI_INPUT_GAIN:
1298 		src = CMPCI_SB16_MIXER_INGAIN_L;
1299 		break;
1300 	case CMPCI_OUTPUT_GAIN:
1301 		src = CMPCI_SB16_MIXER_OUTGAIN_L;
1302 		break;
1303 	case CMPCI_TREBLE:
1304 		src = CMPCI_SB16_MIXER_TREBLE_L;
1305 		break;
1306 	case CMPCI_BASS:
1307 		src = CMPCI_SB16_MIXER_BASS_L;
1308 		break;
1309 	case CMPCI_PCSPEAKER:
1310 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1311 		    sc->sc_gain[port][CMPCI_LEFT]);
1312 		return;
1313 	case CMPCI_SPDIF_IN_MUTE:
1314 		if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1315 			if (sc->sc_gain[CMPCI_SPDIF_IN_MUTE][CMPCI_LR])
1316 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1317 						CMPCI_REG_SPDIN_MONITOR);
1318 			else
1319 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1320 						CMPCI_REG_SPDIN_MONITOR);
1321 		}
1322 		return;
1323 	case CMPCI_SPDIF_LOOP:
1324 		/*FALLTHROUGH*/
1325 	case CMPCI_SPDIF_LEGACY:
1326 		cmpci_set_out_ports(sc);
1327 		return;
1328 	case CMPCI_SPDIF_OUT_VOLTAGE:
1329 		if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1330 			if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR])
1331 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1332 						CMPCI_REG_5V);
1333 			else
1334 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1335 						  CMPCI_REG_5V);
1336 		}
1337 		return;
1338 	case CMPCI_SURROUND:
1339 		if (CMPCI_ISCAP(sc, SURROUND)) {
1340 			if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1341 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1342 						CMPCI_REG_SURROUND);
1343 			else
1344 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1345 						  CMPCI_REG_SURROUND);
1346 		}
1347 		return;
1348 	case CMPCI_REAR:
1349 		if (CMPCI_ISCAP(sc, REAR)) {
1350 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1351 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1352 						CMPCI_REG_N4SPK3D);
1353 			else
1354 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1355 						  CMPCI_REG_N4SPK3D);
1356 		}
1357 		return;
1358 	case CMPCI_INDIVIDUAL:
1359 		if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1360 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1361 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1362 						CMPCI_REG_INDIVIDUAL);
1363 			else
1364 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1365 						  CMPCI_REG_INDIVIDUAL);
1366 		}
1367 		return;
1368 	case CMPCI_REVERSE:
1369 		if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1370 			if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1371 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1372 						CMPCI_REG_REVERSE_FR);
1373 			else
1374 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1375 						  CMPCI_REG_REVERSE_FR);
1376 		}
1377 		return;
1378 	case CMPCI_SPDIF_IN_PHASE:
1379 		if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1380 			if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR])
1381 				cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1382 						CMPCI_REG_SPDIN_PHASE);
1383 			else
1384 				cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1385 						  CMPCI_REG_SPDIN_PHASE);
1386 		}
1387 		return;
1388 	default:
1389 		return;
1390 	}
1391 	cmpci_mixerreg_write(sc, src, sc->sc_gain[port][CMPCI_LEFT]);
1392 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1393 	    sc->sc_gain[port][CMPCI_RIGHT]);
1394 }
1395 
1396 static void
1397 cmpci_set_out_ports(sc)
1398 	struct cmpci_softc *sc;
1399 {
1400 	if (!CMPCI_ISCAP(sc, SPDLOOP))
1401 		return;
1402 	if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1403 		/* loop on */
1404 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1405 				  CMPCI_REG_SPDIF0_ENABLE |
1406 				  CMPCI_REG_SPDIF1_ENABLE);
1407 		cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1408 				  CMPCI_REG_LEGACY_SPDIF_ENABLE);
1409 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1410 				CMPCI_REG_SPDIF_LOOP);
1411 	} else {
1412 		/* loop off */
1413 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1414 				  CMPCI_REG_SPDIF_LOOP);
1415 		cmpci_set_in_ports(sc, sc->sc_in_mask);
1416 		if (CMPCI_ISCAP(sc, SPDOUT) &&
1417 		    (sc->sc_play.md_divide==CMPCI_REG_RATE_44100 ||
1418 		     (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1419 		      sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1420 			cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1421 					CMPCI_REG_SPDIF0_ENABLE);
1422 			if (CMPCI_ISCAP(sc, XSPDOUT))
1423 				cmpci_reg_set_4(sc,
1424 						CMPCI_REG_LEGACY_CTRL,
1425 						CMPCI_REG_XSPDIF_ENABLE);
1426 			if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1427 				cmpci_reg_set_4(sc,
1428 						CMPCI_REG_MISC,
1429 						CMPCI_REG_SPDIF_48K);
1430 			else
1431 				cmpci_reg_clear_4(sc,
1432 						  CMPCI_REG_MISC,
1433 						  CMPCI_REG_SPDIF_48K);
1434 		} else {
1435 			cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1436 					  CMPCI_REG_SPDIF0_ENABLE);
1437 			if (CMPCI_ISCAP(sc, XSPDOUT))
1438 				cmpci_reg_clear_4(sc,
1439 						  CMPCI_REG_LEGACY_CTRL,
1440 						  CMPCI_REG_XSPDIF_ENABLE);
1441 			if (CMPCI_ISCAP(sc, SPDOUT_48K))
1442 				cmpci_reg_clear_4(sc,
1443 						  CMPCI_REG_MISC,
1444 						  CMPCI_REG_SPDIF_48K);
1445 		}
1446 		if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1447 		    if (sc->sc_gain[CMPCI_SPDIF_LEGACY][CMPCI_LR])
1448 			    cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1449 					    CMPCI_REG_LEGACY_SPDIF_ENABLE);
1450 		    else
1451 			    cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1452 					    CMPCI_REG_LEGACY_SPDIF_ENABLE);
1453 		}
1454 	}
1455 }
1456 
1457 static int
1458 cmpci_set_in_ports(sc, mask)
1459 	struct cmpci_softc *sc;
1460 	int mask;
1461 {
1462 	int bitsl, bitsr;
1463 
1464 	if (mask & ~(CMPCI_RECORD_SOURCE_MIC | CMPCI_RECORD_SOURCE_CD |
1465 		     CMPCI_RECORD_SOURCE_LINE_IN | CMPCI_RECORD_SOURCE_FM |
1466 		     CMPCI_RECORD_SOURCE_SPDIF))
1467 		return EINVAL;
1468 	bitsr = 0;
1469 	if (mask & CMPCI_RECORD_SOURCE_FM)
1470 		bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1471 	if (mask & CMPCI_RECORD_SOURCE_LINE_IN)
1472 		bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1473 	if (mask & CMPCI_RECORD_SOURCE_CD)
1474 		bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1475 	bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1476 	if (mask & CMPCI_RECORD_SOURCE_MIC) {
1477 		bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1478 		bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1479 	}
1480 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1481 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1482 	if (CMPCI_ISCAP(sc, SPDIN) &&
1483 	    sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 &&
1484 	    !sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1485 		if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1486 			/* enable SPDIF/in */
1487 			cmpci_reg_set_4(sc,
1488 					CMPCI_REG_FUNC_1,
1489 					CMPCI_REG_SPDIF1_ENABLE);
1490 		} else {
1491 			cmpci_reg_clear_4(sc,
1492 					CMPCI_REG_FUNC_1,
1493 					CMPCI_REG_SPDIF1_ENABLE);
1494 		}
1495 	}
1496 
1497 	sc->sc_in_mask = mask;
1498 
1499 	return 0;
1500 }
1501 
1502 static int
1503 cmpci_set_port(handle, cp)
1504 	void *handle;
1505 	mixer_ctrl_t *cp;
1506 {
1507 	struct cmpci_softc *sc = handle;
1508 	int lgain, rgain;
1509 	int mask, bits;
1510 	int lmask, rmask, lbits, rbits;
1511 	int mute, swap;
1512 
1513 	switch (cp->dev) {
1514 	case CMPCI_TREBLE:
1515 	case CMPCI_BASS:
1516 	case CMPCI_PCSPEAKER:
1517 	case CMPCI_INPUT_GAIN:
1518 	case CMPCI_OUTPUT_GAIN:
1519 	case CMPCI_MIC_VOL:
1520 	case CMPCI_LINE_IN_VOL:
1521 	case CMPCI_VOICE_VOL:
1522 	case CMPCI_FM_VOL:
1523 	case CMPCI_CD_VOL:
1524 	case CMPCI_MASTER_VOL:
1525 		if (cp->type != AUDIO_MIXER_VALUE)
1526 			return EINVAL;
1527 		switch (cp->dev) {
1528 		case CMPCI_MIC_VOL:
1529 			if (cp->un.value.num_channels != 1)
1530 				return EINVAL;
1531 
1532 			lgain = rgain =
1533 			    CMPCI_ADJUST_MIC_GAIN(sc,
1534 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1535 			break;
1536 		case CMPCI_PCSPEAKER:
1537 			if (cp->un.value.num_channels != 1)
1538 				return EINVAL;
1539 			/* fall into */
1540 		case CMPCI_INPUT_GAIN:
1541 		case CMPCI_OUTPUT_GAIN:
1542 			lgain = rgain =	CMPCI_ADJUST_2_GAIN(sc,
1543 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1544 			break;
1545 		default:
1546 			switch (cp->un.value.num_channels) {
1547 			case 1:
1548 				lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1549 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1550 					);
1551 				break;
1552 			case 2:
1553 				lgain =	CMPCI_ADJUST_GAIN(sc,
1554 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]
1555 					);
1556 				rgain = CMPCI_ADJUST_GAIN(sc,
1557 				   cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]
1558 					);
1559 				break;
1560 			default:
1561 				return EINVAL;
1562 			}
1563 			break;
1564 		}
1565 		sc->sc_gain[cp->dev][CMPCI_LEFT]  = lgain;
1566 		sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1567 
1568 		cmpci_set_mixer_gain(sc, cp->dev);
1569 		break;
1570 
1571 	case CMPCI_RECORD_SOURCE:
1572 		if (cp->type != AUDIO_MIXER_SET)
1573 			return EINVAL;
1574 
1575 		if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1576 			cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1577 
1578 		return cmpci_set_in_ports(sc, cp->un.mask);
1579 
1580 	case CMPCI_AGC:
1581 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1582 		break;
1583 
1584 	case CMPCI_CD_OUT_MUTE:
1585 		mask = CMPCI_SB16_SW_CD;
1586 		goto omute;
1587 	case CMPCI_MIC_OUT_MUTE:
1588 		mask = CMPCI_SB16_SW_MIC;
1589 		goto omute;
1590 	case CMPCI_LINE_OUT_MUTE:
1591 		mask = CMPCI_SB16_SW_LINE;
1592 	omute:
1593 		if (cp->type != AUDIO_MIXER_ENUM)
1594 			return EINVAL;
1595 		bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1596 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1597 		if (cp->un.ord)
1598 			bits = bits & ~mask;
1599 		else
1600 			bits = bits | mask;
1601 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1602 		break;
1603 
1604 	case CMPCI_MIC_IN_MUTE:
1605 	case CMPCI_MIC_SWAP:
1606 		lmask = rmask = CMPCI_SB16_SW_MIC;
1607 		goto imute;
1608 	case CMPCI_CD_IN_MUTE:
1609 	case CMPCI_CD_SWAP:
1610 		lmask = CMPCI_SB16_SW_CD_L;
1611 		rmask = CMPCI_SB16_SW_CD_R;
1612 		goto imute;
1613 	case CMPCI_LINE_IN_MUTE:
1614 	case CMPCI_LINE_SWAP:
1615 		lmask = CMPCI_SB16_SW_LINE_L;
1616 		rmask = CMPCI_SB16_SW_LINE_R;
1617 		goto imute;
1618 	case CMPCI_FM_IN_MUTE:
1619 	case CMPCI_FM_SWAP:
1620 		lmask = CMPCI_SB16_SW_FM_L;
1621 		rmask = CMPCI_SB16_SW_FM_R;
1622 	imute:
1623 		if (cp->type != AUDIO_MIXER_ENUM)
1624 			return EINVAL;
1625 		mask = lmask | rmask;
1626 		lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1627 		    & ~mask;
1628 		rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1629 		    & ~mask;
1630 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1631 		if (CMPCI_IS_IN_MUTE(cp->dev)) {
1632 			mute = cp->dev;
1633 			swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1634 		} else {
1635 			swap = cp->dev;
1636 			mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1637 		}
1638 		if (sc->sc_gain[swap][CMPCI_LR]) {
1639 			mask = lmask;
1640 			lmask = rmask;
1641 			rmask = mask;
1642 		}
1643 		if (!sc->sc_gain[mute][CMPCI_LR]) {
1644 			lbits = lbits | lmask;
1645 			rbits = rbits | rmask;
1646 		}
1647 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1648 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1649 		break;
1650 	case CMPCI_SPDIF_LOOP:
1651 	case CMPCI_SPDIF_LEGACY:
1652 	case CMPCI_SPDIF_OUT_VOLTAGE:
1653 	case CMPCI_SPDIF_IN_PHASE:
1654 	case CMPCI_REAR:
1655 	case CMPCI_INDIVIDUAL:
1656 	case CMPCI_REVERSE:
1657 	case CMPCI_SURROUND:
1658 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1659 		break;
1660 
1661 	default:
1662 	    return EINVAL;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 static int
1669 cmpci_get_port(handle, cp)
1670 	void *handle;
1671 	mixer_ctrl_t *cp;
1672 {
1673 	struct cmpci_softc *sc = handle;
1674 
1675 	switch (cp->dev) {
1676 	case CMPCI_MIC_VOL:
1677 	case CMPCI_LINE_IN_VOL:
1678 		if (cp->un.value.num_channels != 1)
1679 			return EINVAL;
1680 		/* fall into */
1681 	case CMPCI_TREBLE:
1682 	case CMPCI_BASS:
1683 	case CMPCI_PCSPEAKER:
1684 	case CMPCI_INPUT_GAIN:
1685 	case CMPCI_OUTPUT_GAIN:
1686 	case CMPCI_VOICE_VOL:
1687 	case CMPCI_FM_VOL:
1688 	case CMPCI_CD_VOL:
1689 	case CMPCI_MASTER_VOL:
1690 		switch (cp->un.value.num_channels) {
1691 		case 1:
1692 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1693 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1694 			break;
1695 		case 2:
1696 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1697 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1698 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1699 				sc->sc_gain[cp->dev][CMPCI_RIGHT];
1700 			break;
1701 		default:
1702 			return EINVAL;
1703 		}
1704 		break;
1705 
1706 	case CMPCI_RECORD_SOURCE:
1707 		cp->un.mask = sc->sc_in_mask;
1708 		break;
1709 
1710 	case CMPCI_AGC:
1711 		cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1712 		break;
1713 
1714 	case CMPCI_CD_IN_MUTE:
1715 	case CMPCI_MIC_IN_MUTE:
1716 	case CMPCI_LINE_IN_MUTE:
1717 	case CMPCI_FM_IN_MUTE:
1718 	case CMPCI_CD_SWAP:
1719 	case CMPCI_MIC_SWAP:
1720 	case CMPCI_LINE_SWAP:
1721 	case CMPCI_FM_SWAP:
1722 	case CMPCI_CD_OUT_MUTE:
1723 	case CMPCI_MIC_OUT_MUTE:
1724 	case CMPCI_LINE_OUT_MUTE:
1725 	case CMPCI_SPDIF_IN_MUTE:
1726 	case CMPCI_SPDIF_LOOP:
1727 	case CMPCI_SPDIF_LEGACY:
1728 	case CMPCI_SPDIF_OUT_VOLTAGE:
1729 	case CMPCI_SPDIF_IN_PHASE:
1730 	case CMPCI_REAR:
1731 	case CMPCI_INDIVIDUAL:
1732 	case CMPCI_REVERSE:
1733 	case CMPCI_SURROUND:
1734 		cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1735 		break;
1736 
1737 	default:
1738 		return EINVAL;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 /* ARGSUSED */
1745 static size_t
1746 cmpci_round_buffersize(handle, direction, bufsize)
1747 	void *handle;
1748 	int direction;
1749 	size_t bufsize;
1750 {
1751 	if (bufsize > 0x10000)
1752 		bufsize = 0x10000;
1753 
1754 	return bufsize;
1755 }
1756 
1757 
1758 static paddr_t
1759 cmpci_mappage(handle, addr, offset, prot)
1760 	void *handle;
1761 	void *addr;
1762 	off_t offset;
1763 	int prot;
1764 {
1765 	struct cmpci_softc *sc = handle;
1766 	struct cmpci_dmanode *p;
1767 
1768 	if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1769 		return -1;
1770 
1771 	return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1772 		   sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1773 		   offset, prot, BUS_DMA_WAITOK);
1774 }
1775 
1776 
1777 /* ARGSUSED */
1778 static int
1779 cmpci_get_props(handle)
1780 	void *handle;
1781 {
1782 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1783 }
1784 
1785 
1786 static int
1787 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1788 	void *handle;
1789 	void *start, *end;
1790 	int blksize;
1791 	void (*intr) __P((void *));
1792 	void *arg;
1793 	struct audio_params *param;
1794 {
1795 	struct cmpci_softc *sc = handle;
1796 	struct cmpci_dmanode *p;
1797 	int bps;
1798 
1799 	sc->sc_play.intr = intr;
1800 	sc->sc_play.intr_arg = arg;
1801 	bps = param->channels*param->precision*param->factor / 8;
1802 	if (!bps)
1803 		return EINVAL;
1804 
1805 	/* set DMA frame */
1806 	if (!(p = cmpci_find_dmamem(sc, start)))
1807 		return EINVAL;
1808 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1809 	    DMAADDR(p));
1810 	delay(10);
1811 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1812 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1813 	delay(10);
1814 
1815 	/* set interrupt count */
1816 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1817 			  (blksize + bps - 1) / bps - 1);
1818 	delay(10);
1819 
1820 	/* start DMA */
1821 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1822 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1823 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1824 
1825 	return 0;
1826 }
1827 
1828 static int
1829 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1830 	void *handle;
1831 	void *start, *end;
1832 	int blksize;
1833 	void (*intr) __P((void *));
1834 	void *arg;
1835 	struct audio_params *param;
1836 {
1837 	struct cmpci_softc *sc = handle;
1838 	struct cmpci_dmanode *p;
1839 	int bps;
1840 
1841 	sc->sc_rec.intr = intr;
1842 	sc->sc_rec.intr_arg = arg;
1843 	bps = param->channels*param->precision*param->factor/8;
1844 	if (!bps)
1845 		return EINVAL;
1846 
1847 	/* set DMA frame */
1848 	if (!(p=cmpci_find_dmamem(sc, start)))
1849 		return EINVAL;
1850 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1851 	    DMAADDR(p));
1852 	delay(10);
1853 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1854 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1855 	delay(10);
1856 
1857 	/* set interrupt count */
1858 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1859 	    (blksize + bps - 1) / bps - 1);
1860 	delay(10);
1861 
1862 	/* start DMA */
1863 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1864 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1865 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1866 
1867 	return 0;
1868 }
1869 
1870 
1871 /* end of file */
1872