xref: /netbsd-src/sys/dev/pci/cmpci.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: cmpci.c,v 1.2 2000/04/30 22:16:56 augustss Exp $	*/
2 
3 /*
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI <AoiMoe@imou.to> .
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * C-Media CMI8x38 Audio Chip Support.
35  *
36  * TODO:
37  *   - Legacy MPU, OPL and Joystick support (but, I have no interest...)
38  *   - SPDIF support.
39  *
40  * ACKNOWLEDGEMENT:
41  *   - Lennart Augustsson : He touched up this code.
42  *
43  */
44 
45 #undef CMPCI_SPDIF_SUPPORT  /* XXX: not working */
46 
47 #if defined(AUDIO_DEBUG) || defined(DEBUG)
48 #define DPRINTF(x) printf x
49 #else
50 #define DPRINTF(x)
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57 #include <sys/device.h>
58 #include <sys/proc.h>
59 
60 #include <dev/pci/pcidevs.h>
61 #include <dev/pci/pcivar.h>
62 
63 #include <sys/audioio.h>
64 #include <dev/audio_if.h>
65 #include <dev/midi_if.h>
66 
67 #include <dev/mulaw.h>
68 #include <dev/auconv.h>
69 #include <dev/pci/cmpcireg.h>
70 #include <dev/pci/cmpcivar.h>
71 
72 #include <dev/ic/mpuvar.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 
76 /*
77  * Low-level HW interface
78  */
79 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
80                                                  uint8_t));
81 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
82                                                uint8_t, uint8_t));
83 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
84                                                     int, int,
85                                                     uint32_t, uint32_t));
86 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
87                                           int, uint32_t));
88 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
89                                             int, uint32_t));
90 static int cmpci_rate_to_index __P((int));
91 static __inline int cmpci_index_to_rate __P((int));
92 static __inline int cmpci_index_to_divider __P((int));
93 
94 static int cmpci_adjust __P((int, int));
95 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
96 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
97 
98 
99 /*
100  * autoconf interface
101  */
102 static int cmpci_match __P((struct device *, struct cfdata *, void *));
103 static void cmpci_attach __P((struct device *, struct device *, void *));
104 
105 struct cfattach cmpci_ca = {
106 	sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
107 };
108 
109 /* interrupt */
110 static int cmpci_intr __P((void *));
111 
112 
113 /*
114  * DMA stuffs
115  */
116 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
117                                    size_t, int, int, caddr_t *));
118 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
119 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
120                                                      caddr_t));
121 
122 
123 /*
124  * interface to machine independent layer
125  */
126 static int cmpci_open __P((void *, int));
127 static void cmpci_close __P((void *));
128 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
129 static int cmpci_set_params __P((void *, int, int,
130                                  struct audio_params *,
131                                  struct audio_params *));
132 static int cmpci_round_blocksize __P((void *, int));
133 static int cmpci_halt_output __P((void *));
134 static int cmpci_halt_input __P((void *));
135 static int cmpci_getdev __P((void *, struct audio_device *));
136 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
137 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
138 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
139 static void *cmpci_allocm __P((void *, int, size_t, int, int));
140 static void cmpci_freem __P((void *, void *, int));
141 static size_t cmpci_round_buffersize __P((void *, int, size_t));
142 static int cmpci_mappage __P((void *, void *, int, int));
143 static int cmpci_get_props __P((void *));
144 static int cmpci_trigger_output __P((void *, void *, void *, int,
145                                      void (*)(void *), void *,
146                                      struct audio_params *));
147 static int cmpci_trigger_input __P((void *, void *, void *, int,
148                                     void (*)(void *), void *,
149                                     struct audio_params *));
150 
151 static struct audio_hw_if cmpci_hw_if = {
152 	&cmpci_open,		/* open */
153 	&cmpci_close,		/* close */
154 	NULL,			/* drain */
155 	&cmpci_query_encoding,	/* query_encoding */
156 	&cmpci_set_params,	/* set_params */
157 	&cmpci_round_blocksize,	/* round_blocksize */
158 	NULL,			/* commit_settings */
159 	NULL,			/* init_output */
160 	NULL,			/* init_input */
161 	NULL,			/* start_output */
162 	NULL,			/* start_input */
163 	&cmpci_halt_output,	/* halt_output */
164 	&cmpci_halt_input,	/* halt_input */
165 	NULL,			/* speaker_ctl */
166 	&cmpci_getdev,		/* getdev */
167 	NULL,			/* setfd */
168 	&cmpci_set_port,	/* set_port */
169 	&cmpci_get_port,	/* get_port */
170 	&cmpci_query_devinfo,	/* query_devinfo */
171 	&cmpci_allocm,		/* allocm */
172 	&cmpci_freem,		/* freem */
173 	&cmpci_round_buffersize,/* round_buffersize */
174 	&cmpci_mappage,		/* mappage */
175 	&cmpci_get_props,	/* get_props */
176 	&cmpci_trigger_output,	/* trigger_output */
177 	&cmpci_trigger_input	/* trigger_input */
178 };
179 
180 
181 /*
182  * Low-level HW interface
183  */
184 
185 /* mixer register read/write */
186 static __inline uint8_t
187 cmpci_mixerreg_read(sc, no)
188 	struct cmpci_softc *sc;
189 	uint8_t no;
190 {
191 	uint8_t ret;
192 
193 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
194 	delay(10);
195 	ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
196 	delay(10);
197 	return ret;
198 }
199 
200 static __inline void
201 cmpci_mixerreg_write(sc, no, val)
202 	struct cmpci_softc *sc;
203 	uint8_t no, val;
204 {
205 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
206 	delay(10);
207 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
208 	delay(10);
209 }
210 
211 
212 /* register partial write */
213 static __inline void
214 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
215 	struct cmpci_softc *sc;
216 	int no, shift;
217 	uint32_t mask, val;
218 {
219 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
220 	    (val<<shift) |
221 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
222 	delay(10);
223 }
224 
225 /* register set/clear bit */
226 static __inline void
227 cmpci_reg_set_4(sc, no, mask)
228 	struct cmpci_softc *sc;
229 	int no;
230 	uint32_t mask;
231 {
232 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
233             (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
234 	delay(10);
235 }
236 
237 static __inline void
238 cmpci_reg_clear_4(sc, no, mask)
239 	struct cmpci_softc *sc;
240 	int no;
241 	uint32_t mask;
242 {
243 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
244             (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
245 	delay(10);
246 }
247 
248 
249 /* rate */
250 static struct {
251 	int rate;
252 	int divider;
253 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
254 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
255 	_RATE(5512),
256 	_RATE(8000),
257 	_RATE(11025),
258 	_RATE(16000),
259 	_RATE(22050),
260 	_RATE(32000),
261 	_RATE(44100),
262 	_RATE(48000)
263 #undef  _RATE
264 };
265 
266 static int
267 cmpci_rate_to_index(rate)
268 	int rate;
269 {
270 	int i;
271 
272 	for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
273 		if (rate <=
274 		    (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
275 			return i;
276 	return i;  /* 48000 */
277 }
278 
279 static __inline int
280 cmpci_index_to_rate(index)
281 	int index;
282 {
283 	return cmpci_rate_table[index].rate;
284 }
285 
286 static __inline int
287 cmpci_index_to_divider(index)
288 	int index;
289 {
290 	return cmpci_rate_table[index].divider;
291 }
292 
293 
294 /*
295  * interface to configure the device.
296  */
297 
298 static int
299 cmpci_match(parent, match, aux)
300 	struct device *parent;
301 	struct cfdata *match;
302 	void *aux;
303 {
304 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
305 
306 	if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
307 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
308 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
309 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738) )
310 		return 1;
311 
312 	return 0;
313 }
314 
315 static void
316 cmpci_attach(parent, self, aux)
317 	struct device *parent, *self;
318 	void *aux;
319 {
320 	struct cmpci_softc *sc = (struct cmpci_softc *)self;
321 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
322 	pci_intr_handle_t ih;
323 	char const *strintr;
324 	int i, v;
325 
326 	sc->sc_revision = PCI_REVISION(pa->pa_class);
327 	sc->sc_model    = PCI_PRODUCT(pa->pa_id);
328 	switch (sc->sc_model) {
329 	case PCI_PRODUCT_CMEDIA_CMI8338A:
330 		printf(": CMI8338A PCI Audio Device\n");
331 		break;
332 	case PCI_PRODUCT_CMEDIA_CMI8338B:
333 		printf(": CMI8338B PCI Audio Device\n");
334 		break;
335 	case PCI_PRODUCT_CMEDIA_CMI8738:
336 		printf(": CMI8738 PCI Audio Device\n");
337 		break;
338 	}
339 
340 	/* map I/O space */
341 	if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
342                 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
343 		printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
344 		return;
345 	}
346 
347 	/* interrupt */
348 	if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
349                 pa->pa_intrline, &ih)) {
350 		printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
351 		return;
352 	}
353 	strintr = pci_intr_string(pa->pa_pc, ih);
354 	sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
355 	if (sc->sc_ih == NULL) {
356 		printf("%s: failed to establish interrupt",
357 		    sc->sc_dev.dv_xname);
358 		if (strintr != NULL)
359 			printf(" at %s", strintr);
360 		printf("\n");
361 		return;
362 	}
363 	printf("%s: intr at %s\n", sc->sc_dev.dv_xname, strintr);
364 
365 	sc->sc_dmat = pa->pa_dmat;
366 
367 	audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
368 
369 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
370 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
371 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
372 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
373 	    CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
374 	for (i = 0; i < CMPCI_NDEVS; i++) {
375 		switch(i) {
376 		case CMPCI_MIC_VOL:
377 		case CMPCI_LINE_IN_VOL:
378 			v = 0;
379 			break;
380 		case CMPCI_BASS:
381 		case CMPCI_TREBLE:
382 			v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
383 			break;
384 		case CMPCI_CD_IN_MUTE:
385 		case CMPCI_MIC_IN_MUTE:
386 		case CMPCI_LINE_IN_MUTE:
387 		case CMPCI_FM_IN_MUTE:
388 		case CMPCI_CD_SWAP:
389 		case CMPCI_MIC_SWAP:
390 		case CMPCI_LINE_SWAP:
391 		case CMPCI_FM_SWAP:
392 			v = 0;
393 			break;
394 		case CMPCI_CD_OUT_MUTE:
395 		case CMPCI_MIC_OUT_MUTE:
396 		case CMPCI_LINE_OUT_MUTE:
397 			v = 1;
398 			break;
399 		default:
400 			v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
401 		}
402 		sc->gain[i][CMPCI_LEFT] = sc->gain[i][CMPCI_RIGHT] = v;
403 		cmpci_set_mixer_gain(sc, i);
404 	}
405 }
406 
407 
408 static int
409 cmpci_intr(handle)
410 	void *handle;
411 {
412 	struct cmpci_softc *sc = handle;
413 	uint32_t intrstat;
414 
415 	intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
416 	    CMPCI_REG_INTR_STATUS);
417 	delay(10);
418 
419 	if (!(intrstat & CMPCI_REG_ANY_INTR))
420 		return 0;
421 
422 	/* disable and reset intr */
423 	if (intrstat & CMPCI_REG_CH0_INTR)
424 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
425 		   CMPCI_REG_CH0_INTR_ENABLE);
426 	if (intrstat & CMPCI_REG_CH1_INTR)
427 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
428 		    CMPCI_REG_CH1_INTR_ENABLE);
429 
430 	if (intrstat & CMPCI_REG_CH0_INTR) {
431 		if (sc->sc_play.intr != NULL)
432 			(*sc->sc_play.intr)(sc->sc_play.intr_arg);
433 	}
434 	if (intrstat & CMPCI_REG_CH1_INTR) {
435 		if (sc->sc_rec.intr != NULL)
436 			(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
437 	}
438 
439 	/* enable intr */
440 	if (intrstat & CMPCI_REG_CH0_INTR)
441 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
442 		    CMPCI_REG_CH0_INTR_ENABLE);
443 	if (intrstat & CMPCI_REG_CH1_INTR)
444 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
445 		    CMPCI_REG_CH1_INTR_ENABLE);
446 
447 	return 0;
448 }
449 
450 
451 /* open/close */
452 static int
453 cmpci_open(handle, flags)
454 	void *handle;
455 	int flags;
456 {
457 #if 0
458 	struct cmpci_softc *sc = handle;
459 #endif
460 
461 	return 0;
462 }
463 
464 static void
465 cmpci_close(handle)
466 	void *handle;
467 {
468 }
469 
470 static int
471 cmpci_query_encoding(handle, fp)
472 	void *handle;
473 	struct audio_encoding *fp;
474 {
475 #if 0
476 	struct cmpci_softc *sc = handle;
477 #endif
478 
479 	switch (fp->index) {
480 	case 0:
481 		strcpy(fp->name, AudioEulinear);
482 		fp->encoding = AUDIO_ENCODING_ULINEAR;
483 		fp->precision = 8;
484 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
485 		break;
486 	case 1:
487 		strcpy(fp->name, AudioEmulaw);
488 		fp->encoding = AUDIO_ENCODING_ULAW;
489 		fp->precision = 8;
490 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
491 		break;
492 	case 2:
493 		strcpy(fp->name, AudioEalaw);
494 		fp->encoding = AUDIO_ENCODING_ALAW;
495 		fp->precision = 8;
496 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
497 		break;
498 	case 3:
499 		strcpy(fp->name, AudioEslinear);
500 		fp->encoding = AUDIO_ENCODING_SLINEAR;
501 		fp->precision = 8;
502 		fp->flags = 0;
503 		break;
504 	case 4:
505 		strcpy(fp->name, AudioEslinear_le);
506 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
507 		fp->precision = 16;
508 		fp->flags = 0;
509 		break;
510 	case 5:
511 		strcpy(fp->name, AudioEulinear_le);
512 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
513 		fp->precision = 16;
514 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
515 		break;
516 	case 6:
517 		strcpy(fp->name, AudioEslinear_be);
518 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
519 		fp->precision = 16;
520 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
521 		break;
522 	case 7:
523 		strcpy(fp->name, AudioEulinear_be);
524 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
525 		fp->precision = 16;
526 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
527 		break;
528 	default:
529 		return EINVAL;
530 	}
531 	return 0;
532 }
533 
534 
535 static int
536 cmpci_set_params(handle, setmode, usemode, play, rec)
537 	void *handle;
538 	int setmode, usemode;
539 	struct audio_params *play, *rec;
540 {
541 	int i;
542 	struct cmpci_softc *sc = handle;
543 
544 	for (i = 0; i < 2; i++) {
545 		int md_format;
546 		int md_divide;
547 		int md_index;
548 		int mode;
549 		struct audio_params *p;
550 
551 		switch (i) {
552 		case 0:
553 			mode = AUMODE_PLAY;
554 			p = play;
555 			break;
556 		case 1:
557 			mode = AUMODE_RECORD;
558 			p = rec;
559 			break;
560 		}
561 
562 		if (!(setmode & mode))
563 			continue;
564 
565 
566 		/* format */
567 		p->sw_code = NULL;
568 		switch ( p->channels ) {
569 		case 1:
570 			md_format = CMPCI_REG_FORMAT_MONO;
571 			break;
572 		case 2:
573 			md_format = CMPCI_REG_FORMAT_STEREO;
574 			break;
575 		default:
576 			return (EINVAL);
577 		}
578 		switch (p->encoding) {
579 		case AUDIO_ENCODING_ULAW:
580 			if (p->precision != 8)
581 				return (EINVAL);
582 			if (mode & AUMODE_PLAY) {
583 				p->factor = 2;
584 				p->sw_code = mulaw_to_slinear16_le;
585 				md_format |= CMPCI_REG_FORMAT_16BIT;
586 			} else {
587 				p->sw_code = ulinear8_to_mulaw;
588 				md_format |= CMPCI_REG_FORMAT_8BIT;
589 			}
590 			break;
591 		case AUDIO_ENCODING_ALAW:
592 			if (p->precision != 8)
593 				return (EINVAL);
594 			if (mode & AUMODE_PLAY) {
595 				p->factor = 2;
596 				p->sw_code = alaw_to_slinear16_le;
597 				md_format |= CMPCI_REG_FORMAT_16BIT;
598 			} else {
599 				p->sw_code = ulinear8_to_alaw;
600 				md_format |= CMPCI_REG_FORMAT_8BIT;
601 			}
602 			break;
603 		case AUDIO_ENCODING_SLINEAR_LE:
604 			switch (p->precision) {
605 			case 8:
606 				p->sw_code = change_sign8;
607 				md_format |= CMPCI_REG_FORMAT_8BIT;
608 				break;
609 			case 16:
610 				md_format |= CMPCI_REG_FORMAT_16BIT;
611 				break;
612 			default:
613 				return (EINVAL);
614 			}
615 			break;
616 		case AUDIO_ENCODING_SLINEAR_BE:
617 			switch (p->precision) {
618 			case 8:
619 				md_format |= CMPCI_REG_FORMAT_8BIT;
620 				p->sw_code = change_sign8;
621 				break;
622 			case 16:
623 				md_format |= CMPCI_REG_FORMAT_16BIT;
624 				p->sw_code = swap_bytes;
625 				break;
626 			default:
627 				return (EINVAL);
628 			}
629 			break;
630 		case AUDIO_ENCODING_ULINEAR_LE:
631 			switch (p->precision) {
632 			case 8:
633 				md_format |= CMPCI_REG_FORMAT_8BIT;
634 				break;
635 			case 16:
636 				md_format |= CMPCI_REG_FORMAT_16BIT;
637 				p->sw_code = change_sign16_le;
638 				break;
639 			default:
640 				return (EINVAL);
641 			}
642 			break;
643 		case AUDIO_ENCODING_ULINEAR_BE:
644 			switch (p->precision) {
645 			case 8:
646 				md_format |= CMPCI_REG_FORMAT_8BIT;
647 				break;
648 			case 16:
649 				md_format |= CMPCI_REG_FORMAT_16BIT;
650 				if (mode & AUMODE_PLAY)
651 					p->sw_code =swap_bytes_change_sign16_le;
652 				else
653 					p->sw_code =change_sign16_swap_bytes_le;
654 				break;
655 			default:
656 				return (EINVAL);
657 			}
658 			break;
659 		default:
660 			return (EINVAL);
661 		}
662 		if (mode & AUMODE_PLAY)
663 			cmpci_reg_partial_write_4(sc,
664 			   CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT,
665                            CMPCI_REG_CH0_FORMAT_MASK, md_format);
666 		else
667 			cmpci_reg_partial_write_4(sc,
668                            CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT,
669 			   CMPCI_REG_CH1_FORMAT_MASK, md_format);
670 		/* sample rate */
671 		md_index = cmpci_rate_to_index(p->sample_rate);
672 		md_divide = cmpci_index_to_divider(md_index);
673 		p->sample_rate = cmpci_index_to_rate(md_index);
674 #if 0
675 		DPRINTF(("%s: sample:%d, divider=%d\n",
676 			 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
677 #endif
678 		if (mode & AUMODE_PLAY) {
679 			cmpci_reg_partial_write_4(sc,
680 			    CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
681 			    CMPCI_REG_DAC_FS_MASK, md_divide);
682 #ifdef CMPCI_SPDIF_SUPPORT
683 			switch (md_divide) {
684 			case CMPCI_REG_RATE_44100:
685 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
686 				    CMPCI_REG_SPDIF_48K);
687 				cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
688 				    CMPCI_REG_SPDIF_LOOP);
689 				cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
690 				    CMPCI_REG_SPDIF0_ENABLE);
691 				break;
692 			case CMPCI_REG_RATE_48000:
693 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
694 				    CMPCI_REG_SPDIF_48K);
695 				cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
696 				    CMPCI_REG_SPDIF_LOOP);
697 				cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
698 				    CMPCI_REG_SPDIF0_ENABLE);
699 				break;
700 			default:
701 				cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
702 				    CMPCI_REG_SPDIF0_ENABLE);
703 				cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
704 				    CMPCI_REG_SPDIF_LOOP);
705 			}
706 #endif
707 		} else {
708 			cmpci_reg_partial_write_4(sc,
709 			    CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
710 			    CMPCI_REG_ADC_FS_MASK, md_divide);
711 #ifdef CMPCI_SPDIF_SUPPORT
712 			if (sc->in_mask & CMPCI_SPDIF_IN) {
713 				switch (md_divide) {
714 				case CMPCI_REG_RATE_44100:
715 					cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
716 					    CMPCI_REG_SPDIF1_ENABLE);
717 					break;
718 				default:
719 					return EINVAL;
720 				}
721 			} else
722 				cmpci_reg_clear_4(sc,
723 				    CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE);
724 #endif
725 		}
726 	}
727 	return 0;
728 }
729 
730 /* ARGSUSED */
731 static int
732 cmpci_round_blocksize(handle, block)
733 	void *handle;
734 	int block;
735 {
736 	return (block & -4);
737 }
738 
739 static int
740 cmpci_halt_output(handle)
741     void *handle;
742 {
743 	struct cmpci_softc *sc = handle;
744 	int s;
745 
746 	s = splaudio();
747 	sc->sc_play.intr = NULL;
748 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
749 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
750 	/* wait for reset DMA */
751 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
752 	delay(10);
753 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
754 	splx(s);
755 
756 	return 0;
757 }
758 
759 static int
760 cmpci_halt_input(handle)
761 	void *handle;
762 {
763 	struct cmpci_softc *sc = handle;
764 	int s;
765 
766 	s = splaudio();
767 	sc->sc_rec.intr = NULL;
768 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
769 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
770 	/* wait for reset DMA */
771 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
772 	delay(10);
773 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
774 	splx(s);
775 
776 	return 0;
777 }
778 
779 
780 /* get audio device information */
781 static int
782 cmpci_getdev(handle, ad)
783         void *handle;
784         struct audio_device *ad;
785 {
786 	struct cmpci_softc *sc = handle;
787 
788 	strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
789 	snprintf(ad->version, sizeof(ad->version), "0x%02x", sc->sc_revision);
790 	switch (sc->sc_model) {
791 	case PCI_PRODUCT_CMEDIA_CMI8338A:
792 		strncpy(ad->config, "CMI8338A", sizeof(ad->config));
793 		break;
794 	case PCI_PRODUCT_CMEDIA_CMI8338B:
795 		strncpy(ad->config, "CMI8338B", sizeof(ad->config));
796 		break;
797 	case PCI_PRODUCT_CMEDIA_CMI8738:
798 		strncpy(ad->config, "CMI8738", sizeof(ad->config));
799 		break;
800 	default:
801 		strncpy(ad->config, "unknown", sizeof(ad->config));
802 	}
803 
804 	return 0;
805 }
806 
807 
808 /* mixer device information */
809 int
810 cmpci_query_devinfo(handle, dip)
811 	void *handle;
812 	mixer_devinfo_t *dip;
813 {
814 #if 0
815 	struct cmpci_softc *sc = handle;
816 #endif
817 
818 	switch (dip->index) {
819 	case CMPCI_MASTER_VOL:
820 		dip->type = AUDIO_MIXER_VALUE;
821 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
822 		dip->prev = dip->next = AUDIO_MIXER_LAST;
823 		strcpy(dip->label.name, AudioNmaster);
824 		dip->un.v.num_channels = 2;
825 		strcpy(dip->un.v.units.name, AudioNvolume);
826 		return 0;
827 	case CMPCI_FM_VOL:
828 		dip->type = AUDIO_MIXER_VALUE;
829 		dip->mixer_class = CMPCI_INPUT_CLASS;
830 		dip->prev = AUDIO_MIXER_LAST;
831 		dip->next = CMPCI_FM_IN_MUTE;
832 		strcpy(dip->label.name, AudioNfmsynth);
833 		dip->un.v.num_channels = 2;
834 		strcpy(dip->un.v.units.name, AudioNvolume);
835 		return 0;
836 	case CMPCI_CD_VOL:
837 		dip->type = AUDIO_MIXER_VALUE;
838 		dip->mixer_class = CMPCI_INPUT_CLASS;
839 		dip->prev = AUDIO_MIXER_LAST;
840 		dip->next = CMPCI_CD_IN_MUTE;
841 		strcpy(dip->label.name, AudioNcd);
842 		dip->un.v.num_channels = 2;
843 		strcpy(dip->un.v.units.name, AudioNvolume);
844 		return 0;
845 	case CMPCI_VOICE_VOL:
846 		dip->type = AUDIO_MIXER_VALUE;
847 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
848 		dip->prev = AUDIO_MIXER_LAST;
849 		dip->next = AUDIO_MIXER_LAST;
850 		strcpy(dip->label.name, AudioNdac);
851 		dip->un.v.num_channels = 2;
852 		strcpy(dip->un.v.units.name, AudioNvolume);
853 		return 0;
854 	case CMPCI_OUTPUT_CLASS:
855 		dip->type = AUDIO_MIXER_CLASS;
856 		dip->mixer_class = CMPCI_INPUT_CLASS;
857 		dip->next = dip->prev = AUDIO_MIXER_LAST;
858 		strcpy(dip->label.name, AudioCoutputs);
859 		return 0;
860 	case CMPCI_MIC_VOL:
861 		dip->type = AUDIO_MIXER_VALUE;
862 		dip->mixer_class = CMPCI_INPUT_CLASS;
863 		dip->prev = AUDIO_MIXER_LAST;
864 		dip->next = CMPCI_MIC_IN_MUTE;
865 		strcpy(dip->label.name, AudioNmicrophone);
866 		dip->un.v.num_channels = 1;
867 		strcpy(dip->un.v.units.name, AudioNvolume);
868 		return 0;
869 	case CMPCI_LINE_IN_VOL:
870 		dip->type = AUDIO_MIXER_VALUE;
871 		dip->mixer_class = CMPCI_INPUT_CLASS;
872 		dip->prev = AUDIO_MIXER_LAST;
873 		dip->next = CMPCI_LINE_IN_MUTE;
874 		strcpy(dip->label.name, AudioNline);
875 		dip->un.v.num_channels = 2;
876 		strcpy(dip->un.v.units.name, AudioNvolume);
877 		return 0;
878 	case CMPCI_RECORD_SOURCE:
879 		dip->mixer_class = CMPCI_RECORD_CLASS;
880 		dip->prev = dip->next = AUDIO_MIXER_LAST;
881 		strcpy(dip->label.name, AudioNsource);
882 		dip->type = AUDIO_MIXER_SET;
883 #ifdef CMPCI_SPDIF_SUPPORT
884 		dip->un.s.num_mem = 5;
885 #else
886 		dip->un.s.num_mem = 4;
887 #endif
888 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
889 		dip->un.s.member[0].mask = 1 << CMPCI_MIC_VOL;
890 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
891 		dip->un.s.member[1].mask = 1 << CMPCI_CD_VOL;
892 		strcpy(dip->un.s.member[2].label.name, AudioNline);
893 		dip->un.s.member[2].mask = 1 << CMPCI_LINE_IN_VOL;
894 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
895 		dip->un.s.member[3].mask = 1 << CMPCI_FM_VOL;
896 #ifdef CMPCI_SPDIF_SUPPORT
897 		strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
898 		dip->un.s.member[4].mask = 1 << CMPCI_SPDIF_IN;
899 #endif
900 		return 0;
901 	case CMPCI_BASS:
902 		dip->prev = dip->next = AUDIO_MIXER_LAST;
903 		strcpy(dip->label.name, AudioNbass);
904 		dip->type = AUDIO_MIXER_VALUE;
905 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
906 		dip->un.v.num_channels = 2;
907 		strcpy(dip->un.v.units.name, AudioNbass);
908 		return 0;
909 	case CMPCI_TREBLE:
910 		dip->prev = dip->next = AUDIO_MIXER_LAST;
911 		strcpy(dip->label.name, AudioNtreble);
912 		dip->type = AUDIO_MIXER_VALUE;
913 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
914 		dip->un.v.num_channels = 2;
915 		strcpy(dip->un.v.units.name, AudioNtreble);
916 		return 0;
917 	case CMPCI_RECORD_CLASS:
918 		dip->type = AUDIO_MIXER_CLASS;
919 		dip->mixer_class = CMPCI_RECORD_CLASS;
920 		dip->next = dip->prev = AUDIO_MIXER_LAST;
921 		strcpy(dip->label.name, AudioCrecord);
922 		return 0;
923 	case CMPCI_INPUT_CLASS:
924 		dip->type = AUDIO_MIXER_CLASS;
925 		dip->mixer_class = CMPCI_INPUT_CLASS;
926 		dip->next = dip->prev = AUDIO_MIXER_LAST;
927 		strcpy(dip->label.name, AudioCinputs);
928 		return 0;
929 	case CMPCI_PCSPEAKER:
930 		dip->type = AUDIO_MIXER_VALUE;
931 		dip->mixer_class = CMPCI_INPUT_CLASS;
932 		dip->prev = dip->next = AUDIO_MIXER_LAST;
933 		strcpy(dip->label.name, "pc_speaker");
934 		dip->un.v.num_channels = 1;
935 		strcpy(dip->un.v.units.name, AudioNvolume);
936 		return 0;
937 	case CMPCI_INPUT_GAIN:
938 		dip->type = AUDIO_MIXER_VALUE;
939 		dip->mixer_class = CMPCI_INPUT_CLASS;
940 		dip->prev = dip->next = AUDIO_MIXER_LAST;
941 		strcpy(dip->label.name, AudioNinput);
942 		dip->un.v.num_channels = 2;
943 		strcpy(dip->un.v.units.name, AudioNvolume);
944 		return 0;
945 	case CMPCI_OUTPUT_GAIN:
946 		dip->type = AUDIO_MIXER_VALUE;
947 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
948 		dip->prev = dip->next = AUDIO_MIXER_LAST;
949 		strcpy(dip->label.name, AudioNoutput);
950 		dip->un.v.num_channels = 2;
951 		strcpy(dip->un.v.units.name, AudioNvolume);
952 		return 0;
953 	case CMPCI_AGC:
954 		dip->type = AUDIO_MIXER_ENUM;
955 		dip->mixer_class = CMPCI_INPUT_CLASS;
956 		dip->prev = dip->next = AUDIO_MIXER_LAST;
957 		strcpy(dip->label.name, "agc");
958 		dip->un.e.num_mem = 2;
959 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
960 		dip->un.e.member[0].ord = 0;
961 		strcpy(dip->un.e.member[1].label.name, AudioNon);
962 		dip->un.e.member[1].ord = 1;
963 		return 0;
964 	case CMPCI_EQUALIZATION_CLASS:
965 		dip->type = AUDIO_MIXER_CLASS;
966 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
967 		dip->next = dip->prev = AUDIO_MIXER_LAST;
968 		strcpy(dip->label.name, AudioCequalization);
969 		return 0;
970 
971 	case CMPCI_CD_IN_MUTE:
972 		dip->prev = CMPCI_CD_VOL;
973 		dip->next = CMPCI_CD_SWAP;
974 		dip->mixer_class = CMPCI_INPUT_CLASS;
975 		goto mute;
976 	case CMPCI_MIC_IN_MUTE:
977 		dip->prev = CMPCI_MIC_VOL;
978 		dip->next = CMPCI_MIC_SWAP;
979 		dip->mixer_class = CMPCI_INPUT_CLASS;
980 		goto mute;
981 	case CMPCI_LINE_IN_MUTE:
982 		dip->prev = CMPCI_LINE_IN_VOL;
983 		dip->next = CMPCI_LINE_SWAP;
984 		dip->mixer_class = CMPCI_INPUT_CLASS;
985 		goto mute;
986 	case CMPCI_FM_IN_MUTE:
987 		dip->prev = CMPCI_FM_VOL;
988 		dip->next = CMPCI_FM_SWAP;
989 		dip->mixer_class = CMPCI_INPUT_CLASS;
990 		goto mute;
991 	case CMPCI_CD_SWAP:
992 		dip->prev = CMPCI_CD_IN_MUTE;
993 		dip->next = CMPCI_CD_OUT_MUTE;
994 		goto swap;
995 	case CMPCI_MIC_SWAP:
996 		dip->prev = CMPCI_MIC_IN_MUTE;
997 		dip->next = CMPCI_MIC_OUT_MUTE;
998 		goto swap;
999 	case CMPCI_LINE_SWAP:
1000 		dip->prev = CMPCI_LINE_IN_MUTE;
1001 		dip->next = CMPCI_LINE_OUT_MUTE;
1002 		goto swap;
1003 	case CMPCI_FM_SWAP:
1004 		dip->prev = CMPCI_FM_IN_MUTE;
1005 		dip->next = AUDIO_MIXER_LAST;
1006 	swap:
1007 		dip->mixer_class = CMPCI_INPUT_CLASS;
1008 		strcpy(dip->label.name, AudioNswap);
1009 		goto mute1;
1010 
1011 	case CMPCI_CD_OUT_MUTE:
1012 		dip->prev = CMPCI_CD_SWAP;
1013 		dip->next = AUDIO_MIXER_LAST;
1014 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1015 		goto mute;
1016 	case CMPCI_MIC_OUT_MUTE:
1017 		dip->prev = CMPCI_MIC_SWAP;
1018 		dip->next = AUDIO_MIXER_LAST;
1019 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1020 		goto mute;
1021 	case CMPCI_LINE_OUT_MUTE:
1022 		dip->prev = CMPCI_LINE_SWAP;
1023 		dip->next = AUDIO_MIXER_LAST;
1024 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1025 	mute:
1026 		strcpy(dip->label.name, AudioNmute);
1027 	mute1:
1028 		dip->type = AUDIO_MIXER_ENUM;
1029 		dip->un.e.num_mem = 2;
1030 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1031 		dip->un.e.member[0].ord = 0;
1032 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1033 		dip->un.e.member[1].ord = 1;
1034 		return 0;
1035 	}
1036 
1037 	return ENXIO;
1038 }
1039 
1040 static int
1041 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1042 	struct cmpci_softc *sc;
1043 	size_t size;
1044 	int type, flags;
1045 	caddr_t *r_addr;
1046 {
1047 	int error = 0;
1048 	struct cmpci_dmanode *n;
1049 	int w;
1050 
1051 	n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1052 	if (n == NULL) {
1053 		error = ENOMEM;
1054 		goto quit;
1055 	}
1056 
1057 	w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1058 #define CMPCI_DMABUF_ALIGN    0x4
1059 #define CMPCI_DMABUF_BOUNDARY 0x0
1060 	n->cd_tag = sc->sc_dmat;
1061 	n->cd_size = size;
1062 	error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1063 	    CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1064             sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1065 	if (error)
1066 		goto mfree;
1067 	error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1068 	    &n->cd_addr, w | BUS_DMA_COHERENT);
1069 	if (error)
1070 		goto dmafree;
1071 	error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1072 	    w, &n->cd_map);
1073 	if (error)
1074 		goto unmap;
1075 	error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1076 	    NULL, w);
1077 	if (error)
1078 		goto destroy;
1079 
1080 	n->cd_next = sc->sc_dmap;
1081 	sc->sc_dmap = n;
1082 	*r_addr = KVADDR(n);
1083 	return 0;
1084 
1085  destroy:
1086 	bus_dmamap_destroy(n->cd_tag, n->cd_map);
1087  unmap:
1088 	bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1089  dmafree:
1090 	bus_dmamem_free(n->cd_tag,
1091 			n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1092  mfree:
1093 	free(n, type);
1094  quit:
1095 	return error;
1096 }
1097 
1098 static int
1099 cmpci_free_dmamem(sc, addr, type)
1100 	struct cmpci_softc *sc;
1101 	caddr_t addr;
1102 	int type;
1103 {
1104 	struct cmpci_dmanode **nnp;
1105 
1106 	for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1107 		if ((*nnp)->cd_addr == addr) {
1108 			struct cmpci_dmanode *n = *nnp;
1109 			bus_dmamap_unload(n->cd_tag, n->cd_map);
1110 			bus_dmamap_destroy(n->cd_tag, n->cd_map);
1111 			bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1112 			bus_dmamem_free(n->cd_tag, n->cd_segs,
1113 			    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1114 			free(n, type);
1115 			return 0;
1116 		}
1117 	}
1118 	return -1;
1119 }
1120 
1121 static struct cmpci_dmanode *
1122 cmpci_find_dmamem(sc, addr)
1123 	struct cmpci_softc *sc;
1124 	caddr_t addr;
1125 {
1126 	struct cmpci_dmanode *p;
1127 	for (p=sc->sc_dmap; p; p=p->cd_next)
1128 		if ( KVADDR(p) == (void *)addr )
1129 			break;
1130 	return p;
1131 }
1132 
1133 
1134 #if 0
1135 static void
1136 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1137 static void
1138 cmpci_print_dmamem(p)
1139 	struct cmpci_dmanode *p;
1140 {
1141 	DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1142 		 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1143 		 (void *)DMAADDR(p), (void *)p->cd_size));
1144 }
1145 #endif /* DEBUG */
1146 
1147 
1148 static void *
1149 cmpci_allocm(handle, direction, size, type, flags)
1150 	void  *handle;
1151 	int    direction;
1152 	size_t size;
1153 	int    type, flags;
1154 {
1155 	struct cmpci_softc *sc = handle;
1156 	caddr_t addr;
1157 
1158 	if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1159 		return NULL;
1160 	return addr;
1161 }
1162 
1163 static void
1164 cmpci_freem(handle, addr, type)
1165 	void    *handle;
1166 	void    *addr;
1167 	int     type;
1168 {
1169 	struct cmpci_softc *sc = handle;
1170 
1171 	cmpci_free_dmamem(sc, addr, type);
1172 }
1173 
1174 
1175 #define MAXVAL 256
1176 static int
1177 cmpci_adjust(val, mask)
1178 	int val, mask;
1179 {
1180 	val += (MAXVAL - mask) >> 1;
1181 	if (val >= MAXVAL)
1182 		val = MAXVAL-1;
1183 	return val & mask;
1184 }
1185 
1186 static void
1187 cmpci_set_mixer_gain(sc, port)
1188 	struct cmpci_softc *sc;
1189 	int port;
1190 {
1191 	int src;
1192 
1193 	switch (port) {
1194 	case CMPCI_MIC_VOL:
1195 		src = CMPCI_SB16_MIXER_MIC;
1196 		break;
1197 	case CMPCI_MASTER_VOL:
1198 		src = CMPCI_SB16_MIXER_MASTER_L;
1199 		break;
1200 	case CMPCI_LINE_IN_VOL:
1201 		src = CMPCI_SB16_MIXER_LINE_L;
1202 		break;
1203 	case CMPCI_VOICE_VOL:
1204 		src = CMPCI_SB16_MIXER_VOICE_L;
1205 		break;
1206 	case CMPCI_FM_VOL:
1207 		src = CMPCI_SB16_MIXER_FM_L;
1208 		break;
1209 	case CMPCI_CD_VOL:
1210 		src = CMPCI_SB16_MIXER_CDDA_L;
1211 		break;
1212 	case CMPCI_INPUT_GAIN:
1213 		src = CMPCI_SB16_MIXER_INGAIN_L;
1214 		break;
1215 	case CMPCI_OUTPUT_GAIN:
1216 		src = CMPCI_SB16_MIXER_OUTGAIN_L;
1217 		break;
1218 	case CMPCI_TREBLE:
1219 		src = CMPCI_SB16_MIXER_TREBLE_L;
1220 		break;
1221 	case CMPCI_BASS:
1222 		src = CMPCI_SB16_MIXER_BASS_L;
1223 		break;
1224 	case CMPCI_PCSPEAKER:
1225 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1226 		    sc->gain[port][CMPCI_LEFT]);
1227 		return;
1228 	default:
1229 		return;
1230 	}
1231 	cmpci_mixerreg_write(sc, src, sc->gain[port][CMPCI_LEFT]);
1232 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1233 	    sc->gain[port][CMPCI_RIGHT]);
1234 }
1235 
1236 static int
1237 cmpci_set_in_ports(sc, mask)
1238 	struct cmpci_softc *sc;
1239 	int mask;
1240 {
1241 	int bitsl, bitsr;
1242 
1243 	if (mask & ~((1<<CMPCI_FM_VOL) | (1<<CMPCI_LINE_IN_VOL) |
1244 		     (1<<CMPCI_CD_VOL) | (1<<CMPCI_MIC_VOL)
1245 #ifdef CMPCI_SPDIF_SUPPORT
1246 		     | (1<<CMPCI_SPDIF_IN)
1247 #endif
1248 		))
1249 		return EINVAL;
1250 	bitsr = 0;
1251 	if (mask & (1<<CMPCI_FM_VOL))    bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1252 	if (mask & (1<<CMPCI_LINE_IN_VOL)) bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1253 	if (mask & (1<<CMPCI_CD_VOL))      bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1254 	bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1255 	if (mask & (1<<CMPCI_MIC_VOL)) {
1256 		bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1257 		bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1258 	}
1259 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1260 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1261 
1262 	sc->in_mask = mask;
1263 
1264 	return 0;
1265 }
1266 
1267 static int
1268 cmpci_set_port(handle, cp)
1269 	void *handle;
1270 	mixer_ctrl_t *cp;
1271 {
1272 	struct cmpci_softc *sc = handle;
1273 	int lgain, rgain;
1274 	int mask, bits;
1275 	int lmask, rmask, lbits, rbits;
1276 	int mute, swap;
1277 
1278 	switch (cp->dev) {
1279 	case CMPCI_TREBLE:
1280 	case CMPCI_BASS:
1281 	case CMPCI_PCSPEAKER:
1282 	case CMPCI_INPUT_GAIN:
1283 	case CMPCI_OUTPUT_GAIN:
1284 	case CMPCI_MIC_VOL:
1285 	case CMPCI_LINE_IN_VOL:
1286 	case CMPCI_VOICE_VOL:
1287 	case CMPCI_FM_VOL:
1288 	case CMPCI_CD_VOL:
1289 	case CMPCI_MASTER_VOL:
1290 		if (cp->type != AUDIO_MIXER_VALUE)
1291 			return EINVAL;
1292 		switch (cp->dev) {
1293 		case CMPCI_MIC_VOL:
1294 			if (cp->un.value.num_channels != 1)
1295 				return EINVAL;
1296 
1297 			lgain = rgain =
1298 				CMPCI_ADJUST_MIC_GAIN(sc,
1299 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1300 			break;
1301 		case CMPCI_PCSPEAKER:
1302 			if (cp->un.value.num_channels != 1)
1303 				return EINVAL;
1304 			/* fall into */
1305 		case CMPCI_INPUT_GAIN:
1306 		case CMPCI_OUTPUT_GAIN:
1307 			lgain = rgain =	CMPCI_ADJUST_2_GAIN(sc,
1308 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1309 			break;
1310 		default:
1311 			switch (cp->un.value.num_channels) {
1312 			case 1:
1313 				lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1314 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1315 				break;
1316 			case 2:
1317 				lgain =	CMPCI_ADJUST_GAIN(sc,
1318 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1319 				rgain = CMPCI_ADJUST_GAIN(sc,
1320 				   cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1321 				break;
1322 			default:
1323 				return EINVAL;
1324 			}
1325 			break;
1326 		}
1327 		sc->gain[cp->dev][CMPCI_LEFT]  = lgain;
1328 		sc->gain[cp->dev][CMPCI_RIGHT] = rgain;
1329 
1330 		cmpci_set_mixer_gain(sc, cp->dev);
1331 		break;
1332 
1333 	case CMPCI_RECORD_SOURCE:
1334 		if (cp->type != AUDIO_MIXER_SET)
1335 			return EINVAL;
1336 #ifdef CMPCI_SPDIF_SUPPORT
1337 		if (cp->un.mask & (1<<CMPCI_SPDIF_IN))
1338 			cp->un.mask = 1<<CMPCI_SPDIF_IN;
1339 #endif
1340 		return cmpci_set_in_ports(sc, cp->un.mask);
1341 
1342 	case CMPCI_AGC:
1343 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1344 		break;
1345 
1346 	case CMPCI_CD_OUT_MUTE:
1347 		mask = CMPCI_SB16_SW_CD;
1348 		goto omute;
1349 	case CMPCI_MIC_OUT_MUTE:
1350 		mask = CMPCI_SB16_SW_MIC;
1351 		goto omute;
1352 	case CMPCI_LINE_OUT_MUTE:
1353 		mask = CMPCI_SB16_SW_LINE;
1354 	omute:
1355 		if (cp->type != AUDIO_MIXER_ENUM)
1356 			return EINVAL;
1357 		bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1358 		sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1359 		if (cp->un.ord)
1360 			bits = bits & ~mask;
1361 		else
1362 			bits = bits | mask;
1363 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1364 		break;
1365 
1366 	case CMPCI_MIC_IN_MUTE:
1367 	case CMPCI_MIC_SWAP:
1368 		lmask = rmask = CMPCI_SB16_SW_MIC;
1369 		goto imute;
1370 	case CMPCI_CD_IN_MUTE:
1371 	case CMPCI_CD_SWAP:
1372 		lmask = CMPCI_SB16_SW_CD_L;
1373 		rmask = CMPCI_SB16_SW_CD_R;
1374 		goto imute;
1375 	case CMPCI_LINE_IN_MUTE:
1376 	case CMPCI_LINE_SWAP:
1377 		lmask = CMPCI_SB16_SW_LINE_L;
1378 		rmask = CMPCI_SB16_SW_LINE_R;
1379 		goto imute;
1380 	case CMPCI_FM_IN_MUTE:
1381 	case CMPCI_FM_SWAP:
1382 		lmask = CMPCI_SB16_SW_FM_L;
1383 		rmask = CMPCI_SB16_SW_FM_R;
1384 	imute:
1385 		if (cp->type != AUDIO_MIXER_ENUM)
1386 			return EINVAL;
1387 		mask = lmask | rmask;
1388 		lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1389 		    & ~mask;
1390 		rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1391 		    & ~mask;
1392 		sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1393 		if (CMPCI_IS_IN_MUTE(cp->dev)) {
1394 			mute = cp->dev;
1395 			swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1396 		} else {
1397 			swap = cp->dev;
1398 			mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1399 		}
1400 		if (sc->gain[swap][CMPCI_LR]) {
1401 			mask = lmask;
1402 			lmask = rmask;
1403 			rmask = mask;
1404 		}
1405 		if (!sc->gain[mute][CMPCI_LR]) {
1406 			lbits = lbits | lmask;
1407 			rbits = rbits | rmask;
1408 		}
1409 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1410 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1411 		break;
1412 
1413 	default:
1414 	    return EINVAL;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int
1421 cmpci_get_port(handle, cp)
1422 	void *handle;
1423 	mixer_ctrl_t *cp;
1424 {
1425 	struct cmpci_softc *sc = handle;
1426 
1427 	switch (cp->dev) {
1428 	case CMPCI_MIC_VOL:
1429 	case CMPCI_LINE_IN_VOL:
1430 		if (cp->un.value.num_channels != 1)
1431 			return EINVAL;
1432 		/* fall into */
1433 	case CMPCI_TREBLE:
1434 	case CMPCI_BASS:
1435 	case CMPCI_PCSPEAKER:
1436 	case CMPCI_INPUT_GAIN:
1437 	case CMPCI_OUTPUT_GAIN:
1438 	case CMPCI_VOICE_VOL:
1439 	case CMPCI_FM_VOL:
1440 	case CMPCI_CD_VOL:
1441 	case CMPCI_MASTER_VOL:
1442 		switch (cp->un.value.num_channels) {
1443 		case 1:
1444 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1445 				sc->gain[cp->dev][CMPCI_LEFT];
1446 			break;
1447 		case 2:
1448 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1449 				sc->gain[cp->dev][CMPCI_LEFT];
1450 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1451 				sc->gain[cp->dev][CMPCI_RIGHT];
1452 			break;
1453 		default:
1454 			return EINVAL;
1455 		}
1456 		break;
1457 
1458 	case CMPCI_RECORD_SOURCE:
1459 		cp->un.mask = sc->in_mask;
1460 		break;
1461 
1462 	case CMPCI_AGC:
1463 		cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1464 		break;
1465 
1466 	case CMPCI_CD_IN_MUTE:
1467 	case CMPCI_MIC_IN_MUTE:
1468 	case CMPCI_LINE_IN_MUTE:
1469 	case CMPCI_FM_IN_MUTE:
1470 	case CMPCI_CD_SWAP:
1471 	case CMPCI_MIC_SWAP:
1472 	case CMPCI_LINE_SWAP:
1473 	case CMPCI_FM_SWAP:
1474 	case CMPCI_CD_OUT_MUTE:
1475 	case CMPCI_MIC_OUT_MUTE:
1476 	case CMPCI_LINE_OUT_MUTE:
1477 		cp->un.ord = sc->gain[cp->dev][CMPCI_LR];
1478 		break;
1479 
1480 	default:
1481 		return EINVAL;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /* ARGSUSED */
1488 static size_t
1489 cmpci_round_buffersize(handle, direction, bufsize)
1490 	void *handle;
1491 	int direction;
1492 	size_t bufsize;
1493 {
1494 	if (bufsize > 0x10000)
1495 		bufsize = 0x10000;
1496 
1497 	return bufsize;
1498 }
1499 
1500 
1501 static int
1502 cmpci_mappage(handle, addr, offset, prot)
1503 	void *handle;
1504 	void *addr;
1505 	int   offset;
1506 	int   prot;
1507 {
1508 	struct cmpci_softc *sc = handle;
1509 	struct cmpci_dmanode *p;
1510 
1511 	if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1512 		return -1;
1513 
1514 	return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1515                    sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1516                    offset, prot, BUS_DMA_WAITOK);
1517 }
1518 
1519 
1520 /* ARGSUSED */
1521 static int
1522 cmpci_get_props(handle)
1523 	void *handle;
1524 {
1525 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1526 }
1527 
1528 
1529 static int
1530 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1531         void *handle;
1532         void *start, *end;
1533         int blksize;
1534         void (*intr) __P((void *));
1535         void *arg;
1536         struct audio_params *param;
1537 {
1538 	struct cmpci_softc *sc = handle;
1539 	struct cmpci_dmanode *p;
1540 	int bps;
1541 
1542 	sc->sc_play.intr = intr;
1543 	sc->sc_play.intr_arg = arg;
1544 	bps = param->channels*param->precision*param->factor / 8;
1545 	if (!bps)
1546 		return EINVAL;
1547 
1548 	/* set DMA frame */
1549 	if (!(p = cmpci_find_dmamem(sc, start)))
1550 		return EINVAL;
1551 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1552 	    DMAADDR(p));
1553 	delay(10);
1554 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1555             ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1556 	delay(10);
1557 
1558 	/* set interrupt count */
1559 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1560 			  (blksize + bps - 1) / bps - 1);
1561 	delay(10);
1562 
1563 	/* start DMA */
1564 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1565 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1566 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1567 
1568 	return 0;
1569 }
1570 
1571 static int
1572 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1573         void *handle;
1574         void *start, *end;
1575         int blksize;
1576         void (*intr) __P((void *));
1577         void *arg;
1578         struct audio_params *param;
1579 {
1580 	struct cmpci_softc *sc = handle;
1581 	struct cmpci_dmanode *p;
1582 	int bps;
1583 
1584 	sc->sc_rec.intr = intr;
1585 	sc->sc_rec.intr_arg = arg;
1586 	bps = param->channels*param->precision*param->factor/8;
1587 	if (!bps)
1588 		return EINVAL;
1589 
1590 	/* set DMA frame */
1591 	if (!(p=cmpci_find_dmamem(sc, start)))
1592 		return EINVAL;
1593 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1594 	    DMAADDR(p));
1595 	delay(10);
1596 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1597             ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1598 	delay(10);
1599 
1600 	/* set interrupt count */
1601 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1602             (blksize + bps - 1) / bps - 1);
1603 	delay(10);
1604 
1605 	/* start DMA */
1606 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1607 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1608 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1609 
1610 	return 0;
1611 }
1612 
1613 
1614 /* end of file */
1615