xref: /netbsd-src/sys/dev/pci/cmpci.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: cmpci.c,v 1.7 2001/02/12 18:47:12 tshiozak Exp $	*/
2 
3 /*
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI <tshiozak@netbsd.org> .
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * C-Media CMI8x38 Audio Chip Support.
35  *
36  * TODO:
37  *   - Legacy MPU, OPL and Joystick support.
38  *
39  */
40 
41 #if defined(AUDIO_DEBUG) || defined(DEBUG)
42 #define DPRINTF(x) if (cmpcidebug) printf x
43 int cmpcidebug = 0;
44 #else
45 #define DPRINTF(x)
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 
55 #include <dev/pci/pcidevs.h>
56 #include <dev/pci/pcivar.h>
57 
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/midi_if.h>
61 
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64 #include <dev/pci/cmpcireg.h>
65 #include <dev/pci/cmpcivar.h>
66 
67 #include <dev/ic/mpuvar.h>
68 #include <machine/bus.h>
69 #include <machine/intr.h>
70 
71 /*
72  * Low-level HW interface
73  */
74 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
75 						 uint8_t));
76 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
77 					       uint8_t, uint8_t));
78 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
79 						    int, int,
80 						    uint32_t, uint32_t));
81 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
82 					  int, uint8_t));
83 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
84 					    int, uint8_t));
85 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
86 					  int, uint32_t));
87 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
88 					    int, uint32_t));
89 static int cmpci_rate_to_index __P((int));
90 static __inline int cmpci_index_to_rate __P((int));
91 static __inline int cmpci_index_to_divider __P((int));
92 
93 static int cmpci_adjust __P((int, int));
94 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
95 static void cmpci_set_out_ports __P((struct cmpci_softc *));
96 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
97 
98 
99 /*
100  * autoconf interface
101  */
102 static int cmpci_match __P((struct device *, struct cfdata *, void *));
103 static void cmpci_attach __P((struct device *, struct device *, void *));
104 
105 struct cfattach cmpci_ca = {
106 	sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
107 };
108 
109 /* interrupt */
110 static int cmpci_intr __P((void *));
111 
112 
113 /*
114  * DMA stuffs
115  */
116 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
117 				   size_t, int, int, caddr_t *));
118 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
119 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
120 						     caddr_t));
121 
122 
123 /*
124  * interface to machine independent layer
125  */
126 static int cmpci_open __P((void *, int));
127 static void cmpci_close __P((void *));
128 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
129 static int cmpci_set_params __P((void *, int, int,
130 				 struct audio_params *,
131 				 struct audio_params *));
132 static int cmpci_round_blocksize __P((void *, int));
133 static int cmpci_halt_output __P((void *));
134 static int cmpci_halt_input __P((void *));
135 static int cmpci_getdev __P((void *, struct audio_device *));
136 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
137 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
138 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
139 static void *cmpci_allocm __P((void *, int, size_t, int, int));
140 static void cmpci_freem __P((void *, void *, int));
141 static size_t cmpci_round_buffersize __P((void *, int, size_t));
142 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
143 static int cmpci_get_props __P((void *));
144 static int cmpci_trigger_output __P((void *, void *, void *, int,
145 				     void (*)(void *), void *,
146 				     struct audio_params *));
147 static int cmpci_trigger_input __P((void *, void *, void *, int,
148 				    void (*)(void *), void *,
149 				    struct audio_params *));
150 
151 static struct audio_hw_if cmpci_hw_if = {
152 	cmpci_open,		/* open */
153 	cmpci_close,		/* close */
154 	NULL,			/* drain */
155 	cmpci_query_encoding,	/* query_encoding */
156 	cmpci_set_params,	/* set_params */
157 	cmpci_round_blocksize,	/* round_blocksize */
158 	NULL,			/* commit_settings */
159 	NULL,			/* init_output */
160 	NULL,			/* init_input */
161 	NULL,			/* start_output */
162 	NULL,			/* start_input */
163 	cmpci_halt_output,	/* halt_output */
164 	cmpci_halt_input,	/* halt_input */
165 	NULL,			/* speaker_ctl */
166 	cmpci_getdev,		/* getdev */
167 	NULL,			/* setfd */
168 	cmpci_set_port,		/* set_port */
169 	cmpci_get_port,		/* get_port */
170 	cmpci_query_devinfo,	/* query_devinfo */
171 	cmpci_allocm,		/* allocm */
172 	cmpci_freem,		/* freem */
173 	cmpci_round_buffersize,/* round_buffersize */
174 	cmpci_mappage,		/* mappage */
175 	cmpci_get_props,	/* get_props */
176 	cmpci_trigger_output,	/* trigger_output */
177 	cmpci_trigger_input	/* trigger_input */
178 };
179 
180 
181 /*
182  * Low-level HW interface
183  */
184 
185 /* mixer register read/write */
186 static __inline uint8_t
187 cmpci_mixerreg_read(sc, no)
188 	struct cmpci_softc *sc;
189 	uint8_t no;
190 {
191 	uint8_t ret;
192 
193 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
194 	delay(10);
195 	ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
196 	delay(10);
197 	return ret;
198 }
199 
200 static __inline void
201 cmpci_mixerreg_write(sc, no, val)
202 	struct cmpci_softc *sc;
203 	uint8_t no, val;
204 {
205 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
206 	delay(10);
207 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
208 	delay(10);
209 }
210 
211 
212 /* register partial write */
213 static __inline void
214 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
215 	struct cmpci_softc *sc;
216 	int no, shift;
217 	uint32_t mask, val;
218 {
219 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
220 	    (val<<shift) |
221 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
222 	delay(10);
223 }
224 
225 /* register set/clear bit */
226 static __inline void
227 cmpci_reg_set_1(sc, no, mask)
228 	struct cmpci_softc *sc;
229 	int no;
230 	uint8_t mask;
231 {
232 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
233 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
234 	delay(10);
235 }
236 
237 static __inline void
238 cmpci_reg_clear_1(sc, no, mask)
239 	struct cmpci_softc *sc;
240 	int no;
241 	uint8_t mask;
242 {
243 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
244 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
245 	delay(10);
246 }
247 
248 
249 static __inline void
250 cmpci_reg_set_4(sc, no, mask)
251 	struct cmpci_softc *sc;
252 	int no;
253 	uint32_t mask;
254 {
255 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
256 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
257 	delay(10);
258 }
259 
260 static __inline void
261 cmpci_reg_clear_4(sc, no, mask)
262 	struct cmpci_softc *sc;
263 	int no;
264 	uint32_t mask;
265 {
266 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
267 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
268 	delay(10);
269 }
270 
271 
272 /* rate */
273 static const struct {
274 	int rate;
275 	int divider;
276 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
277 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
278 	_RATE(5512),
279 	_RATE(8000),
280 	_RATE(11025),
281 	_RATE(16000),
282 	_RATE(22050),
283 	_RATE(32000),
284 	_RATE(44100),
285 	_RATE(48000)
286 #undef	_RATE
287 };
288 
289 static int
290 cmpci_rate_to_index(rate)
291 	int rate;
292 {
293 	int i;
294 
295 	for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
296 		if (rate <=
297 		    (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
298 			return i;
299 	return i;  /* 48000 */
300 }
301 
302 static __inline int
303 cmpci_index_to_rate(index)
304 	int index;
305 {
306 	return cmpci_rate_table[index].rate;
307 }
308 
309 static __inline int
310 cmpci_index_to_divider(index)
311 	int index;
312 {
313 	return cmpci_rate_table[index].divider;
314 }
315 
316 
317 /*
318  * interface to configure the device.
319  */
320 
321 static int
322 cmpci_match(parent, match, aux)
323 	struct device *parent;
324 	struct cfdata *match;
325 	void *aux;
326 {
327 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
328 
329 	if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
330 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
331 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
332 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
333 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
334 		return 1;
335 
336 	return 0;
337 }
338 
339 static void
340 cmpci_attach(parent, self, aux)
341 	struct device *parent, *self;
342 	void *aux;
343 {
344 	struct cmpci_softc *sc = (struct cmpci_softc *)self;
345 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
346 	pci_intr_handle_t ih;
347 	char const *strintr;
348 	char devinfo[256];
349 	int i, v;
350 
351 	sc->sc_id = pa->pa_id;
352 	sc->sc_class = pa->pa_class;
353 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
354 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
355 	switch (PCI_PRODUCT(sc->sc_id)) {
356 	case PCI_PRODUCT_CMEDIA_CMI8338A:
357 		/*FALLTHROUGH*/
358 	case PCI_PRODUCT_CMEDIA_CMI8338B:
359 		sc->sc_capable = CMPCI_CAP_CMI8338;
360 		break;
361 	case PCI_PRODUCT_CMEDIA_CMI8738:
362 		/*FALLTHROUGH*/
363 	case PCI_PRODUCT_CMEDIA_CMI8738B:
364 		sc->sc_capable = CMPCI_CAP_CMI8738;
365 		break;
366 	}
367 
368 	/* map I/O space */
369 	if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
370 		&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
371 		printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
372 		return;
373 	}
374 
375 	/* interrupt */
376 	if (pci_intr_map(pa, &ih)) {
377 		printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
378 		return;
379 	}
380 	strintr = pci_intr_string(pa->pa_pc, ih);
381 	sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
382 	if (sc->sc_ih == NULL) {
383 		printf("%s: failed to establish interrupt",
384 		    sc->sc_dev.dv_xname);
385 		if (strintr != NULL)
386 			printf(" at %s", strintr);
387 		printf("\n");
388 		return;
389 	}
390 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
391 
392 	sc->sc_dmat = pa->pa_dmat;
393 
394 	audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
395 
396 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
397 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
398 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
399 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
400 	    CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
401 	for (i = 0; i < CMPCI_NDEVS; i++) {
402 		switch(i) {
403 		case CMPCI_MIC_VOL:
404 		case CMPCI_LINE_IN_VOL:
405 			v = 0;
406 			break;
407 		case CMPCI_BASS:
408 		case CMPCI_TREBLE:
409 			v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 			break;
411 		case CMPCI_CD_IN_MUTE:
412 		case CMPCI_MIC_IN_MUTE:
413 		case CMPCI_LINE_IN_MUTE:
414 		case CMPCI_FM_IN_MUTE:
415 		case CMPCI_CD_SWAP:
416 		case CMPCI_MIC_SWAP:
417 		case CMPCI_LINE_SWAP:
418 		case CMPCI_FM_SWAP:
419 		case CMPCI_SPDIF_LOOP:
420 		case CMPCI_SPDIF_OUT_VOLTAGE:
421 		case CMPCI_SPDIF_IN_PHASE:
422 		case CMPCI_REAR:
423 		case CMPCI_INDIVIDUAL:
424 		case CMPCI_REVERSE:
425 		case CMPCI_SURROUND:
426 			v = 0;
427 			break;
428 		case CMPCI_CD_OUT_MUTE:
429 		case CMPCI_MIC_OUT_MUTE:
430 		case CMPCI_LINE_OUT_MUTE:
431 		case CMPCI_SPDIF_IN_MUTE:
432 			v = 1;
433 			break;
434 		default:
435 			v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
436 		}
437 		sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
438 		cmpci_set_mixer_gain(sc, i);
439 	}
440 }
441 
442 
443 static int
444 cmpci_intr(handle)
445 	void *handle;
446 {
447 	struct cmpci_softc *sc = handle;
448 	uint32_t intrstat;
449 
450 	intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
451 	    CMPCI_REG_INTR_STATUS);
452 	delay(10);
453 
454 	if (!(intrstat & CMPCI_REG_ANY_INTR))
455 		return 0;
456 
457 	/* disable and reset intr */
458 	if (intrstat & CMPCI_REG_CH0_INTR)
459 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
460 		   CMPCI_REG_CH0_INTR_ENABLE);
461 	if (intrstat & CMPCI_REG_CH1_INTR)
462 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
463 		    CMPCI_REG_CH1_INTR_ENABLE);
464 
465 	if (intrstat & CMPCI_REG_CH0_INTR) {
466 		if (sc->sc_play.intr != NULL)
467 			(*sc->sc_play.intr)(sc->sc_play.intr_arg);
468 	}
469 	if (intrstat & CMPCI_REG_CH1_INTR) {
470 		if (sc->sc_rec.intr != NULL)
471 			(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
472 	}
473 
474 	/* enable intr */
475 	if (intrstat & CMPCI_REG_CH0_INTR)
476 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
477 		    CMPCI_REG_CH0_INTR_ENABLE);
478 	if (intrstat & CMPCI_REG_CH1_INTR)
479 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
480 		    CMPCI_REG_CH1_INTR_ENABLE);
481 
482 	return 0;
483 }
484 
485 
486 /* open/close */
487 static int
488 cmpci_open(handle, flags)
489 	void *handle;
490 	int flags;
491 {
492 	return 0;
493 }
494 
495 static void
496 cmpci_close(handle)
497 	void *handle;
498 {
499 }
500 
501 static int
502 cmpci_query_encoding(handle, fp)
503 	void *handle;
504 	struct audio_encoding *fp;
505 {
506 	switch (fp->index) {
507 	case 0:
508 		strcpy(fp->name, AudioEulinear);
509 		fp->encoding = AUDIO_ENCODING_ULINEAR;
510 		fp->precision = 8;
511 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
512 		break;
513 	case 1:
514 		strcpy(fp->name, AudioEmulaw);
515 		fp->encoding = AUDIO_ENCODING_ULAW;
516 		fp->precision = 8;
517 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
518 		break;
519 	case 2:
520 		strcpy(fp->name, AudioEalaw);
521 		fp->encoding = AUDIO_ENCODING_ALAW;
522 		fp->precision = 8;
523 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 		break;
525 	case 3:
526 		strcpy(fp->name, AudioEslinear);
527 		fp->encoding = AUDIO_ENCODING_SLINEAR;
528 		fp->precision = 8;
529 		fp->flags = 0;
530 		break;
531 	case 4:
532 		strcpy(fp->name, AudioEslinear_le);
533 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
534 		fp->precision = 16;
535 		fp->flags = 0;
536 		break;
537 	case 5:
538 		strcpy(fp->name, AudioEulinear_le);
539 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
540 		fp->precision = 16;
541 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
542 		break;
543 	case 6:
544 		strcpy(fp->name, AudioEslinear_be);
545 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
546 		fp->precision = 16;
547 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
548 		break;
549 	case 7:
550 		strcpy(fp->name, AudioEulinear_be);
551 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
552 		fp->precision = 16;
553 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
554 		break;
555 	default:
556 		return EINVAL;
557 	}
558 	return 0;
559 }
560 
561 
562 static int
563 cmpci_set_params(handle, setmode, usemode, play, rec)
564 	void *handle;
565 	int setmode, usemode;
566 	struct audio_params *play, *rec;
567 {
568 	int i;
569 	struct cmpci_softc *sc = handle;
570 
571 	for (i = 0; i < 2; i++) {
572 		int md_format;
573 		int md_divide;
574 		int md_index;
575 		int mode;
576 		struct audio_params *p;
577 
578 		switch (i) {
579 		case 0:
580 			mode = AUMODE_PLAY;
581 			p = play;
582 			break;
583 		case 1:
584 			mode = AUMODE_RECORD;
585 			p = rec;
586 			break;
587 		}
588 
589 		if (!(setmode & mode))
590 			continue;
591 
592 
593 		/* format */
594 		p->sw_code = NULL;
595 		switch ( p->channels ) {
596 		case 1:
597 			md_format = CMPCI_REG_FORMAT_MONO;
598 			break;
599 		case 2:
600 			md_format = CMPCI_REG_FORMAT_STEREO;
601 			break;
602 		default:
603 			return (EINVAL);
604 		}
605 		switch (p->encoding) {
606 		case AUDIO_ENCODING_ULAW:
607 			if (p->precision != 8)
608 				return (EINVAL);
609 			if (mode & AUMODE_PLAY) {
610 				p->factor = 2;
611 				p->sw_code = mulaw_to_slinear16_le;
612 				md_format |= CMPCI_REG_FORMAT_16BIT;
613 			} else {
614 				p->sw_code = ulinear8_to_mulaw;
615 				md_format |= CMPCI_REG_FORMAT_8BIT;
616 			}
617 			break;
618 		case AUDIO_ENCODING_ALAW:
619 			if (p->precision != 8)
620 				return (EINVAL);
621 			if (mode & AUMODE_PLAY) {
622 				p->factor = 2;
623 				p->sw_code = alaw_to_slinear16_le;
624 				md_format |= CMPCI_REG_FORMAT_16BIT;
625 			} else {
626 				p->sw_code = ulinear8_to_alaw;
627 				md_format |= CMPCI_REG_FORMAT_8BIT;
628 			}
629 			break;
630 		case AUDIO_ENCODING_SLINEAR_LE:
631 			switch (p->precision) {
632 			case 8:
633 				p->sw_code = change_sign8;
634 				md_format |= CMPCI_REG_FORMAT_8BIT;
635 				break;
636 			case 16:
637 				md_format |= CMPCI_REG_FORMAT_16BIT;
638 				break;
639 			default:
640 				return (EINVAL);
641 			}
642 			break;
643 		case AUDIO_ENCODING_SLINEAR_BE:
644 			switch (p->precision) {
645 			case 8:
646 				md_format |= CMPCI_REG_FORMAT_8BIT;
647 				p->sw_code = change_sign8;
648 				break;
649 			case 16:
650 				md_format |= CMPCI_REG_FORMAT_16BIT;
651 				p->sw_code = swap_bytes;
652 				break;
653 			default:
654 				return (EINVAL);
655 			}
656 			break;
657 		case AUDIO_ENCODING_ULINEAR_LE:
658 			switch (p->precision) {
659 			case 8:
660 				md_format |= CMPCI_REG_FORMAT_8BIT;
661 				break;
662 			case 16:
663 				md_format |= CMPCI_REG_FORMAT_16BIT;
664 				p->sw_code = change_sign16_le;
665 				break;
666 			default:
667 				return (EINVAL);
668 			}
669 			break;
670 		case AUDIO_ENCODING_ULINEAR_BE:
671 			switch (p->precision) {
672 			case 8:
673 				md_format |= CMPCI_REG_FORMAT_8BIT;
674 				break;
675 			case 16:
676 				md_format |= CMPCI_REG_FORMAT_16BIT;
677 				if (mode & AUMODE_PLAY)
678 					p->sw_code =
679 					    swap_bytes_change_sign16_le;
680 				else
681 					p->sw_code =
682 					    change_sign16_swap_bytes_le;
683 				break;
684 			default:
685 				return (EINVAL);
686 			}
687 			break;
688 		default:
689 			return (EINVAL);
690 		}
691 		if (mode & AUMODE_PLAY)
692 			cmpci_reg_partial_write_4(sc,
693 			   CMPCI_REG_CHANNEL_FORMAT,
694 			   CMPCI_REG_CH0_FORMAT_SHIFT,
695 			   CMPCI_REG_CH0_FORMAT_MASK, md_format);
696 		else
697 			cmpci_reg_partial_write_4(sc,
698 			   CMPCI_REG_CHANNEL_FORMAT,
699 			   CMPCI_REG_CH1_FORMAT_SHIFT,
700 			   CMPCI_REG_CH1_FORMAT_MASK, md_format);
701 		/* sample rate */
702 		md_index = cmpci_rate_to_index(p->sample_rate);
703 		md_divide = cmpci_index_to_divider(md_index);
704 		p->sample_rate = cmpci_index_to_rate(md_index);
705 		DPRINTF(("%s: sample:%d, divider=%d\n",
706 			 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
707 		if (mode & AUMODE_PLAY) {
708 			cmpci_reg_partial_write_4(sc,
709 			    CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
710 			    CMPCI_REG_DAC_FS_MASK, md_divide);
711 			sc->sc_play.md_divide = md_divide;
712 		} else {
713 			cmpci_reg_partial_write_4(sc,
714 			    CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
715 			    CMPCI_REG_ADC_FS_MASK, md_divide);
716 			sc->sc_rec.md_divide = md_divide;
717 		}
718 		cmpci_set_mixer_gain(sc, CMPCI_SPDIF_LOOP);
719 	}
720 	return 0;
721 }
722 
723 /* ARGSUSED */
724 static int
725 cmpci_round_blocksize(handle, block)
726 	void *handle;
727 	int block;
728 {
729 	return (block & -4);
730 }
731 
732 static int
733 cmpci_halt_output(handle)
734     void *handle;
735 {
736 	struct cmpci_softc *sc = handle;
737 	int s;
738 
739 	s = splaudio();
740 	sc->sc_play.intr = NULL;
741 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
742 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
743 	/* wait for reset DMA */
744 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
745 	delay(10);
746 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
747 	splx(s);
748 
749 	return 0;
750 }
751 
752 static int
753 cmpci_halt_input(handle)
754 	void *handle;
755 {
756 	struct cmpci_softc *sc = handle;
757 	int s;
758 
759 	s = splaudio();
760 	sc->sc_rec.intr = NULL;
761 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
762 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
763 	/* wait for reset DMA */
764 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
765 	delay(10);
766 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
767 	splx(s);
768 
769 	return 0;
770 }
771 
772 
773 /* get audio device information */
774 static int
775 cmpci_getdev(handle, ad)
776 	void *handle;
777 	struct audio_device *ad;
778 {
779 	struct cmpci_softc *sc = handle;
780 
781 	strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
782 	snprintf(ad->version, sizeof(ad->version), "0x%02x",
783 		 PCI_REVISION(sc->sc_class));
784 	switch (PCI_PRODUCT(sc->sc_id)) {
785 	case PCI_PRODUCT_CMEDIA_CMI8338A:
786 		strncpy(ad->config, "CMI8338A", sizeof(ad->config));
787 		break;
788 	case PCI_PRODUCT_CMEDIA_CMI8338B:
789 		strncpy(ad->config, "CMI8338B", sizeof(ad->config));
790 		break;
791 	case PCI_PRODUCT_CMEDIA_CMI8738:
792 		strncpy(ad->config, "CMI8738", sizeof(ad->config));
793 		break;
794 	case PCI_PRODUCT_CMEDIA_CMI8738B:
795 		strncpy(ad->config, "CMI8738B", sizeof(ad->config));
796 		break;
797 	default:
798 		strncpy(ad->config, "unknown", sizeof(ad->config));
799 	}
800 
801 	return 0;
802 }
803 
804 
805 /* mixer device information */
806 int
807 cmpci_query_devinfo(handle, dip)
808 	void *handle;
809 	mixer_devinfo_t *dip;
810 {
811 	switch (dip->index) {
812 	case CMPCI_MASTER_VOL:
813 		dip->type = AUDIO_MIXER_VALUE;
814 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
815 		dip->prev = dip->next = AUDIO_MIXER_LAST;
816 		strcpy(dip->label.name, AudioNmaster);
817 		dip->un.v.num_channels = 2;
818 		strcpy(dip->un.v.units.name, AudioNvolume);
819 		return 0;
820 	case CMPCI_FM_VOL:
821 		dip->type = AUDIO_MIXER_VALUE;
822 		dip->mixer_class = CMPCI_INPUT_CLASS;
823 		dip->prev = AUDIO_MIXER_LAST;
824 		dip->next = CMPCI_FM_IN_MUTE;
825 		strcpy(dip->label.name, AudioNfmsynth);
826 		dip->un.v.num_channels = 2;
827 		strcpy(dip->un.v.units.name, AudioNvolume);
828 		return 0;
829 	case CMPCI_CD_VOL:
830 		dip->type = AUDIO_MIXER_VALUE;
831 		dip->mixer_class = CMPCI_INPUT_CLASS;
832 		dip->prev = AUDIO_MIXER_LAST;
833 		dip->next = CMPCI_CD_IN_MUTE;
834 		strcpy(dip->label.name, AudioNcd);
835 		dip->un.v.num_channels = 2;
836 		strcpy(dip->un.v.units.name, AudioNvolume);
837 		return 0;
838 	case CMPCI_VOICE_VOL:
839 		dip->type = AUDIO_MIXER_VALUE;
840 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
841 		dip->prev = AUDIO_MIXER_LAST;
842 		dip->next = AUDIO_MIXER_LAST;
843 		strcpy(dip->label.name, AudioNdac);
844 		dip->un.v.num_channels = 2;
845 		strcpy(dip->un.v.units.name, AudioNvolume);
846 		return 0;
847 	case CMPCI_OUTPUT_CLASS:
848 		dip->type = AUDIO_MIXER_CLASS;
849 		dip->mixer_class = CMPCI_INPUT_CLASS;
850 		dip->next = dip->prev = AUDIO_MIXER_LAST;
851 		strcpy(dip->label.name, AudioCoutputs);
852 		return 0;
853 	case CMPCI_MIC_VOL:
854 		dip->type = AUDIO_MIXER_VALUE;
855 		dip->mixer_class = CMPCI_INPUT_CLASS;
856 		dip->prev = AUDIO_MIXER_LAST;
857 		dip->next = CMPCI_MIC_IN_MUTE;
858 		strcpy(dip->label.name, AudioNmicrophone);
859 		dip->un.v.num_channels = 1;
860 		strcpy(dip->un.v.units.name, AudioNvolume);
861 		return 0;
862 	case CMPCI_LINE_IN_VOL:
863 		dip->type = AUDIO_MIXER_VALUE;
864 		dip->mixer_class = CMPCI_INPUT_CLASS;
865 		dip->prev = AUDIO_MIXER_LAST;
866 		dip->next = CMPCI_LINE_IN_MUTE;
867 		strcpy(dip->label.name, AudioNline);
868 		dip->un.v.num_channels = 2;
869 		strcpy(dip->un.v.units.name, AudioNvolume);
870 		return 0;
871 	case CMPCI_RECORD_SOURCE:
872 		dip->mixer_class = CMPCI_RECORD_CLASS;
873 		dip->prev = dip->next = AUDIO_MIXER_LAST;
874 		strcpy(dip->label.name, AudioNsource);
875 		dip->type = AUDIO_MIXER_SET;
876 		dip->un.s.num_mem = 5;
877 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
878 		dip->un.s.member[0].mask = 1 << CMPCI_MIC_VOL;
879 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
880 		dip->un.s.member[1].mask = 1 << CMPCI_CD_VOL;
881 		strcpy(dip->un.s.member[2].label.name, AudioNline);
882 		dip->un.s.member[2].mask = 1 << CMPCI_LINE_IN_VOL;
883 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
884 		dip->un.s.member[3].mask = 1 << CMPCI_FM_VOL;
885 		strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
886 		dip->un.s.member[4].mask = 1 << CMPCI_SPDIF_CLASS;
887 		return 0;
888 	case CMPCI_BASS:
889 		dip->prev = dip->next = AUDIO_MIXER_LAST;
890 		strcpy(dip->label.name, AudioNbass);
891 		dip->type = AUDIO_MIXER_VALUE;
892 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
893 		dip->un.v.num_channels = 2;
894 		strcpy(dip->un.v.units.name, AudioNbass);
895 		return 0;
896 	case CMPCI_TREBLE:
897 		dip->prev = dip->next = AUDIO_MIXER_LAST;
898 		strcpy(dip->label.name, AudioNtreble);
899 		dip->type = AUDIO_MIXER_VALUE;
900 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
901 		dip->un.v.num_channels = 2;
902 		strcpy(dip->un.v.units.name, AudioNtreble);
903 		return 0;
904 	case CMPCI_RECORD_CLASS:
905 		dip->type = AUDIO_MIXER_CLASS;
906 		dip->mixer_class = CMPCI_RECORD_CLASS;
907 		dip->next = dip->prev = AUDIO_MIXER_LAST;
908 		strcpy(dip->label.name, AudioCrecord);
909 		return 0;
910 	case CMPCI_INPUT_CLASS:
911 		dip->type = AUDIO_MIXER_CLASS;
912 		dip->mixer_class = CMPCI_INPUT_CLASS;
913 		dip->next = dip->prev = AUDIO_MIXER_LAST;
914 		strcpy(dip->label.name, AudioCinputs);
915 		return 0;
916 	case CMPCI_PCSPEAKER:
917 		dip->type = AUDIO_MIXER_VALUE;
918 		dip->mixer_class = CMPCI_INPUT_CLASS;
919 		dip->prev = dip->next = AUDIO_MIXER_LAST;
920 		strcpy(dip->label.name, "pc_speaker");
921 		dip->un.v.num_channels = 1;
922 		strcpy(dip->un.v.units.name, AudioNvolume);
923 		return 0;
924 	case CMPCI_INPUT_GAIN:
925 		dip->type = AUDIO_MIXER_VALUE;
926 		dip->mixer_class = CMPCI_INPUT_CLASS;
927 		dip->prev = dip->next = AUDIO_MIXER_LAST;
928 		strcpy(dip->label.name, AudioNinput);
929 		dip->un.v.num_channels = 2;
930 		strcpy(dip->un.v.units.name, AudioNvolume);
931 		return 0;
932 	case CMPCI_OUTPUT_GAIN:
933 		dip->type = AUDIO_MIXER_VALUE;
934 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
935 		dip->prev = dip->next = AUDIO_MIXER_LAST;
936 		strcpy(dip->label.name, AudioNoutput);
937 		dip->un.v.num_channels = 2;
938 		strcpy(dip->un.v.units.name, AudioNvolume);
939 		return 0;
940 	case CMPCI_AGC:
941 		dip->type = AUDIO_MIXER_ENUM;
942 		dip->mixer_class = CMPCI_INPUT_CLASS;
943 		dip->prev = dip->next = AUDIO_MIXER_LAST;
944 		strcpy(dip->label.name, "agc");
945 		goto on_off;
946 	case CMPCI_EQUALIZATION_CLASS:
947 		dip->type = AUDIO_MIXER_CLASS;
948 		dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
949 		dip->next = dip->prev = AUDIO_MIXER_LAST;
950 		strcpy(dip->label.name, AudioCequalization);
951 		return 0;
952 	case CMPCI_SPDIF_IN_MUTE:
953 		dip->type = AUDIO_MIXER_CLASS;
954 		dip->mixer_class = CMPCI_INPUT_CLASS;
955 		dip->next = dip->prev = AUDIO_MIXER_LAST;
956 		strcpy(dip->label.name, CmpciNspdif);
957 		return 0;
958 	case CMPCI_SPDIF_CLASS:
959 		dip->type = AUDIO_MIXER_CLASS;
960 		dip->mixer_class = CMPCI_SPDIF_CLASS;
961 		dip->next = dip->prev = AUDIO_MIXER_LAST;
962 		strcpy(dip->label.name, CmpciCspdif);
963 		return 0;
964 	case CMPCI_SPDIF_LOOP:
965 		dip->mixer_class = CMPCI_SPDIF_CLASS;
966 		dip->prev = dip->next = AUDIO_MIXER_LAST;
967 		strcpy(dip->label.name, CmpciNloop);
968 		goto on_off;
969 	case CMPCI_SPDIF_LEGACY:
970 		dip->mixer_class = CMPCI_SPDIF_CLASS;
971 		dip->prev = dip->next = AUDIO_MIXER_LAST;
972 		strcpy(dip->label.name, CmpciNlegacy);
973 		goto on_off;
974 	case CMPCI_SPDIF_OUT_VOLTAGE:
975 		dip->mixer_class = CMPCI_SPDIF_CLASS;
976 		dip->prev = dip->next = AUDIO_MIXER_LAST;
977 		strcpy(dip->label.name, CmpciNout_voltage);
978 		dip->type = AUDIO_MIXER_ENUM;
979 		dip->un.e.num_mem = 2;
980 		strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
981 		dip->un.e.member[0].ord = 0;
982 		strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
983 		dip->un.e.member[1].ord = 1;
984 		return 0;
985 	case CMPCI_SPDIF_IN_PHASE:
986 		dip->mixer_class = CMPCI_SPDIF_CLASS;
987 		dip->prev = dip->next = AUDIO_MIXER_LAST;
988 		strcpy(dip->label.name, CmpciNin_phase);
989 		goto on_off;
990 	case CMPCI_REAR:
991 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
992 		dip->prev = AUDIO_MIXER_LAST;
993 		dip->next = CMPCI_INDIVIDUAL;
994 		strcpy(dip->label.name, CmpciNrear);
995 		goto on_off;
996 	case CMPCI_INDIVIDUAL:
997 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
998 		dip->prev = CMPCI_REAR;
999 		dip->next = CMPCI_REVERSE;
1000 		strcpy(dip->label.name, CmpciNindividual);
1001 		goto on_off;
1002 	case CMPCI_REVERSE:
1003 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1004 		dip->prev = CMPCI_INDIVIDUAL;
1005 		dip->next = AUDIO_MIXER_LAST;
1006 		strcpy(dip->label.name, CmpciNreverse);
1007 		dip->type = AUDIO_MIXER_ENUM;
1008 		dip->un.e.num_mem = 2;
1009 		strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1010 		dip->un.e.member[0].ord = 0;
1011 		strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1012 		dip->un.e.member[1].ord = 1;
1013 		return 0;
1014 	case CMPCI_SURROUND:
1015 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1016 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1017 		strcpy(dip->label.name, CmpciNsurround);
1018 		goto on_off;
1019 
1020 	case CMPCI_CD_IN_MUTE:
1021 		dip->prev = CMPCI_CD_VOL;
1022 		dip->next = CMPCI_CD_SWAP;
1023 		dip->mixer_class = CMPCI_INPUT_CLASS;
1024 		goto mute;
1025 	case CMPCI_MIC_IN_MUTE:
1026 		dip->prev = CMPCI_MIC_VOL;
1027 		dip->next = CMPCI_MIC_SWAP;
1028 		dip->mixer_class = CMPCI_INPUT_CLASS;
1029 		goto mute;
1030 	case CMPCI_LINE_IN_MUTE:
1031 		dip->prev = CMPCI_LINE_IN_VOL;
1032 		dip->next = CMPCI_LINE_SWAP;
1033 		dip->mixer_class = CMPCI_INPUT_CLASS;
1034 		goto mute;
1035 	case CMPCI_FM_IN_MUTE:
1036 		dip->prev = CMPCI_FM_VOL;
1037 		dip->next = CMPCI_FM_SWAP;
1038 		dip->mixer_class = CMPCI_INPUT_CLASS;
1039 		goto mute;
1040 	case CMPCI_CD_SWAP:
1041 		dip->prev = CMPCI_CD_IN_MUTE;
1042 		dip->next = CMPCI_CD_OUT_MUTE;
1043 		goto swap;
1044 	case CMPCI_MIC_SWAP:
1045 		dip->prev = CMPCI_MIC_IN_MUTE;
1046 		dip->next = CMPCI_MIC_OUT_MUTE;
1047 		goto swap;
1048 	case CMPCI_LINE_SWAP:
1049 		dip->prev = CMPCI_LINE_IN_MUTE;
1050 		dip->next = CMPCI_LINE_OUT_MUTE;
1051 		goto swap;
1052 	case CMPCI_FM_SWAP:
1053 		dip->prev = CMPCI_FM_IN_MUTE;
1054 		dip->next = AUDIO_MIXER_LAST;
1055 	swap:
1056 		dip->mixer_class = CMPCI_INPUT_CLASS;
1057 		strcpy(dip->label.name, AudioNswap);
1058 		goto on_off;
1059 
1060 	case CMPCI_CD_OUT_MUTE:
1061 		dip->prev = CMPCI_CD_SWAP;
1062 		dip->next = AUDIO_MIXER_LAST;
1063 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1064 		goto mute;
1065 	case CMPCI_MIC_OUT_MUTE:
1066 		dip->prev = CMPCI_MIC_SWAP;
1067 		dip->next = AUDIO_MIXER_LAST;
1068 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1069 		goto mute;
1070 	case CMPCI_LINE_OUT_MUTE:
1071 		dip->prev = CMPCI_LINE_SWAP;
1072 		dip->next = AUDIO_MIXER_LAST;
1073 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1074 	mute:
1075 		strcpy(dip->label.name, AudioNmute);
1076 	on_off:
1077 		dip->type = AUDIO_MIXER_ENUM;
1078 		dip->un.e.num_mem = 2;
1079 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1080 		dip->un.e.member[0].ord = 0;
1081 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1082 		dip->un.e.member[1].ord = 1;
1083 		return 0;
1084 	}
1085 
1086 	return ENXIO;
1087 }
1088 
1089 static int
1090 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1091 	struct cmpci_softc *sc;
1092 	size_t size;
1093 	int type, flags;
1094 	caddr_t *r_addr;
1095 {
1096 	int error = 0;
1097 	struct cmpci_dmanode *n;
1098 	int w;
1099 
1100 	n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1101 	if (n == NULL) {
1102 		error = ENOMEM;
1103 		goto quit;
1104 	}
1105 
1106 	w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1107 #define CMPCI_DMABUF_ALIGN    0x4
1108 #define CMPCI_DMABUF_BOUNDARY 0x0
1109 	n->cd_tag = sc->sc_dmat;
1110 	n->cd_size = size;
1111 	error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1112 	    CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1113 	    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1114 	if (error)
1115 		goto mfree;
1116 	error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1117 	    &n->cd_addr, w | BUS_DMA_COHERENT);
1118 	if (error)
1119 		goto dmafree;
1120 	error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1121 	    w, &n->cd_map);
1122 	if (error)
1123 		goto unmap;
1124 	error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1125 	    NULL, w);
1126 	if (error)
1127 		goto destroy;
1128 
1129 	n->cd_next = sc->sc_dmap;
1130 	sc->sc_dmap = n;
1131 	*r_addr = KVADDR(n);
1132 	return 0;
1133 
1134  destroy:
1135 	bus_dmamap_destroy(n->cd_tag, n->cd_map);
1136  unmap:
1137 	bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1138  dmafree:
1139 	bus_dmamem_free(n->cd_tag,
1140 			n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1141  mfree:
1142 	free(n, type);
1143  quit:
1144 	return error;
1145 }
1146 
1147 static int
1148 cmpci_free_dmamem(sc, addr, type)
1149 	struct cmpci_softc *sc;
1150 	caddr_t addr;
1151 	int type;
1152 {
1153 	struct cmpci_dmanode **nnp;
1154 
1155 	for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1156 		if ((*nnp)->cd_addr == addr) {
1157 			struct cmpci_dmanode *n = *nnp;
1158 			bus_dmamap_unload(n->cd_tag, n->cd_map);
1159 			bus_dmamap_destroy(n->cd_tag, n->cd_map);
1160 			bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1161 			bus_dmamem_free(n->cd_tag, n->cd_segs,
1162 			    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1163 			free(n, type);
1164 			return 0;
1165 		}
1166 	}
1167 	return -1;
1168 }
1169 
1170 static struct cmpci_dmanode *
1171 cmpci_find_dmamem(sc, addr)
1172 	struct cmpci_softc *sc;
1173 	caddr_t addr;
1174 {
1175 	struct cmpci_dmanode *p;
1176 	for (p=sc->sc_dmap; p; p=p->cd_next)
1177 		if ( KVADDR(p) == (void *)addr )
1178 			break;
1179 	return p;
1180 }
1181 
1182 
1183 #if 0
1184 static void
1185 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1186 static void
1187 cmpci_print_dmamem(p)
1188 	struct cmpci_dmanode *p;
1189 {
1190 	DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1191 		 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1192 		 (void *)DMAADDR(p), (void *)p->cd_size));
1193 }
1194 #endif /* DEBUG */
1195 
1196 
1197 static void *
1198 cmpci_allocm(handle, direction, size, type, flags)
1199 	void  *handle;
1200 	int    direction;
1201 	size_t size;
1202 	int    type, flags;
1203 {
1204 	struct cmpci_softc *sc = handle;
1205 	caddr_t addr;
1206 
1207 	if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1208 		return NULL;
1209 	return addr;
1210 }
1211 
1212 static void
1213 cmpci_freem(handle, addr, type)
1214 	void	*handle;
1215 	void	*addr;
1216 	int	type;
1217 {
1218 	struct cmpci_softc *sc = handle;
1219 
1220 	cmpci_free_dmamem(sc, addr, type);
1221 }
1222 
1223 
1224 #define MAXVAL 256
1225 static int
1226 cmpci_adjust(val, mask)
1227 	int val, mask;
1228 {
1229 	val += (MAXVAL - mask) >> 1;
1230 	if (val >= MAXVAL)
1231 		val = MAXVAL-1;
1232 	return val & mask;
1233 }
1234 
1235 static void
1236 cmpci_set_mixer_gain(sc, port)
1237 	struct cmpci_softc *sc;
1238 	int port;
1239 {
1240 	int src;
1241 
1242 	switch (port) {
1243 	case CMPCI_MIC_VOL:
1244 		src = CMPCI_SB16_MIXER_MIC;
1245 		break;
1246 	case CMPCI_MASTER_VOL:
1247 		src = CMPCI_SB16_MIXER_MASTER_L;
1248 		break;
1249 	case CMPCI_LINE_IN_VOL:
1250 		src = CMPCI_SB16_MIXER_LINE_L;
1251 		break;
1252 	case CMPCI_VOICE_VOL:
1253 		src = CMPCI_SB16_MIXER_VOICE_L;
1254 		break;
1255 	case CMPCI_FM_VOL:
1256 		src = CMPCI_SB16_MIXER_FM_L;
1257 		break;
1258 	case CMPCI_CD_VOL:
1259 		src = CMPCI_SB16_MIXER_CDDA_L;
1260 		break;
1261 	case CMPCI_INPUT_GAIN:
1262 		src = CMPCI_SB16_MIXER_INGAIN_L;
1263 		break;
1264 	case CMPCI_OUTPUT_GAIN:
1265 		src = CMPCI_SB16_MIXER_OUTGAIN_L;
1266 		break;
1267 	case CMPCI_TREBLE:
1268 		src = CMPCI_SB16_MIXER_TREBLE_L;
1269 		break;
1270 	case CMPCI_BASS:
1271 		src = CMPCI_SB16_MIXER_BASS_L;
1272 		break;
1273 	case CMPCI_PCSPEAKER:
1274 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1275 		    sc->sc_gain[port][CMPCI_LEFT]);
1276 		return;
1277 	case CMPCI_SPDIF_IN_MUTE:
1278 		if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1279 			if (sc->sc_gain[CMPCI_SPDIF_IN_MUTE][CMPCI_LR])
1280 				cmpci_reg_set_4(sc, CMPCI_REG_MIXER24,
1281 						CMPCI_REG_SPDIN_MONITOR);
1282 			else
1283 				cmpci_reg_set_4(sc, CMPCI_REG_MIXER24,
1284 						CMPCI_REG_SPDIN_MONITOR);
1285 		}
1286 
1287 	case CMPCI_SPDIF_LOOP:
1288 		/*FALLTHROUGH*/
1289 	case CMPCI_SPDIF_LEGACY:
1290 		cmpci_set_out_ports(sc);
1291 		return;
1292 	case CMPCI_SPDIF_OUT_VOLTAGE:
1293 		if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1294 			if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR])
1295 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1296 						CMPCI_REG_5V);
1297 			else
1298 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1299 						  CMPCI_REG_5V);
1300 		}
1301 		return;
1302 	case CMPCI_SURROUND:
1303 		if (CMPCI_ISCAP(sc, SURROUND)) {
1304 			if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1305 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1306 						CMPCI_REG_SURROUND);
1307 			else
1308 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1309 						  CMPCI_REG_SURROUND);
1310 		}
1311 		return;
1312 	case CMPCI_REAR:
1313 		if (CMPCI_ISCAP(sc, REAR)) {
1314 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1315 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1316 						CMPCI_REG_N4SPK3D);
1317 			else
1318 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1319 						  CMPCI_REG_N4SPK3D);
1320 		}
1321 		return;
1322 	case CMPCI_INDIVIDUAL:
1323 		if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1324 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1325 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1326 						CMPCI_REG_INDIVIDUAL);
1327 			else
1328 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1329 						  CMPCI_REG_INDIVIDUAL);
1330 		}
1331 		return;
1332 	case CMPCI_REVERSE:
1333 		if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1334 			if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1335 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1336 						CMPCI_REG_REVERSE_FR);
1337 			else
1338 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1339 						  CMPCI_REG_REVERSE_FR);
1340 		}
1341 		return;
1342 	case CMPCI_SPDIF_IN_PHASE:
1343 		if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1344 			if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR])
1345 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER27,
1346 						CMPCI_REG_PHASE);
1347 			else
1348 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER27,
1349 						  CMPCI_REG_PHASE);
1350 		}
1351 		return;
1352 	default:
1353 		return;
1354 	}
1355 	cmpci_mixerreg_write(sc, src, sc->sc_gain[port][CMPCI_LEFT]);
1356 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1357 	    sc->sc_gain[port][CMPCI_RIGHT]);
1358 }
1359 
1360 static void
1361 cmpci_set_out_ports(sc)
1362 	struct cmpci_softc *sc;
1363 {
1364 	if (!CMPCI_ISCAP(sc, SPDLOOP))
1365 		return;
1366 	if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1367 		/* loop on */
1368 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1369 				  CMPCI_REG_SPDIF0_ENABLE |
1370 				  CMPCI_REG_SPDIF1_ENABLE);
1371 		cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1372 				  CMPCI_REG_LEGACY_SPDIF_ENABLE);
1373 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1374 				CMPCI_REG_SPDIF_LOOP);
1375 	} else {
1376 		/* loop off */
1377 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1378 				  CMPCI_REG_SPDIF_LOOP);
1379 		cmpci_set_in_ports(sc, sc->sc_in_mask);
1380 		if (CMPCI_ISCAP(sc, SPDOUT) &&
1381 		    (sc->sc_play.md_divide==CMPCI_REG_RATE_44100 ||
1382 		     (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1383 		      sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1384 			cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1385 					CMPCI_REG_SPDIF0_ENABLE);
1386 			if (CMPCI_ISCAP(sc, XSPDOUT))
1387 				cmpci_reg_set_4(sc,
1388 						CMPCI_REG_LEGACY_CTRL,
1389 						CMPCI_REG_XSPDIF_ENABLE);
1390 			if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1391 				cmpci_reg_set_4(sc,
1392 						CMPCI_REG_MISC,
1393 						CMPCI_REG_SPDIF_48K);
1394 			else
1395 				cmpci_reg_clear_4(sc,
1396 						  CMPCI_REG_MISC,
1397 						  CMPCI_REG_SPDIF_48K);
1398 		} else {
1399 			cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1400 					  CMPCI_REG_SPDIF0_ENABLE);
1401 			if (CMPCI_ISCAP(sc, XSPDOUT))
1402 				cmpci_reg_clear_4(sc,
1403 						  CMPCI_REG_LEGACY_CTRL,
1404 						  CMPCI_REG_XSPDIF_ENABLE);
1405 			if (CMPCI_ISCAP(sc, SPDOUT_48K))
1406 				cmpci_reg_clear_4(sc,
1407 						  CMPCI_REG_MISC,
1408 						  CMPCI_REG_SPDIF_48K);
1409 		}
1410 		if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1411 		    if (sc->sc_gain[CMPCI_SPDIF_LEGACY][CMPCI_LR])
1412 			    cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1413 					    CMPCI_REG_LEGACY_SPDIF_ENABLE);
1414 		    else
1415 			    cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1416 					    CMPCI_REG_LEGACY_SPDIF_ENABLE);
1417 		}
1418 	}
1419 }
1420 
1421 static int
1422 cmpci_set_in_ports(sc, mask)
1423 	struct cmpci_softc *sc;
1424 	int mask;
1425 {
1426 	int bitsl, bitsr;
1427 
1428 	if (mask & ~((1<<CMPCI_FM_VOL) | (1<<CMPCI_LINE_IN_VOL) |
1429 		     (1<<CMPCI_CD_VOL) | (1<<CMPCI_MIC_VOL) |
1430 		     (1<<CMPCI_SPDIF_CLASS)))
1431 		return EINVAL;
1432 	bitsr = 0;
1433 	if (mask & (1<<CMPCI_FM_VOL))	 bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1434 	if (mask & (1<<CMPCI_LINE_IN_VOL)) bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1435 	if (mask & (1<<CMPCI_CD_VOL))	   bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1436 	bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1437 	if (mask & (1<<CMPCI_MIC_VOL)) {
1438 		bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1439 		bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1440 	}
1441 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1442 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1443 	if (CMPCI_ISCAP(sc, SPDIN) &&
1444 	    sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 &&
1445 	    !sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1446 		if (mask & (1<<CMPCI_SPDIF_CLASS)) {
1447 			/* enable SPDIF/in */
1448 			cmpci_reg_set_4(sc,
1449 					CMPCI_REG_FUNC_1,
1450 					CMPCI_REG_SPDIF1_ENABLE);
1451 		} else {
1452 			cmpci_reg_clear_4(sc,
1453 					CMPCI_REG_FUNC_1,
1454 					CMPCI_REG_SPDIF1_ENABLE);
1455 		}
1456 	}
1457 
1458 	sc->sc_in_mask = mask;
1459 
1460 	return 0;
1461 }
1462 
1463 static int
1464 cmpci_set_port(handle, cp)
1465 	void *handle;
1466 	mixer_ctrl_t *cp;
1467 {
1468 	struct cmpci_softc *sc = handle;
1469 	int lgain, rgain;
1470 	int mask, bits;
1471 	int lmask, rmask, lbits, rbits;
1472 	int mute, swap;
1473 
1474 	switch (cp->dev) {
1475 	case CMPCI_TREBLE:
1476 	case CMPCI_BASS:
1477 	case CMPCI_PCSPEAKER:
1478 	case CMPCI_INPUT_GAIN:
1479 	case CMPCI_OUTPUT_GAIN:
1480 	case CMPCI_MIC_VOL:
1481 	case CMPCI_LINE_IN_VOL:
1482 	case CMPCI_VOICE_VOL:
1483 	case CMPCI_FM_VOL:
1484 	case CMPCI_CD_VOL:
1485 	case CMPCI_MASTER_VOL:
1486 		if (cp->type != AUDIO_MIXER_VALUE)
1487 			return EINVAL;
1488 		switch (cp->dev) {
1489 		case CMPCI_MIC_VOL:
1490 			if (cp->un.value.num_channels != 1)
1491 				return EINVAL;
1492 
1493 			lgain = rgain =
1494 			    CMPCI_ADJUST_MIC_GAIN(sc,
1495 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1496 			break;
1497 		case CMPCI_PCSPEAKER:
1498 			if (cp->un.value.num_channels != 1)
1499 				return EINVAL;
1500 			/* fall into */
1501 		case CMPCI_INPUT_GAIN:
1502 		case CMPCI_OUTPUT_GAIN:
1503 			lgain = rgain =	CMPCI_ADJUST_2_GAIN(sc,
1504 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1505 			break;
1506 		default:
1507 			switch (cp->un.value.num_channels) {
1508 			case 1:
1509 				lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1510 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1511 					);
1512 				break;
1513 			case 2:
1514 				lgain =	CMPCI_ADJUST_GAIN(sc,
1515 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]
1516 					);
1517 				rgain = CMPCI_ADJUST_GAIN(sc,
1518 				   cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]
1519 					);
1520 				break;
1521 			default:
1522 				return EINVAL;
1523 			}
1524 			break;
1525 		}
1526 		sc->sc_gain[cp->dev][CMPCI_LEFT]  = lgain;
1527 		sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1528 
1529 		cmpci_set_mixer_gain(sc, cp->dev);
1530 		break;
1531 
1532 	case CMPCI_RECORD_SOURCE:
1533 		if (cp->type != AUDIO_MIXER_SET)
1534 			return EINVAL;
1535 #ifdef CMPCI_SPDIF_SUPPORT
1536 		if (cp->un.mask & (1<<CMPCI_SPDIF_IN))
1537 			cp->un.mask = 1<<CMPCI_SPDIF_IN;
1538 #endif
1539 		return cmpci_set_in_ports(sc, cp->un.mask);
1540 
1541 	case CMPCI_AGC:
1542 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1543 		break;
1544 
1545 	case CMPCI_CD_OUT_MUTE:
1546 		mask = CMPCI_SB16_SW_CD;
1547 		goto omute;
1548 	case CMPCI_MIC_OUT_MUTE:
1549 		mask = CMPCI_SB16_SW_MIC;
1550 		goto omute;
1551 	case CMPCI_LINE_OUT_MUTE:
1552 		mask = CMPCI_SB16_SW_LINE;
1553 	omute:
1554 		if (cp->type != AUDIO_MIXER_ENUM)
1555 			return EINVAL;
1556 		bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1557 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1558 		if (cp->un.ord)
1559 			bits = bits & ~mask;
1560 		else
1561 			bits = bits | mask;
1562 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1563 		break;
1564 
1565 	case CMPCI_MIC_IN_MUTE:
1566 	case CMPCI_MIC_SWAP:
1567 		lmask = rmask = CMPCI_SB16_SW_MIC;
1568 		goto imute;
1569 	case CMPCI_CD_IN_MUTE:
1570 	case CMPCI_CD_SWAP:
1571 		lmask = CMPCI_SB16_SW_CD_L;
1572 		rmask = CMPCI_SB16_SW_CD_R;
1573 		goto imute;
1574 	case CMPCI_LINE_IN_MUTE:
1575 	case CMPCI_LINE_SWAP:
1576 		lmask = CMPCI_SB16_SW_LINE_L;
1577 		rmask = CMPCI_SB16_SW_LINE_R;
1578 		goto imute;
1579 	case CMPCI_FM_IN_MUTE:
1580 	case CMPCI_FM_SWAP:
1581 		lmask = CMPCI_SB16_SW_FM_L;
1582 		rmask = CMPCI_SB16_SW_FM_R;
1583 	imute:
1584 		if (cp->type != AUDIO_MIXER_ENUM)
1585 			return EINVAL;
1586 		mask = lmask | rmask;
1587 		lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1588 		    & ~mask;
1589 		rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1590 		    & ~mask;
1591 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1592 		if (CMPCI_IS_IN_MUTE(cp->dev)) {
1593 			mute = cp->dev;
1594 			swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1595 		} else {
1596 			swap = cp->dev;
1597 			mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1598 		}
1599 		if (sc->sc_gain[swap][CMPCI_LR]) {
1600 			mask = lmask;
1601 			lmask = rmask;
1602 			rmask = mask;
1603 		}
1604 		if (!sc->sc_gain[mute][CMPCI_LR]) {
1605 			lbits = lbits | lmask;
1606 			rbits = rbits | rmask;
1607 		}
1608 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1609 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1610 		break;
1611 	case CMPCI_SPDIF_LOOP:
1612 	case CMPCI_SPDIF_OUT_VOLTAGE:
1613 	case CMPCI_SPDIF_IN_PHASE:
1614 	case CMPCI_REAR:
1615 	case CMPCI_INDIVIDUAL:
1616 	case CMPCI_REVERSE:
1617 	case CMPCI_SURROUND:
1618 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1619 		break;
1620 
1621 	default:
1622 	    return EINVAL;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int
1629 cmpci_get_port(handle, cp)
1630 	void *handle;
1631 	mixer_ctrl_t *cp;
1632 {
1633 	struct cmpci_softc *sc = handle;
1634 
1635 	switch (cp->dev) {
1636 	case CMPCI_MIC_VOL:
1637 	case CMPCI_LINE_IN_VOL:
1638 		if (cp->un.value.num_channels != 1)
1639 			return EINVAL;
1640 		/* fall into */
1641 	case CMPCI_TREBLE:
1642 	case CMPCI_BASS:
1643 	case CMPCI_PCSPEAKER:
1644 	case CMPCI_INPUT_GAIN:
1645 	case CMPCI_OUTPUT_GAIN:
1646 	case CMPCI_VOICE_VOL:
1647 	case CMPCI_FM_VOL:
1648 	case CMPCI_CD_VOL:
1649 	case CMPCI_MASTER_VOL:
1650 		switch (cp->un.value.num_channels) {
1651 		case 1:
1652 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1653 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1654 			break;
1655 		case 2:
1656 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1657 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1658 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1659 				sc->sc_gain[cp->dev][CMPCI_RIGHT];
1660 			break;
1661 		default:
1662 			return EINVAL;
1663 		}
1664 		break;
1665 
1666 	case CMPCI_RECORD_SOURCE:
1667 		cp->un.mask = sc->sc_in_mask;
1668 		break;
1669 
1670 	case CMPCI_AGC:
1671 		cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1672 		break;
1673 
1674 	case CMPCI_CD_IN_MUTE:
1675 	case CMPCI_MIC_IN_MUTE:
1676 	case CMPCI_LINE_IN_MUTE:
1677 	case CMPCI_FM_IN_MUTE:
1678 	case CMPCI_CD_SWAP:
1679 	case CMPCI_MIC_SWAP:
1680 	case CMPCI_LINE_SWAP:
1681 	case CMPCI_FM_SWAP:
1682 	case CMPCI_CD_OUT_MUTE:
1683 	case CMPCI_MIC_OUT_MUTE:
1684 	case CMPCI_LINE_OUT_MUTE:
1685 	case CMPCI_SPDIF_IN_MUTE:
1686 	case CMPCI_SPDIF_LOOP:
1687 	case CMPCI_SPDIF_LEGACY:
1688 	case CMPCI_SPDIF_OUT_VOLTAGE:
1689 	case CMPCI_SPDIF_IN_PHASE:
1690 	case CMPCI_REAR:
1691 	case CMPCI_INDIVIDUAL:
1692 	case CMPCI_REVERSE:
1693 	case CMPCI_SURROUND:
1694 		cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1695 		break;
1696 
1697 	default:
1698 		return EINVAL;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 /* ARGSUSED */
1705 static size_t
1706 cmpci_round_buffersize(handle, direction, bufsize)
1707 	void *handle;
1708 	int direction;
1709 	size_t bufsize;
1710 {
1711 	if (bufsize > 0x10000)
1712 		bufsize = 0x10000;
1713 
1714 	return bufsize;
1715 }
1716 
1717 
1718 static paddr_t
1719 cmpci_mappage(handle, addr, offset, prot)
1720 	void *handle;
1721 	void *addr;
1722 	off_t offset;
1723 	int prot;
1724 {
1725 	struct cmpci_softc *sc = handle;
1726 	struct cmpci_dmanode *p;
1727 
1728 	if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1729 		return -1;
1730 
1731 	return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1732 		   sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1733 		   offset, prot, BUS_DMA_WAITOK);
1734 }
1735 
1736 
1737 /* ARGSUSED */
1738 static int
1739 cmpci_get_props(handle)
1740 	void *handle;
1741 {
1742 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1743 }
1744 
1745 
1746 static int
1747 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1748 	void *handle;
1749 	void *start, *end;
1750 	int blksize;
1751 	void (*intr) __P((void *));
1752 	void *arg;
1753 	struct audio_params *param;
1754 {
1755 	struct cmpci_softc *sc = handle;
1756 	struct cmpci_dmanode *p;
1757 	int bps;
1758 
1759 	sc->sc_play.intr = intr;
1760 	sc->sc_play.intr_arg = arg;
1761 	bps = param->channels*param->precision*param->factor / 8;
1762 	if (!bps)
1763 		return EINVAL;
1764 
1765 	/* set DMA frame */
1766 	if (!(p = cmpci_find_dmamem(sc, start)))
1767 		return EINVAL;
1768 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1769 	    DMAADDR(p));
1770 	delay(10);
1771 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1772 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1773 	delay(10);
1774 
1775 	/* set interrupt count */
1776 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1777 			  (blksize + bps - 1) / bps - 1);
1778 	delay(10);
1779 
1780 	/* start DMA */
1781 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1782 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1783 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1784 
1785 	return 0;
1786 }
1787 
1788 static int
1789 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1790 	void *handle;
1791 	void *start, *end;
1792 	int blksize;
1793 	void (*intr) __P((void *));
1794 	void *arg;
1795 	struct audio_params *param;
1796 {
1797 	struct cmpci_softc *sc = handle;
1798 	struct cmpci_dmanode *p;
1799 	int bps;
1800 
1801 	sc->sc_rec.intr = intr;
1802 	sc->sc_rec.intr_arg = arg;
1803 	bps = param->channels*param->precision*param->factor/8;
1804 	if (!bps)
1805 		return EINVAL;
1806 
1807 	/* set DMA frame */
1808 	if (!(p=cmpci_find_dmamem(sc, start)))
1809 		return EINVAL;
1810 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1811 	    DMAADDR(p));
1812 	delay(10);
1813 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1814 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1815 	delay(10);
1816 
1817 	/* set interrupt count */
1818 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1819 	    (blksize + bps - 1) / bps - 1);
1820 	delay(10);
1821 
1822 	/* start DMA */
1823 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1824 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1825 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1826 
1827 	return 0;
1828 }
1829 
1830 
1831 /* end of file */
1832