xref: /netbsd-src/sys/dev/pci/cmpci.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: cmpci.c,v 1.26 2004/10/29 12:57:18 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI <tshiozak@NetBSD.org> .
9  *
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by ITOH Yasufumi.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  */
35 
36 /*
37  * C-Media CMI8x38 Audio Chip Support.
38  *
39  * TODO:
40  *   - 4ch / 6ch support.
41  *   - Joystick support.
42  *
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.26 2004/10/29 12:57:18 yamt Exp $");
47 
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54 
55 #include "mpu.h"
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63 
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70 
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75 
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79 
80 /*
81  * Low-level HW interface
82  */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 						 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 					       uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 						    int, int,
89 						    unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 						    int, int,
92 						    uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 					  int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 					    int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 					  int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 					    int, uint32_t));
101 static __inline void cmpci_reg_set_reg_misc __P((struct cmpci_softc *,
102 						 uint32_t));
103 static __inline void cmpci_reg_clear_reg_misc __P((struct cmpci_softc *,
104 						   uint32_t));
105 static int cmpci_rate_to_index __P((int));
106 static __inline int cmpci_index_to_rate __P((int));
107 static __inline int cmpci_index_to_divider __P((int));
108 
109 static int cmpci_adjust __P((int, int));
110 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
111 static void cmpci_set_out_ports __P((struct cmpci_softc *));
112 static int cmpci_set_in_ports __P((struct cmpci_softc *));
113 
114 
115 /*
116  * autoconf interface
117  */
118 static int cmpci_match __P((struct device *, struct cfdata *, void *));
119 static void cmpci_attach __P((struct device *, struct device *, void *));
120 
121 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
122     cmpci_match, cmpci_attach, NULL, NULL);
123 
124 /* interrupt */
125 static int cmpci_intr __P((void *));
126 
127 
128 /*
129  * DMA stuffs
130  */
131 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
132 				   size_t, struct malloc_type *,
133 				   int, caddr_t *));
134 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
135 				  struct malloc_type *));
136 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
137 						     caddr_t));
138 
139 
140 /*
141  * interface to machine independent layer
142  */
143 static int cmpci_open __P((void *, int));
144 static void cmpci_close __P((void *));
145 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
146 static int cmpci_set_params __P((void *, int, int,
147 				 struct audio_params *,
148 				 struct audio_params *));
149 static int cmpci_round_blocksize __P((void *, int));
150 static int cmpci_halt_output __P((void *));
151 static int cmpci_halt_input __P((void *));
152 static int cmpci_getdev __P((void *, struct audio_device *));
153 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
154 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
155 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
156 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
157 static void cmpci_freem __P((void *, void *, struct malloc_type *));
158 static size_t cmpci_round_buffersize __P((void *, int, size_t));
159 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
160 static int cmpci_get_props __P((void *));
161 static int cmpci_trigger_output __P((void *, void *, void *, int,
162 				     void (*)(void *), void *,
163 				     struct audio_params *));
164 static int cmpci_trigger_input __P((void *, void *, void *, int,
165 				    void (*)(void *), void *,
166 				    struct audio_params *));
167 
168 static const struct audio_hw_if cmpci_hw_if = {
169 	cmpci_open,		/* open */
170 	cmpci_close,		/* close */
171 	NULL,			/* drain */
172 	cmpci_query_encoding,	/* query_encoding */
173 	cmpci_set_params,	/* set_params */
174 	cmpci_round_blocksize,	/* round_blocksize */
175 	NULL,			/* commit_settings */
176 	NULL,			/* init_output */
177 	NULL,			/* init_input */
178 	NULL,			/* start_output */
179 	NULL,			/* start_input */
180 	cmpci_halt_output,	/* halt_output */
181 	cmpci_halt_input,	/* halt_input */
182 	NULL,			/* speaker_ctl */
183 	cmpci_getdev,		/* getdev */
184 	NULL,			/* setfd */
185 	cmpci_set_port,		/* set_port */
186 	cmpci_get_port,		/* get_port */
187 	cmpci_query_devinfo,	/* query_devinfo */
188 	cmpci_allocm,		/* allocm */
189 	cmpci_freem,		/* freem */
190 	cmpci_round_buffersize,/* round_buffersize */
191 	cmpci_mappage,		/* mappage */
192 	cmpci_get_props,	/* get_props */
193 	cmpci_trigger_output,	/* trigger_output */
194 	cmpci_trigger_input,	/* trigger_input */
195 	NULL,			/* dev_ioctl */
196 };
197 
198 
199 /*
200  * Low-level HW interface
201  */
202 
203 /* mixer register read/write */
204 static __inline uint8_t
205 cmpci_mixerreg_read(sc, no)
206 	struct cmpci_softc *sc;
207 	uint8_t no;
208 {
209 	uint8_t ret;
210 
211 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
212 	delay(10);
213 	ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
214 	delay(10);
215 	return ret;
216 }
217 
218 static __inline void
219 cmpci_mixerreg_write(sc, no, val)
220 	struct cmpci_softc *sc;
221 	uint8_t no, val;
222 {
223 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
224 	delay(10);
225 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
226 	delay(10);
227 }
228 
229 
230 /* register partial write */
231 static __inline void
232 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
233 	struct cmpci_softc *sc;
234 	int no, shift;
235 	unsigned mask, val;
236 {
237 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
238 	    (val<<shift) |
239 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
240 	delay(10);
241 }
242 
243 static __inline void
244 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
245 	struct cmpci_softc *sc;
246 	int no, shift;
247 	uint32_t mask, val;
248 {
249 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
250 	    (val<<shift) |
251 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
252 	delay(10);
253 }
254 
255 /* register set/clear bit */
256 static __inline void
257 cmpci_reg_set_1(sc, no, mask)
258 	struct cmpci_softc *sc;
259 	int no;
260 	uint8_t mask;
261 {
262 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
263 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
264 	delay(10);
265 }
266 
267 static __inline void
268 cmpci_reg_clear_1(sc, no, mask)
269 	struct cmpci_softc *sc;
270 	int no;
271 	uint8_t mask;
272 {
273 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
274 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
275 	delay(10);
276 }
277 
278 
279 static __inline void
280 cmpci_reg_set_4(sc, no, mask)
281 	struct cmpci_softc *sc;
282 	int no;
283 	uint32_t mask;
284 {
285 	/* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */
286 	KDASSERT(no != CMPCI_REG_MISC);
287 
288 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
289 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
290 	delay(10);
291 }
292 
293 static __inline void
294 cmpci_reg_clear_4(sc, no, mask)
295 	struct cmpci_softc *sc;
296 	int no;
297 	uint32_t mask;
298 {
299 	/* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */
300 	KDASSERT(no != CMPCI_REG_MISC);
301 
302 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
303 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
304 	delay(10);
305 }
306 
307 
308 /*
309  * The CMPCI_REG_MISC register needs special handling, since one of
310  * its bits has different read/write values.
311  */
312 static __inline void
313 cmpci_reg_set_reg_misc(sc, mask)
314 	struct cmpci_softc *sc;
315 	uint32_t mask;
316 {
317 	sc->sc_reg_misc |= mask;
318 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
319 	    sc->sc_reg_misc);
320 	delay(10);
321 }
322 
323 static __inline void
324 cmpci_reg_clear_reg_misc(sc, mask)
325 	struct cmpci_softc *sc;
326 	uint32_t mask;
327 {
328 	sc->sc_reg_misc &= ~mask;
329 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC,
330 	    sc->sc_reg_misc);
331 	delay(10);
332 }
333 
334 
335 /* rate */
336 static const struct {
337 	int rate;
338 	int divider;
339 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
340 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
341 	_RATE(5512),
342 	_RATE(8000),
343 	_RATE(11025),
344 	_RATE(16000),
345 	_RATE(22050),
346 	_RATE(32000),
347 	_RATE(44100),
348 	_RATE(48000)
349 #undef	_RATE
350 };
351 
352 static int
353 cmpci_rate_to_index(rate)
354 	int rate;
355 {
356 	int i;
357 
358 	for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
359 		if (rate <=
360 		    (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
361 			return i;
362 	return i;  /* 48000 */
363 }
364 
365 static __inline int
366 cmpci_index_to_rate(index)
367 	int index;
368 {
369 	return cmpci_rate_table[index].rate;
370 }
371 
372 static __inline int
373 cmpci_index_to_divider(index)
374 	int index;
375 {
376 	return cmpci_rate_table[index].divider;
377 }
378 
379 
380 /*
381  * interface to configure the device.
382  */
383 
384 static int
385 cmpci_match(parent, match, aux)
386 	struct device *parent;
387 	struct cfdata *match;
388 	void *aux;
389 {
390 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391 
392 	if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
393 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
394 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
395 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
396 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
397 		return 1;
398 
399 	return 0;
400 }
401 
402 static void
403 cmpci_attach(parent, self, aux)
404 	struct device *parent, *self;
405 	void *aux;
406 {
407 	struct cmpci_softc *sc = (struct cmpci_softc *)self;
408 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
409 	struct audio_attach_args aa;
410 	pci_intr_handle_t ih;
411 	char const *strintr;
412 	char devinfo[256];
413 	int i, v;
414 
415 	aprint_naive(": Audio controller\n");
416 
417 	sc->sc_id = pa->pa_id;
418 	sc->sc_class = pa->pa_class;
419 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
420 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
421 	    PCI_REVISION(sc->sc_class));
422 	switch (PCI_PRODUCT(sc->sc_id)) {
423 	case PCI_PRODUCT_CMEDIA_CMI8338A:
424 		/*FALLTHROUGH*/
425 	case PCI_PRODUCT_CMEDIA_CMI8338B:
426 		sc->sc_capable = CMPCI_CAP_CMI8338;
427 		break;
428 	case PCI_PRODUCT_CMEDIA_CMI8738:
429 		/*FALLTHROUGH*/
430 	case PCI_PRODUCT_CMEDIA_CMI8738B:
431 		sc->sc_capable = CMPCI_CAP_CMI8738;
432 		break;
433 	}
434 
435 	/* map I/O space */
436 	if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
437 		&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
438 		aprint_error("%s: failed to map I/O space\n",
439 		    sc->sc_dev.dv_xname);
440 		return;
441 	}
442 
443 	/* interrupt */
444 	if (pci_intr_map(pa, &ih)) {
445 		aprint_error("%s: failed to map interrupt\n",
446 		    sc->sc_dev.dv_xname);
447 		return;
448 	}
449 	strintr = pci_intr_string(pa->pa_pc, ih);
450 	sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
451 	if (sc->sc_ih == NULL) {
452 		aprint_error("%s: failed to establish interrupt",
453 		    sc->sc_dev.dv_xname);
454 		if (strintr != NULL)
455 			aprint_normal(" at %s", strintr);
456 		aprint_normal("\n");
457 		return;
458 	}
459 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
460 
461 	sc->sc_dmat = pa->pa_dmat;
462 
463 	audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
464 
465 	/* attach OPL device */
466 	aa.type = AUDIODEV_TYPE_OPL;
467 	aa.hwif = NULL;
468 	aa.hdl = NULL;
469 	(void)config_found(&sc->sc_dev, &aa, audioprint);
470 
471 	/* attach MPU-401 device */
472 	aa.type = AUDIODEV_TYPE_MPU;
473 	aa.hwif = NULL;
474 	aa.hdl = NULL;
475 	if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
476 	    CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
477 		sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
478 
479 	/* get initial value (this is 0 and may be omitted but just in case) */
480 	sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
481 	    CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K;
482 
483 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
484 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
485 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
486 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
487 	    CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
488 	for (i = 0; i < CMPCI_NDEVS; i++) {
489 		switch(i) {
490 		/*
491 		 * CMI8738 defaults are
492 		 *  master:	0xe0	(0x00 - 0xf8)
493 		 *  FM, DAC:	0xc0	(0x00 - 0xf8)
494 		 *  PC speaker:	0x80	(0x00 - 0xc0)
495 		 *  others:	0
496 		 */
497 		/* volume */
498 		case CMPCI_MASTER_VOL:
499 			v = 128;	/* 224 */
500 			break;
501 		case CMPCI_FM_VOL:
502 		case CMPCI_DAC_VOL:
503 			v = 192;
504 			break;
505 		case CMPCI_PCSPEAKER:
506 			v = 128;
507 			break;
508 
509 		/* booleans, set to true */
510 		case CMPCI_CD_MUTE:
511 		case CMPCI_MIC_MUTE:
512 		case CMPCI_LINE_IN_MUTE:
513 		case CMPCI_AUX_IN_MUTE:
514 			v = 1;
515 			break;
516 
517 		/* volume with inital value 0 */
518 		case CMPCI_CD_VOL:
519 		case CMPCI_LINE_IN_VOL:
520 		case CMPCI_AUX_IN_VOL:
521 		case CMPCI_MIC_VOL:
522 		case CMPCI_MIC_RECVOL:
523 			/* FALLTHROUGH */
524 
525 		/* others are cleared */
526 		case CMPCI_MIC_PREAMP:
527 		case CMPCI_RECORD_SOURCE:
528 		case CMPCI_PLAYBACK_MODE:
529 		case CMPCI_SPDIF_IN_SELECT:
530 		case CMPCI_SPDIF_IN_PHASE:
531 		case CMPCI_SPDIF_LOOP:
532 		case CMPCI_SPDIF_OUT_PLAYBACK:
533 		case CMPCI_SPDIF_OUT_VOLTAGE:
534 		case CMPCI_MONITOR_DAC:
535 		case CMPCI_REAR:
536 		case CMPCI_INDIVIDUAL:
537 		case CMPCI_REVERSE:
538 		case CMPCI_SURROUND:
539 		default:
540 			v = 0;
541 			break;
542 		}
543 		sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
544 		cmpci_set_mixer_gain(sc, i);
545 	}
546 }
547 
548 
549 static int
550 cmpci_intr(handle)
551 	void *handle;
552 {
553 	struct cmpci_softc *sc = handle;
554 	uint32_t intrstat;
555 
556 	intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
557 	    CMPCI_REG_INTR_STATUS);
558 
559 	if (!(intrstat & CMPCI_REG_ANY_INTR))
560 		return 0;
561 
562 	delay(10);
563 
564 	/* disable and reset intr */
565 	if (intrstat & CMPCI_REG_CH0_INTR)
566 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
567 		   CMPCI_REG_CH0_INTR_ENABLE);
568 	if (intrstat & CMPCI_REG_CH1_INTR)
569 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
570 		    CMPCI_REG_CH1_INTR_ENABLE);
571 
572 	if (intrstat & CMPCI_REG_CH0_INTR) {
573 		if (sc->sc_play.intr != NULL)
574 			(*sc->sc_play.intr)(sc->sc_play.intr_arg);
575 	}
576 	if (intrstat & CMPCI_REG_CH1_INTR) {
577 		if (sc->sc_rec.intr != NULL)
578 			(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
579 	}
580 
581 	/* enable intr */
582 	if (intrstat & CMPCI_REG_CH0_INTR)
583 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
584 		    CMPCI_REG_CH0_INTR_ENABLE);
585 	if (intrstat & CMPCI_REG_CH1_INTR)
586 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
587 		    CMPCI_REG_CH1_INTR_ENABLE);
588 
589 #if NMPU > 0
590 	if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
591 		mpu_intr(sc->sc_mpudev);
592 #endif
593 
594 	return 1;
595 }
596 
597 
598 /* open/close */
599 static int
600 cmpci_open(handle, flags)
601 	void *handle;
602 	int flags;
603 {
604 	return 0;
605 }
606 
607 static void
608 cmpci_close(handle)
609 	void *handle;
610 {
611 }
612 
613 static int
614 cmpci_query_encoding(handle, fp)
615 	void *handle;
616 	struct audio_encoding *fp;
617 {
618 	switch (fp->index) {
619 	case 0:
620 		strcpy(fp->name, AudioEulinear);
621 		fp->encoding = AUDIO_ENCODING_ULINEAR;
622 		fp->precision = 8;
623 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 		break;
625 	case 1:
626 		strcpy(fp->name, AudioEmulaw);
627 		fp->encoding = AUDIO_ENCODING_ULAW;
628 		fp->precision = 8;
629 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 		break;
631 	case 2:
632 		strcpy(fp->name, AudioEalaw);
633 		fp->encoding = AUDIO_ENCODING_ALAW;
634 		fp->precision = 8;
635 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
636 		break;
637 	case 3:
638 		strcpy(fp->name, AudioEslinear);
639 		fp->encoding = AUDIO_ENCODING_SLINEAR;
640 		fp->precision = 8;
641 		fp->flags = 0;
642 		break;
643 	case 4:
644 		strcpy(fp->name, AudioEslinear_le);
645 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
646 		fp->precision = 16;
647 		fp->flags = 0;
648 		break;
649 	case 5:
650 		strcpy(fp->name, AudioEulinear_le);
651 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
652 		fp->precision = 16;
653 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
654 		break;
655 	case 6:
656 		strcpy(fp->name, AudioEslinear_be);
657 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
658 		fp->precision = 16;
659 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
660 		break;
661 	case 7:
662 		strcpy(fp->name, AudioEulinear_be);
663 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
664 		fp->precision = 16;
665 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
666 		break;
667 	default:
668 		return EINVAL;
669 	}
670 	return 0;
671 }
672 
673 
674 static int
675 cmpci_set_params(handle, setmode, usemode, play, rec)
676 	void *handle;
677 	int setmode, usemode;
678 	struct audio_params *play, *rec;
679 {
680 	int i;
681 	struct cmpci_softc *sc = handle;
682 
683 	for (i = 0; i < 2; i++) {
684 		int md_format;
685 		int md_divide;
686 		int md_index;
687 		int mode;
688 		struct audio_params *p;
689 
690 		switch (i) {
691 		case 0:
692 			mode = AUMODE_PLAY;
693 			p = play;
694 			break;
695 		case 1:
696 			mode = AUMODE_RECORD;
697 			p = rec;
698 			break;
699 		default:
700 			return EINVAL;
701 		}
702 
703 		if (!(setmode & mode))
704 			continue;
705 
706 
707 		/* format */
708 		p->sw_code = NULL;
709 		switch ( p->channels ) {
710 		case 1:
711 			md_format = CMPCI_REG_FORMAT_MONO;
712 			break;
713 		case 2:
714 			md_format = CMPCI_REG_FORMAT_STEREO;
715 			break;
716 		default:
717 			return (EINVAL);
718 		}
719 		switch (p->encoding) {
720 		case AUDIO_ENCODING_ULAW:
721 			if (p->precision != 8)
722 				return (EINVAL);
723 			if (mode & AUMODE_PLAY) {
724 				p->factor = 2;
725 				p->sw_code = mulaw_to_slinear16_le;
726 				md_format |= CMPCI_REG_FORMAT_16BIT;
727 			} else {
728 				p->sw_code = ulinear8_to_mulaw;
729 				md_format |= CMPCI_REG_FORMAT_8BIT;
730 			}
731 			break;
732 		case AUDIO_ENCODING_ALAW:
733 			if (p->precision != 8)
734 				return (EINVAL);
735 			if (mode & AUMODE_PLAY) {
736 				p->factor = 2;
737 				p->sw_code = alaw_to_slinear16_le;
738 				md_format |= CMPCI_REG_FORMAT_16BIT;
739 			} else {
740 				p->sw_code = ulinear8_to_alaw;
741 				md_format |= CMPCI_REG_FORMAT_8BIT;
742 			}
743 			break;
744 		case AUDIO_ENCODING_SLINEAR_LE:
745 			switch (p->precision) {
746 			case 8:
747 				p->sw_code = change_sign8;
748 				md_format |= CMPCI_REG_FORMAT_8BIT;
749 				break;
750 			case 16:
751 				md_format |= CMPCI_REG_FORMAT_16BIT;
752 				break;
753 			default:
754 				return (EINVAL);
755 			}
756 			break;
757 		case AUDIO_ENCODING_SLINEAR_BE:
758 			switch (p->precision) {
759 			case 8:
760 				md_format |= CMPCI_REG_FORMAT_8BIT;
761 				p->sw_code = change_sign8;
762 				break;
763 			case 16:
764 				md_format |= CMPCI_REG_FORMAT_16BIT;
765 				p->sw_code = swap_bytes;
766 				break;
767 			default:
768 				return (EINVAL);
769 			}
770 			break;
771 		case AUDIO_ENCODING_ULINEAR_LE:
772 			switch (p->precision) {
773 			case 8:
774 				md_format |= CMPCI_REG_FORMAT_8BIT;
775 				break;
776 			case 16:
777 				md_format |= CMPCI_REG_FORMAT_16BIT;
778 				p->sw_code = change_sign16_le;
779 				break;
780 			default:
781 				return (EINVAL);
782 			}
783 			break;
784 		case AUDIO_ENCODING_ULINEAR_BE:
785 			switch (p->precision) {
786 			case 8:
787 				md_format |= CMPCI_REG_FORMAT_8BIT;
788 				break;
789 			case 16:
790 				md_format |= CMPCI_REG_FORMAT_16BIT;
791 				if (mode & AUMODE_PLAY)
792 					p->sw_code =
793 					    swap_bytes_change_sign16_le;
794 				else
795 					p->sw_code =
796 					    change_sign16_swap_bytes_le;
797 				break;
798 			default:
799 				return (EINVAL);
800 			}
801 			break;
802 		default:
803 			return (EINVAL);
804 		}
805 		if (mode & AUMODE_PLAY)
806 			cmpci_reg_partial_write_4(sc,
807 			   CMPCI_REG_CHANNEL_FORMAT,
808 			   CMPCI_REG_CH0_FORMAT_SHIFT,
809 			   CMPCI_REG_CH0_FORMAT_MASK, md_format);
810 		else
811 			cmpci_reg_partial_write_4(sc,
812 			   CMPCI_REG_CHANNEL_FORMAT,
813 			   CMPCI_REG_CH1_FORMAT_SHIFT,
814 			   CMPCI_REG_CH1_FORMAT_MASK, md_format);
815 		/* sample rate */
816 		md_index = cmpci_rate_to_index(p->sample_rate);
817 		md_divide = cmpci_index_to_divider(md_index);
818 		p->sample_rate = cmpci_index_to_rate(md_index);
819 		DPRINTF(("%s: sample:%d, divider=%d\n",
820 			 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
821 		if (mode & AUMODE_PLAY) {
822 			cmpci_reg_partial_write_4(sc,
823 			    CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
824 			    CMPCI_REG_DAC_FS_MASK, md_divide);
825 			sc->sc_play.md_divide = md_divide;
826 		} else {
827 			cmpci_reg_partial_write_4(sc,
828 			    CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
829 			    CMPCI_REG_ADC_FS_MASK, md_divide);
830 			sc->sc_rec.md_divide = md_divide;
831 		}
832 		cmpci_set_out_ports(sc);
833 		cmpci_set_in_ports(sc);
834 	}
835 	return 0;
836 }
837 
838 /* ARGSUSED */
839 static int
840 cmpci_round_blocksize(handle, block)
841 	void *handle;
842 	int block;
843 {
844 	return (block & -4);
845 }
846 
847 static int
848 cmpci_halt_output(handle)
849     void *handle;
850 {
851 	struct cmpci_softc *sc = handle;
852 	int s;
853 
854 	s = splaudio();
855 	sc->sc_play.intr = NULL;
856 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
857 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
858 	/* wait for reset DMA */
859 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
860 	delay(10);
861 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
862 	splx(s);
863 
864 	return 0;
865 }
866 
867 static int
868 cmpci_halt_input(handle)
869 	void *handle;
870 {
871 	struct cmpci_softc *sc = handle;
872 	int s;
873 
874 	s = splaudio();
875 	sc->sc_rec.intr = NULL;
876 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
877 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
878 	/* wait for reset DMA */
879 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
880 	delay(10);
881 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
882 	splx(s);
883 
884 	return 0;
885 }
886 
887 
888 /* get audio device information */
889 static int
890 cmpci_getdev(handle, ad)
891 	void *handle;
892 	struct audio_device *ad;
893 {
894 	struct cmpci_softc *sc = handle;
895 
896 	strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
897 	snprintf(ad->version, sizeof(ad->version), "0x%02x",
898 		 PCI_REVISION(sc->sc_class));
899 	switch (PCI_PRODUCT(sc->sc_id)) {
900 	case PCI_PRODUCT_CMEDIA_CMI8338A:
901 		strncpy(ad->config, "CMI8338A", sizeof(ad->config));
902 		break;
903 	case PCI_PRODUCT_CMEDIA_CMI8338B:
904 		strncpy(ad->config, "CMI8338B", sizeof(ad->config));
905 		break;
906 	case PCI_PRODUCT_CMEDIA_CMI8738:
907 		strncpy(ad->config, "CMI8738", sizeof(ad->config));
908 		break;
909 	case PCI_PRODUCT_CMEDIA_CMI8738B:
910 		strncpy(ad->config, "CMI8738B", sizeof(ad->config));
911 		break;
912 	default:
913 		strncpy(ad->config, "unknown", sizeof(ad->config));
914 	}
915 
916 	return 0;
917 }
918 
919 
920 /* mixer device information */
921 int
922 cmpci_query_devinfo(handle, dip)
923 	void *handle;
924 	mixer_devinfo_t *dip;
925 {
926 	static const char *const mixer_port_names[] = {
927 		AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
928 		AudioNmicrophone
929 	};
930 	static const char *const mixer_classes[] = {
931 		AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
932 		CmpciCspdif
933 	};
934 	struct cmpci_softc *sc = handle;
935 	int i;
936 
937 	dip->prev = dip->next = AUDIO_MIXER_LAST;
938 
939 	switch (dip->index) {
940 	case CMPCI_INPUT_CLASS:
941 	case CMPCI_OUTPUT_CLASS:
942 	case CMPCI_RECORD_CLASS:
943 	case CMPCI_PLAYBACK_CLASS:
944 	case CMPCI_SPDIF_CLASS:
945 		dip->type = AUDIO_MIXER_CLASS;
946 		dip->mixer_class = dip->index;
947 		strcpy(dip->label.name,
948 		    mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
949 		return 0;
950 
951 	case CMPCI_AUX_IN_VOL:
952 		dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
953 		goto vol1;
954 	case CMPCI_DAC_VOL:
955 	case CMPCI_FM_VOL:
956 	case CMPCI_CD_VOL:
957 	case CMPCI_LINE_IN_VOL:
958 	case CMPCI_MIC_VOL:
959 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
960 	vol1:	dip->mixer_class = CMPCI_INPUT_CLASS;
961 		dip->next = dip->index + 6;	/* CMPCI_xxx_MUTE */
962 		strcpy(dip->label.name, mixer_port_names[dip->index]);
963 		dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
964 	vol:
965 		dip->type = AUDIO_MIXER_VALUE;
966 		strcpy(dip->un.v.units.name, AudioNvolume);
967 		return 0;
968 
969 	case CMPCI_MIC_MUTE:
970 		dip->next = CMPCI_MIC_PREAMP;
971 		/* FALLTHROUGH */
972 	case CMPCI_DAC_MUTE:
973 	case CMPCI_FM_MUTE:
974 	case CMPCI_CD_MUTE:
975 	case CMPCI_LINE_IN_MUTE:
976 	case CMPCI_AUX_IN_MUTE:
977 		dip->prev = dip->index - 6;	/* CMPCI_xxx_VOL */
978 		dip->mixer_class = CMPCI_INPUT_CLASS;
979 		strcpy(dip->label.name, AudioNmute);
980 		goto on_off;
981 	on_off:
982 		dip->type = AUDIO_MIXER_ENUM;
983 		dip->un.e.num_mem = 2;
984 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
985 		dip->un.e.member[0].ord = 0;
986 		strcpy(dip->un.e.member[1].label.name, AudioNon);
987 		dip->un.e.member[1].ord = 1;
988 		return 0;
989 
990 	case CMPCI_MIC_PREAMP:
991 		dip->mixer_class = CMPCI_INPUT_CLASS;
992 		dip->prev = CMPCI_MIC_MUTE;
993 		strcpy(dip->label.name, AudioNpreamp);
994 		goto on_off;
995 	case CMPCI_PCSPEAKER:
996 		dip->mixer_class = CMPCI_INPUT_CLASS;
997 		strcpy(dip->label.name, AudioNspeaker);
998 		dip->un.v.num_channels = 1;
999 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
1000 		goto vol;
1001 	case CMPCI_RECORD_SOURCE:
1002 		dip->mixer_class = CMPCI_RECORD_CLASS;
1003 		strcpy(dip->label.name, AudioNsource);
1004 		dip->type = AUDIO_MIXER_SET;
1005 		dip->un.s.num_mem = 7;
1006 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1007 		dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
1008 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
1009 		dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
1010 		strcpy(dip->un.s.member[2].label.name, AudioNline);
1011 		dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
1012 		strcpy(dip->un.s.member[3].label.name, AudioNaux);
1013 		dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
1014 		strcpy(dip->un.s.member[4].label.name, AudioNwave);
1015 		dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
1016 		strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
1017 		dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
1018 		strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
1019 		dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
1020 		return 0;
1021 	case CMPCI_MIC_RECVOL:
1022 		dip->mixer_class = CMPCI_RECORD_CLASS;
1023 		strcpy(dip->label.name, AudioNmicrophone);
1024 		dip->un.v.num_channels = 1;
1025 		dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
1026 		goto vol;
1027 
1028 	case CMPCI_PLAYBACK_MODE:
1029 		dip->mixer_class = CMPCI_PLAYBACK_CLASS;
1030 		dip->type = AUDIO_MIXER_ENUM;
1031 		strcpy(dip->label.name, AudioNmode);
1032 		dip->un.e.num_mem = 2;
1033 		strcpy(dip->un.e.member[0].label.name, AudioNdac);
1034 		dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
1035 		strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
1036 		dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
1037 		return 0;
1038 	case CMPCI_SPDIF_IN_SELECT:
1039 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1040 		dip->type = AUDIO_MIXER_ENUM;
1041 		dip->next = CMPCI_SPDIF_IN_PHASE;
1042 		strcpy(dip->label.name, AudioNinput);
1043 		i = 0;
1044 		strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
1045 		dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
1046 		if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
1047 			strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
1048 			dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1049 		}
1050 		strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1051 		dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1052 		dip->un.e.num_mem = i;
1053 		return 0;
1054 	case CMPCI_SPDIF_IN_PHASE:
1055 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1056 		dip->prev = CMPCI_SPDIF_IN_SELECT;
1057 		strcpy(dip->label.name, CmpciNphase);
1058 		dip->type = AUDIO_MIXER_ENUM;
1059 		dip->un.e.num_mem = 2;
1060 		strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1061 		dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1062 		strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1063 		dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1064 		return 0;
1065 	case CMPCI_SPDIF_LOOP:
1066 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1067 		dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1068 		strcpy(dip->label.name, AudioNoutput);
1069 		dip->type = AUDIO_MIXER_ENUM;
1070 		dip->un.e.num_mem = 2;
1071 		strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1072 		dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1073 		strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1074 		dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1075 		return 0;
1076 	case CMPCI_SPDIF_OUT_PLAYBACK:
1077 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1078 		dip->prev = CMPCI_SPDIF_LOOP;
1079 		dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1080 		strcpy(dip->label.name, CmpciNplayback);
1081 		dip->type = AUDIO_MIXER_ENUM;
1082 		dip->un.e.num_mem = 2;
1083 		strcpy(dip->un.e.member[0].label.name, AudioNwave);
1084 		dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1085 		strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1086 		dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1087 		return 0;
1088 	case CMPCI_SPDIF_OUT_VOLTAGE:
1089 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1090 		dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1091 		strcpy(dip->label.name, CmpciNvoltage);
1092 		dip->type = AUDIO_MIXER_ENUM;
1093 		dip->un.e.num_mem = 2;
1094 		strcpy(dip->un.e.member[0].label.name, CmpciNhigh_v);
1095 		dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1096 		strcpy(dip->un.e.member[1].label.name, CmpciNlow_v);
1097 		dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1098 		return 0;
1099 	case CMPCI_MONITOR_DAC:
1100 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1101 		strcpy(dip->label.name, AudioNmonitor);
1102 		dip->type = AUDIO_MIXER_ENUM;
1103 		dip->un.e.num_mem = 3;
1104 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1105 		dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1106 		strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1107 		dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1108 		strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1109 		dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1110 		return 0;
1111 
1112 	case CMPCI_MASTER_VOL:
1113 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1114 		strcpy(dip->label.name, AudioNmaster);
1115 		dip->un.v.num_channels = 2;
1116 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1117 		goto vol;
1118 	case CMPCI_REAR:
1119 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1120 		dip->next = CMPCI_INDIVIDUAL;
1121 		strcpy(dip->label.name, CmpciNrear);
1122 		goto on_off;
1123 	case CMPCI_INDIVIDUAL:
1124 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1125 		dip->prev = CMPCI_REAR;
1126 		dip->next = CMPCI_REVERSE;
1127 		strcpy(dip->label.name, CmpciNindividual);
1128 		goto on_off;
1129 	case CMPCI_REVERSE:
1130 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1131 		dip->prev = CMPCI_INDIVIDUAL;
1132 		strcpy(dip->label.name, CmpciNreverse);
1133 		goto on_off;
1134 	case CMPCI_SURROUND:
1135 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1136 		strcpy(dip->label.name, CmpciNsurround);
1137 		goto on_off;
1138 	}
1139 
1140 	return ENXIO;
1141 }
1142 
1143 static int
1144 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1145 	struct cmpci_softc *sc;
1146 	size_t size;
1147 	struct malloc_type *type;
1148 	int flags;
1149 	caddr_t *r_addr;
1150 {
1151 	int error = 0;
1152 	struct cmpci_dmanode *n;
1153 	int w;
1154 
1155 	n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1156 	if (n == NULL) {
1157 		error = ENOMEM;
1158 		goto quit;
1159 	}
1160 
1161 	w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1162 #define CMPCI_DMABUF_ALIGN    0x4
1163 #define CMPCI_DMABUF_BOUNDARY 0x0
1164 	n->cd_tag = sc->sc_dmat;
1165 	n->cd_size = size;
1166 	error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1167 	    CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1168 	    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1169 	if (error)
1170 		goto mfree;
1171 	error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1172 	    &n->cd_addr, w | BUS_DMA_COHERENT);
1173 	if (error)
1174 		goto dmafree;
1175 	error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1176 	    w, &n->cd_map);
1177 	if (error)
1178 		goto unmap;
1179 	error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1180 	    NULL, w);
1181 	if (error)
1182 		goto destroy;
1183 
1184 	n->cd_next = sc->sc_dmap;
1185 	sc->sc_dmap = n;
1186 	*r_addr = KVADDR(n);
1187 	return 0;
1188 
1189  destroy:
1190 	bus_dmamap_destroy(n->cd_tag, n->cd_map);
1191  unmap:
1192 	bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1193  dmafree:
1194 	bus_dmamem_free(n->cd_tag,
1195 			n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1196  mfree:
1197 	free(n, type);
1198  quit:
1199 	return error;
1200 }
1201 
1202 static int
1203 cmpci_free_dmamem(sc, addr, type)
1204 	struct cmpci_softc *sc;
1205 	caddr_t addr;
1206 	struct malloc_type *type;
1207 {
1208 	struct cmpci_dmanode **nnp;
1209 
1210 	for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1211 		if ((*nnp)->cd_addr == addr) {
1212 			struct cmpci_dmanode *n = *nnp;
1213 			bus_dmamap_unload(n->cd_tag, n->cd_map);
1214 			bus_dmamap_destroy(n->cd_tag, n->cd_map);
1215 			bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1216 			bus_dmamem_free(n->cd_tag, n->cd_segs,
1217 			    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1218 			free(n, type);
1219 			return 0;
1220 		}
1221 	}
1222 	return -1;
1223 }
1224 
1225 static struct cmpci_dmanode *
1226 cmpci_find_dmamem(sc, addr)
1227 	struct cmpci_softc *sc;
1228 	caddr_t addr;
1229 {
1230 	struct cmpci_dmanode *p;
1231 
1232 	for (p=sc->sc_dmap; p; p=p->cd_next)
1233 		if ( KVADDR(p) == (void *)addr )
1234 			break;
1235 	return p;
1236 }
1237 
1238 
1239 #if 0
1240 static void
1241 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1242 static void
1243 cmpci_print_dmamem(p)
1244 	struct cmpci_dmanode *p;
1245 {
1246 	DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1247 		 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1248 		 (void *)DMAADDR(p), (void *)p->cd_size));
1249 }
1250 #endif /* DEBUG */
1251 
1252 
1253 static void *
1254 cmpci_allocm(handle, direction, size, type, flags)
1255 	void  *handle;
1256 	int    direction;
1257 	size_t size;
1258 	struct malloc_type *type;
1259 	int    flags;
1260 {
1261 	struct cmpci_softc *sc = handle;
1262 	caddr_t addr;
1263 
1264 	if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1265 		return NULL;
1266 	return addr;
1267 }
1268 
1269 static void
1270 cmpci_freem(handle, addr, type)
1271 	void	*handle;
1272 	void	*addr;
1273 	struct malloc_type *type;
1274 {
1275 	struct cmpci_softc *sc = handle;
1276 
1277 	cmpci_free_dmamem(sc, addr, type);
1278 }
1279 
1280 
1281 #define MAXVAL 256
1282 static int
1283 cmpci_adjust(val, mask)
1284 	int val, mask;
1285 {
1286 	val += (MAXVAL - mask) >> 1;
1287 	if (val >= MAXVAL)
1288 		val = MAXVAL-1;
1289 	return val & mask;
1290 }
1291 
1292 static void
1293 cmpci_set_mixer_gain(sc, port)
1294 	struct cmpci_softc *sc;
1295 	int port;
1296 {
1297 	int src;
1298 	int bits, mask;
1299 
1300 	switch (port) {
1301 	case CMPCI_MIC_VOL:
1302 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1303 		    CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1304 		return;
1305 	case CMPCI_MASTER_VOL:
1306 		src = CMPCI_SB16_MIXER_MASTER_L;
1307 		break;
1308 	case CMPCI_LINE_IN_VOL:
1309 		src = CMPCI_SB16_MIXER_LINE_L;
1310 		break;
1311 	case CMPCI_AUX_IN_VOL:
1312 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1313 		    CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1314 					      sc->sc_gain[port][CMPCI_RIGHT]));
1315 		return;
1316 	case CMPCI_MIC_RECVOL:
1317 		cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1318 		    CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1319 		    CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1320 		return;
1321 	case CMPCI_DAC_VOL:
1322 		src = CMPCI_SB16_MIXER_VOICE_L;
1323 		break;
1324 	case CMPCI_FM_VOL:
1325 		src = CMPCI_SB16_MIXER_FM_L;
1326 		break;
1327 	case CMPCI_CD_VOL:
1328 		src = CMPCI_SB16_MIXER_CDDA_L;
1329 		break;
1330 	case CMPCI_PCSPEAKER:
1331 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1332 		    CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1333 		return;
1334 	case CMPCI_MIC_PREAMP:
1335 		if (sc->sc_gain[port][CMPCI_LR])
1336 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1337 			    CMPCI_REG_MICGAINZ);
1338 		else
1339 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1340 			    CMPCI_REG_MICGAINZ);
1341 		return;
1342 
1343 	case CMPCI_DAC_MUTE:
1344 		if (sc->sc_gain[port][CMPCI_LR])
1345 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1346 			    CMPCI_REG_WSMUTE);
1347 		else
1348 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1349 			    CMPCI_REG_WSMUTE);
1350 		return;
1351 	case CMPCI_FM_MUTE:
1352 		if (sc->sc_gain[port][CMPCI_LR])
1353 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1354 			    CMPCI_REG_FMMUTE);
1355 		else
1356 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1357 			    CMPCI_REG_FMMUTE);
1358 		return;
1359 	case CMPCI_AUX_IN_MUTE:
1360 		if (sc->sc_gain[port][CMPCI_LR])
1361 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1362 			    CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1363 		else
1364 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1365 			    CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1366 		return;
1367 	case CMPCI_CD_MUTE:
1368 		mask = CMPCI_SB16_SW_CD;
1369 		goto sbmute;
1370 	case CMPCI_MIC_MUTE:
1371 		mask = CMPCI_SB16_SW_MIC;
1372 		goto sbmute;
1373 	case CMPCI_LINE_IN_MUTE:
1374 		mask = CMPCI_SB16_SW_LINE;
1375 	sbmute:
1376 		bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1377 		if (sc->sc_gain[port][CMPCI_LR])
1378 			bits = bits & ~mask;
1379 		else
1380 			bits = bits | mask;
1381 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1382 		return;
1383 
1384 	case CMPCI_SPDIF_IN_SELECT:
1385 	case CMPCI_MONITOR_DAC:
1386 	case CMPCI_PLAYBACK_MODE:
1387 	case CMPCI_SPDIF_LOOP:
1388 	case CMPCI_SPDIF_OUT_PLAYBACK:
1389 		cmpci_set_out_ports(sc);
1390 		return;
1391 	case CMPCI_SPDIF_OUT_VOLTAGE:
1392 		if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1393 			if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1394 			    == CMPCI_SPDIF_OUT_VOLTAGE_HIGH)
1395 				cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V);
1396 			else
1397 				cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V);
1398 		}
1399 		return;
1400 	case CMPCI_SURROUND:
1401 		if (CMPCI_ISCAP(sc, SURROUND)) {
1402 			if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1403 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1404 						CMPCI_REG_SURROUND);
1405 			else
1406 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1407 						  CMPCI_REG_SURROUND);
1408 		}
1409 		return;
1410 	case CMPCI_REAR:
1411 		if (CMPCI_ISCAP(sc, REAR)) {
1412 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1413 				cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D);
1414 			else
1415 				cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D);
1416 		}
1417 		return;
1418 	case CMPCI_INDIVIDUAL:
1419 		if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1420 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1421 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1422 						CMPCI_REG_INDIVIDUAL);
1423 			else
1424 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1425 						  CMPCI_REG_INDIVIDUAL);
1426 		}
1427 		return;
1428 	case CMPCI_REVERSE:
1429 		if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1430 			if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1431 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1432 						CMPCI_REG_REVERSE_FR);
1433 			else
1434 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1435 						  CMPCI_REG_REVERSE_FR);
1436 		}
1437 		return;
1438 	case CMPCI_SPDIF_IN_PHASE:
1439 		if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1440 			if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1441 			    == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1442 				cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1443 						  CMPCI_REG_SPDIN_PHASE);
1444 			else
1445 				cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1446 						CMPCI_REG_SPDIN_PHASE);
1447 		}
1448 		return;
1449 	default:
1450 		return;
1451 	}
1452 
1453 	cmpci_mixerreg_write(sc, src,
1454 	    CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1455 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1456 	    CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1457 }
1458 
1459 static void
1460 cmpci_set_out_ports(sc)
1461 	struct cmpci_softc *sc;
1462 {
1463 	u_int8_t v;
1464 	int enspdout = 0;
1465 
1466 	if (!CMPCI_ISCAP(sc, SPDLOOP))
1467 		return;
1468 
1469 	/* SPDIF/out select */
1470 	if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1471 		/* playback */
1472 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1473 	} else {
1474 		/* monitor SPDIF/in */
1475 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1476 	}
1477 
1478 	/* SPDIF in select */
1479 	v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1480 	if (v & CMPCI_SPDIFIN_SPDIFIN2)
1481 		cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1482 	else
1483 		cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN);
1484 	if (v & CMPCI_SPDIFIN_SPDIFOUT)
1485 		cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1486 	else
1487 		cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI);
1488 
1489 	/* playback to ... */
1490 	if (CMPCI_ISCAP(sc, SPDOUT) &&
1491 	    sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1492 		== CMPCI_PLAYBACK_MODE_SPDIF &&
1493 	    (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1494 		(CMPCI_ISCAP(sc, SPDOUT_48K) &&
1495 		    sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1496 		/* playback to SPDIF */
1497 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1498 		enspdout = 1;
1499 		if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1500 			cmpci_reg_set_reg_misc(sc,
1501 				CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1502 		else
1503 			cmpci_reg_clear_reg_misc(sc,
1504 				CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1505 	} else {
1506 		/* playback to DAC */
1507 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1508 				  CMPCI_REG_SPDIF0_ENABLE);
1509 		if (CMPCI_ISCAP(sc, SPDOUT_48K))
1510 			cmpci_reg_clear_reg_misc(sc,
1511 				CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K);
1512 	}
1513 
1514 	/* legacy to SPDIF/out or not */
1515 	if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1516 		if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1517 		    == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1518 			cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1519 					CMPCI_REG_LEGACY_SPDIF_ENABLE);
1520 		else {
1521 			cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1522 					CMPCI_REG_LEGACY_SPDIF_ENABLE);
1523 			enspdout = 1;
1524 		}
1525 	}
1526 
1527 	/* enable/disable SPDIF/out */
1528 	if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1529 		cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1530 				CMPCI_REG_XSPDIF_ENABLE);
1531 	else
1532 		cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1533 				CMPCI_REG_XSPDIF_ENABLE);
1534 
1535 	/* SPDIF monitor (digital to analog output) */
1536 	if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1537 		v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1538 		if (!(v & CMPCI_MONDAC_ENABLE))
1539 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1540 					CMPCI_REG_SPDIN_MONITOR);
1541 		if (v & CMPCI_MONDAC_SPDOUT)
1542 			cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1543 					CMPCI_REG_SPDIFOUT_DAC);
1544 		else
1545 			cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1546 					CMPCI_REG_SPDIFOUT_DAC);
1547 		if (v & CMPCI_MONDAC_ENABLE)
1548 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1549 					CMPCI_REG_SPDIN_MONITOR);
1550 	}
1551 }
1552 
1553 static int
1554 cmpci_set_in_ports(sc)
1555 	struct cmpci_softc *sc;
1556 {
1557 	int mask;
1558 	int bitsl, bitsr;
1559 
1560 	mask = sc->sc_in_mask;
1561 
1562 	/*
1563 	 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1564 	 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1565 	 * of the mixer register.
1566 	 */
1567 	bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1568 	    CMPCI_RECORD_SOURCE_FM);
1569 
1570 	bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1571 	if (mask & CMPCI_RECORD_SOURCE_MIC) {
1572 		bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1573 		bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1574 	}
1575 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1576 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1577 
1578 	if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1579 		cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1580 		    CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1581 	else
1582 		cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1583 		    CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1584 
1585 	if (mask & CMPCI_RECORD_SOURCE_WAVE)
1586 		cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1587 		    CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1588 	else
1589 		cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1590 		    CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1591 
1592 	if (CMPCI_ISCAP(sc, SPDIN) &&
1593 	    (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1594 		(CMPCI_ISCAP(sc, SPDOUT_48K) &&
1595 		    sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1596 		if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1597 			/* enable SPDIF/in */
1598 			cmpci_reg_set_4(sc,
1599 					CMPCI_REG_FUNC_1,
1600 					CMPCI_REG_SPDIF1_ENABLE);
1601 		} else {
1602 			cmpci_reg_clear_4(sc,
1603 					CMPCI_REG_FUNC_1,
1604 					CMPCI_REG_SPDIF1_ENABLE);
1605 		}
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 cmpci_set_port(handle, cp)
1613 	void *handle;
1614 	mixer_ctrl_t *cp;
1615 {
1616 	struct cmpci_softc *sc = handle;
1617 	int lgain, rgain;
1618 
1619 	switch (cp->dev) {
1620 	case CMPCI_MIC_VOL:
1621 	case CMPCI_PCSPEAKER:
1622 	case CMPCI_MIC_RECVOL:
1623 		if (cp->un.value.num_channels != 1)
1624 			return EINVAL;
1625 		/* FALLTHROUGH */
1626 	case CMPCI_DAC_VOL:
1627 	case CMPCI_FM_VOL:
1628 	case CMPCI_CD_VOL:
1629 	case CMPCI_LINE_IN_VOL:
1630 	case CMPCI_AUX_IN_VOL:
1631 	case CMPCI_MASTER_VOL:
1632 		if (cp->type != AUDIO_MIXER_VALUE)
1633 			return EINVAL;
1634 		switch (cp->un.value.num_channels) {
1635 		case 1:
1636 			lgain = rgain =
1637 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1638 			break;
1639 		case 2:
1640 			lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1641 			rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1642 			break;
1643 		default:
1644 			return EINVAL;
1645 		}
1646 		sc->sc_gain[cp->dev][CMPCI_LEFT]  = lgain;
1647 		sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1648 
1649 		cmpci_set_mixer_gain(sc, cp->dev);
1650 		break;
1651 
1652 	case CMPCI_RECORD_SOURCE:
1653 		if (cp->type != AUDIO_MIXER_SET)
1654 			return EINVAL;
1655 
1656 		if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1657 		    CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1658 		    CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1659 		    CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1660 			return EINVAL;
1661 
1662 		if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1663 			cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1664 
1665 		sc->sc_in_mask = cp->un.mask;
1666 		return cmpci_set_in_ports(sc);
1667 
1668 	/* boolean */
1669 	case CMPCI_DAC_MUTE:
1670 	case CMPCI_FM_MUTE:
1671 	case CMPCI_CD_MUTE:
1672 	case CMPCI_LINE_IN_MUTE:
1673 	case CMPCI_AUX_IN_MUTE:
1674 	case CMPCI_MIC_MUTE:
1675 	case CMPCI_MIC_PREAMP:
1676 	case CMPCI_PLAYBACK_MODE:
1677 	case CMPCI_SPDIF_IN_PHASE:
1678 	case CMPCI_SPDIF_LOOP:
1679 	case CMPCI_SPDIF_OUT_PLAYBACK:
1680 	case CMPCI_SPDIF_OUT_VOLTAGE:
1681 	case CMPCI_REAR:
1682 	case CMPCI_INDIVIDUAL:
1683 	case CMPCI_REVERSE:
1684 	case CMPCI_SURROUND:
1685 		if (cp->type != AUDIO_MIXER_ENUM)
1686 			return EINVAL;
1687 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1688 		cmpci_set_mixer_gain(sc, cp->dev);
1689 		break;
1690 
1691 	case CMPCI_SPDIF_IN_SELECT:
1692 		switch (cp->un.ord) {
1693 		case CMPCI_SPDIF_IN_SPDIN1:
1694 		case CMPCI_SPDIF_IN_SPDIN2:
1695 		case CMPCI_SPDIF_IN_SPDOUT:
1696 			break;
1697 		default:
1698 			return EINVAL;
1699 		}
1700 		goto xenum;
1701 	case CMPCI_MONITOR_DAC:
1702 		switch (cp->un.ord) {
1703 		case CMPCI_MONITOR_DAC_OFF:
1704 		case CMPCI_MONITOR_DAC_SPDIN:
1705 		case CMPCI_MONITOR_DAC_SPDOUT:
1706 			break;
1707 		default:
1708 			return EINVAL;
1709 		}
1710 	xenum:
1711 		if (cp->type != AUDIO_MIXER_ENUM)
1712 			return EINVAL;
1713 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1714 		cmpci_set_mixer_gain(sc, cp->dev);
1715 		break;
1716 
1717 	default:
1718 	    return EINVAL;
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static int
1725 cmpci_get_port(handle, cp)
1726 	void *handle;
1727 	mixer_ctrl_t *cp;
1728 {
1729 	struct cmpci_softc *sc = handle;
1730 
1731 	switch (cp->dev) {
1732 	case CMPCI_MIC_VOL:
1733 	case CMPCI_PCSPEAKER:
1734 	case CMPCI_MIC_RECVOL:
1735 		if (cp->un.value.num_channels != 1)
1736 			return EINVAL;
1737 		/*FALLTHROUGH*/
1738 	case CMPCI_DAC_VOL:
1739 	case CMPCI_FM_VOL:
1740 	case CMPCI_CD_VOL:
1741 	case CMPCI_LINE_IN_VOL:
1742 	case CMPCI_AUX_IN_VOL:
1743 	case CMPCI_MASTER_VOL:
1744 		switch (cp->un.value.num_channels) {
1745 		case 1:
1746 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1747 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1748 			break;
1749 		case 2:
1750 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1751 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1752 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1753 				sc->sc_gain[cp->dev][CMPCI_RIGHT];
1754 			break;
1755 		default:
1756 			return EINVAL;
1757 		}
1758 		break;
1759 
1760 	case CMPCI_RECORD_SOURCE:
1761 		cp->un.mask = sc->sc_in_mask;
1762 		break;
1763 
1764 	case CMPCI_DAC_MUTE:
1765 	case CMPCI_FM_MUTE:
1766 	case CMPCI_CD_MUTE:
1767 	case CMPCI_LINE_IN_MUTE:
1768 	case CMPCI_AUX_IN_MUTE:
1769 	case CMPCI_MIC_MUTE:
1770 	case CMPCI_MIC_PREAMP:
1771 	case CMPCI_PLAYBACK_MODE:
1772 	case CMPCI_SPDIF_IN_SELECT:
1773 	case CMPCI_SPDIF_IN_PHASE:
1774 	case CMPCI_SPDIF_LOOP:
1775 	case CMPCI_SPDIF_OUT_PLAYBACK:
1776 	case CMPCI_SPDIF_OUT_VOLTAGE:
1777 	case CMPCI_MONITOR_DAC:
1778 	case CMPCI_REAR:
1779 	case CMPCI_INDIVIDUAL:
1780 	case CMPCI_REVERSE:
1781 	case CMPCI_SURROUND:
1782 		cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1783 		break;
1784 
1785 	default:
1786 		return EINVAL;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 /* ARGSUSED */
1793 static size_t
1794 cmpci_round_buffersize(handle, direction, bufsize)
1795 	void *handle;
1796 	int direction;
1797 	size_t bufsize;
1798 {
1799 	if (bufsize > 0x10000)
1800 		bufsize = 0x10000;
1801 
1802 	return bufsize;
1803 }
1804 
1805 
1806 static paddr_t
1807 cmpci_mappage(handle, addr, offset, prot)
1808 	void *handle;
1809 	void *addr;
1810 	off_t offset;
1811 	int prot;
1812 {
1813 	struct cmpci_softc *sc = handle;
1814 	struct cmpci_dmanode *p;
1815 
1816 	if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1817 		return -1;
1818 
1819 	return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1820 		   sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1821 		   offset, prot, BUS_DMA_WAITOK);
1822 }
1823 
1824 
1825 /* ARGSUSED */
1826 static int
1827 cmpci_get_props(handle)
1828 	void *handle;
1829 {
1830 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1831 }
1832 
1833 
1834 static int
1835 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1836 	void *handle;
1837 	void *start, *end;
1838 	int blksize;
1839 	void (*intr) __P((void *));
1840 	void *arg;
1841 	struct audio_params *param;
1842 {
1843 	struct cmpci_softc *sc = handle;
1844 	struct cmpci_dmanode *p;
1845 	int bps;
1846 
1847 	sc->sc_play.intr = intr;
1848 	sc->sc_play.intr_arg = arg;
1849 	bps = param->channels*param->precision*param->factor / 8;
1850 	if (!bps)
1851 		return EINVAL;
1852 
1853 	/* set DMA frame */
1854 	if (!(p = cmpci_find_dmamem(sc, start)))
1855 		return EINVAL;
1856 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1857 	    DMAADDR(p));
1858 	delay(10);
1859 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1860 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1861 	delay(10);
1862 
1863 	/* set interrupt count */
1864 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1865 			  (blksize + bps - 1) / bps - 1);
1866 	delay(10);
1867 
1868 	/* start DMA */
1869 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1870 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1871 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1872 
1873 	return 0;
1874 }
1875 
1876 static int
1877 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1878 	void *handle;
1879 	void *start, *end;
1880 	int blksize;
1881 	void (*intr) __P((void *));
1882 	void *arg;
1883 	struct audio_params *param;
1884 {
1885 	struct cmpci_softc *sc = handle;
1886 	struct cmpci_dmanode *p;
1887 	int bps;
1888 
1889 	sc->sc_rec.intr = intr;
1890 	sc->sc_rec.intr_arg = arg;
1891 	bps = param->channels*param->precision*param->factor/8;
1892 	if (!bps)
1893 		return EINVAL;
1894 
1895 	/* set DMA frame */
1896 	if (!(p=cmpci_find_dmamem(sc, start)))
1897 		return EINVAL;
1898 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1899 	    DMAADDR(p));
1900 	delay(10);
1901 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1902 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1903 	delay(10);
1904 
1905 	/* set interrupt count */
1906 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1907 	    (blksize + bps - 1) / bps - 1);
1908 	delay(10);
1909 
1910 	/* start DMA */
1911 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1912 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1913 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1914 
1915 	return 0;
1916 }
1917 
1918 
1919 /* end of file */
1920