xref: /netbsd-src/sys/dev/pci/cmpci.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: cmpci.c,v 1.18 2003/02/01 06:23:38 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI <tshiozak@netbsd.org> .
9  *
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by ITOH Yasufumi.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  */
35 
36 /*
37  * C-Media CMI8x38 Audio Chip Support.
38  *
39  * TODO:
40  *   - 4ch / 6ch support.
41  *   - Joystick support.
42  *
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.18 2003/02/01 06:23:38 thorpej Exp $");
47 
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54 
55 #include "mpu.h"
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63 
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70 
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75 
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79 
80 /*
81  * Low-level HW interface
82  */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 						 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 					       uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 						    int, int,
89 						    unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 						    int, int,
92 						    uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 					  int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 					    int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 					  int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 					    int, uint32_t));
101 static int cmpci_rate_to_index __P((int));
102 static __inline int cmpci_index_to_rate __P((int));
103 static __inline int cmpci_index_to_divider __P((int));
104 
105 static int cmpci_adjust __P((int, int));
106 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
107 static void cmpci_set_out_ports __P((struct cmpci_softc *));
108 static int cmpci_set_in_ports __P((struct cmpci_softc *));
109 
110 
111 /*
112  * autoconf interface
113  */
114 static int cmpci_match __P((struct device *, struct cfdata *, void *));
115 static void cmpci_attach __P((struct device *, struct device *, void *));
116 
117 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
118     cmpci_match, cmpci_attach, NULL, NULL);
119 
120 /* interrupt */
121 static int cmpci_intr __P((void *));
122 
123 
124 /*
125  * DMA stuffs
126  */
127 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
128 				   size_t, struct malloc_type *,
129 				   int, caddr_t *));
130 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t,
131 				  struct malloc_type *));
132 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
133 						     caddr_t));
134 
135 
136 /*
137  * interface to machine independent layer
138  */
139 static int cmpci_open __P((void *, int));
140 static void cmpci_close __P((void *));
141 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
142 static int cmpci_set_params __P((void *, int, int,
143 				 struct audio_params *,
144 				 struct audio_params *));
145 static int cmpci_round_blocksize __P((void *, int));
146 static int cmpci_halt_output __P((void *));
147 static int cmpci_halt_input __P((void *));
148 static int cmpci_getdev __P((void *, struct audio_device *));
149 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
150 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
151 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
152 static void *cmpci_allocm __P((void *, int, size_t, struct malloc_type *, int));
153 static void cmpci_freem __P((void *, void *, struct malloc_type *));
154 static size_t cmpci_round_buffersize __P((void *, int, size_t));
155 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
156 static int cmpci_get_props __P((void *));
157 static int cmpci_trigger_output __P((void *, void *, void *, int,
158 				     void (*)(void *), void *,
159 				     struct audio_params *));
160 static int cmpci_trigger_input __P((void *, void *, void *, int,
161 				    void (*)(void *), void *,
162 				    struct audio_params *));
163 
164 static struct audio_hw_if cmpci_hw_if = {
165 	cmpci_open,		/* open */
166 	cmpci_close,		/* close */
167 	NULL,			/* drain */
168 	cmpci_query_encoding,	/* query_encoding */
169 	cmpci_set_params,	/* set_params */
170 	cmpci_round_blocksize,	/* round_blocksize */
171 	NULL,			/* commit_settings */
172 	NULL,			/* init_output */
173 	NULL,			/* init_input */
174 	NULL,			/* start_output */
175 	NULL,			/* start_input */
176 	cmpci_halt_output,	/* halt_output */
177 	cmpci_halt_input,	/* halt_input */
178 	NULL,			/* speaker_ctl */
179 	cmpci_getdev,		/* getdev */
180 	NULL,			/* setfd */
181 	cmpci_set_port,		/* set_port */
182 	cmpci_get_port,		/* get_port */
183 	cmpci_query_devinfo,	/* query_devinfo */
184 	cmpci_allocm,		/* allocm */
185 	cmpci_freem,		/* freem */
186 	cmpci_round_buffersize,/* round_buffersize */
187 	cmpci_mappage,		/* mappage */
188 	cmpci_get_props,	/* get_props */
189 	cmpci_trigger_output,	/* trigger_output */
190 	cmpci_trigger_input,	/* trigger_input */
191 	NULL,			/* dev_ioctl */
192 };
193 
194 
195 /*
196  * Low-level HW interface
197  */
198 
199 /* mixer register read/write */
200 static __inline uint8_t
201 cmpci_mixerreg_read(sc, no)
202 	struct cmpci_softc *sc;
203 	uint8_t no;
204 {
205 	uint8_t ret;
206 
207 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
208 	delay(10);
209 	ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
210 	delay(10);
211 	return ret;
212 }
213 
214 static __inline void
215 cmpci_mixerreg_write(sc, no, val)
216 	struct cmpci_softc *sc;
217 	uint8_t no, val;
218 {
219 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
220 	delay(10);
221 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
222 	delay(10);
223 }
224 
225 
226 /* register partial write */
227 static __inline void
228 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
229 	struct cmpci_softc *sc;
230 	int no, shift;
231 	unsigned mask, val;
232 {
233 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
234 	    (val<<shift) |
235 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
236 	delay(10);
237 }
238 
239 static __inline void
240 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
241 	struct cmpci_softc *sc;
242 	int no, shift;
243 	uint32_t mask, val;
244 {
245 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
246 	    (val<<shift) |
247 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
248 	delay(10);
249 }
250 
251 /* register set/clear bit */
252 static __inline void
253 cmpci_reg_set_1(sc, no, mask)
254 	struct cmpci_softc *sc;
255 	int no;
256 	uint8_t mask;
257 {
258 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
259 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
260 	delay(10);
261 }
262 
263 static __inline void
264 cmpci_reg_clear_1(sc, no, mask)
265 	struct cmpci_softc *sc;
266 	int no;
267 	uint8_t mask;
268 {
269 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
270 	    (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
271 	delay(10);
272 }
273 
274 
275 static __inline void
276 cmpci_reg_set_4(sc, no, mask)
277 	struct cmpci_softc *sc;
278 	int no;
279 	uint32_t mask;
280 {
281 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
282 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
283 	delay(10);
284 }
285 
286 static __inline void
287 cmpci_reg_clear_4(sc, no, mask)
288 	struct cmpci_softc *sc;
289 	int no;
290 	uint32_t mask;
291 {
292 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
293 	    (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
294 	delay(10);
295 }
296 
297 
298 /* rate */
299 static const struct {
300 	int rate;
301 	int divider;
302 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
303 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
304 	_RATE(5512),
305 	_RATE(8000),
306 	_RATE(11025),
307 	_RATE(16000),
308 	_RATE(22050),
309 	_RATE(32000),
310 	_RATE(44100),
311 	_RATE(48000)
312 #undef	_RATE
313 };
314 
315 static int
316 cmpci_rate_to_index(rate)
317 	int rate;
318 {
319 	int i;
320 
321 	for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
322 		if (rate <=
323 		    (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
324 			return i;
325 	return i;  /* 48000 */
326 }
327 
328 static __inline int
329 cmpci_index_to_rate(index)
330 	int index;
331 {
332 	return cmpci_rate_table[index].rate;
333 }
334 
335 static __inline int
336 cmpci_index_to_divider(index)
337 	int index;
338 {
339 	return cmpci_rate_table[index].divider;
340 }
341 
342 
343 /*
344  * interface to configure the device.
345  */
346 
347 static int
348 cmpci_match(parent, match, aux)
349 	struct device *parent;
350 	struct cfdata *match;
351 	void *aux;
352 {
353 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
354 
355 	if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
356 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
357 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
358 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
359 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
360 		return 1;
361 
362 	return 0;
363 }
364 
365 static void
366 cmpci_attach(parent, self, aux)
367 	struct device *parent, *self;
368 	void *aux;
369 {
370 	struct cmpci_softc *sc = (struct cmpci_softc *)self;
371 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
372 	struct audio_attach_args aa;
373 	pci_intr_handle_t ih;
374 	char const *strintr;
375 	char devinfo[256];
376 	int i, v;
377 
378 	aprint_naive(": Audio controller\n");
379 
380 	sc->sc_id = pa->pa_id;
381 	sc->sc_class = pa->pa_class;
382 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
383 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
384 	    PCI_REVISION(sc->sc_class));
385 	switch (PCI_PRODUCT(sc->sc_id)) {
386 	case PCI_PRODUCT_CMEDIA_CMI8338A:
387 		/*FALLTHROUGH*/
388 	case PCI_PRODUCT_CMEDIA_CMI8338B:
389 		sc->sc_capable = CMPCI_CAP_CMI8338;
390 		break;
391 	case PCI_PRODUCT_CMEDIA_CMI8738:
392 		/*FALLTHROUGH*/
393 	case PCI_PRODUCT_CMEDIA_CMI8738B:
394 		sc->sc_capable = CMPCI_CAP_CMI8738;
395 		break;
396 	}
397 
398 	/* map I/O space */
399 	if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
400 		&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
401 		aprint_error("%s: failed to map I/O space\n",
402 		    sc->sc_dev.dv_xname);
403 		return;
404 	}
405 
406 	/* interrupt */
407 	if (pci_intr_map(pa, &ih)) {
408 		aprint_error("%s: failed to map interrupt\n",
409 		    sc->sc_dev.dv_xname);
410 		return;
411 	}
412 	strintr = pci_intr_string(pa->pa_pc, ih);
413 	sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
414 	if (sc->sc_ih == NULL) {
415 		aprint_error("%s: failed to establish interrupt",
416 		    sc->sc_dev.dv_xname);
417 		if (strintr != NULL)
418 			aprint_normal(" at %s", strintr);
419 		aprint_normal("\n");
420 		return;
421 	}
422 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
423 
424 	sc->sc_dmat = pa->pa_dmat;
425 
426 	audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
427 
428 	/* attach OPL device */
429 	aa.type = AUDIODEV_TYPE_OPL;
430 	aa.hwif = NULL;
431 	aa.hdl = NULL;
432 	(void)config_found(&sc->sc_dev, &aa, audioprint);
433 
434 	/* attach MPU-401 device */
435 	aa.type = AUDIODEV_TYPE_MPU;
436 	aa.hwif = NULL;
437 	aa.hdl = NULL;
438 	if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
439 	    CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
440 		sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
441 
442 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
443 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
444 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
445 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
446 	    CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
447 	for (i = 0; i < CMPCI_NDEVS; i++) {
448 		switch(i) {
449 		/*
450 		 * CMI8738 defaults are
451 		 *  master:	0xe0	(0x00 - 0xf8)
452 		 *  FM, DAC:	0xc0	(0x00 - 0xf8)
453 		 *  PC speaker:	0x80	(0x00 - 0xc0)
454 		 *  others:	0
455 		 */
456 		/* volume */
457 		case CMPCI_MASTER_VOL:
458 			v = 128;	/* 224 */
459 			break;
460 		case CMPCI_FM_VOL:
461 		case CMPCI_DAC_VOL:
462 			v = 192;
463 			break;
464 		case CMPCI_PCSPEAKER:
465 			v = 128;
466 			break;
467 
468 		/* booleans, set to true */
469 		case CMPCI_CD_MUTE:
470 		case CMPCI_MIC_MUTE:
471 		case CMPCI_LINE_IN_MUTE:
472 		case CMPCI_AUX_IN_MUTE:
473 			v = 1;
474 			break;
475 
476 		/* volume with inital value 0 */
477 		case CMPCI_CD_VOL:
478 		case CMPCI_LINE_IN_VOL:
479 		case CMPCI_AUX_IN_VOL:
480 		case CMPCI_MIC_VOL:
481 		case CMPCI_MIC_RECVOL:
482 			/* FALLTHROUGH */
483 
484 		/* others are cleared */
485 		case CMPCI_MIC_PREAMP:
486 		case CMPCI_RECORD_SOURCE:
487 		case CMPCI_PLAYBACK_MODE:
488 		case CMPCI_SPDIF_IN_SELECT:
489 		case CMPCI_SPDIF_IN_PHASE:
490 		case CMPCI_SPDIF_LOOP:
491 		case CMPCI_SPDIF_OUT_PLAYBACK:
492 		case CMPCI_SPDIF_OUT_VOLTAGE:
493 		case CMPCI_MONITOR_DAC:
494 		case CMPCI_REAR:
495 		case CMPCI_INDIVIDUAL:
496 		case CMPCI_REVERSE:
497 		case CMPCI_SURROUND:
498 		default:
499 			v = 0;
500 			break;
501 		}
502 		sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
503 		cmpci_set_mixer_gain(sc, i);
504 	}
505 }
506 
507 
508 static int
509 cmpci_intr(handle)
510 	void *handle;
511 {
512 	struct cmpci_softc *sc = handle;
513 	uint32_t intrstat;
514 
515 	intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
516 	    CMPCI_REG_INTR_STATUS);
517 
518 	if (!(intrstat & CMPCI_REG_ANY_INTR))
519 		return 0;
520 
521 	delay(10);
522 
523 	/* disable and reset intr */
524 	if (intrstat & CMPCI_REG_CH0_INTR)
525 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
526 		   CMPCI_REG_CH0_INTR_ENABLE);
527 	if (intrstat & CMPCI_REG_CH1_INTR)
528 		cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
529 		    CMPCI_REG_CH1_INTR_ENABLE);
530 
531 	if (intrstat & CMPCI_REG_CH0_INTR) {
532 		if (sc->sc_play.intr != NULL)
533 			(*sc->sc_play.intr)(sc->sc_play.intr_arg);
534 	}
535 	if (intrstat & CMPCI_REG_CH1_INTR) {
536 		if (sc->sc_rec.intr != NULL)
537 			(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
538 	}
539 
540 	/* enable intr */
541 	if (intrstat & CMPCI_REG_CH0_INTR)
542 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
543 		    CMPCI_REG_CH0_INTR_ENABLE);
544 	if (intrstat & CMPCI_REG_CH1_INTR)
545 		cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
546 		    CMPCI_REG_CH1_INTR_ENABLE);
547 
548 #if NMPU > 0
549 	if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
550 		mpu_intr(sc->sc_mpudev);
551 #endif
552 
553 	return 1;
554 }
555 
556 
557 /* open/close */
558 static int
559 cmpci_open(handle, flags)
560 	void *handle;
561 	int flags;
562 {
563 	return 0;
564 }
565 
566 static void
567 cmpci_close(handle)
568 	void *handle;
569 {
570 }
571 
572 static int
573 cmpci_query_encoding(handle, fp)
574 	void *handle;
575 	struct audio_encoding *fp;
576 {
577 	switch (fp->index) {
578 	case 0:
579 		strcpy(fp->name, AudioEulinear);
580 		fp->encoding = AUDIO_ENCODING_ULINEAR;
581 		fp->precision = 8;
582 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
583 		break;
584 	case 1:
585 		strcpy(fp->name, AudioEmulaw);
586 		fp->encoding = AUDIO_ENCODING_ULAW;
587 		fp->precision = 8;
588 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
589 		break;
590 	case 2:
591 		strcpy(fp->name, AudioEalaw);
592 		fp->encoding = AUDIO_ENCODING_ALAW;
593 		fp->precision = 8;
594 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
595 		break;
596 	case 3:
597 		strcpy(fp->name, AudioEslinear);
598 		fp->encoding = AUDIO_ENCODING_SLINEAR;
599 		fp->precision = 8;
600 		fp->flags = 0;
601 		break;
602 	case 4:
603 		strcpy(fp->name, AudioEslinear_le);
604 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
605 		fp->precision = 16;
606 		fp->flags = 0;
607 		break;
608 	case 5:
609 		strcpy(fp->name, AudioEulinear_le);
610 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
611 		fp->precision = 16;
612 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 		break;
614 	case 6:
615 		strcpy(fp->name, AudioEslinear_be);
616 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
617 		fp->precision = 16;
618 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
619 		break;
620 	case 7:
621 		strcpy(fp->name, AudioEulinear_be);
622 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
623 		fp->precision = 16;
624 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 		break;
626 	default:
627 		return EINVAL;
628 	}
629 	return 0;
630 }
631 
632 
633 static int
634 cmpci_set_params(handle, setmode, usemode, play, rec)
635 	void *handle;
636 	int setmode, usemode;
637 	struct audio_params *play, *rec;
638 {
639 	int i;
640 	struct cmpci_softc *sc = handle;
641 
642 	for (i = 0; i < 2; i++) {
643 		int md_format;
644 		int md_divide;
645 		int md_index;
646 		int mode;
647 		struct audio_params *p;
648 
649 		switch (i) {
650 		case 0:
651 			mode = AUMODE_PLAY;
652 			p = play;
653 			break;
654 		case 1:
655 			mode = AUMODE_RECORD;
656 			p = rec;
657 			break;
658 		}
659 
660 		if (!(setmode & mode))
661 			continue;
662 
663 
664 		/* format */
665 		p->sw_code = NULL;
666 		switch ( p->channels ) {
667 		case 1:
668 			md_format = CMPCI_REG_FORMAT_MONO;
669 			break;
670 		case 2:
671 			md_format = CMPCI_REG_FORMAT_STEREO;
672 			break;
673 		default:
674 			return (EINVAL);
675 		}
676 		switch (p->encoding) {
677 		case AUDIO_ENCODING_ULAW:
678 			if (p->precision != 8)
679 				return (EINVAL);
680 			if (mode & AUMODE_PLAY) {
681 				p->factor = 2;
682 				p->sw_code = mulaw_to_slinear16_le;
683 				md_format |= CMPCI_REG_FORMAT_16BIT;
684 			} else {
685 				p->sw_code = ulinear8_to_mulaw;
686 				md_format |= CMPCI_REG_FORMAT_8BIT;
687 			}
688 			break;
689 		case AUDIO_ENCODING_ALAW:
690 			if (p->precision != 8)
691 				return (EINVAL);
692 			if (mode & AUMODE_PLAY) {
693 				p->factor = 2;
694 				p->sw_code = alaw_to_slinear16_le;
695 				md_format |= CMPCI_REG_FORMAT_16BIT;
696 			} else {
697 				p->sw_code = ulinear8_to_alaw;
698 				md_format |= CMPCI_REG_FORMAT_8BIT;
699 			}
700 			break;
701 		case AUDIO_ENCODING_SLINEAR_LE:
702 			switch (p->precision) {
703 			case 8:
704 				p->sw_code = change_sign8;
705 				md_format |= CMPCI_REG_FORMAT_8BIT;
706 				break;
707 			case 16:
708 				md_format |= CMPCI_REG_FORMAT_16BIT;
709 				break;
710 			default:
711 				return (EINVAL);
712 			}
713 			break;
714 		case AUDIO_ENCODING_SLINEAR_BE:
715 			switch (p->precision) {
716 			case 8:
717 				md_format |= CMPCI_REG_FORMAT_8BIT;
718 				p->sw_code = change_sign8;
719 				break;
720 			case 16:
721 				md_format |= CMPCI_REG_FORMAT_16BIT;
722 				p->sw_code = swap_bytes;
723 				break;
724 			default:
725 				return (EINVAL);
726 			}
727 			break;
728 		case AUDIO_ENCODING_ULINEAR_LE:
729 			switch (p->precision) {
730 			case 8:
731 				md_format |= CMPCI_REG_FORMAT_8BIT;
732 				break;
733 			case 16:
734 				md_format |= CMPCI_REG_FORMAT_16BIT;
735 				p->sw_code = change_sign16_le;
736 				break;
737 			default:
738 				return (EINVAL);
739 			}
740 			break;
741 		case AUDIO_ENCODING_ULINEAR_BE:
742 			switch (p->precision) {
743 			case 8:
744 				md_format |= CMPCI_REG_FORMAT_8BIT;
745 				break;
746 			case 16:
747 				md_format |= CMPCI_REG_FORMAT_16BIT;
748 				if (mode & AUMODE_PLAY)
749 					p->sw_code =
750 					    swap_bytes_change_sign16_le;
751 				else
752 					p->sw_code =
753 					    change_sign16_swap_bytes_le;
754 				break;
755 			default:
756 				return (EINVAL);
757 			}
758 			break;
759 		default:
760 			return (EINVAL);
761 		}
762 		if (mode & AUMODE_PLAY)
763 			cmpci_reg_partial_write_4(sc,
764 			   CMPCI_REG_CHANNEL_FORMAT,
765 			   CMPCI_REG_CH0_FORMAT_SHIFT,
766 			   CMPCI_REG_CH0_FORMAT_MASK, md_format);
767 		else
768 			cmpci_reg_partial_write_4(sc,
769 			   CMPCI_REG_CHANNEL_FORMAT,
770 			   CMPCI_REG_CH1_FORMAT_SHIFT,
771 			   CMPCI_REG_CH1_FORMAT_MASK, md_format);
772 		/* sample rate */
773 		md_index = cmpci_rate_to_index(p->sample_rate);
774 		md_divide = cmpci_index_to_divider(md_index);
775 		p->sample_rate = cmpci_index_to_rate(md_index);
776 		DPRINTF(("%s: sample:%d, divider=%d\n",
777 			 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
778 		if (mode & AUMODE_PLAY) {
779 			cmpci_reg_partial_write_4(sc,
780 			    CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
781 			    CMPCI_REG_DAC_FS_MASK, md_divide);
782 			sc->sc_play.md_divide = md_divide;
783 		} else {
784 			cmpci_reg_partial_write_4(sc,
785 			    CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
786 			    CMPCI_REG_ADC_FS_MASK, md_divide);
787 			sc->sc_rec.md_divide = md_divide;
788 		}
789 		cmpci_set_out_ports(sc);
790 		cmpci_set_in_ports(sc);
791 	}
792 	return 0;
793 }
794 
795 /* ARGSUSED */
796 static int
797 cmpci_round_blocksize(handle, block)
798 	void *handle;
799 	int block;
800 {
801 	return (block & -4);
802 }
803 
804 static int
805 cmpci_halt_output(handle)
806     void *handle;
807 {
808 	struct cmpci_softc *sc = handle;
809 	int s;
810 
811 	s = splaudio();
812 	sc->sc_play.intr = NULL;
813 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
814 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
815 	/* wait for reset DMA */
816 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
817 	delay(10);
818 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
819 	splx(s);
820 
821 	return 0;
822 }
823 
824 static int
825 cmpci_halt_input(handle)
826 	void *handle;
827 {
828 	struct cmpci_softc *sc = handle;
829 	int s;
830 
831 	s = splaudio();
832 	sc->sc_rec.intr = NULL;
833 	cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
834 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
835 	/* wait for reset DMA */
836 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
837 	delay(10);
838 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
839 	splx(s);
840 
841 	return 0;
842 }
843 
844 
845 /* get audio device information */
846 static int
847 cmpci_getdev(handle, ad)
848 	void *handle;
849 	struct audio_device *ad;
850 {
851 	struct cmpci_softc *sc = handle;
852 
853 	strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
854 	snprintf(ad->version, sizeof(ad->version), "0x%02x",
855 		 PCI_REVISION(sc->sc_class));
856 	switch (PCI_PRODUCT(sc->sc_id)) {
857 	case PCI_PRODUCT_CMEDIA_CMI8338A:
858 		strncpy(ad->config, "CMI8338A", sizeof(ad->config));
859 		break;
860 	case PCI_PRODUCT_CMEDIA_CMI8338B:
861 		strncpy(ad->config, "CMI8338B", sizeof(ad->config));
862 		break;
863 	case PCI_PRODUCT_CMEDIA_CMI8738:
864 		strncpy(ad->config, "CMI8738", sizeof(ad->config));
865 		break;
866 	case PCI_PRODUCT_CMEDIA_CMI8738B:
867 		strncpy(ad->config, "CMI8738B", sizeof(ad->config));
868 		break;
869 	default:
870 		strncpy(ad->config, "unknown", sizeof(ad->config));
871 	}
872 
873 	return 0;
874 }
875 
876 
877 /* mixer device information */
878 int
879 cmpci_query_devinfo(handle, dip)
880 	void *handle;
881 	mixer_devinfo_t *dip;
882 {
883 	static const char *const mixer_port_names[] = {
884 		AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
885 		AudioNmicrophone
886 	};
887 	static const char *const mixer_classes[] = {
888 		AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
889 		CmpciCspdif
890 	};
891 	struct cmpci_softc *sc = handle;
892 	int i;
893 
894 	dip->prev = dip->next = AUDIO_MIXER_LAST;
895 
896 	switch (dip->index) {
897 	case CMPCI_INPUT_CLASS:
898 	case CMPCI_OUTPUT_CLASS:
899 	case CMPCI_RECORD_CLASS:
900 	case CMPCI_PLAYBACK_CLASS:
901 	case CMPCI_SPDIF_CLASS:
902 		dip->type = AUDIO_MIXER_CLASS;
903 		dip->mixer_class = dip->index;
904 		strcpy(dip->label.name,
905 		    mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
906 		return 0;
907 
908 	case CMPCI_AUX_IN_VOL:
909 		dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
910 		goto vol1;
911 	case CMPCI_DAC_VOL:
912 	case CMPCI_FM_VOL:
913 	case CMPCI_CD_VOL:
914 	case CMPCI_LINE_IN_VOL:
915 	case CMPCI_MIC_VOL:
916 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
917 	vol1:	dip->mixer_class = CMPCI_INPUT_CLASS;
918 		dip->next = dip->index + 6;	/* CMPCI_xxx_MUTE */
919 		strcpy(dip->label.name, mixer_port_names[dip->index]);
920 		dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
921 	vol:
922 		dip->type = AUDIO_MIXER_VALUE;
923 		strcpy(dip->un.v.units.name, AudioNvolume);
924 		return 0;
925 
926 	case CMPCI_MIC_MUTE:
927 		dip->next = CMPCI_MIC_PREAMP;
928 		/* FALLTHROUGH */
929 	case CMPCI_DAC_MUTE:
930 	case CMPCI_FM_MUTE:
931 	case CMPCI_CD_MUTE:
932 	case CMPCI_LINE_IN_MUTE:
933 	case CMPCI_AUX_IN_MUTE:
934 		dip->prev = dip->index - 6;	/* CMPCI_xxx_VOL */
935 		dip->mixer_class = CMPCI_INPUT_CLASS;
936 		strcpy(dip->label.name, AudioNmute);
937 		goto on_off;
938 	on_off:
939 		dip->type = AUDIO_MIXER_ENUM;
940 		dip->un.e.num_mem = 2;
941 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
942 		dip->un.e.member[0].ord = 0;
943 		strcpy(dip->un.e.member[1].label.name, AudioNon);
944 		dip->un.e.member[1].ord = 1;
945 		return 0;
946 
947 	case CMPCI_MIC_PREAMP:
948 		dip->mixer_class = CMPCI_INPUT_CLASS;
949 		dip->prev = CMPCI_MIC_MUTE;
950 		strcpy(dip->label.name, AudioNpreamp);
951 		goto on_off;
952 	case CMPCI_PCSPEAKER:
953 		dip->mixer_class = CMPCI_INPUT_CLASS;
954 		strcpy(dip->label.name, AudioNspeaker);
955 		dip->un.v.num_channels = 1;
956 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
957 		goto vol;
958 	case CMPCI_RECORD_SOURCE:
959 		dip->mixer_class = CMPCI_RECORD_CLASS;
960 		strcpy(dip->label.name, AudioNsource);
961 		dip->type = AUDIO_MIXER_SET;
962 		dip->un.s.num_mem = 7;
963 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
964 		dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
965 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
966 		dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
967 		strcpy(dip->un.s.member[2].label.name, AudioNline);
968 		dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
969 		strcpy(dip->un.s.member[3].label.name, AudioNaux);
970 		dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
971 		strcpy(dip->un.s.member[4].label.name, AudioNwave);
972 		dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
973 		strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
974 		dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
975 		strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
976 		dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
977 		return 0;
978 	case CMPCI_MIC_RECVOL:
979 		dip->mixer_class = CMPCI_RECORD_CLASS;
980 		strcpy(dip->label.name, AudioNmicrophone);
981 		dip->un.v.num_channels = 1;
982 		dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
983 		goto vol;
984 
985 	case CMPCI_PLAYBACK_MODE:
986 		dip->mixer_class = CMPCI_PLAYBACK_CLASS;
987 		dip->type = AUDIO_MIXER_ENUM;
988 		strcpy(dip->label.name, AudioNmode);
989 		dip->un.e.num_mem = 2;
990 		strcpy(dip->un.e.member[0].label.name, AudioNdac);
991 		dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
992 		strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
993 		dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
994 		return 0;
995 	case CMPCI_SPDIF_IN_SELECT:
996 		dip->mixer_class = CMPCI_SPDIF_CLASS;
997 		dip->type = AUDIO_MIXER_ENUM;
998 		dip->next = CMPCI_SPDIF_IN_PHASE;
999 		strcpy(dip->label.name, AudioNinput);
1000 		i = 0;
1001 		strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
1002 		dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
1003 		if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
1004 			strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
1005 			dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1006 		}
1007 		strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1008 		dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1009 		dip->un.e.num_mem = i;
1010 		return 0;
1011 	case CMPCI_SPDIF_IN_PHASE:
1012 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1013 		dip->prev = CMPCI_SPDIF_IN_SELECT;
1014 		strcpy(dip->label.name, CmpciNphase);
1015 		dip->type = AUDIO_MIXER_ENUM;
1016 		dip->un.e.num_mem = 2;
1017 		strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1018 		dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1019 		strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1020 		dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1021 		return 0;
1022 	case CMPCI_SPDIF_LOOP:
1023 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1024 		dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1025 		strcpy(dip->label.name, AudioNoutput);
1026 		dip->type = AUDIO_MIXER_ENUM;
1027 		dip->un.e.num_mem = 2;
1028 		strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1029 		dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1030 		strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1031 		dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1032 		return 0;
1033 	case CMPCI_SPDIF_OUT_PLAYBACK:
1034 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1035 		dip->prev = CMPCI_SPDIF_LOOP;
1036 		dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1037 		strcpy(dip->label.name, CmpciNplayback);
1038 		dip->type = AUDIO_MIXER_ENUM;
1039 		dip->un.e.num_mem = 2;
1040 		strcpy(dip->un.e.member[0].label.name, AudioNwave);
1041 		dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1042 		strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1043 		dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1044 		return 0;
1045 	case CMPCI_SPDIF_OUT_VOLTAGE:
1046 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1047 		dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1048 		strcpy(dip->label.name, CmpciNvoltage);
1049 		dip->type = AUDIO_MIXER_ENUM;
1050 		dip->un.e.num_mem = 2;
1051 		strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1052 		dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1053 		strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1054 		dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1055 		return 0;
1056 	case CMPCI_MONITOR_DAC:
1057 		dip->mixer_class = CMPCI_SPDIF_CLASS;
1058 		strcpy(dip->label.name, AudioNmonitor);
1059 		dip->type = AUDIO_MIXER_ENUM;
1060 		dip->un.e.num_mem = 3;
1061 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1062 		dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1063 		strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1064 		dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1065 		strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1066 		dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1067 		return 0;
1068 
1069 	case CMPCI_MASTER_VOL:
1070 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1071 		strcpy(dip->label.name, AudioNmaster);
1072 		dip->un.v.num_channels = 2;
1073 		dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1074 		goto vol;
1075 	case CMPCI_REAR:
1076 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1077 		dip->next = CMPCI_INDIVIDUAL;
1078 		strcpy(dip->label.name, CmpciNrear);
1079 		goto on_off;
1080 	case CMPCI_INDIVIDUAL:
1081 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1082 		dip->prev = CMPCI_REAR;
1083 		dip->next = CMPCI_REVERSE;
1084 		strcpy(dip->label.name, CmpciNindividual);
1085 		goto on_off;
1086 	case CMPCI_REVERSE:
1087 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1088 		dip->prev = CMPCI_INDIVIDUAL;
1089 		strcpy(dip->label.name, CmpciNreverse);
1090 		goto on_off;
1091 	case CMPCI_SURROUND:
1092 		dip->mixer_class = CMPCI_OUTPUT_CLASS;
1093 		strcpy(dip->label.name, CmpciNsurround);
1094 		goto on_off;
1095 	}
1096 
1097 	return ENXIO;
1098 }
1099 
1100 static int
1101 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1102 	struct cmpci_softc *sc;
1103 	size_t size;
1104 	struct malloc_type *type;
1105 	int flags;
1106 	caddr_t *r_addr;
1107 {
1108 	int error = 0;
1109 	struct cmpci_dmanode *n;
1110 	int w;
1111 
1112 	n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1113 	if (n == NULL) {
1114 		error = ENOMEM;
1115 		goto quit;
1116 	}
1117 
1118 	w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1119 #define CMPCI_DMABUF_ALIGN    0x4
1120 #define CMPCI_DMABUF_BOUNDARY 0x0
1121 	n->cd_tag = sc->sc_dmat;
1122 	n->cd_size = size;
1123 	error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1124 	    CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1125 	    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1126 	if (error)
1127 		goto mfree;
1128 	error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1129 	    &n->cd_addr, w | BUS_DMA_COHERENT);
1130 	if (error)
1131 		goto dmafree;
1132 	error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1133 	    w, &n->cd_map);
1134 	if (error)
1135 		goto unmap;
1136 	error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1137 	    NULL, w);
1138 	if (error)
1139 		goto destroy;
1140 
1141 	n->cd_next = sc->sc_dmap;
1142 	sc->sc_dmap = n;
1143 	*r_addr = KVADDR(n);
1144 	return 0;
1145 
1146  destroy:
1147 	bus_dmamap_destroy(n->cd_tag, n->cd_map);
1148  unmap:
1149 	bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1150  dmafree:
1151 	bus_dmamem_free(n->cd_tag,
1152 			n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1153  mfree:
1154 	free(n, type);
1155  quit:
1156 	return error;
1157 }
1158 
1159 static int
1160 cmpci_free_dmamem(sc, addr, type)
1161 	struct cmpci_softc *sc;
1162 	caddr_t addr;
1163 	struct malloc_type *type;
1164 {
1165 	struct cmpci_dmanode **nnp;
1166 
1167 	for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1168 		if ((*nnp)->cd_addr == addr) {
1169 			struct cmpci_dmanode *n = *nnp;
1170 			bus_dmamap_unload(n->cd_tag, n->cd_map);
1171 			bus_dmamap_destroy(n->cd_tag, n->cd_map);
1172 			bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1173 			bus_dmamem_free(n->cd_tag, n->cd_segs,
1174 			    sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1175 			free(n, type);
1176 			return 0;
1177 		}
1178 	}
1179 	return -1;
1180 }
1181 
1182 static struct cmpci_dmanode *
1183 cmpci_find_dmamem(sc, addr)
1184 	struct cmpci_softc *sc;
1185 	caddr_t addr;
1186 {
1187 	struct cmpci_dmanode *p;
1188 
1189 	for (p=sc->sc_dmap; p; p=p->cd_next)
1190 		if ( KVADDR(p) == (void *)addr )
1191 			break;
1192 	return p;
1193 }
1194 
1195 
1196 #if 0
1197 static void
1198 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1199 static void
1200 cmpci_print_dmamem(p)
1201 	struct cmpci_dmanode *p;
1202 {
1203 	DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1204 		 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1205 		 (void *)DMAADDR(p), (void *)p->cd_size));
1206 }
1207 #endif /* DEBUG */
1208 
1209 
1210 static void *
1211 cmpci_allocm(handle, direction, size, type, flags)
1212 	void  *handle;
1213 	int    direction;
1214 	size_t size;
1215 	struct malloc_type *type;
1216 	int    flags;
1217 {
1218 	struct cmpci_softc *sc = handle;
1219 	caddr_t addr;
1220 
1221 	if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1222 		return NULL;
1223 	return addr;
1224 }
1225 
1226 static void
1227 cmpci_freem(handle, addr, type)
1228 	void	*handle;
1229 	void	*addr;
1230 	struct malloc_type *type;
1231 {
1232 	struct cmpci_softc *sc = handle;
1233 
1234 	cmpci_free_dmamem(sc, addr, type);
1235 }
1236 
1237 
1238 #define MAXVAL 256
1239 static int
1240 cmpci_adjust(val, mask)
1241 	int val, mask;
1242 {
1243 	val += (MAXVAL - mask) >> 1;
1244 	if (val >= MAXVAL)
1245 		val = MAXVAL-1;
1246 	return val & mask;
1247 }
1248 
1249 static void
1250 cmpci_set_mixer_gain(sc, port)
1251 	struct cmpci_softc *sc;
1252 	int port;
1253 {
1254 	int src;
1255 	int bits, mask;
1256 
1257 	switch (port) {
1258 	case CMPCI_MIC_VOL:
1259 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1260 		    CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1261 		break;
1262 	case CMPCI_MASTER_VOL:
1263 		src = CMPCI_SB16_MIXER_MASTER_L;
1264 		break;
1265 	case CMPCI_LINE_IN_VOL:
1266 		src = CMPCI_SB16_MIXER_LINE_L;
1267 		break;
1268 	case CMPCI_AUX_IN_VOL:
1269 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1270 		    CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1271 					      sc->sc_gain[port][CMPCI_RIGHT]));
1272 		return;
1273 	case CMPCI_MIC_RECVOL:
1274 		cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1275 		    CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1276 		    CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1277 		return;
1278 	case CMPCI_DAC_VOL:
1279 		src = CMPCI_SB16_MIXER_VOICE_L;
1280 		break;
1281 	case CMPCI_FM_VOL:
1282 		src = CMPCI_SB16_MIXER_FM_L;
1283 		break;
1284 	case CMPCI_CD_VOL:
1285 		src = CMPCI_SB16_MIXER_CDDA_L;
1286 		break;
1287 	case CMPCI_PCSPEAKER:
1288 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1289 		    CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1290 		return;
1291 	case CMPCI_MIC_PREAMP:
1292 		if (sc->sc_gain[port][CMPCI_LR])
1293 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1294 			    CMPCI_REG_MICGAINZ);
1295 		else
1296 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1297 			    CMPCI_REG_MICGAINZ);
1298 		return;
1299 
1300 	case CMPCI_DAC_MUTE:
1301 		if (sc->sc_gain[port][CMPCI_LR])
1302 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1303 			    CMPCI_REG_WSMUTE);
1304 		else
1305 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1306 			    CMPCI_REG_WSMUTE);
1307 		return;
1308 	case CMPCI_FM_MUTE:
1309 		if (sc->sc_gain[port][CMPCI_LR])
1310 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1311 			    CMPCI_REG_FMMUTE);
1312 		else
1313 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1314 			    CMPCI_REG_FMMUTE);
1315 		return;
1316 	case CMPCI_AUX_IN_MUTE:
1317 		if (sc->sc_gain[port][CMPCI_LR])
1318 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1319 			    CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1320 		else
1321 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1322 			    CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1323 		return;
1324 	case CMPCI_CD_MUTE:
1325 		mask = CMPCI_SB16_SW_CD;
1326 		goto sbmute;
1327 	case CMPCI_MIC_MUTE:
1328 		mask = CMPCI_SB16_SW_MIC;
1329 		goto sbmute;
1330 	case CMPCI_LINE_IN_MUTE:
1331 		mask = CMPCI_SB16_SW_LINE;
1332 	sbmute:
1333 		bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1334 		if (sc->sc_gain[port][CMPCI_LR])
1335 			bits = bits & ~mask;
1336 		else
1337 			bits = bits | mask;
1338 		cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1339 		return;
1340 
1341 	case CMPCI_SPDIF_IN_SELECT:
1342 	case CMPCI_MONITOR_DAC:
1343 	case CMPCI_PLAYBACK_MODE:
1344 	case CMPCI_SPDIF_LOOP:
1345 	case CMPCI_SPDIF_OUT_PLAYBACK:
1346 		cmpci_set_out_ports(sc);
1347 		return;
1348 	case CMPCI_SPDIF_OUT_VOLTAGE:
1349 		if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1350 			if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1351 			    == CMPCI_SPDIF_OUT_VOLTAGE_LOW)
1352 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1353 						  CMPCI_REG_5V);
1354 			else
1355 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1356 						CMPCI_REG_5V);
1357 		}
1358 		return;
1359 	case CMPCI_SURROUND:
1360 		if (CMPCI_ISCAP(sc, SURROUND)) {
1361 			if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1362 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1363 						CMPCI_REG_SURROUND);
1364 			else
1365 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1366 						  CMPCI_REG_SURROUND);
1367 		}
1368 		return;
1369 	case CMPCI_REAR:
1370 		if (CMPCI_ISCAP(sc, REAR)) {
1371 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1372 				cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1373 						CMPCI_REG_N4SPK3D);
1374 			else
1375 				cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1376 						  CMPCI_REG_N4SPK3D);
1377 		}
1378 		return;
1379 	case CMPCI_INDIVIDUAL:
1380 		if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1381 			if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1382 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1383 						CMPCI_REG_INDIVIDUAL);
1384 			else
1385 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1386 						  CMPCI_REG_INDIVIDUAL);
1387 		}
1388 		return;
1389 	case CMPCI_REVERSE:
1390 		if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1391 			if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1392 				cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1393 						CMPCI_REG_REVERSE_FR);
1394 			else
1395 				cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1396 						  CMPCI_REG_REVERSE_FR);
1397 		}
1398 		return;
1399 	case CMPCI_SPDIF_IN_PHASE:
1400 		if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1401 			if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1402 			    == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1403 				cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1404 						  CMPCI_REG_SPDIN_PHASE);
1405 			else
1406 				cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1407 						CMPCI_REG_SPDIN_PHASE);
1408 		}
1409 		return;
1410 	default:
1411 		return;
1412 	}
1413 
1414 	cmpci_mixerreg_write(sc, src,
1415 	    CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1416 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1417 	    CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1418 }
1419 
1420 static void
1421 cmpci_set_out_ports(sc)
1422 	struct cmpci_softc *sc;
1423 {
1424 	u_int8_t v;
1425 	int enspdout = 0;
1426 
1427 	if (!CMPCI_ISCAP(sc, SPDLOOP))
1428 		return;
1429 
1430 	/* SPDIF/out select */
1431 	if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1432 		/* playback */
1433 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1434 	} else {
1435 		/* monitor SPDIF/in */
1436 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1437 	}
1438 
1439 	/* SPDIF in select */
1440 	v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1441 	if (v & CMPCI_SPDIFIN_SPDIFIN2)
1442 		cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1443 	else
1444 		cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1445 	if (v & CMPCI_SPDIFIN_SPDIFOUT)
1446 		cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1447 	else
1448 		cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1449 
1450 	/* playback to ... */
1451 	if (CMPCI_ISCAP(sc, SPDOUT) &&
1452 	    sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1453 		== CMPCI_PLAYBACK_MODE_SPDIF &&
1454 	    (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1455 		(CMPCI_ISCAP(sc, SPDOUT_48K) &&
1456 		    sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1457 		/* playback to SPDIF */
1458 		cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1459 		enspdout = 1;
1460 		if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1461 			cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1462 					CMPCI_REG_SPDIF_48K);
1463 		else
1464 			cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1465 					CMPCI_REG_SPDIF_48K);
1466 	} else {
1467 		/* playback to DAC */
1468 		cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1469 				  CMPCI_REG_SPDIF0_ENABLE);
1470 		if (CMPCI_ISCAP(sc, SPDOUT_48K))
1471 			cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1472 					  CMPCI_REG_SPDIF_48K);
1473 	}
1474 
1475 	/* legacy to SPDIF/out or not */
1476 	if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1477 		if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1478 		    == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1479 			cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1480 					CMPCI_REG_LEGACY_SPDIF_ENABLE);
1481 		else {
1482 			cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1483 					CMPCI_REG_LEGACY_SPDIF_ENABLE);
1484 			enspdout = 1;
1485 		}
1486 	}
1487 
1488 	/* enable/disable SPDIF/out */
1489 	if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1490 		cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1491 				CMPCI_REG_XSPDIF_ENABLE);
1492 	else
1493 		cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1494 				CMPCI_REG_XSPDIF_ENABLE);
1495 
1496 	/* SPDIF monitor (digital to alalog output) */
1497 	if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1498 		v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1499 		if (!(v & CMPCI_MONDAC_ENABLE))
1500 			cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1501 					CMPCI_REG_SPDIN_MONITOR);
1502 		if (v & CMPCI_MONDAC_SPDOUT)
1503 			cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1504 					CMPCI_REG_SPDIFOUT_DAC);
1505 		else
1506 			cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1507 					CMPCI_REG_SPDIFOUT_DAC);
1508 		if (v & CMPCI_MONDAC_ENABLE)
1509 			cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1510 					CMPCI_REG_SPDIN_MONITOR);
1511 	}
1512 }
1513 
1514 static int
1515 cmpci_set_in_ports(sc)
1516 	struct cmpci_softc *sc;
1517 {
1518 	int mask;
1519 	int bitsl, bitsr;
1520 
1521 	mask = sc->sc_in_mask;
1522 
1523 	/*
1524 	 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1525 	 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1526 	 * of the mixer register.
1527 	 */
1528 	bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1529 	    CMPCI_RECORD_SOURCE_FM);
1530 
1531 	bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1532 	if (mask & CMPCI_RECORD_SOURCE_MIC) {
1533 		bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1534 		bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1535 	}
1536 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1537 	cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1538 
1539 	if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1540 		cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1541 		    CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1542 	else
1543 		cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1544 		    CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1545 
1546 	if (mask & CMPCI_RECORD_SOURCE_WAVE)
1547 		cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1548 		    CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1549 	else
1550 		cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1551 		    CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1552 
1553 	if (CMPCI_ISCAP(sc, SPDIN) &&
1554 	    (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1555 		(CMPCI_ISCAP(sc, SPDOUT_48K) &&
1556 		    sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1557 		if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1558 			/* enable SPDIF/in */
1559 			cmpci_reg_set_4(sc,
1560 					CMPCI_REG_FUNC_1,
1561 					CMPCI_REG_SPDIF1_ENABLE);
1562 		} else {
1563 			cmpci_reg_clear_4(sc,
1564 					CMPCI_REG_FUNC_1,
1565 					CMPCI_REG_SPDIF1_ENABLE);
1566 		}
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int
1573 cmpci_set_port(handle, cp)
1574 	void *handle;
1575 	mixer_ctrl_t *cp;
1576 {
1577 	struct cmpci_softc *sc = handle;
1578 	int lgain, rgain;
1579 
1580 	switch (cp->dev) {
1581 	case CMPCI_MIC_VOL:
1582 	case CMPCI_PCSPEAKER:
1583 	case CMPCI_MIC_RECVOL:
1584 		if (cp->un.value.num_channels != 1)
1585 			return EINVAL;
1586 		/* FALLTHROUGH */
1587 	case CMPCI_DAC_VOL:
1588 	case CMPCI_FM_VOL:
1589 	case CMPCI_CD_VOL:
1590 	case CMPCI_LINE_IN_VOL:
1591 	case CMPCI_AUX_IN_VOL:
1592 	case CMPCI_MASTER_VOL:
1593 		if (cp->type != AUDIO_MIXER_VALUE)
1594 			return EINVAL;
1595 		switch (cp->un.value.num_channels) {
1596 		case 1:
1597 			lgain = rgain =
1598 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1599 			break;
1600 		case 2:
1601 			lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1602 			rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1603 			break;
1604 		default:
1605 			return EINVAL;
1606 		}
1607 		sc->sc_gain[cp->dev][CMPCI_LEFT]  = lgain;
1608 		sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1609 
1610 		cmpci_set_mixer_gain(sc, cp->dev);
1611 		break;
1612 
1613 	case CMPCI_RECORD_SOURCE:
1614 		if (cp->type != AUDIO_MIXER_SET)
1615 			return EINVAL;
1616 
1617 		if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1618 		    CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1619 		    CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1620 		    CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1621 			return EINVAL;
1622 
1623 		if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1624 			cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1625 
1626 		sc->sc_in_mask = cp->un.mask;
1627 		return cmpci_set_in_ports(sc);
1628 
1629 	/* boolean */
1630 	case CMPCI_DAC_MUTE:
1631 	case CMPCI_FM_MUTE:
1632 	case CMPCI_CD_MUTE:
1633 	case CMPCI_LINE_IN_MUTE:
1634 	case CMPCI_AUX_IN_MUTE:
1635 	case CMPCI_MIC_MUTE:
1636 	case CMPCI_MIC_PREAMP:
1637 	case CMPCI_PLAYBACK_MODE:
1638 	case CMPCI_SPDIF_IN_PHASE:
1639 	case CMPCI_SPDIF_LOOP:
1640 	case CMPCI_SPDIF_OUT_PLAYBACK:
1641 	case CMPCI_SPDIF_OUT_VOLTAGE:
1642 	case CMPCI_REAR:
1643 	case CMPCI_INDIVIDUAL:
1644 	case CMPCI_REVERSE:
1645 	case CMPCI_SURROUND:
1646 		if (cp->type != AUDIO_MIXER_ENUM)
1647 			return EINVAL;
1648 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1649 		cmpci_set_mixer_gain(sc, cp->dev);
1650 		break;
1651 
1652 	case CMPCI_SPDIF_IN_SELECT:
1653 		switch (cp->un.ord) {
1654 		case CMPCI_SPDIF_IN_SPDIN1:
1655 		case CMPCI_SPDIF_IN_SPDIN2:
1656 		case CMPCI_SPDIF_IN_SPDOUT:
1657 			break;
1658 		default:
1659 			return EINVAL;
1660 		}
1661 		goto xenum;
1662 	case CMPCI_MONITOR_DAC:
1663 		switch (cp->un.ord) {
1664 		case CMPCI_MONITOR_DAC_OFF:
1665 		case CMPCI_MONITOR_DAC_SPDIN:
1666 		case CMPCI_MONITOR_DAC_SPDOUT:
1667 			break;
1668 		default:
1669 			return EINVAL;
1670 		}
1671 	xenum:
1672 		if (cp->type != AUDIO_MIXER_ENUM)
1673 			return EINVAL;
1674 		sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1675 		cmpci_set_mixer_gain(sc, cp->dev);
1676 		break;
1677 
1678 	default:
1679 	    return EINVAL;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static int
1686 cmpci_get_port(handle, cp)
1687 	void *handle;
1688 	mixer_ctrl_t *cp;
1689 {
1690 	struct cmpci_softc *sc = handle;
1691 
1692 	switch (cp->dev) {
1693 	case CMPCI_MIC_VOL:
1694 	case CMPCI_PCSPEAKER:
1695 	case CMPCI_MIC_RECVOL:
1696 		if (cp->un.value.num_channels != 1)
1697 			return EINVAL;
1698 		/*FALLTHROUGH*/
1699 	case CMPCI_DAC_VOL:
1700 	case CMPCI_FM_VOL:
1701 	case CMPCI_CD_VOL:
1702 	case CMPCI_LINE_IN_VOL:
1703 	case CMPCI_AUX_IN_VOL:
1704 	case CMPCI_MASTER_VOL:
1705 		switch (cp->un.value.num_channels) {
1706 		case 1:
1707 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1708 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1709 			break;
1710 		case 2:
1711 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1712 				sc->sc_gain[cp->dev][CMPCI_LEFT];
1713 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1714 				sc->sc_gain[cp->dev][CMPCI_RIGHT];
1715 			break;
1716 		default:
1717 			return EINVAL;
1718 		}
1719 		break;
1720 
1721 	case CMPCI_RECORD_SOURCE:
1722 		cp->un.mask = sc->sc_in_mask;
1723 		break;
1724 
1725 	case CMPCI_DAC_MUTE:
1726 	case CMPCI_FM_MUTE:
1727 	case CMPCI_CD_MUTE:
1728 	case CMPCI_LINE_IN_MUTE:
1729 	case CMPCI_AUX_IN_MUTE:
1730 	case CMPCI_MIC_MUTE:
1731 	case CMPCI_MIC_PREAMP:
1732 	case CMPCI_PLAYBACK_MODE:
1733 	case CMPCI_SPDIF_IN_SELECT:
1734 	case CMPCI_SPDIF_IN_PHASE:
1735 	case CMPCI_SPDIF_LOOP:
1736 	case CMPCI_SPDIF_OUT_PLAYBACK:
1737 	case CMPCI_SPDIF_OUT_VOLTAGE:
1738 	case CMPCI_MONITOR_DAC:
1739 	case CMPCI_REAR:
1740 	case CMPCI_INDIVIDUAL:
1741 	case CMPCI_REVERSE:
1742 	case CMPCI_SURROUND:
1743 		cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1744 		break;
1745 
1746 	default:
1747 		return EINVAL;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 /* ARGSUSED */
1754 static size_t
1755 cmpci_round_buffersize(handle, direction, bufsize)
1756 	void *handle;
1757 	int direction;
1758 	size_t bufsize;
1759 {
1760 	if (bufsize > 0x10000)
1761 		bufsize = 0x10000;
1762 
1763 	return bufsize;
1764 }
1765 
1766 
1767 static paddr_t
1768 cmpci_mappage(handle, addr, offset, prot)
1769 	void *handle;
1770 	void *addr;
1771 	off_t offset;
1772 	int prot;
1773 {
1774 	struct cmpci_softc *sc = handle;
1775 	struct cmpci_dmanode *p;
1776 
1777 	if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1778 		return -1;
1779 
1780 	return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1781 		   sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1782 		   offset, prot, BUS_DMA_WAITOK);
1783 }
1784 
1785 
1786 /* ARGSUSED */
1787 static int
1788 cmpci_get_props(handle)
1789 	void *handle;
1790 {
1791 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1792 }
1793 
1794 
1795 static int
1796 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1797 	void *handle;
1798 	void *start, *end;
1799 	int blksize;
1800 	void (*intr) __P((void *));
1801 	void *arg;
1802 	struct audio_params *param;
1803 {
1804 	struct cmpci_softc *sc = handle;
1805 	struct cmpci_dmanode *p;
1806 	int bps;
1807 
1808 	sc->sc_play.intr = intr;
1809 	sc->sc_play.intr_arg = arg;
1810 	bps = param->channels*param->precision*param->factor / 8;
1811 	if (!bps)
1812 		return EINVAL;
1813 
1814 	/* set DMA frame */
1815 	if (!(p = cmpci_find_dmamem(sc, start)))
1816 		return EINVAL;
1817 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1818 	    DMAADDR(p));
1819 	delay(10);
1820 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1821 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1822 	delay(10);
1823 
1824 	/* set interrupt count */
1825 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1826 			  (blksize + bps - 1) / bps - 1);
1827 	delay(10);
1828 
1829 	/* start DMA */
1830 	cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1831 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1832 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1833 
1834 	return 0;
1835 }
1836 
1837 static int
1838 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1839 	void *handle;
1840 	void *start, *end;
1841 	int blksize;
1842 	void (*intr) __P((void *));
1843 	void *arg;
1844 	struct audio_params *param;
1845 {
1846 	struct cmpci_softc *sc = handle;
1847 	struct cmpci_dmanode *p;
1848 	int bps;
1849 
1850 	sc->sc_rec.intr = intr;
1851 	sc->sc_rec.intr_arg = arg;
1852 	bps = param->channels*param->precision*param->factor/8;
1853 	if (!bps)
1854 		return EINVAL;
1855 
1856 	/* set DMA frame */
1857 	if (!(p=cmpci_find_dmamem(sc, start)))
1858 		return EINVAL;
1859 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1860 	    DMAADDR(p));
1861 	delay(10);
1862 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1863 	    ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1864 	delay(10);
1865 
1866 	/* set interrupt count */
1867 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1868 	    (blksize + bps - 1) / bps - 1);
1869 	delay(10);
1870 
1871 	/* start DMA */
1872 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1873 	cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1874 	cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1875 
1876 	return 0;
1877 }
1878 
1879 
1880 /* end of file */
1881