xref: /netbsd-src/sys/dev/pci/arcmsr.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: arcmsr.c,v 1.8 2007/12/07 11:51:21 xtraeme Exp $ */
2 /*	$OpenBSD: arc.c,v 1.68 2007/10/27 03:28:27 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2006 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "bio.h"
21 
22 #include <sys/cdefs.h>
23 __KERNEL_RCSID(0, "$NetBSD: arcmsr.c,v 1.8 2007/12/07 11:51:21 xtraeme Exp $");
24 
25 #include <sys/param.h>
26 #include <sys/buf.h>
27 #include <sys/kernel.h>
28 #include <sys/malloc.h>
29 #include <sys/device.h>
30 #include <sys/kmem.h>
31 #include <sys/kthread.h>
32 #include <sys/mutex.h>
33 #include <sys/condvar.h>
34 #include <sys/rwlock.h>
35 
36 #if NBIO > 0
37 #include <sys/ioctl.h>
38 #include <dev/biovar.h>
39 #endif
40 
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
44 
45 #include <dev/scsipi/scsipi_all.h>
46 #include <dev/scsipi/scsi_all.h>
47 #include <dev/scsipi/scsiconf.h>
48 
49 #include <dev/sysmon/sysmonvar.h>
50 
51 #include <sys/bus.h>
52 
53 #include <uvm/uvm_extern.h>	/* for PAGE_SIZE */
54 
55 #include <dev/pci/arcmsrvar.h>
56 
57 /* #define ARC_DEBUG */
58 #ifdef ARC_DEBUG
59 #define ARC_D_INIT	(1<<0)
60 #define ARC_D_RW	(1<<1)
61 #define ARC_D_DB	(1<<2)
62 
63 int arcdebug = 0;
64 
65 #define DPRINTF(p...)		do { if (arcdebug) printf(p); } while (0)
66 #define DNPRINTF(n, p...)	do { if ((n) & arcdebug) printf(p); } while (0)
67 
68 #else
69 #define DPRINTF(p...)		/* p */
70 #define DNPRINTF(n, p...)	/* n, p */
71 #endif
72 
73 /*
74  * the fw header must always equal this.
75  */
76 static struct arc_fw_hdr arc_fw_hdr = { 0x5e, 0x01, 0x61 };
77 
78 /*
79  * autoconf(9) glue.
80  */
81 static int 	arc_match(device_t, struct cfdata *, void *);
82 static void 	arc_attach(device_t, device_t, void *);
83 static int 	arc_detach(device_t, int);
84 static void 	arc_shutdown(void *);
85 static int 	arc_intr(void *);
86 static void	arc_minphys(struct buf *);
87 
88 CFATTACH_DECL(arcmsr, sizeof(struct arc_softc),
89 	arc_match, arc_attach, arc_detach, NULL);
90 
91 /*
92  * bio(4) and sysmon_envsys(9) glue.
93  */
94 #if NBIO > 0
95 static int 	arc_bioctl(struct device *, u_long, void *);
96 static int 	arc_bio_inq(struct arc_softc *, struct bioc_inq *);
97 static int 	arc_bio_vol(struct arc_softc *, struct bioc_vol *);
98 static int 	arc_bio_disk(struct arc_softc *, struct bioc_disk *);
99 static int 	arc_bio_alarm(struct arc_softc *, struct bioc_alarm *);
100 static int 	arc_bio_alarm_state(struct arc_softc *, struct bioc_alarm *);
101 static int 	arc_bio_getvol(struct arc_softc *, int,
102 			       struct arc_fw_volinfo *);
103 static void 	arc_create_sensors(void *);
104 static void 	arc_refresh_sensors(struct sysmon_envsys *, envsys_data_t *);
105 #endif
106 
107 static int
108 arc_match(device_t parent, struct cfdata *match, void *aux)
109 {
110 	struct pci_attach_args *pa = aux;
111 
112 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ARECA) {
113 		switch (PCI_PRODUCT(pa->pa_id)) {
114 		case PCI_PRODUCT_ARECA_ARC1110:
115 		case PCI_PRODUCT_ARECA_ARC1120:
116 		case PCI_PRODUCT_ARECA_ARC1130:
117 		case PCI_PRODUCT_ARECA_ARC1160:
118 		case PCI_PRODUCT_ARECA_ARC1170:
119 		case PCI_PRODUCT_ARECA_ARC1200:
120 		case PCI_PRODUCT_ARECA_ARC1202:
121 		case PCI_PRODUCT_ARECA_ARC1210:
122 		case PCI_PRODUCT_ARECA_ARC1220:
123 		case PCI_PRODUCT_ARECA_ARC1230:
124 		case PCI_PRODUCT_ARECA_ARC1260:
125 		case PCI_PRODUCT_ARECA_ARC1270:
126 		case PCI_PRODUCT_ARECA_ARC1280:
127 		case PCI_PRODUCT_ARECA_ARC1380:
128 		case PCI_PRODUCT_ARECA_ARC1381:
129 		case PCI_PRODUCT_ARECA_ARC1680:
130 		case PCI_PRODUCT_ARECA_ARC1681:
131 			return 1;
132 		default:
133 			break;
134 		}
135 	}
136 
137 	return 0;
138 }
139 
140 static void
141 arc_attach(device_t parent, device_t self, void *aux)
142 {
143 	struct arc_softc	*sc = device_private(self);
144 	struct pci_attach_args	*pa = aux;
145 	struct scsipi_adapter	*adapt = &sc->sc_adapter;
146 	struct scsipi_channel	*chan = &sc->sc_chan;
147 
148 	sc->sc_talking = 0;
149 	rw_init(&sc->sc_rwlock);
150 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_BIO);
151 	cv_init(&sc->sc_condvar, "arcdb");
152 
153 	if (arc_map_pci_resources(sc, pa) != 0) {
154 		/* error message printed by arc_map_pci_resources */
155 		return;
156 	}
157 
158 	if (arc_query_firmware(sc) != 0) {
159 		/* error message printed by arc_query_firmware */
160 		goto unmap_pci;
161 	}
162 
163 	if (arc_alloc_ccbs(sc) != 0) {
164 		/* error message printed by arc_alloc_ccbs */
165 		goto unmap_pci;
166 	}
167 
168 	sc->sc_shutdownhook = shutdownhook_establish(arc_shutdown, sc);
169 	if (sc->sc_shutdownhook == NULL)
170 		panic("unable to establish arc powerhook");
171 
172 	memset(adapt, 0, sizeof(*adapt));
173 	adapt->adapt_dev = self;
174 	adapt->adapt_nchannels = 1;
175 	adapt->adapt_openings = sc->sc_req_count / ARC_MAX_TARGET;
176 	adapt->adapt_max_periph = adapt->adapt_openings;
177 	adapt->adapt_minphys = arc_minphys;
178 	adapt->adapt_request = arc_scsi_cmd;
179 
180 	memset(chan, 0, sizeof(*chan));
181 	chan->chan_adapter = adapt;
182 	chan->chan_bustype = &scsi_bustype;
183 	chan->chan_nluns = ARC_MAX_LUN;
184 	chan->chan_ntargets = ARC_MAX_TARGET;
185 	chan->chan_id = ARC_MAX_TARGET;
186 	chan->chan_channel = 0;
187 	chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
188 
189 	(void)config_found(self, &sc->sc_chan, scsiprint);
190 
191 	/* enable interrupts */
192 	arc_write(sc, ARC_REG_INTRMASK,
193 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRSTAT_DOORBELL));
194 
195 #if NBIO > 0
196 	/*
197 	 * Register the driver to bio(4) and setup the sensors.
198 	 */
199 	if (bio_register(self, arc_bioctl) != 0)
200 		panic("%s: bioctl registration failed\n", device_xname(self));
201 
202 	/*
203 	 * you need to talk to the firmware to get volume info. our firmware
204 	 * interface relies on being able to sleep, so we need to use a thread
205 	 * to do the work.
206 	 */
207 	if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
208 	    arc_create_sensors, sc, &sc->sc_lwp, "arcmsr_sensors") != 0)
209 		panic("%s: unable to create a kernel thread for sensors\n",
210 		    device_xname(self));
211 #endif
212 
213         return;
214 
215 unmap_pci:
216 	arc_unmap_pci_resources(sc);
217 }
218 
219 static int
220 arc_detach(device_t self, int flags)
221 {
222 	struct arc_softc		*sc = device_private(self);
223 
224 	shutdownhook_disestablish(sc->sc_shutdownhook);
225 
226 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
227 		aprint_error("%s: timeout waiting to stop bg rebuild\n",
228 		    device_xname(&sc->sc_dev));
229 
230 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
231 		aprint_error("%s: timeout waiting to flush cache\n",
232 		    device_xname(&sc->sc_dev));
233 
234 	return 0;
235 }
236 
237 static void
238 arc_shutdown(void *xsc)
239 {
240 	struct arc_softc		*sc = xsc;
241 
242 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
243 		aprint_error("%s: timeout waiting to stop bg rebuild\n",
244 		    device_xname(&sc->sc_dev));
245 
246 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
247 		aprint_error("%s: timeout waiting to flush cache\n",
248 		    device_xname(&sc->sc_dev));
249 }
250 
251 static void
252 arc_minphys(struct buf *bp)
253 {
254 	if (bp->b_bcount > MAXPHYS)
255 		bp->b_bcount = MAXPHYS;
256 	minphys(bp);
257 }
258 
259 static int
260 arc_intr(void *arg)
261 {
262 	struct arc_softc		*sc = arg;
263 	struct arc_ccb			*ccb = NULL;
264 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
265 	struct arc_io_cmd		*cmd;
266 	uint32_t			reg, intrstat;
267 
268 	mutex_spin_enter(&sc->sc_mutex);
269 	intrstat = arc_read(sc, ARC_REG_INTRSTAT);
270 	if (intrstat == 0x0) {
271 		mutex_spin_exit(&sc->sc_mutex);
272 		return 0;
273 	}
274 
275 	intrstat &= ARC_REG_INTRSTAT_POSTQUEUE | ARC_REG_INTRSTAT_DOORBELL;
276 	arc_write(sc, ARC_REG_INTRSTAT, intrstat);
277 
278 	if (intrstat & ARC_REG_INTRSTAT_DOORBELL) {
279 		if (sc->sc_talking) {
280 			/* if an ioctl is talking, wake it up */
281 			arc_write(sc, ARC_REG_INTRMASK,
282 			    ~ARC_REG_INTRMASK_POSTQUEUE);
283 			cv_broadcast(&sc->sc_condvar);
284 		} else {
285 			/* otherwise drop it */
286 			reg = arc_read(sc, ARC_REG_OUTB_DOORBELL);
287 			arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
288 			if (reg & ARC_REG_OUTB_DOORBELL_WRITE_OK)
289 				arc_write(sc, ARC_REG_INB_DOORBELL,
290 				    ARC_REG_INB_DOORBELL_READ_OK);
291 		}
292 	}
293 	mutex_spin_exit(&sc->sc_mutex);
294 
295 	while ((reg = arc_pop(sc)) != 0xffffffff) {
296 		cmd = (struct arc_io_cmd *)(kva +
297 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
298 		    (uint32_t)ARC_DMA_DVA(sc->sc_requests)));
299 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
300 
301 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
302 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
303 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
304 
305 		arc_scsi_cmd_done(sc, ccb, reg);
306 	}
307 
308 	return 1;
309 }
310 
311 void
312 arc_scsi_cmd(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg)
313 {
314 	struct scsipi_periph		*periph;
315 	struct scsipi_xfer		*xs;
316 	struct scsipi_adapter		*adapt = chan->chan_adapter;
317 	struct arc_softc		*sc = device_private(adapt->adapt_dev);
318 	struct arc_ccb			*ccb;
319 	struct arc_msg_scsicmd		*cmd;
320 	uint32_t			reg;
321 	uint8_t				target;
322 
323 	switch (req) {
324 	case ADAPTER_REQ_GROW_RESOURCES:
325 		/* Not supported. */
326 		return;
327 	case ADAPTER_REQ_SET_XFER_MODE:
328 		/* Not supported. */
329 		return;
330 	case ADAPTER_REQ_RUN_XFER:
331 		break;
332 	}
333 
334 	mutex_spin_enter(&sc->sc_mutex);
335 
336 	xs = arg;
337 	periph = xs->xs_periph;
338 	target = periph->periph_target;
339 
340 	if (xs->cmdlen > ARC_MSG_CDBLEN) {
341 		memset(&xs->sense, 0, sizeof(xs->sense));
342 		xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | 0x70;
343 		xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
344 		xs->sense.scsi_sense.asc = 0x20;
345 		xs->error = XS_SENSE;
346 		xs->status = SCSI_CHECK;
347 		mutex_spin_exit(&sc->sc_mutex);
348 		scsipi_done(xs);
349 		return;
350 	}
351 
352 	ccb = arc_get_ccb(sc);
353 	if (ccb == NULL) {
354 		xs->error = XS_RESOURCE_SHORTAGE;
355 		mutex_spin_exit(&sc->sc_mutex);
356 		scsipi_done(xs);
357 		return;
358 	}
359 
360 	ccb->ccb_xs = xs;
361 
362 	if (arc_load_xs(ccb) != 0) {
363 		xs->error = XS_DRIVER_STUFFUP;
364 		arc_put_ccb(sc, ccb);
365 		mutex_spin_exit(&sc->sc_mutex);
366 		scsipi_done(xs);
367 		return;
368 	}
369 
370 	cmd = &ccb->ccb_cmd->cmd;
371 	reg = ccb->ccb_cmd_post;
372 
373 	/* bus is always 0 */
374 	cmd->target = target;
375 	cmd->lun = periph->periph_lun;
376 	cmd->function = 1; /* XXX magic number */
377 
378 	cmd->cdb_len = xs->cmdlen;
379 	cmd->sgl_len = ccb->ccb_dmamap->dm_nsegs;
380 	if (xs->xs_control & XS_CTL_DATA_OUT)
381 		cmd->flags = ARC_MSG_SCSICMD_FLAG_WRITE;
382 	if (ccb->ccb_dmamap->dm_nsegs > ARC_SGL_256LEN) {
383 		cmd->flags |= ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512;
384 		reg |= ARC_REG_POST_QUEUE_BIGFRAME;
385 	}
386 
387 	cmd->context = htole32(ccb->ccb_id);
388 	cmd->data_len = htole32(xs->datalen);
389 
390 	memcpy(cmd->cdb, xs->cmd, xs->cmdlen);
391 
392 	/* we've built the command, let's put it on the hw */
393 	bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
394 	    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
395 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
396 
397 	arc_push(sc, reg);
398 	if (xs->xs_control & XS_CTL_POLL) {
399 		if (arc_complete(sc, ccb, xs->timeout) != 0) {
400 			xs->error = XS_DRIVER_STUFFUP;
401 			mutex_spin_exit(&sc->sc_mutex);
402 			scsipi_done(xs);
403 			return;
404 		}
405 	}
406 
407 	mutex_spin_exit(&sc->sc_mutex);
408 }
409 
410 int
411 arc_load_xs(struct arc_ccb *ccb)
412 {
413 	struct arc_softc		*sc = ccb->ccb_sc;
414 	struct scsipi_xfer		*xs = ccb->ccb_xs;
415 	bus_dmamap_t			dmap = ccb->ccb_dmamap;
416 	struct arc_sge			*sgl = ccb->ccb_cmd->sgl, *sge;
417 	uint64_t			addr;
418 	int				i, error;
419 
420 	if (xs->datalen == 0)
421 		return 0;
422 
423 	error = bus_dmamap_load(sc->sc_dmat, dmap,
424 	    xs->data, xs->datalen, NULL,
425 	    (xs->xs_control & XS_CTL_NOSLEEP) ?
426 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
427 	if (error != 0) {
428 		aprint_error("%s: error %d loading dmamap\n",
429 		    device_xname(&sc->sc_dev), error);
430 		return 1;
431 	}
432 
433 	for (i = 0; i < dmap->dm_nsegs; i++) {
434 		sge = &sgl[i];
435 
436 		sge->sg_hdr = htole32(ARC_SGE_64BIT | dmap->dm_segs[i].ds_len);
437 		addr = dmap->dm_segs[i].ds_addr;
438 		sge->sg_hi_addr = htole32((uint32_t)(addr >> 32));
439 		sge->sg_lo_addr = htole32((uint32_t)addr);
440 	}
441 
442 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
443 	    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
444 	    BUS_DMASYNC_PREWRITE);
445 
446 	return 0;
447 }
448 
449 void
450 arc_scsi_cmd_done(struct arc_softc *sc, struct arc_ccb *ccb, uint32_t reg)
451 {
452 	struct scsipi_xfer		*xs = ccb->ccb_xs;
453 	struct arc_msg_scsicmd		*cmd;
454 
455 	if (xs->datalen != 0) {
456 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
457 		    ccb->ccb_dmamap->dm_mapsize,
458 		    (xs->xs_control & XS_CTL_DATA_IN) ?
459 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
460 		bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
461 	}
462 
463 	/* timeout_del */
464 	xs->status |= XS_STS_DONE;
465 
466 	if (reg & ARC_REG_REPLY_QUEUE_ERR) {
467 		cmd = &ccb->ccb_cmd->cmd;
468 
469 		switch (cmd->status) {
470 		case ARC_MSG_STATUS_SELTIMEOUT:
471 		case ARC_MSG_STATUS_ABORTED:
472 		case ARC_MSG_STATUS_INIT_FAIL:
473 			xs->status = SCSI_OK;
474 			xs->error = XS_SELTIMEOUT;
475 			break;
476 
477 		case SCSI_CHECK:
478 			memset(&xs->sense, 0, sizeof(xs->sense));
479 			memcpy(&xs->sense, cmd->sense_data,
480 			    min(ARC_MSG_SENSELEN, sizeof(xs->sense)));
481 			xs->sense.scsi_sense.response_code =
482 			    SSD_RCODE_VALID | 0x70;
483 			xs->status = SCSI_CHECK;
484 			xs->error = XS_SENSE;
485 			xs->resid = 0;
486 			break;
487 
488 		default:
489 			/* unknown device status */
490 			xs->error = XS_BUSY; /* try again later? */
491 			xs->status = SCSI_BUSY;
492 			break;
493 		}
494 	} else {
495 		xs->status = SCSI_OK;
496 		xs->error = XS_NOERROR;
497 		xs->resid = 0;
498 	}
499 
500 	arc_put_ccb(sc, ccb);
501 	scsipi_done(xs);
502 }
503 
504 int
505 arc_complete(struct arc_softc *sc, struct arc_ccb *nccb, int timeout)
506 {
507 	struct arc_ccb			*ccb = NULL;
508 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
509 	struct arc_io_cmd		*cmd;
510 	uint32_t			reg;
511 
512 	do {
513 		reg = arc_pop(sc);
514 		if (reg == 0xffffffff) {
515 			if (timeout-- == 0)
516 				return 1;
517 
518 			delay(1000);
519 			continue;
520 		}
521 
522 		cmd = (struct arc_io_cmd *)(kva +
523 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
524 		    ARC_DMA_DVA(sc->sc_requests)));
525 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
526 
527 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
528 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
529 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
530 
531 		arc_scsi_cmd_done(sc, ccb, reg);
532 	} while (nccb != ccb);
533 
534 	return 0;
535 }
536 
537 int
538 arc_map_pci_resources(struct arc_softc *sc, struct pci_attach_args *pa)
539 {
540 	pcireg_t			memtype;
541 	pci_intr_handle_t		ih;
542 
543 	sc->sc_pc = pa->pa_pc;
544 	sc->sc_tag = pa->pa_tag;
545 	sc->sc_dmat = pa->pa_dmat;
546 
547 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, ARC_PCI_BAR);
548 	if (pci_mapreg_map(pa, ARC_PCI_BAR, memtype, 0, &sc->sc_iot,
549 	    &sc->sc_ioh, NULL, &sc->sc_ios) != 0) {
550 		aprint_error(": unable to map system interface register\n");
551 		return 1;
552 	}
553 
554 	if (pci_intr_map(pa, &ih) != 0) {
555 		aprint_error(": unable to map interrupt\n");
556 		goto unmap;
557 	}
558 
559 	sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO,
560 	    arc_intr, sc);
561 	if (sc->sc_ih == NULL) {
562 		aprint_error(": unable to map interrupt [2]\n");
563 		goto unmap;
564 	}
565 	aprint_normal(": interrupting at %s\n",
566 	    pci_intr_string(pa->pa_pc, ih));
567 
568 	return 0;
569 
570 unmap:
571 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
572 	sc->sc_ios = 0;
573 	return 1;
574 }
575 
576 void
577 arc_unmap_pci_resources(struct arc_softc *sc)
578 {
579 	pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
580 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
581 	sc->sc_ios = 0;
582 }
583 
584 int
585 arc_query_firmware(struct arc_softc *sc)
586 {
587 	struct arc_msg_firmware_info	fwinfo;
588 	char				string[81]; /* sizeof(vendor)*2+1 */
589 
590 	if (arc_wait_eq(sc, ARC_REG_OUTB_ADDR1, ARC_REG_OUTB_ADDR1_FIRMWARE_OK,
591 	    ARC_REG_OUTB_ADDR1_FIRMWARE_OK) != 0) {
592 		aprint_debug("%s: timeout waiting for firmware ok\n",
593 		    device_xname(&sc->sc_dev));
594 		return 1;
595 	}
596 
597 	if (arc_msg0(sc, ARC_REG_INB_MSG0_GET_CONFIG) != 0) {
598 		aprint_debug("%s: timeout waiting for get config\n",
599 		    device_xname(&sc->sc_dev));
600 		return 1;
601 	}
602 
603 	if (arc_msg0(sc, ARC_REG_INB_MSG0_START_BGRB) != 0) {
604 		aprint_debug("%s: timeout waiting to start bg rebuild\n",
605 		    device_xname(&sc->sc_dev));
606 		return 1;
607 	}
608 
609 	arc_read_region(sc, ARC_REG_MSGBUF, &fwinfo, sizeof(fwinfo));
610 
611 	DNPRINTF(ARC_D_INIT, "%s: signature: 0x%08x\n",
612 	    device_xname(&sc->sc_dev), htole32(fwinfo.signature));
613 
614 	if (htole32(fwinfo.signature) != ARC_FWINFO_SIGNATURE_GET_CONFIG) {
615 		aprint_error("%s: invalid firmware info from iop\n",
616 		    device_xname(&sc->sc_dev));
617 		return 1;
618 	}
619 
620 	DNPRINTF(ARC_D_INIT, "%s: request_len: %d\n",
621 	    device_xname(&sc->sc_dev),
622 	    htole32(fwinfo.request_len));
623 	DNPRINTF(ARC_D_INIT, "%s: queue_len: %d\n",
624 	    device_xname(&sc->sc_dev),
625 	    htole32(fwinfo.queue_len));
626 	DNPRINTF(ARC_D_INIT, "%s: sdram_size: %d\n",
627 	    device_xname(&sc->sc_dev),
628 	    htole32(fwinfo.sdram_size));
629 	DNPRINTF(ARC_D_INIT, "%s: sata_ports: %d\n",
630 	    device_xname(&sc->sc_dev),
631 	    htole32(fwinfo.sata_ports));
632 
633 	scsipi_strvis(string, 81, fwinfo.vendor, sizeof(fwinfo.vendor));
634 	DNPRINTF(ARC_D_INIT, "%s: vendor: \"%s\"\n",
635 	    device_xname(&sc->sc_dev), string);
636 
637 	scsipi_strvis(string, 17, fwinfo.model, sizeof(fwinfo.model));
638 
639 	aprint_normal("%s: Areca %s Host Adapter RAID controller\n",
640 	    device_xname(&sc->sc_dev), string);
641 
642 	scsipi_strvis(string, 33, fwinfo.fw_version, sizeof(fwinfo.fw_version));
643 	DNPRINTF(ARC_D_INIT, "%s: version: \"%s\"\n",
644 	    device_xname(&sc->sc_dev), string);
645 
646 	if (htole32(fwinfo.request_len) != ARC_MAX_IOCMDLEN) {
647 		aprint_error("%s: unexpected request frame size (%d != %d)\n",
648 		    device_xname(&sc->sc_dev),
649 		    htole32(fwinfo.request_len), ARC_MAX_IOCMDLEN);
650 		return 1;
651 	}
652 
653 	sc->sc_req_count = htole32(fwinfo.queue_len);
654 
655 	aprint_normal("%s: %d ports, %dMB SDRAM, firmware <%s>\n",
656 	    device_xname(&sc->sc_dev), htole32(fwinfo.sata_ports),
657 	    htole32(fwinfo.sdram_size), string);
658 
659 	return 0;
660 }
661 
662 #if NBIO > 0
663 static int
664 arc_bioctl(struct device *self, u_long cmd, void *addr)
665 {
666 	struct arc_softc *sc = device_private(self);
667 	int error = 0;
668 
669 	switch (cmd) {
670 	case BIOCINQ:
671 		error = arc_bio_inq(sc, (struct bioc_inq *)addr);
672 		break;
673 
674 	case BIOCVOL:
675 		error = arc_bio_vol(sc, (struct bioc_vol *)addr);
676 		break;
677 
678 	case BIOCDISK:
679 		error = arc_bio_disk(sc, (struct bioc_disk *)addr);
680 		break;
681 
682 	case BIOCALARM:
683 		error = arc_bio_alarm(sc, (struct bioc_alarm *)addr);
684 		break;
685 
686 	default:
687 		error = ENOTTY;
688 		break;
689 	}
690 
691 	return error;
692 }
693 
694 static int
695 arc_bio_alarm(struct arc_softc *sc, struct bioc_alarm *ba)
696 {
697 	uint8_t	request[2], reply[1];
698 	size_t	len;
699 	int	error = 0;
700 
701 	switch (ba->ba_opcode) {
702 	case BIOC_SAENABLE:
703 	case BIOC_SADISABLE:
704 		request[0] = ARC_FW_SET_ALARM;
705 		request[1] = (ba->ba_opcode == BIOC_SAENABLE) ?
706 		    ARC_FW_SET_ALARM_ENABLE : ARC_FW_SET_ALARM_DISABLE;
707 		len = sizeof(request);
708 
709 		break;
710 
711 	case BIOC_SASILENCE:
712 		request[0] = ARC_FW_MUTE_ALARM;
713 		len = 1;
714 
715 		break;
716 
717 	case BIOC_GASTATUS:
718 		/* system info is too big/ugly to deal with here */
719 		return arc_bio_alarm_state(sc, ba);
720 
721 	default:
722 		return EOPNOTSUPP;
723 	}
724 
725 	error = arc_msgbuf(sc, request, len, reply, sizeof(reply));
726 	if (error != 0)
727 		return error;
728 
729 	switch (reply[0]) {
730 	case ARC_FW_CMD_OK:
731 		return 0;
732 	case ARC_FW_CMD_PASS_REQD:
733 		return EPERM;
734 	default:
735 		return EIO;
736 	}
737 }
738 
739 static int
740 arc_bio_alarm_state(struct arc_softc *sc, struct bioc_alarm *ba)
741 {
742 	uint8_t			request = ARC_FW_SYSINFO;
743 	struct arc_fw_sysinfo	*sysinfo;
744 	int			error = 0;
745 
746 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
747 
748 	request = ARC_FW_SYSINFO;
749 	error = arc_msgbuf(sc, &request, sizeof(request),
750 	    sysinfo, sizeof(struct arc_fw_sysinfo));
751 
752 	if (error != 0)
753 		goto out;
754 
755 	ba->ba_status = sysinfo->alarm;
756 
757 out:
758 	kmem_free(sysinfo, sizeof(*sysinfo));
759 	return error;
760 }
761 
762 
763 static int
764 arc_bio_inq(struct arc_softc *sc, struct bioc_inq *bi)
765 {
766 	uint8_t			request[2];
767 	struct arc_fw_sysinfo	*sysinfo;
768 	struct arc_fw_volinfo	*volinfo;
769 	int			maxvols, nvols = 0, i;
770 	int			error = 0;
771 
772 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
773 	volinfo = kmem_zalloc(sizeof(struct arc_fw_volinfo), KM_SLEEP);
774 
775 	request[0] = ARC_FW_SYSINFO;
776 	error = arc_msgbuf(sc, request, 1, sysinfo,
777 	    sizeof(struct arc_fw_sysinfo));
778 	if (error != 0)
779 		goto out;
780 
781 	maxvols = sysinfo->max_volume_set;
782 
783 	request[0] = ARC_FW_VOLINFO;
784 	for (i = 0; i < maxvols; i++) {
785 		request[1] = i;
786 		error = arc_msgbuf(sc, request, sizeof(request), volinfo,
787 		    sizeof(struct arc_fw_volinfo));
788 		if (error != 0)
789 			goto out;
790 
791 		/*
792 		 * I can't find an easy way to see if the volume exists or not
793 		 * except to say that if it has no capacity then it isn't there.
794 		 * Ignore passthru volumes, bioc_vol doesn't understand them.
795 		 */
796 		if ((volinfo->capacity != 0 || volinfo->capacity2 != 0) &&
797 		    volinfo->raid_level != ARC_FW_VOL_RAIDLEVEL_PASSTHRU)
798 			nvols++;
799 	}
800 
801 	strlcpy(bi->bi_dev, device_xname(&sc->sc_dev), sizeof(bi->bi_dev));
802 	bi->bi_novol = nvols;
803 out:
804 	kmem_free(volinfo, sizeof(*volinfo));
805 	kmem_free(sysinfo, sizeof(*sysinfo));
806 	return error;
807 }
808 
809 static int
810 arc_bio_getvol(struct arc_softc *sc, int vol, struct arc_fw_volinfo *volinfo)
811 {
812 	uint8_t			request[2];
813 	struct arc_fw_sysinfo	*sysinfo;
814 	int			error = 0;
815 	int			maxvols, nvols = 0, i;
816 
817 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
818 
819 	request[0] = ARC_FW_SYSINFO;
820 
821 	error = arc_msgbuf(sc, request, 1, sysinfo,
822 	    sizeof(struct arc_fw_sysinfo));
823 	if (error != 0)
824 		goto out;
825 
826 	maxvols = sysinfo->max_volume_set;
827 
828 	request[0] = ARC_FW_VOLINFO;
829 	for (i = 0; i < maxvols; i++) {
830 		request[1] = i;
831 		error = arc_msgbuf(sc, request, sizeof(request), volinfo,
832 		    sizeof(struct arc_fw_volinfo));
833 		if (error != 0)
834 			goto out;
835 
836 		if ((volinfo->capacity == 0 && volinfo->capacity2 == 0) ||
837 		    volinfo->raid_level == ARC_FW_VOL_RAIDLEVEL_PASSTHRU)
838 			continue;
839 
840 		if (nvols == vol)
841 			break;
842 
843 		nvols++;
844 	}
845 
846 	if (nvols != vol ||
847 	    (volinfo->capacity == 0 && volinfo->capacity2 == 0) ||
848 	    volinfo->raid_level == ARC_FW_VOL_RAIDLEVEL_PASSTHRU) {
849 		error = ENODEV;
850 		goto out;
851 	}
852 
853 out:
854 	kmem_free(sysinfo, sizeof(*sysinfo));
855 	return error;
856 }
857 
858 static int
859 arc_bio_vol(struct arc_softc *sc, struct bioc_vol *bv)
860 {
861 	struct arc_fw_volinfo	*volinfo;
862 	uint64_t		blocks;
863 	uint32_t		status;
864 	int			error = 0;
865 
866 	volinfo = kmem_zalloc(sizeof(struct arc_fw_volinfo), KM_SLEEP);
867 
868 	error = arc_bio_getvol(sc, bv->bv_volid, volinfo);
869 	if (error != 0)
870 		goto out;
871 
872 	bv->bv_percent = -1;
873 	bv->bv_seconds = 0;
874 
875 	status = htole32(volinfo->volume_status);
876 	if (status == 0x0) {
877 		if (htole32(volinfo->fail_mask) == 0x0)
878 			bv->bv_status = BIOC_SVONLINE;
879 		else
880 			bv->bv_status = BIOC_SVDEGRADED;
881 	} else if (status & ARC_FW_VOL_STATUS_NEED_REGEN) {
882 		bv->bv_status = BIOC_SVDEGRADED;
883 	} else if (status & ARC_FW_VOL_STATUS_FAILED) {
884 		bv->bv_status = BIOC_SVOFFLINE;
885 	} else if (status & ARC_FW_VOL_STATUS_INITTING) {
886 		bv->bv_status = BIOC_SVBUILDING;
887 		bv->bv_percent = htole32(volinfo->progress) / 10;
888 	} else if (status & ARC_FW_VOL_STATUS_REBUILDING) {
889 		bv->bv_status = BIOC_SVREBUILD;
890 		bv->bv_percent = htole32(volinfo->progress) / 10;
891 	} else if (status & ARC_FW_VOL_STATUS_MIGRATING) {
892 		bv->bv_status = BIOC_SVMIGRATING;
893 		bv->bv_percent = htole32(volinfo->progress) / 10;
894 	}
895 
896 	blocks = (uint64_t)htole32(volinfo->capacity2) << 32;
897 	blocks += (uint64_t)htole32(volinfo->capacity);
898 	bv->bv_size = blocks * ARC_BLOCKSIZE; /* XXX */
899 
900 	switch (volinfo->raid_level) {
901 	case ARC_FW_VOL_RAIDLEVEL_0:
902 		bv->bv_level = 0;
903 		break;
904 	case ARC_FW_VOL_RAIDLEVEL_1:
905 		bv->bv_level = 1;
906 		break;
907 	case ARC_FW_VOL_RAIDLEVEL_3:
908 		bv->bv_level = 3;
909 		break;
910 	case ARC_FW_VOL_RAIDLEVEL_5:
911 		bv->bv_level = 5;
912 		break;
913 	case ARC_FW_VOL_RAIDLEVEL_6:
914 		bv->bv_level = 6;
915 		break;
916 	case ARC_FW_VOL_RAIDLEVEL_PASSTHRU:
917 	default:
918 		bv->bv_level = -1;
919 		break;
920 	}
921 
922 	bv->bv_nodisk = volinfo->member_disks;
923 	strlcpy(bv->bv_dev, volinfo->set_name, sizeof(bv->bv_dev));
924 
925 out:
926 	kmem_free(volinfo, sizeof(*volinfo));
927 	return error;
928 }
929 
930 static int
931 arc_bio_disk(struct arc_softc *sc, struct bioc_disk *bd)
932 {
933 	uint8_t			request[2];
934 	struct arc_fw_volinfo	*volinfo;
935 	struct arc_fw_raidinfo	*raidinfo;
936 	struct arc_fw_diskinfo	*diskinfo;
937 	int			error = 0;
938 	uint64_t		blocks;
939 	char			model[81];
940 	char			serial[41];
941 	char			rev[17];
942 
943 	volinfo = kmem_zalloc(sizeof(struct arc_fw_volinfo), KM_SLEEP);
944 	raidinfo = kmem_zalloc(sizeof(struct arc_fw_raidinfo), KM_SLEEP);
945 	diskinfo = kmem_zalloc(sizeof(struct arc_fw_diskinfo), KM_SLEEP);
946 
947 	error = arc_bio_getvol(sc, bd->bd_volid, volinfo);
948 	if (error != 0)
949 		goto out;
950 
951 	request[0] = ARC_FW_RAIDINFO;
952 	request[1] = volinfo->raid_set_number;
953 
954 	error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
955 	    sizeof(struct arc_fw_raidinfo));
956 	if (error != 0)
957 		goto out;
958 
959 	if (bd->bd_diskid > raidinfo->member_devices) {
960 		error = ENODEV;
961 		goto out;
962 	}
963 
964 	if (raidinfo->device_array[bd->bd_diskid] == 0xff) {
965 		/*
966 		 * the disk doesn't exist anymore. bio is too dumb to be
967 		 * able to display that, so put it on another bus
968 		 */
969 		bd->bd_channel = 1;
970 		bd->bd_target = 0;
971 		bd->bd_lun = 0;
972 		bd->bd_status = BIOC_SDOFFLINE;
973 		strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor));
974 		goto out;
975 	}
976 
977 	request[0] = ARC_FW_DISKINFO;
978 	request[1] = raidinfo->device_array[bd->bd_diskid];
979 	error = arc_msgbuf(sc, request, sizeof(request), diskinfo,
980 	    sizeof(struct arc_fw_diskinfo));
981 	if (error != 0)
982 		goto out;
983 
984 #if 0
985 	bd->bd_channel = diskinfo->scsi_attr.channel;
986 	bd->bd_target = diskinfo->scsi_attr.target;
987 	bd->bd_lun = diskinfo->scsi_attr.lun;
988 #endif
989 	/*
990 	 * the firwmare doesnt seem to fill scsi_attr in, so fake it with
991 	 * the diskid.
992 	 */
993 	bd->bd_channel = 0;
994 	bd->bd_target = raidinfo->device_array[bd->bd_diskid];
995 	bd->bd_lun = 0;
996 
997 	bd->bd_status = BIOC_SDONLINE;
998 	blocks = (uint64_t)htole32(diskinfo->capacity2) << 32;
999 	blocks += (uint64_t)htole32(diskinfo->capacity);
1000 	bd->bd_size = blocks * ARC_BLOCKSIZE; /* XXX */
1001 
1002 	scsipi_strvis(model, 81, diskinfo->model, sizeof(diskinfo->model));
1003 	scsipi_strvis(serial, 41, diskinfo->serial, sizeof(diskinfo->serial));
1004 	scsipi_strvis(rev, 17, diskinfo->firmware_rev,
1005 	    sizeof(diskinfo->firmware_rev));
1006 
1007 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s", model, rev);
1008 	strlcpy(bd->bd_serial, serial, sizeof(bd->bd_serial));
1009 
1010 out:
1011 	kmem_free(diskinfo, sizeof(*diskinfo));
1012 	kmem_free(raidinfo, sizeof(*raidinfo));
1013 	kmem_free(volinfo, sizeof(*volinfo));
1014 	return error;
1015 }
1016 #endif /* NBIO > 0 */
1017 
1018 uint8_t
1019 arc_msg_cksum(void *cmd, uint16_t len)
1020 {
1021 	uint8_t	*buf = cmd;
1022 	uint8_t	cksum;
1023 	int	i;
1024 
1025 	cksum = (uint8_t)(len >> 8) + (uint8_t)len;
1026 	for (i = 0; i < len; i++)
1027 		cksum += buf[i];
1028 
1029 	return cksum;
1030 }
1031 
1032 
1033 int
1034 arc_msgbuf(struct arc_softc *sc, void *wptr, size_t wbuflen, void *rptr,
1035 	   size_t rbuflen)
1036 {
1037 	uint8_t			rwbuf[ARC_REG_IOC_RWBUF_MAXLEN];
1038 	uint8_t			*wbuf, *rbuf;
1039 	int			wlen, wdone = 0, rlen, rdone = 0;
1040 	struct arc_fw_bufhdr	*bufhdr;
1041 	uint32_t		reg, rwlen;
1042 	int			error = 0;
1043 #ifdef ARC_DEBUG
1044 	int			i;
1045 #endif
1046 
1047 	wbuf = rbuf = NULL;
1048 
1049 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wbuflen: %d rbuflen: %d\n",
1050 	    device_xname(&sc->sc_dev), wbuflen, rbuflen);
1051 
1052 	wlen = sizeof(struct arc_fw_bufhdr) + wbuflen + 1; /* 1 for cksum */
1053 	wbuf = kmem_alloc(wlen, KM_SLEEP);
1054 
1055 	rlen = sizeof(struct arc_fw_bufhdr) + rbuflen + 1; /* 1 for cksum */
1056 	rbuf = kmem_alloc(rlen, KM_SLEEP);
1057 
1058 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wlen: %d rlen: %d\n",
1059 	    device_xname(&sc->sc_dev), wlen, rlen);
1060 
1061 	bufhdr = (struct arc_fw_bufhdr *)wbuf;
1062 	bufhdr->hdr = arc_fw_hdr;
1063 	bufhdr->len = htole16(wbuflen);
1064 	memcpy(wbuf + sizeof(struct arc_fw_bufhdr), wptr, wbuflen);
1065 	wbuf[wlen - 1] = arc_msg_cksum(wptr, wbuflen);
1066 
1067 	arc_lock(sc);
1068 	if (arc_read(sc, ARC_REG_OUTB_DOORBELL) != 0) {
1069 		error = EBUSY;
1070 		goto out;
1071 	}
1072 
1073 	reg = ARC_REG_OUTB_DOORBELL_READ_OK;
1074 
1075 	do {
1076 		if ((reg & ARC_REG_OUTB_DOORBELL_READ_OK) && wdone < wlen) {
1077 			memset(rwbuf, 0, sizeof(rwbuf));
1078 			rwlen = (wlen - wdone) % sizeof(rwbuf);
1079 			memcpy(rwbuf, &wbuf[wdone], rwlen);
1080 
1081 #ifdef ARC_DEBUG
1082 			if (arcdebug & ARC_D_DB) {
1083 				printf("%s: write %d:",
1084 				    device_xname(&sc->sc_dev), rwlen);
1085 				for (i = 0; i < rwlen; i++)
1086 					printf(" 0x%02x", rwbuf[i]);
1087 				printf("\n");
1088 			}
1089 #endif
1090 
1091 			/* copy the chunk to the hw */
1092 			arc_write(sc, ARC_REG_IOC_WBUF_LEN, rwlen);
1093 			arc_write_region(sc, ARC_REG_IOC_WBUF, rwbuf,
1094 			    sizeof(rwbuf));
1095 
1096 			/* say we have a buffer for the hw */
1097 			arc_write(sc, ARC_REG_INB_DOORBELL,
1098 			    ARC_REG_INB_DOORBELL_WRITE_OK);
1099 
1100 			wdone += rwlen;
1101 		}
1102 
1103 		while ((reg = arc_read(sc, ARC_REG_OUTB_DOORBELL)) == 0)
1104 			arc_wait(sc);
1105 		arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
1106 
1107 		DNPRINTF(ARC_D_DB, "%s: reg: 0x%08x\n",
1108 		    device_xname(&sc->sc_dev), reg);
1109 
1110 		if ((reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) && rdone < rlen) {
1111 			rwlen = arc_read(sc, ARC_REG_IOC_RBUF_LEN);
1112 			if (rwlen > sizeof(rwbuf)) {
1113 				DNPRINTF(ARC_D_DB, "%s:  rwlen too big\n",
1114 				    device_xname(&sc->sc_dev));
1115 				error = EIO;
1116 				goto out;
1117 			}
1118 
1119 			arc_read_region(sc, ARC_REG_IOC_RBUF, rwbuf,
1120 			    sizeof(rwbuf));
1121 
1122 			arc_write(sc, ARC_REG_INB_DOORBELL,
1123 			    ARC_REG_INB_DOORBELL_READ_OK);
1124 
1125 #ifdef ARC_DEBUG
1126 			printf("%s:  len: %d+%d=%d/%d\n",
1127 			    device_xname(&sc->sc_dev),
1128 			    rwlen, rdone, rwlen + rdone, rlen);
1129 			if (arcdebug & ARC_D_DB) {
1130 				printf("%s: read:",
1131 				    device_xname(&sc->sc_dev));
1132 				for (i = 0; i < rwlen; i++)
1133 					printf(" 0x%02x", rwbuf[i]);
1134 				printf("\n");
1135 			}
1136 #endif
1137 
1138 			if ((rdone + rwlen) > rlen) {
1139 				DNPRINTF(ARC_D_DB, "%s:  rwbuf too big\n",
1140 				    device_xname(&sc->sc_dev));
1141 				error = EIO;
1142 				goto out;
1143 			}
1144 
1145 			memcpy(&rbuf[rdone], rwbuf, rwlen);
1146 			rdone += rwlen;
1147 		}
1148 	} while (rdone != rlen);
1149 
1150 	bufhdr = (struct arc_fw_bufhdr *)rbuf;
1151 	if (memcmp(&bufhdr->hdr, &arc_fw_hdr, sizeof(bufhdr->hdr)) != 0 ||
1152 	    bufhdr->len != htole16(rbuflen)) {
1153 		DNPRINTF(ARC_D_DB, "%s:  rbuf hdr is wrong\n",
1154 		    device_xname(&sc->sc_dev));
1155 		error = EIO;
1156 		goto out;
1157 	}
1158 
1159 	memcpy(rptr, rbuf + sizeof(struct arc_fw_bufhdr), rbuflen);
1160 
1161 	if (rbuf[rlen - 1] != arc_msg_cksum(rptr, rbuflen)) {
1162 		DNPRINTF(ARC_D_DB, "%s:  invalid cksum\n",
1163 		    device_xname(&sc->sc_dev));
1164 		error = EIO;
1165 		goto out;
1166 	}
1167 
1168 out:
1169 	arc_unlock(sc);
1170 	kmem_free(wbuf, wlen);
1171 	kmem_free(rbuf, rlen);
1172 
1173 	return error;
1174 }
1175 
1176 void
1177 arc_lock(struct arc_softc *sc)
1178 {
1179 	rw_enter(&sc->sc_rwlock, RW_WRITER);
1180 	mutex_spin_enter(&sc->sc_mutex);
1181 	arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1182 	sc->sc_talking = 1;
1183 }
1184 
1185 void
1186 arc_unlock(struct arc_softc *sc)
1187 {
1188 	KASSERT(mutex_owned(&sc->sc_mutex));
1189 
1190 	sc->sc_talking = 0;
1191 	arc_write(sc, ARC_REG_INTRMASK,
1192 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1193 	mutex_spin_exit(&sc->sc_mutex);
1194 	rw_exit(&sc->sc_rwlock);
1195 }
1196 
1197 void
1198 arc_wait(struct arc_softc *sc)
1199 {
1200 	KASSERT(mutex_owned(&sc->sc_mutex));
1201 
1202 	arc_write(sc, ARC_REG_INTRMASK,
1203 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1204 	if (cv_timedwait_sig(&sc->sc_condvar, &sc->sc_mutex, hz) ==
1205 	    EWOULDBLOCK)
1206 		arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1207 }
1208 
1209 #if NBIO > 0
1210 static void
1211 arc_create_sensors(void *arg)
1212 {
1213 	struct arc_softc	*sc = arg;
1214 	struct bioc_inq		bi;
1215 	struct bioc_vol		bv;
1216 	int			i;
1217 	size_t			slen;
1218 
1219 	memset(&bi, 0, sizeof(bi));
1220 	if (arc_bio_inq(sc, &bi) != 0) {
1221 		aprint_error("%s: unable to query firmware for sensor info\n",
1222 		    device_xname(&sc->sc_dev));
1223 		kthread_exit(0);
1224 	}
1225 
1226 	sc->sc_nsensors = bi.bi_novol;
1227 	/*
1228 	 * There's no point to continue if there are no drives connected...
1229 	 */
1230 	if (!sc->sc_nsensors)
1231 		kthread_exit(0);
1232 
1233 	sc->sc_sme = sysmon_envsys_create();
1234 	slen = sizeof(envsys_data_t) * sc->sc_nsensors;
1235 	sc->sc_sensors = kmem_zalloc(slen, KM_SLEEP);
1236 
1237 	for (i = 0; i < sc->sc_nsensors; i++) {
1238 		memset(&bv, 0, sizeof(bv));
1239 		bv.bv_volid = i;
1240 		if (arc_bio_vol(sc, &bv) != 0)
1241 			goto bad;
1242 
1243 		sc->sc_sensors[i].units = ENVSYS_DRIVE;
1244 		sc->sc_sensors[i].monitor = true;
1245 		sc->sc_sensors[i].flags = ENVSYS_FMONSTCHANGED;
1246 		strlcpy(sc->sc_sensors[i].desc, bv.bv_dev,
1247 		    sizeof(sc->sc_sensors[i].desc));
1248 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensors[i]))
1249 			goto bad;
1250 	}
1251 
1252 	sc->sc_sme->sme_name = device_xname(&sc->sc_dev);
1253 	sc->sc_sme->sme_cookie = sc;
1254 	sc->sc_sme->sme_refresh = arc_refresh_sensors;
1255 	if (sysmon_envsys_register(sc->sc_sme)) {
1256 		aprint_debug("%s: unable to register with sysmon\n",
1257 		    device_xname(&sc->sc_dev));
1258 		goto bad;
1259 	}
1260 	kthread_exit(0);
1261 
1262 bad:
1263 	kmem_free(sc->sc_sensors, slen);
1264 	sysmon_envsys_destroy(sc->sc_sme);
1265 	kthread_exit(0);
1266 }
1267 
1268 static void
1269 arc_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata)
1270 {
1271 	struct arc_softc	*sc = sme->sme_cookie;
1272 	struct bioc_vol		bv;
1273 
1274 	memset(&bv, 0, sizeof(bv));
1275 	bv.bv_volid = edata->sensor;
1276 
1277 	if (arc_bio_vol(sc, &bv)) {
1278 		edata->value_cur = ENVSYS_DRIVE_EMPTY;
1279 		edata->state = ENVSYS_SINVALID;
1280 		return;
1281 	}
1282 
1283 	switch (bv.bv_status) {
1284 	case BIOC_SVOFFLINE:
1285 		edata->value_cur = ENVSYS_DRIVE_FAIL;
1286 		edata->state = ENVSYS_SCRITICAL;
1287 		break;
1288 	case BIOC_SVDEGRADED:
1289 		edata->value_cur = ENVSYS_DRIVE_PFAIL;
1290 		edata->state = ENVSYS_SCRITICAL;
1291 		break;
1292 	case BIOC_SVBUILDING:
1293 		edata->value_cur = ENVSYS_DRIVE_REBUILD;
1294 		edata->state = ENVSYS_SVALID;
1295 		break;
1296 	case BIOC_SVMIGRATING:
1297 		edata->value_cur = ENVSYS_DRIVE_MIGRATING;
1298 		edata->state = ENVSYS_SVALID;
1299 		break;
1300 	case BIOC_SVSCRUB:
1301 	case BIOC_SVONLINE:
1302 		edata->value_cur = ENVSYS_DRIVE_ONLINE;
1303 		edata->state = ENVSYS_SVALID;
1304 		break;
1305 	case BIOC_SVINVALID:
1306 		/* FALLTRHOUGH */
1307 	default:
1308 		edata->value_cur = ENVSYS_DRIVE_EMPTY; /* unknown state */
1309 		edata->state = ENVSYS_SINVALID;
1310 		break;
1311 	}
1312 }
1313 #endif /* NBIO > 0 */
1314 
1315 uint32_t
1316 arc_read(struct arc_softc *sc, bus_size_t r)
1317 {
1318 	uint32_t			v;
1319 
1320 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1321 	    BUS_SPACE_BARRIER_READ);
1322 	v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
1323 
1324 	DNPRINTF(ARC_D_RW, "%s: arc_read 0x%lx 0x%08x\n",
1325 	    device_xname(&sc->sc_dev), r, v);
1326 
1327 	return v;
1328 }
1329 
1330 void
1331 arc_read_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1332 {
1333 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1334 	    BUS_SPACE_BARRIER_READ);
1335 	bus_space_read_region_4(sc->sc_iot, sc->sc_ioh, r,
1336 	    (uint32_t *)buf, len >> 2);
1337 }
1338 
1339 void
1340 arc_write(struct arc_softc *sc, bus_size_t r, uint32_t v)
1341 {
1342 	DNPRINTF(ARC_D_RW, "%s: arc_write 0x%lx 0x%08x\n",
1343 	    device_xname(&sc->sc_dev), r, v);
1344 
1345 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
1346 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1347 	    BUS_SPACE_BARRIER_WRITE);
1348 }
1349 
1350 void
1351 arc_write_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1352 {
1353 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, r,
1354 	    (const uint32_t *)buf, len >> 2);
1355 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1356 	    BUS_SPACE_BARRIER_WRITE);
1357 }
1358 
1359 int
1360 arc_wait_eq(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1361 	    uint32_t target)
1362 {
1363 	int i;
1364 
1365 	DNPRINTF(ARC_D_RW, "%s: arc_wait_eq 0x%lx 0x%08x 0x%08x\n",
1366 	    device_xname(&sc->sc_dev), r, mask, target);
1367 
1368 	for (i = 0; i < 10000; i++) {
1369 		if ((arc_read(sc, r) & mask) == target)
1370 			return 0;
1371 		delay(1000);
1372 	}
1373 
1374 	return 1;
1375 }
1376 
1377 int
1378 arc_wait_ne(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1379 	    uint32_t target)
1380 {
1381 	int i;
1382 
1383 	DNPRINTF(ARC_D_RW, "%s: arc_wait_ne 0x%lx 0x%08x 0x%08x\n",
1384 	    device_xname(&sc->sc_dev), r, mask, target);
1385 
1386 	for (i = 0; i < 10000; i++) {
1387 		if ((arc_read(sc, r) & mask) != target)
1388 			return 0;
1389 		delay(1000);
1390 	}
1391 
1392 	return 1;
1393 }
1394 
1395 int
1396 arc_msg0(struct arc_softc *sc, uint32_t m)
1397 {
1398 	/* post message */
1399 	arc_write(sc, ARC_REG_INB_MSG0, m);
1400 	/* wait for the fw to do it */
1401 	if (arc_wait_eq(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0,
1402 	    ARC_REG_INTRSTAT_MSG0) != 0)
1403 		return 1;
1404 
1405 	/* ack it */
1406 	arc_write(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0);
1407 
1408 	return 0;
1409 }
1410 
1411 struct arc_dmamem *
1412 arc_dmamem_alloc(struct arc_softc *sc, size_t size)
1413 {
1414 	struct arc_dmamem		*adm;
1415 	int				nsegs;
1416 
1417 	adm = kmem_zalloc(sizeof(*adm), KM_NOSLEEP);
1418 	if (adm == NULL)
1419 		return NULL;
1420 
1421 	adm->adm_size = size;
1422 
1423 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1424 	    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &adm->adm_map) != 0)
1425 		goto admfree;
1426 
1427 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &adm->adm_seg,
1428 	    1, &nsegs, BUS_DMA_NOWAIT) != 0)
1429 		goto destroy;
1430 
1431 	if (bus_dmamem_map(sc->sc_dmat, &adm->adm_seg, nsegs, size,
1432 	    &adm->adm_kva, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) != 0)
1433 		goto free;
1434 
1435 	if (bus_dmamap_load(sc->sc_dmat, adm->adm_map, adm->adm_kva, size,
1436 	    NULL, BUS_DMA_NOWAIT) != 0)
1437 		goto unmap;
1438 
1439 	memset(adm->adm_kva, 0, size);
1440 
1441 	return adm;
1442 
1443 unmap:
1444 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, size);
1445 free:
1446 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
1447 destroy:
1448 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
1449 admfree:
1450 	kmem_free(adm, sizeof(*adm));
1451 
1452 	return NULL;
1453 }
1454 
1455 void
1456 arc_dmamem_free(struct arc_softc *sc, struct arc_dmamem *adm)
1457 {
1458 	bus_dmamap_unload(sc->sc_dmat, adm->adm_map);
1459 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, adm->adm_size);
1460 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
1461 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
1462 	kmem_free(adm, sizeof(*adm));
1463 }
1464 
1465 int
1466 arc_alloc_ccbs(struct arc_softc *sc)
1467 {
1468 	struct arc_ccb		*ccb;
1469 	uint8_t			*cmd;
1470 	int			i;
1471 	size_t			ccbslen;
1472 
1473 	TAILQ_INIT(&sc->sc_ccb_free);
1474 
1475 	ccbslen = sizeof(struct arc_ccb) * sc->sc_req_count;
1476 	sc->sc_ccbs = kmem_zalloc(ccbslen, KM_SLEEP);
1477 
1478 	sc->sc_requests = arc_dmamem_alloc(sc,
1479 	    ARC_MAX_IOCMDLEN * sc->sc_req_count);
1480 	if (sc->sc_requests == NULL) {
1481 		aprint_error("%s: unable to allocate ccb dmamem\n",
1482 		    device_xname(&sc->sc_dev));
1483 		goto free_ccbs;
1484 	}
1485 	cmd = ARC_DMA_KVA(sc->sc_requests);
1486 
1487 	for (i = 0; i < sc->sc_req_count; i++) {
1488 		ccb = &sc->sc_ccbs[i];
1489 
1490 		if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, ARC_SGL_MAXLEN,
1491 		    MAXPHYS, 0, 0, &ccb->ccb_dmamap) != 0) {
1492 			aprint_error("%s: unable to create dmamap for ccb %d\n",
1493 			    device_xname(&sc->sc_dev), i);
1494 			goto free_maps;
1495 		}
1496 
1497 		ccb->ccb_sc = sc;
1498 		ccb->ccb_id = i;
1499 		ccb->ccb_offset = ARC_MAX_IOCMDLEN * i;
1500 
1501 		ccb->ccb_cmd = (struct arc_io_cmd *)&cmd[ccb->ccb_offset];
1502 		ccb->ccb_cmd_post = (ARC_DMA_DVA(sc->sc_requests) +
1503 		    ccb->ccb_offset) >> ARC_REG_POST_QUEUE_ADDR_SHIFT;
1504 
1505 		arc_put_ccb(sc, ccb);
1506 	}
1507 
1508 	return 0;
1509 
1510 free_maps:
1511 	while ((ccb = arc_get_ccb(sc)) != NULL)
1512 	    bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1513 	arc_dmamem_free(sc, sc->sc_requests);
1514 
1515 free_ccbs:
1516 	kmem_free(sc->sc_ccbs, ccbslen);
1517 
1518 	return 1;
1519 }
1520 
1521 struct arc_ccb *
1522 arc_get_ccb(struct arc_softc *sc)
1523 {
1524 	struct arc_ccb			*ccb;
1525 
1526 	ccb = TAILQ_FIRST(&sc->sc_ccb_free);
1527 	if (ccb != NULL)
1528 		TAILQ_REMOVE(&sc->sc_ccb_free, ccb, ccb_link);
1529 
1530 	return ccb;
1531 }
1532 
1533 void
1534 arc_put_ccb(struct arc_softc *sc, struct arc_ccb *ccb)
1535 {
1536 	ccb->ccb_xs = NULL;
1537 	memset(ccb->ccb_cmd, 0, ARC_MAX_IOCMDLEN);
1538 	TAILQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_link);
1539 }
1540