xref: /netbsd-src/sys/dev/pci/arcmsr.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: arcmsr.c,v 1.43 2021/08/07 16:19:14 thorpej Exp $ */
2 /*	$OpenBSD: arc.c,v 1.68 2007/10/27 03:28:27 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2007, 2008 Juan Romero Pardines <xtraeme@netbsd.org>
6  * Copyright (c) 2006 David Gwynne <dlg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include "bio.h"
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: arcmsr.c,v 1.43 2021/08/07 16:19:14 thorpej Exp $");
25 
26 #include <sys/param.h>
27 #include <sys/buf.h>
28 #include <sys/kernel.h>
29 #include <sys/malloc.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/kthread.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/rwlock.h>
36 
37 #if NBIO > 0
38 #include <sys/ioctl.h>
39 #include <dev/biovar.h>
40 #endif
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #include <dev/scsipi/scsipi_all.h>
47 #include <dev/scsipi/scsi_all.h>
48 #include <dev/scsipi/scsiconf.h>
49 
50 #include <dev/sysmon/sysmonvar.h>
51 
52 #include <sys/bus.h>
53 
54 #include <dev/pci/arcmsrvar.h>
55 
56 /* #define ARC_DEBUG */
57 #ifdef ARC_DEBUG
58 #define ARC_D_INIT	(1<<0)
59 #define ARC_D_RW	(1<<1)
60 #define ARC_D_DB	(1<<2)
61 
62 int arcdebug = 0;
63 
64 #define DPRINTF(p...)		do { if (arcdebug) printf(p); } while (0)
65 #define DNPRINTF(n, p...)	do { if ((n) & arcdebug) printf(p); } while (0)
66 
67 #else
68 #define DPRINTF(p, ...)		/* p */
69 #define DNPRINTF(n, p, ...)	/* n, p */
70 #endif
71 
72 /*
73  * the fw header must always equal this.
74  */
75 #if NBIO > 0
76 static struct arc_fw_hdr arc_fw_hdr = { 0x5e, 0x01, 0x61 };
77 #endif
78 
79 /*
80  * autoconf(9) glue.
81  */
82 static int 	arc_match(device_t, cfdata_t, void *);
83 static void 	arc_attach(device_t, device_t, void *);
84 static int 	arc_detach(device_t, int);
85 static bool 	arc_shutdown(device_t, int);
86 static int 	arc_intr(void *);
87 static void	arc_minphys(struct buf *);
88 
89 CFATTACH_DECL_NEW(arcmsr, sizeof(struct arc_softc),
90 	arc_match, arc_attach, arc_detach, NULL);
91 
92 /*
93  * bio(4) and sysmon_envsys(9) glue.
94  */
95 #if NBIO > 0
96 static int 	arc_bioctl(device_t, u_long, void *);
97 static int 	arc_bio_inq(struct arc_softc *, struct bioc_inq *);
98 static int 	arc_bio_vol(struct arc_softc *, struct bioc_vol *);
99 static int	arc_bio_disk_volume(struct arc_softc *, struct bioc_disk *);
100 static int	arc_bio_disk_novol(struct arc_softc *, struct bioc_disk *);
101 static void	arc_bio_disk_filldata(struct arc_softc *, struct bioc_disk *,
102 				      struct arc_fw_diskinfo *, int);
103 static int 	arc_bio_alarm(struct arc_softc *, struct bioc_alarm *);
104 static int 	arc_bio_alarm_state(struct arc_softc *, struct bioc_alarm *);
105 static int 	arc_bio_getvol(struct arc_softc *, int,
106 			       struct arc_fw_volinfo *);
107 static int	arc_bio_setstate(struct arc_softc *, struct bioc_setstate *);
108 static int 	arc_bio_volops(struct arc_softc *, struct bioc_volops *);
109 static void 	arc_create_sensors(void *);
110 static void 	arc_refresh_sensors(struct sysmon_envsys *, envsys_data_t *);
111 static int	arc_fw_parse_status_code(struct arc_softc *, uint8_t *);
112 #endif
113 
114 /*
115  * interface for scsi midlayer to talk to.
116  */
117 static void 	arc_scsi_cmd(struct scsipi_channel *, scsipi_adapter_req_t,
118     void *);
119 
120 /*
121  * code to deal with getting bits in and out of the bus space.
122  */
123 static uint32_t arc_read(struct arc_softc *, bus_size_t);
124 static void 	arc_read_region(struct arc_softc *, bus_size_t, void *,
125     size_t);
126 static void 	arc_write(struct arc_softc *, bus_size_t, uint32_t);
127 #if NBIO > 0
128 static void 	arc_write_region(struct arc_softc *, bus_size_t, void *,
129     size_t);
130 #endif
131 static int 	arc_wait_eq(struct arc_softc *, bus_size_t, uint32_t,
132     uint32_t);
133 #ifdef unused
134 static int 	arc_wait_ne(struct arc_softc *, bus_size_t, uint32_t,
135     uint32_t);
136 #endif
137 static int	arc_msg0(struct arc_softc *, uint32_t);
138 static struct arc_dmamem 	*arc_dmamem_alloc(struct arc_softc *, size_t);
139 static void	arc_dmamem_free(struct arc_softc *,
140     struct arc_dmamem *);
141 
142 static int 	arc_alloc_ccbs(device_t);
143 static struct arc_ccb	*arc_get_ccb(struct arc_softc *);
144 static void 	arc_put_ccb(struct arc_softc *, struct arc_ccb *);
145 static int 	arc_load_xs(struct arc_ccb *);
146 static int 	arc_complete(struct arc_softc *, struct arc_ccb *, int);
147 static void 	arc_scsi_cmd_done(struct arc_softc *, struct arc_ccb *,
148     uint32_t);
149 
150 /*
151  * real stuff for dealing with the hardware.
152  */
153 static int 	arc_map_pci_resources(device_t, struct pci_attach_args *);
154 static void 	arc_unmap_pci_resources(struct arc_softc *);
155 static int 	arc_query_firmware(device_t);
156 
157 /*
158  * stuff to do messaging via the doorbells.
159  */
160 #if NBIO > 0
161 static void 	arc_lock(struct arc_softc *);
162 static void 	arc_unlock(struct arc_softc *);
163 static void 	arc_wait(struct arc_softc *);
164 static uint8_t 	arc_msg_cksum(void *, uint16_t);
165 static int 	arc_msgbuf(struct arc_softc *, void *, size_t, void *, size_t);
166 #endif
167 
168 #define arc_push(_s, _r)	arc_write((_s), ARC_REG_POST_QUEUE, (_r))
169 #define arc_pop(_s)		arc_read((_s), ARC_REG_REPLY_QUEUE)
170 
171 static int
172 arc_match(device_t parent, cfdata_t match, void *aux)
173 {
174 	struct pci_attach_args *pa = aux;
175 
176 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ARECA) {
177 		switch (PCI_PRODUCT(pa->pa_id)) {
178 		case PCI_PRODUCT_ARECA_ARC1110:
179 		case PCI_PRODUCT_ARECA_ARC1120:
180 		case PCI_PRODUCT_ARECA_ARC1130:
181 		case PCI_PRODUCT_ARECA_ARC1160:
182 		case PCI_PRODUCT_ARECA_ARC1170:
183 		case PCI_PRODUCT_ARECA_ARC1200:
184 		case PCI_PRODUCT_ARECA_ARC1202:
185 		case PCI_PRODUCT_ARECA_ARC1210:
186 		case PCI_PRODUCT_ARECA_ARC1220:
187 		case PCI_PRODUCT_ARECA_ARC1230:
188 		case PCI_PRODUCT_ARECA_ARC1260:
189 		case PCI_PRODUCT_ARECA_ARC1270:
190 		case PCI_PRODUCT_ARECA_ARC1280:
191 		case PCI_PRODUCT_ARECA_ARC1380:
192 		case PCI_PRODUCT_ARECA_ARC1381:
193 		case PCI_PRODUCT_ARECA_ARC1680:
194 		case PCI_PRODUCT_ARECA_ARC1681:
195 			return 1;
196 		default:
197 			break;
198 		}
199 	}
200 
201 	return 0;
202 }
203 
204 static void
205 arc_attach(device_t parent, device_t self, void *aux)
206 {
207 	struct arc_softc	*sc = device_private(self);
208 	struct pci_attach_args	*pa = aux;
209 	struct scsipi_adapter	*adapt = &sc->sc_adapter;
210 	struct scsipi_channel	*chan = &sc->sc_chan;
211 
212 	sc->sc_dev = self;
213 	sc->sc_talking = 0;
214 	rw_init(&sc->sc_rwlock);
215 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_BIO);
216 	cv_init(&sc->sc_condvar, "arcdb");
217 
218 	if (arc_map_pci_resources(self, pa) != 0) {
219 		/* error message printed by arc_map_pci_resources */
220 		return;
221 	}
222 
223 	if (arc_query_firmware(self) != 0) {
224 		/* error message printed by arc_query_firmware */
225 		goto unmap_pci;
226 	}
227 
228 	if (arc_alloc_ccbs(self) != 0) {
229 		/* error message printed by arc_alloc_ccbs */
230 		goto unmap_pci;
231 	}
232 
233 	if (!pmf_device_register1(self, NULL, NULL, arc_shutdown))
234 		panic("%s: couldn't establish shutdown handler\n",
235 		    device_xname(self));
236 
237 	memset(adapt, 0, sizeof(*adapt));
238 	adapt->adapt_dev = self;
239 	adapt->adapt_nchannels = 1;
240 	adapt->adapt_openings = sc->sc_req_count / ARC_MAX_TARGET;
241 	adapt->adapt_max_periph = adapt->adapt_openings;
242 	adapt->adapt_minphys = arc_minphys;
243 	adapt->adapt_request = arc_scsi_cmd;
244 	adapt->adapt_flags = SCSIPI_ADAPT_MPSAFE;
245 
246 	memset(chan, 0, sizeof(*chan));
247 	chan->chan_adapter = adapt;
248 	chan->chan_bustype = &scsi_bustype;
249 	chan->chan_nluns = ARC_MAX_LUN;
250 	chan->chan_ntargets = ARC_MAX_TARGET;
251 	chan->chan_id = ARC_MAX_TARGET;
252 	chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
253 
254 	/*
255 	 * Save the device_t returned, because we could to attach
256 	 * devices via the management interface.
257 	 */
258 	sc->sc_scsibus_dv = config_found(self, &sc->sc_chan, scsiprint,
259 	    CFARGS_NONE);
260 
261 	/* enable interrupts */
262 	arc_write(sc, ARC_REG_INTRMASK,
263 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRSTAT_DOORBELL));
264 
265 #if NBIO > 0
266 	/*
267 	 * Register the driver to bio(4) and setup the sensors.
268 	 */
269 	if (bio_register(self, arc_bioctl) != 0)
270 		panic("%s: bioctl registration failed\n", device_xname(self));
271 
272 	/*
273 	 * you need to talk to the firmware to get volume info. our firmware
274 	 * interface relies on being able to sleep, so we need to use a thread
275 	 * to do the work.
276 	 */
277 	if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
278 	    arc_create_sensors, sc, &sc->sc_lwp, "arcmsr_sensors") != 0)
279 		panic("%s: unable to create a kernel thread for sensors\n",
280 		    device_xname(self));
281 #endif
282 
283         return;
284 
285 unmap_pci:
286 	arc_unmap_pci_resources(sc);
287 }
288 
289 static int
290 arc_detach(device_t self, int flags)
291 {
292 	struct arc_softc		*sc = device_private(self);
293 
294 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
295 		aprint_error_dev(self, "timeout waiting to stop bg rebuild\n");
296 
297 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
298 		aprint_error_dev(self, "timeout waiting to flush cache\n");
299 
300 	if (sc->sc_sme != NULL)
301 		sysmon_envsys_unregister(sc->sc_sme);
302 
303 	return 0;
304 }
305 
306 static bool
307 arc_shutdown(device_t self, int how)
308 {
309 	struct arc_softc		*sc = device_private(self);
310 
311 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
312 		aprint_error_dev(self, "timeout waiting to stop bg rebuild\n");
313 
314 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
315 		aprint_error_dev(self, "timeout waiting to flush cache\n");
316 
317 	return true;
318 }
319 
320 static void
321 arc_minphys(struct buf *bp)
322 {
323 	if (bp->b_bcount > MAXPHYS)
324 		bp->b_bcount = MAXPHYS;
325 	minphys(bp);
326 }
327 
328 static int
329 arc_intr(void *arg)
330 {
331 	struct arc_softc		*sc = arg;
332 	struct arc_ccb			*ccb = NULL;
333 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
334 	struct arc_io_cmd		*cmd;
335 	uint32_t			reg, intrstat;
336 
337 	mutex_spin_enter(&sc->sc_mutex);
338 	intrstat = arc_read(sc, ARC_REG_INTRSTAT);
339 	if (intrstat == 0x0) {
340 		mutex_spin_exit(&sc->sc_mutex);
341 		return 0;
342 	}
343 
344 	intrstat &= ARC_REG_INTRSTAT_POSTQUEUE | ARC_REG_INTRSTAT_DOORBELL;
345 	arc_write(sc, ARC_REG_INTRSTAT, intrstat);
346 
347 	if (intrstat & ARC_REG_INTRSTAT_DOORBELL) {
348 		if (sc->sc_talking) {
349 			arc_write(sc, ARC_REG_INTRMASK,
350 			    ~ARC_REG_INTRMASK_POSTQUEUE);
351 			cv_broadcast(&sc->sc_condvar);
352 		} else {
353 			/* otherwise drop it */
354 			reg = arc_read(sc, ARC_REG_OUTB_DOORBELL);
355 			arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
356 			if (reg & ARC_REG_OUTB_DOORBELL_WRITE_OK)
357 				arc_write(sc, ARC_REG_INB_DOORBELL,
358 				    ARC_REG_INB_DOORBELL_READ_OK);
359 		}
360 	}
361 	mutex_spin_exit(&sc->sc_mutex);
362 
363 	while ((reg = arc_pop(sc)) != 0xffffffff) {
364 		cmd = (struct arc_io_cmd *)(kva +
365 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
366 		    (uint32_t)ARC_DMA_DVA(sc->sc_requests)));
367 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
368 
369 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
370 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
371 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
372 
373 		arc_scsi_cmd_done(sc, ccb, reg);
374 	}
375 
376 
377 	return 1;
378 }
379 
380 void
381 arc_scsi_cmd(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg)
382 {
383 	struct scsipi_periph		*periph;
384 	struct scsipi_xfer		*xs;
385 	struct scsipi_adapter		*adapt = chan->chan_adapter;
386 	struct arc_softc		*sc = device_private(adapt->adapt_dev);
387 	struct arc_ccb			*ccb;
388 	struct arc_msg_scsicmd		*cmd;
389 	uint32_t			reg;
390 	uint8_t				target;
391 
392 	switch (req) {
393 	case ADAPTER_REQ_GROW_RESOURCES:
394 		/* Not supported. */
395 		return;
396 	case ADAPTER_REQ_SET_XFER_MODE:
397 		/* Not supported. */
398 		return;
399 	case ADAPTER_REQ_RUN_XFER:
400 		break;
401 	}
402 
403 	mutex_spin_enter(&sc->sc_mutex);
404 
405 	xs = arg;
406 	periph = xs->xs_periph;
407 	target = periph->periph_target;
408 
409 	if (xs->cmdlen > ARC_MSG_CDBLEN) {
410 		memset(&xs->sense, 0, sizeof(xs->sense));
411 		xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | 0x70;
412 		xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
413 		xs->sense.scsi_sense.asc = 0x20;
414 		xs->error = XS_SENSE;
415 		xs->status = SCSI_CHECK;
416 		mutex_spin_exit(&sc->sc_mutex);
417 		scsipi_done(xs);
418 		return;
419 	}
420 
421 	ccb = arc_get_ccb(sc);
422 	if (ccb == NULL) {
423 		xs->error = XS_RESOURCE_SHORTAGE;
424 		mutex_spin_exit(&sc->sc_mutex);
425 		scsipi_done(xs);
426 		return;
427 	}
428 
429 	ccb->ccb_xs = xs;
430 
431 	if (arc_load_xs(ccb) != 0) {
432 		xs->error = XS_DRIVER_STUFFUP;
433 		arc_put_ccb(sc, ccb);
434 		mutex_spin_exit(&sc->sc_mutex);
435 		scsipi_done(xs);
436 		return;
437 	}
438 
439 	cmd = &ccb->ccb_cmd->cmd;
440 	reg = ccb->ccb_cmd_post;
441 
442 	/* bus is always 0 */
443 	cmd->target = target;
444 	cmd->lun = periph->periph_lun;
445 	cmd->function = 1; /* XXX magic number */
446 
447 	cmd->cdb_len = xs->cmdlen;
448 	cmd->sgl_len = ccb->ccb_dmamap->dm_nsegs;
449 	if (xs->xs_control & XS_CTL_DATA_OUT)
450 		cmd->flags = ARC_MSG_SCSICMD_FLAG_WRITE;
451 	if (ccb->ccb_dmamap->dm_nsegs > ARC_SGL_256LEN) {
452 		cmd->flags |= ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512;
453 		reg |= ARC_REG_POST_QUEUE_BIGFRAME;
454 	}
455 
456 	cmd->context = htole32(ccb->ccb_id);
457 	cmd->data_len = htole32(xs->datalen);
458 
459 	memcpy(cmd->cdb, xs->cmd, xs->cmdlen);
460 
461 	/* we've built the command, let's put it on the hw */
462 	bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
463 	    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
464 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
465 
466 	arc_push(sc, reg);
467 	if (xs->xs_control & XS_CTL_POLL) {
468 		if (arc_complete(sc, ccb, xs->timeout) != 0) {
469 			xs->error = XS_DRIVER_STUFFUP;
470 			mutex_spin_exit(&sc->sc_mutex);
471 			scsipi_done(xs);
472 			return;
473 		}
474 	}
475 
476 	mutex_spin_exit(&sc->sc_mutex);
477 }
478 
479 int
480 arc_load_xs(struct arc_ccb *ccb)
481 {
482 	struct arc_softc		*sc = ccb->ccb_sc;
483 	struct scsipi_xfer		*xs = ccb->ccb_xs;
484 	bus_dmamap_t			dmap = ccb->ccb_dmamap;
485 	struct arc_sge			*sgl = ccb->ccb_cmd->sgl, *sge;
486 	uint64_t			addr;
487 	int				i, error;
488 
489 	if (xs->datalen == 0)
490 		return 0;
491 
492 	error = bus_dmamap_load(sc->sc_dmat, dmap,
493 	    xs->data, xs->datalen, NULL,
494 	    (xs->xs_control & XS_CTL_NOSLEEP) ?
495 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
496 	if (error != 0) {
497 		aprint_error("%s: error %d loading dmamap\n",
498 		    device_xname(sc->sc_dev), error);
499 		return 1;
500 	}
501 
502 	for (i = 0; i < dmap->dm_nsegs; i++) {
503 		sge = &sgl[i];
504 
505 		sge->sg_hdr = htole32(ARC_SGE_64BIT | dmap->dm_segs[i].ds_len);
506 		addr = dmap->dm_segs[i].ds_addr;
507 		sge->sg_hi_addr = htole32((uint32_t)(addr >> 32));
508 		sge->sg_lo_addr = htole32((uint32_t)addr);
509 	}
510 
511 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
512 	    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
513 	    BUS_DMASYNC_PREWRITE);
514 
515 	return 0;
516 }
517 
518 void
519 arc_scsi_cmd_done(struct arc_softc *sc, struct arc_ccb *ccb, uint32_t reg)
520 {
521 	struct scsipi_xfer		*xs = ccb->ccb_xs;
522 	struct arc_msg_scsicmd		*cmd;
523 
524 	if (xs->datalen != 0) {
525 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
526 		    ccb->ccb_dmamap->dm_mapsize,
527 		    (xs->xs_control & XS_CTL_DATA_IN) ?
528 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
529 		bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
530 	}
531 
532 	/* timeout_del */
533 	xs->status |= XS_STS_DONE;
534 
535 	if (reg & ARC_REG_REPLY_QUEUE_ERR) {
536 		cmd = &ccb->ccb_cmd->cmd;
537 
538 		switch (cmd->status) {
539 		case ARC_MSG_STATUS_SELTIMEOUT:
540 		case ARC_MSG_STATUS_ABORTED:
541 		case ARC_MSG_STATUS_INIT_FAIL:
542 			xs->status = SCSI_OK;
543 			xs->error = XS_SELTIMEOUT;
544 			break;
545 
546 		case SCSI_CHECK:
547 			memset(&xs->sense, 0, sizeof(xs->sense));
548 			memcpy(&xs->sense, cmd->sense_data,
549 			    uimin(ARC_MSG_SENSELEN, sizeof(xs->sense)));
550 			xs->sense.scsi_sense.response_code =
551 			    SSD_RCODE_VALID | 0x70;
552 			xs->status = SCSI_CHECK;
553 			xs->error = XS_SENSE;
554 			xs->resid = 0;
555 			break;
556 
557 		default:
558 			/* unknown device status */
559 			xs->error = XS_BUSY; /* try again later? */
560 			xs->status = SCSI_BUSY;
561 			break;
562 		}
563 	} else {
564 		xs->status = SCSI_OK;
565 		xs->error = XS_NOERROR;
566 		xs->resid = 0;
567 	}
568 
569 	arc_put_ccb(sc, ccb);
570 	scsipi_done(xs);
571 }
572 
573 int
574 arc_complete(struct arc_softc *sc, struct arc_ccb *nccb, int timeout)
575 {
576 	struct arc_ccb			*ccb = NULL;
577 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
578 	struct arc_io_cmd		*cmd;
579 	uint32_t			reg;
580 
581 	do {
582 		reg = arc_pop(sc);
583 		if (reg == 0xffffffff) {
584 			if (timeout-- == 0)
585 				return 1;
586 
587 			delay(1000);
588 			continue;
589 		}
590 
591 		cmd = (struct arc_io_cmd *)(kva +
592 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
593 		    ARC_DMA_DVA(sc->sc_requests)));
594 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
595 
596 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
597 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
598 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
599 
600 		arc_scsi_cmd_done(sc, ccb, reg);
601 	} while (nccb != ccb);
602 
603 	return 0;
604 }
605 
606 int
607 arc_map_pci_resources(device_t self, struct pci_attach_args *pa)
608 {
609 	struct arc_softc		*sc = device_private(self);
610 	pcireg_t			memtype;
611 	pci_intr_handle_t		ih;
612 	char intrbuf[PCI_INTRSTR_LEN];
613 
614 	sc->sc_pc = pa->pa_pc;
615 	sc->sc_tag = pa->pa_tag;
616 	sc->sc_dmat = pa->pa_dmat;
617 
618 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, ARC_PCI_BAR);
619 	if (pci_mapreg_map(pa, ARC_PCI_BAR, memtype, 0, &sc->sc_iot,
620 	    &sc->sc_ioh, NULL, &sc->sc_ios) != 0) {
621 		aprint_error(": unable to map system interface register\n");
622 		return 1;
623 	}
624 
625 	if (pci_intr_map(pa, &ih) != 0) {
626 		aprint_error(": unable to map interrupt\n");
627 		goto unmap;
628 	}
629 
630 	pci_intr_setattr(pa->pa_pc, &ih, PCI_INTR_MPSAFE, true);
631 
632 	sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, ih, IPL_BIO,
633 	    arc_intr, sc, device_xname(self));
634 	if (sc->sc_ih == NULL) {
635 		aprint_error(": unable to map interrupt [2]\n");
636 		goto unmap;
637 	}
638 
639 	aprint_normal("\n");
640 	aprint_normal_dev(self, "interrupting at %s\n",
641 	    pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf)));
642 
643 	return 0;
644 
645 unmap:
646 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
647 	sc->sc_ios = 0;
648 	return 1;
649 }
650 
651 void
652 arc_unmap_pci_resources(struct arc_softc *sc)
653 {
654 	pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
655 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
656 	sc->sc_ios = 0;
657 }
658 
659 int
660 arc_query_firmware(device_t self)
661 {
662 	struct arc_softc 		*sc = device_private(self);
663 	struct arc_msg_firmware_info	fwinfo;
664 	char				string[81]; /* sizeof(vendor)*2+1 */
665 
666 	if (arc_wait_eq(sc, ARC_REG_OUTB_ADDR1, ARC_REG_OUTB_ADDR1_FIRMWARE_OK,
667 	    ARC_REG_OUTB_ADDR1_FIRMWARE_OK) != 0) {
668 		aprint_debug_dev(self, "timeout waiting for firmware ok\n");
669 		return 1;
670 	}
671 
672 	if (arc_msg0(sc, ARC_REG_INB_MSG0_GET_CONFIG) != 0) {
673 		aprint_debug_dev(self, "timeout waiting for get config\n");
674 		return 1;
675 	}
676 
677 	if (arc_msg0(sc, ARC_REG_INB_MSG0_START_BGRB) != 0) {
678 		aprint_debug_dev(self, "timeout waiting to start bg rebuild\n");
679 		return 1;
680 	}
681 
682 	arc_read_region(sc, ARC_REG_MSGBUF, &fwinfo, sizeof(fwinfo));
683 
684 	DNPRINTF(ARC_D_INIT, "%s: signature: 0x%08x\n",
685 	    device_xname(self), htole32(fwinfo.signature));
686 
687 	if (htole32(fwinfo.signature) != ARC_FWINFO_SIGNATURE_GET_CONFIG) {
688 		aprint_error_dev(self, "invalid firmware info from iop\n");
689 		return 1;
690 	}
691 
692 	DNPRINTF(ARC_D_INIT, "%s: request_len: %d\n",
693 	    device_xname(self), htole32(fwinfo.request_len));
694 	DNPRINTF(ARC_D_INIT, "%s: queue_len: %d\n",
695 	    device_xname(self), htole32(fwinfo.queue_len));
696 	DNPRINTF(ARC_D_INIT, "%s: sdram_size: %d\n",
697 	    device_xname(self), htole32(fwinfo.sdram_size));
698 	DNPRINTF(ARC_D_INIT, "%s: sata_ports: %d\n",
699 	    device_xname(self), htole32(fwinfo.sata_ports));
700 
701 	strnvisx(string, sizeof(string), fwinfo.vendor, sizeof(fwinfo.vendor),
702 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
703 	DNPRINTF(ARC_D_INIT, "%s: vendor: \"%s\"\n",
704 	    device_xname(self), string);
705 
706 	strnvisx(string, sizeof(string), fwinfo.model, sizeof(fwinfo.model),
707 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
708 	aprint_normal_dev(self, "Areca %s Host Adapter RAID controller\n",
709 	    string);
710 
711 	strnvisx(string, sizeof(string), fwinfo.fw_version,
712 	    sizeof(fwinfo.fw_version), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
713 	DNPRINTF(ARC_D_INIT, "%s: version: \"%s\"\n",
714 	    device_xname(self), string);
715 
716 	aprint_normal_dev(self, "%d ports, %dMB SDRAM, firmware <%s>\n",
717 	    htole32(fwinfo.sata_ports), htole32(fwinfo.sdram_size), string);
718 
719 	if (htole32(fwinfo.request_len) != ARC_MAX_IOCMDLEN) {
720 		aprint_error_dev(self,
721 		    "unexpected request frame size (%d != %d)\n",
722 		    htole32(fwinfo.request_len), ARC_MAX_IOCMDLEN);
723 		return 1;
724 	}
725 
726 	sc->sc_req_count = htole32(fwinfo.queue_len);
727 
728 	return 0;
729 }
730 
731 #if NBIO > 0
732 static int
733 arc_bioctl(device_t self, u_long cmd, void *addr)
734 {
735 	struct arc_softc *sc = device_private(self);
736 	int error = 0;
737 
738 	switch (cmd) {
739 	case BIOCINQ:
740 		error = arc_bio_inq(sc, (struct bioc_inq *)addr);
741 		break;
742 
743 	case BIOCVOL:
744 		error = arc_bio_vol(sc, (struct bioc_vol *)addr);
745 		break;
746 
747 	case BIOCDISK:
748 		error = arc_bio_disk_volume(sc, (struct bioc_disk *)addr);
749 		break;
750 
751 	case BIOCDISK_NOVOL:
752 		error = arc_bio_disk_novol(sc, (struct bioc_disk *)addr);
753 		break;
754 
755 	case BIOCALARM:
756 		error = arc_bio_alarm(sc, (struct bioc_alarm *)addr);
757 		break;
758 
759 	case BIOCSETSTATE:
760 		error = arc_bio_setstate(sc, (struct bioc_setstate *)addr);
761 		break;
762 
763 	case BIOCVOLOPS:
764 		error = arc_bio_volops(sc, (struct bioc_volops *)addr);
765 		break;
766 
767 	default:
768 		error = ENOTTY;
769 		break;
770 	}
771 
772 	return error;
773 }
774 
775 static int
776 arc_fw_parse_status_code(struct arc_softc *sc, uint8_t *reply)
777 {
778 	switch (*reply) {
779 	case ARC_FW_CMD_RAIDINVAL:
780 		printf("%s: firmware error (invalid raid set)\n",
781 		    device_xname(sc->sc_dev));
782 		return EINVAL;
783 	case ARC_FW_CMD_VOLINVAL:
784 		printf("%s: firmware error (invalid volume set)\n",
785 		    device_xname(sc->sc_dev));
786 		return EINVAL;
787 	case ARC_FW_CMD_NORAID:
788 		printf("%s: firmware error (unexistent raid set)\n",
789 		    device_xname(sc->sc_dev));
790 		return ENODEV;
791 	case ARC_FW_CMD_NOVOLUME:
792 		printf("%s: firmware error (unexistent volume set)\n",
793 		    device_xname(sc->sc_dev));
794 		return ENODEV;
795 	case ARC_FW_CMD_NOPHYSDRV:
796 		printf("%s: firmware error (unexistent physical drive)\n",
797 		    device_xname(sc->sc_dev));
798 		return ENODEV;
799 	case ARC_FW_CMD_PARAM_ERR:
800 		printf("%s: firmware error (parameter error)\n",
801 		    device_xname(sc->sc_dev));
802 		return EINVAL;
803 	case ARC_FW_CMD_UNSUPPORTED:
804 		printf("%s: firmware error (unsupported command)\n",
805 		    device_xname(sc->sc_dev));
806 		return EOPNOTSUPP;
807 	case ARC_FW_CMD_DISKCFG_CHGD:
808 		printf("%s: firmware error (disk configuration changed)\n",
809 		    device_xname(sc->sc_dev));
810 		return EINVAL;
811 	case ARC_FW_CMD_PASS_INVAL:
812 		printf("%s: firmware error (invalid password)\n",
813 		    device_xname(sc->sc_dev));
814 		return EINVAL;
815 	case ARC_FW_CMD_NODISKSPACE:
816 		printf("%s: firmware error (no disk space available)\n",
817 		    device_xname(sc->sc_dev));
818 		return EOPNOTSUPP;
819 	case ARC_FW_CMD_CHECKSUM_ERR:
820 		printf("%s: firmware error (checksum error)\n",
821 		    device_xname(sc->sc_dev));
822 		return EINVAL;
823 	case ARC_FW_CMD_PASS_REQD:
824 		printf("%s: firmware error (password required)\n",
825 		    device_xname(sc->sc_dev));
826 		return EPERM;
827 	case ARC_FW_CMD_OK:
828 	default:
829 		return 0;
830 	}
831 }
832 
833 static int
834 arc_bio_alarm(struct arc_softc *sc, struct bioc_alarm *ba)
835 {
836 	uint8_t	request[2], reply[1];
837 	size_t	len;
838 	int	error = 0;
839 
840 	switch (ba->ba_opcode) {
841 	case BIOC_SAENABLE:
842 	case BIOC_SADISABLE:
843 		request[0] = ARC_FW_SET_ALARM;
844 		request[1] = (ba->ba_opcode == BIOC_SAENABLE) ?
845 		    ARC_FW_SET_ALARM_ENABLE : ARC_FW_SET_ALARM_DISABLE;
846 		len = sizeof(request);
847 
848 		break;
849 
850 	case BIOC_SASILENCE:
851 		request[0] = ARC_FW_MUTE_ALARM;
852 		len = 1;
853 
854 		break;
855 
856 	case BIOC_GASTATUS:
857 		/* system info is too big/ugly to deal with here */
858 		return arc_bio_alarm_state(sc, ba);
859 
860 	default:
861 		return EOPNOTSUPP;
862 	}
863 
864 	error = arc_msgbuf(sc, request, len, reply, sizeof(reply));
865 	if (error != 0)
866 		return error;
867 
868 	return arc_fw_parse_status_code(sc, &reply[0]);
869 }
870 
871 static int
872 arc_bio_alarm_state(struct arc_softc *sc, struct bioc_alarm *ba)
873 {
874 	struct arc_fw_sysinfo	*sysinfo;
875 	uint8_t			request;
876 	int			error = 0;
877 
878 	sysinfo = kmem_zalloc(sizeof(*sysinfo), KM_SLEEP);
879 
880 	request = ARC_FW_SYSINFO;
881 	error = arc_msgbuf(sc, &request, sizeof(request),
882 	    sysinfo, sizeof(struct arc_fw_sysinfo));
883 
884 	if (error != 0)
885 		goto out;
886 
887 	ba->ba_status = sysinfo->alarm;
888 
889 out:
890 	kmem_free(sysinfo, sizeof(*sysinfo));
891 	return error;
892 }
893 
894 static int
895 arc_bio_volops(struct arc_softc *sc, struct bioc_volops *bc)
896 {
897 	/* to create a raid set */
898 	struct req_craidset {
899 		uint8_t		cmdcode;
900 		uint32_t	devmask;
901 		uint8_t 	raidset_name[16];
902 	} __packed;
903 
904 	/* to create a volume set */
905 	struct req_cvolset {
906 		uint8_t 	cmdcode;
907 		uint8_t 	raidset;
908 		uint8_t 	volset_name[16];
909 		uint64_t	capacity;
910 		uint8_t 	raidlevel;
911 		uint8_t 	stripe;
912 		uint8_t 	scsi_chan;
913 		uint8_t 	scsi_target;
914 		uint8_t 	scsi_lun;
915 		uint8_t 	tagqueue;
916 		uint8_t 	cache;
917 		uint8_t 	speed;
918 		uint8_t 	quick_init;
919 	} __packed;
920 
921 	struct scsibus_softc	*scsibus_sc = NULL;
922 	struct req_craidset	req_craidset;
923 	struct req_cvolset 	req_cvolset;
924 	uint8_t 		request[2];
925 	uint8_t 		reply[1];
926 	int 			error = 0;
927 
928 	switch (bc->bc_opcode) {
929 	case BIOC_VCREATE_VOLUME:
930 	    {
931 		/*
932 		 * Zero out the structs so that we use some defaults
933 		 * in raid and volume sets.
934 		 */
935 		memset(&req_craidset, 0, sizeof(req_craidset));
936 		memset(&req_cvolset, 0, sizeof(req_cvolset));
937 
938 		/*
939 		 * Firstly we have to create the raid set and
940 		 * use the default name for all them.
941 		 */
942 		req_craidset.cmdcode = ARC_FW_CREATE_RAIDSET;
943 		req_craidset.devmask = bc->bc_devmask;
944 		error = arc_msgbuf(sc, &req_craidset, sizeof(req_craidset),
945 		    reply, sizeof(reply));
946 		if (error != 0)
947 			return error;
948 
949 		error = arc_fw_parse_status_code(sc, &reply[0]);
950 		if (error) {
951 			printf("%s: create raidset%d failed\n",
952 			    device_xname(sc->sc_dev), bc->bc_volid);
953 			return error;
954 		}
955 
956 		/*
957 		 * At this point the raid set was created, so it's
958 		 * time to create the volume set.
959 		 */
960 		req_cvolset.cmdcode = ARC_FW_CREATE_VOLUME;
961 		req_cvolset.raidset = bc->bc_volid;
962 		req_cvolset.capacity = bc->bc_size * ARC_BLOCKSIZE;
963 
964 		/*
965 		 * Set the RAID level.
966 		 */
967 		switch (bc->bc_level) {
968 		case 0:
969 		case 1:
970 			req_cvolset.raidlevel = bc->bc_level;
971 			break;
972 		case BIOC_SVOL_RAID10:
973 			req_cvolset.raidlevel = 1;
974 			break;
975 		case 3:
976 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_3;
977 			break;
978 		case 5:
979 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_5;
980 			break;
981 		case 6:
982 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_6;
983 			break;
984 		default:
985 			return EOPNOTSUPP;
986 		}
987 
988 		/*
989 		 * Set the stripe size.
990 		 */
991 		switch (bc->bc_stripe) {
992 		case 4:
993 			req_cvolset.stripe = 0;
994 			break;
995 		case 8:
996 			req_cvolset.stripe = 1;
997 			break;
998 		case 16:
999 			req_cvolset.stripe = 2;
1000 			break;
1001 		case 32:
1002 			req_cvolset.stripe = 3;
1003 			break;
1004 		case 64:
1005 			req_cvolset.stripe = 4;
1006 			break;
1007 		case 128:
1008 			req_cvolset.stripe = 5;
1009 			break;
1010 		default:
1011 			req_cvolset.stripe = 4; /* by default 64K */
1012 			break;
1013 		}
1014 
1015 		req_cvolset.scsi_chan = bc->bc_channel;
1016 		req_cvolset.scsi_target = bc->bc_target;
1017 		req_cvolset.scsi_lun = bc->bc_lun;
1018 		req_cvolset.tagqueue = 1; /* always enabled */
1019 		req_cvolset.cache = 1; /* always enabled */
1020 		req_cvolset.speed = 4; /* always max speed */
1021 
1022 		/* RAID 1 and 1+0 levels need foreground initialization */
1023 		if (bc->bc_level == 1 || bc->bc_level == BIOC_SVOL_RAID10)
1024 			req_cvolset.quick_init = 1; /* foreground init */
1025 
1026 		error = arc_msgbuf(sc, &req_cvolset, sizeof(req_cvolset),
1027 		    reply, sizeof(reply));
1028 		if (error != 0)
1029 			return error;
1030 
1031 		error = arc_fw_parse_status_code(sc, &reply[0]);
1032 		if (error) {
1033 			printf("%s: create volumeset%d failed\n",
1034 			    device_xname(sc->sc_dev), bc->bc_volid);
1035 			return error;
1036 		}
1037 
1038 		/*
1039 		 * If we are creating a RAID 1 or RAID 1+0 volume,
1040 		 * the volume will be created immediately but it won't
1041 		 * be available until the initialization is done... so
1042 		 * don't bother attaching the sd(4) device.
1043 		 */
1044 		if (bc->bc_level == 1 || bc->bc_level == BIOC_SVOL_RAID10)
1045 			break;
1046 
1047 		/*
1048 		 * Do a rescan on the bus to attach the device associated
1049 		 * with the new volume.
1050 		 */
1051 		scsibus_sc = device_private(sc->sc_scsibus_dv);
1052 		(void)scsi_probe_bus(scsibus_sc, bc->bc_target, bc->bc_lun);
1053 
1054 		break;
1055 	    }
1056 	case BIOC_VREMOVE_VOLUME:
1057 	    {
1058 		/*
1059 		 * Remove the volume set specified in bc_volid.
1060 		 */
1061 		request[0] = ARC_FW_DELETE_VOLUME;
1062 		request[1] = bc->bc_volid;
1063 		error = arc_msgbuf(sc, request, sizeof(request),
1064 		    reply, sizeof(reply));
1065 		if (error != 0)
1066 			return error;
1067 
1068 		error = arc_fw_parse_status_code(sc, &reply[0]);
1069 		if (error) {
1070 			printf("%s: delete volumeset%d failed\n",
1071 			    device_xname(sc->sc_dev), bc->bc_volid);
1072 			return error;
1073 		}
1074 
1075 		/*
1076 		 * Detach the sd(4) device associated with the volume,
1077 		 * but if there's an error don't make it a priority.
1078 		 */
1079 		error = scsipi_target_detach(&sc->sc_chan, bc->bc_target,
1080 					     bc->bc_lun, 0);
1081 		if (error)
1082 			printf("%s: couldn't detach sd device for volume %d "
1083 			    "at %u:%u.%u (error=%d)\n",
1084 			    device_xname(sc->sc_dev), bc->bc_volid,
1085 			    bc->bc_channel, bc->bc_target, bc->bc_lun, error);
1086 
1087 		/*
1088 		 * and remove the raid set specified in bc_volid,
1089 		 * we only care about volumes.
1090 		 */
1091 		request[0] = ARC_FW_DELETE_RAIDSET;
1092 		request[1] = bc->bc_volid;
1093 		error = arc_msgbuf(sc, request, sizeof(request),
1094 		    reply, sizeof(reply));
1095 		if (error != 0)
1096 			return error;
1097 
1098 		error = arc_fw_parse_status_code(sc, &reply[0]);
1099 		if (error) {
1100 			printf("%s: delete raidset%d failed\n",
1101 			    device_xname(sc->sc_dev), bc->bc_volid);
1102 			return error;
1103 		}
1104 
1105 		break;
1106 	    }
1107 	default:
1108 		return EOPNOTSUPP;
1109 	}
1110 
1111 	return error;
1112 }
1113 
1114 static int
1115 arc_bio_setstate(struct arc_softc *sc, struct bioc_setstate *bs)
1116 {
1117 	/* for a hotspare disk */
1118 	struct request_hs {
1119 		uint8_t		cmdcode;
1120 		uint32_t	devmask;
1121 	} __packed;
1122 
1123 	/* for a pass-through disk */
1124 	struct request_pt {
1125 		uint8_t 	cmdcode;
1126 		uint8_t		devid;
1127 		uint8_t		scsi_chan;
1128 		uint8_t 	scsi_id;
1129 		uint8_t 	scsi_lun;
1130 		uint8_t 	tagged_queue;
1131 		uint8_t 	cache_mode;
1132 		uint8_t 	max_speed;
1133 	} __packed;
1134 
1135 	struct scsibus_softc	*scsibus_sc = NULL;
1136 	struct request_hs	req_hs; /* to add/remove hotspare */
1137 	struct request_pt	req_pt;	/* to add a pass-through */
1138 	uint8_t			req_gen[2];
1139 	uint8_t			reply[1];
1140 	int			error = 0;
1141 
1142 	switch (bs->bs_status) {
1143 	case BIOC_SSHOTSPARE:
1144 	    {
1145 		req_hs.cmdcode = ARC_FW_CREATE_HOTSPARE;
1146 		req_hs.devmask = (1 << bs->bs_target);
1147 		goto hotspare;
1148 	    }
1149 	case BIOC_SSDELHOTSPARE:
1150 	    {
1151 		req_hs.cmdcode = ARC_FW_DELETE_HOTSPARE;
1152 		req_hs.devmask = (1 << bs->bs_target);
1153 		goto hotspare;
1154 	    }
1155 	case BIOC_SSPASSTHRU:
1156 	    {
1157 		req_pt.cmdcode = ARC_FW_CREATE_PASSTHRU;
1158 		req_pt.devid = bs->bs_other_id; /* this wants device# */
1159 		req_pt.scsi_chan = bs->bs_channel;
1160 		req_pt.scsi_id = bs->bs_target;
1161 		req_pt.scsi_lun = bs->bs_lun;
1162 		req_pt.tagged_queue = 1; /* always enabled */
1163 		req_pt.cache_mode = 1; /* always enabled */
1164 		req_pt.max_speed = 4; /* always max speed */
1165 
1166 		error = arc_msgbuf(sc, &req_pt, sizeof(req_pt),
1167 		    reply, sizeof(reply));
1168 		if (error != 0)
1169 			return error;
1170 
1171 		/*
1172 		 * Do a rescan on the bus to attach the new device
1173 		 * associated with the pass-through disk.
1174 		 */
1175 		scsibus_sc = device_private(sc->sc_scsibus_dv);
1176 		(void)scsi_probe_bus(scsibus_sc, bs->bs_target, bs->bs_lun);
1177 
1178 		goto out;
1179 	    }
1180 	case BIOC_SSDELPASSTHRU:
1181 	    {
1182 		req_gen[0] = ARC_FW_DELETE_PASSTHRU;
1183 		req_gen[1] = bs->bs_target;
1184 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1185 		    reply, sizeof(reply));
1186 		if (error != 0)
1187 			return error;
1188 
1189 		/*
1190 		 * Detach the sd device associated with this pass-through disk.
1191 		 */
1192 		error = scsipi_target_detach(&sc->sc_chan, bs->bs_target,
1193 					     bs->bs_lun, 0);
1194 		if (error)
1195 			printf("%s: couldn't detach sd device for the "
1196 			    "pass-through disk at %u:%u.%u (error=%d)\n",
1197 			    device_xname(sc->sc_dev),
1198 			    bs->bs_channel, bs->bs_target, bs->bs_lun, error);
1199 
1200 		goto out;
1201 	    }
1202 	case BIOC_SSCHECKSTART_VOL:
1203 	    {
1204 		req_gen[0] = ARC_FW_START_CHECKVOL;
1205 		req_gen[1] = bs->bs_volid;
1206 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1207 		    reply, sizeof(reply));
1208 		if (error != 0)
1209 			return error;
1210 
1211 		goto out;
1212 	    }
1213 	case BIOC_SSCHECKSTOP_VOL:
1214 	    {
1215 		uint8_t req = ARC_FW_STOP_CHECKVOL;
1216 		error = arc_msgbuf(sc, &req, 1, reply, sizeof(reply));
1217 		if (error != 0)
1218 			return error;
1219 
1220 		goto out;
1221 	    }
1222 	default:
1223 		return EOPNOTSUPP;
1224 	}
1225 
1226 hotspare:
1227 	error = arc_msgbuf(sc, &req_hs, sizeof(req_hs),
1228 	    reply, sizeof(reply));
1229 	if (error != 0)
1230 		return error;
1231 
1232 out:
1233 	return arc_fw_parse_status_code(sc, &reply[0]);
1234 }
1235 
1236 static int
1237 arc_bio_inq(struct arc_softc *sc, struct bioc_inq *bi)
1238 {
1239 	uint8_t			request[2];
1240 	struct arc_fw_sysinfo	*sysinfo = NULL;
1241 	struct arc_fw_raidinfo	*raidinfo;
1242 	int			nvols = 0, i;
1243 	int			error = 0;
1244 
1245 	raidinfo = kmem_zalloc(sizeof(*raidinfo), KM_SLEEP);
1246 
1247 	if (!sc->sc_maxraidset || !sc->sc_maxvolset || !sc->sc_cchans) {
1248 		sysinfo = kmem_zalloc(sizeof(*sysinfo), KM_SLEEP);
1249 
1250 		request[0] = ARC_FW_SYSINFO;
1251 		error = arc_msgbuf(sc, request, 1, sysinfo,
1252 		    sizeof(struct arc_fw_sysinfo));
1253 		if (error != 0)
1254 			goto out;
1255 
1256 		sc->sc_maxraidset = sysinfo->max_raid_set;
1257 		sc->sc_maxvolset = sysinfo->max_volume_set;
1258 		sc->sc_cchans = sysinfo->ide_channels;
1259 	}
1260 
1261 	request[0] = ARC_FW_RAIDINFO;
1262 	for (i = 0; i < sc->sc_maxraidset; i++) {
1263 		request[1] = i;
1264 		error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1265 		    sizeof(struct arc_fw_raidinfo));
1266 		if (error != 0)
1267 			goto out;
1268 
1269 		nvols += raidinfo->volumes;
1270 	}
1271 
1272 	strlcpy(bi->bi_dev, device_xname(sc->sc_dev), sizeof(bi->bi_dev));
1273 	bi->bi_novol = nvols;
1274 	bi->bi_nodisk = sc->sc_cchans;
1275 
1276 out:
1277 	if (sysinfo)
1278 		kmem_free(sysinfo, sizeof(*sysinfo));
1279 	kmem_free(raidinfo, sizeof(*raidinfo));
1280 	return error;
1281 }
1282 
1283 static int
1284 arc_bio_getvol(struct arc_softc *sc, int vol, struct arc_fw_volinfo *volinfo)
1285 {
1286 	uint8_t			request[2];
1287 	int			error = 0;
1288 	int			nvols = 0, i;
1289 
1290 	request[0] = ARC_FW_VOLINFO;
1291 	for (i = 0; i < sc->sc_maxvolset; i++) {
1292 		request[1] = i;
1293 		error = arc_msgbuf(sc, request, sizeof(request), volinfo,
1294 		    sizeof(struct arc_fw_volinfo));
1295 		if (error != 0)
1296 			goto out;
1297 
1298 		if (volinfo->capacity == 0 && volinfo->capacity2 == 0)
1299 			continue;
1300 
1301 		if (nvols == vol)
1302 			break;
1303 
1304 		nvols++;
1305 	}
1306 
1307 	if (nvols != vol ||
1308 	    (volinfo->capacity == 0 && volinfo->capacity2 == 0)) {
1309 		error = ENODEV;
1310 		goto out;
1311 	}
1312 
1313 out:
1314 	return error;
1315 }
1316 
1317 static int
1318 arc_bio_vol(struct arc_softc *sc, struct bioc_vol *bv)
1319 {
1320 	struct arc_fw_volinfo	*volinfo;
1321 	uint64_t		blocks;
1322 	uint32_t		status;
1323 	int			error = 0;
1324 
1325 	volinfo = kmem_zalloc(sizeof(*volinfo), KM_SLEEP);
1326 
1327 	error = arc_bio_getvol(sc, bv->bv_volid, volinfo);
1328 	if (error != 0)
1329 		goto out;
1330 
1331 	bv->bv_percent = -1;
1332 	bv->bv_seconds = 0;
1333 
1334 	status = htole32(volinfo->volume_status);
1335 	if (status == 0x0) {
1336 		if (htole32(volinfo->fail_mask) == 0x0)
1337 			bv->bv_status = BIOC_SVONLINE;
1338 		else
1339 			bv->bv_status = BIOC_SVDEGRADED;
1340 	} else if (status & ARC_FW_VOL_STATUS_NEED_REGEN) {
1341 		bv->bv_status = BIOC_SVDEGRADED;
1342 	} else if (status & ARC_FW_VOL_STATUS_FAILED) {
1343 		bv->bv_status = BIOC_SVOFFLINE;
1344 	} else if (status & ARC_FW_VOL_STATUS_INITTING) {
1345 		bv->bv_status = BIOC_SVBUILDING;
1346 		bv->bv_percent = htole32(volinfo->progress);
1347 	} else if (status & ARC_FW_VOL_STATUS_REBUILDING) {
1348 		bv->bv_status = BIOC_SVREBUILD;
1349 		bv->bv_percent = htole32(volinfo->progress);
1350 	} else if (status & ARC_FW_VOL_STATUS_MIGRATING) {
1351 		bv->bv_status = BIOC_SVMIGRATING;
1352 		bv->bv_percent = htole32(volinfo->progress);
1353 	} else if (status & ARC_FW_VOL_STATUS_CHECKING) {
1354 		bv->bv_status = BIOC_SVCHECKING;
1355 		bv->bv_percent = htole32(volinfo->progress);
1356 	} else if (status & ARC_FW_VOL_STATUS_NEED_INIT) {
1357 		bv->bv_status = BIOC_SVOFFLINE;
1358 	} else {
1359 		printf("%s: volume %d status 0x%x\n",
1360 		    device_xname(sc->sc_dev), bv->bv_volid, status);
1361 	}
1362 
1363 	blocks = (uint64_t)htole32(volinfo->capacity2) << 32;
1364 	blocks += (uint64_t)htole32(volinfo->capacity);
1365 	bv->bv_size = blocks * ARC_BLOCKSIZE; /* XXX */
1366 
1367 	switch (volinfo->raid_level) {
1368 	case ARC_FW_VOL_RAIDLEVEL_0:
1369 		bv->bv_level = 0;
1370 		break;
1371 	case ARC_FW_VOL_RAIDLEVEL_1:
1372 		if (volinfo->member_disks > 2)
1373 			bv->bv_level = BIOC_SVOL_RAID10;
1374 		else
1375 			bv->bv_level = 1;
1376 		break;
1377 	case ARC_FW_VOL_RAIDLEVEL_3:
1378 		bv->bv_level = 3;
1379 		break;
1380 	case ARC_FW_VOL_RAIDLEVEL_5:
1381 		bv->bv_level = 5;
1382 		break;
1383 	case ARC_FW_VOL_RAIDLEVEL_6:
1384 		bv->bv_level = 6;
1385 		break;
1386 	case ARC_FW_VOL_RAIDLEVEL_PASSTHRU:
1387 		bv->bv_level = BIOC_SVOL_PASSTHRU;
1388 		break;
1389 	default:
1390 		bv->bv_level = -1;
1391 		break;
1392 	}
1393 
1394 	bv->bv_nodisk = volinfo->member_disks;
1395 	bv->bv_stripe_size = volinfo->stripe_size / 2;
1396 	snprintf(bv->bv_dev, sizeof(bv->bv_dev), "sd%d", bv->bv_volid);
1397 	strnvisx(bv->bv_vendor, sizeof(bv->bv_vendor), volinfo->set_name,
1398 	    sizeof(volinfo->set_name), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1399 
1400 out:
1401 	kmem_free(volinfo, sizeof(*volinfo));
1402 	return error;
1403 }
1404 
1405 static int
1406 arc_bio_disk_novol(struct arc_softc *sc, struct bioc_disk *bd)
1407 {
1408 	struct arc_fw_diskinfo	*diskinfo;
1409 	uint8_t			request[2];
1410 	int			error = 0;
1411 
1412 	diskinfo = kmem_zalloc(sizeof(*diskinfo), KM_SLEEP);
1413 
1414 	if (bd->bd_diskid >= sc->sc_cchans) {
1415 		error = ENODEV;
1416 		goto out;
1417 	}
1418 
1419 	request[0] = ARC_FW_DISKINFO;
1420 	request[1] = bd->bd_diskid;
1421 	error = arc_msgbuf(sc, request, sizeof(request),
1422 	    diskinfo, sizeof(struct arc_fw_diskinfo));
1423 	if (error != 0)
1424 		goto out;
1425 
1426 	/* skip disks with no capacity */
1427 	if (htole32(diskinfo->capacity) == 0 &&
1428 	    htole32(diskinfo->capacity2) == 0)
1429 		goto out;
1430 
1431 	bd->bd_disknovol = true;
1432 	arc_bio_disk_filldata(sc, bd, diskinfo, bd->bd_diskid);
1433 
1434 out:
1435 	kmem_free(diskinfo, sizeof(*diskinfo));
1436 	return error;
1437 }
1438 
1439 static void
1440 arc_bio_disk_filldata(struct arc_softc *sc, struct bioc_disk *bd,
1441 		     struct arc_fw_diskinfo *diskinfo, int diskid)
1442 {
1443 	uint64_t		blocks;
1444 	char			model[81];
1445 	char			serial[41];
1446 	char			rev[17];
1447 
1448 	/* Ignore bit zero for now, we don't know what it means */
1449 	diskinfo->device_state &= ~0x1;
1450 
1451 	switch (diskinfo->device_state) {
1452 	case ARC_FW_DISK_FAILED:
1453 		bd->bd_status = BIOC_SDFAILED;
1454 		break;
1455 	case ARC_FW_DISK_PASSTHRU:
1456 		bd->bd_status = BIOC_SDPASSTHRU;
1457 		break;
1458 	case ARC_FW_DISK_NORMAL:
1459 		bd->bd_status = BIOC_SDONLINE;
1460 		break;
1461 	case ARC_FW_DISK_HOTSPARE:
1462 		bd->bd_status = BIOC_SDHOTSPARE;
1463 		break;
1464 	case ARC_FW_DISK_UNUSED:
1465 		bd->bd_status = BIOC_SDUNUSED;
1466 		break;
1467 	case 0:
1468 		/* disk has been disconnected */
1469 		bd->bd_status = BIOC_SDOFFLINE;
1470 		bd->bd_channel = 1;
1471 		bd->bd_target = 0;
1472 		bd->bd_lun = 0;
1473 		strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor));
1474 		break;
1475 	default:
1476 		printf("%s: unknown disk device_state: 0x%x\n", __func__,
1477 		    diskinfo->device_state);
1478 		bd->bd_status = BIOC_SDINVALID;
1479 		return;
1480 	}
1481 
1482 	blocks = (uint64_t)htole32(diskinfo->capacity2) << 32;
1483 	blocks += (uint64_t)htole32(diskinfo->capacity);
1484 	bd->bd_size = blocks * ARC_BLOCKSIZE; /* XXX */
1485 
1486 	strnvisx(model, sizeof(model), diskinfo->model,
1487 	    sizeof(diskinfo->model), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1488 	strnvisx(serial, sizeof(serial), diskinfo->serial,
1489 	    sizeof(diskinfo->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1490 	strnvisx(rev, sizeof(rev), diskinfo->firmware_rev,
1491 	    sizeof(diskinfo->firmware_rev), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1492 
1493 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s", model, rev);
1494 	strlcpy(bd->bd_serial, serial, sizeof(bd->bd_serial));
1495 
1496 #if 0
1497 	bd->bd_channel = diskinfo->scsi_attr.channel;
1498 	bd->bd_target = diskinfo->scsi_attr.target;
1499 	bd->bd_lun = diskinfo->scsi_attr.lun;
1500 #endif
1501 
1502 	/*
1503 	 * the firwmare doesnt seem to fill scsi_attr in, so fake it with
1504 	 * the diskid.
1505 	 */
1506 	bd->bd_channel = 0;
1507 	bd->bd_target = diskid;
1508 	bd->bd_lun = 0;
1509 }
1510 
1511 static int
1512 arc_bio_disk_volume(struct arc_softc *sc, struct bioc_disk *bd)
1513 {
1514 	struct arc_fw_raidinfo	*raidinfo;
1515 	struct arc_fw_volinfo	*volinfo;
1516 	struct arc_fw_diskinfo	*diskinfo;
1517 	uint8_t			request[2];
1518 	int			error = 0;
1519 
1520 	volinfo = kmem_zalloc(sizeof(*volinfo), KM_SLEEP);
1521 	raidinfo = kmem_zalloc(sizeof(*raidinfo), KM_SLEEP);
1522 	diskinfo = kmem_zalloc(sizeof(*diskinfo), KM_SLEEP);
1523 
1524 	error = arc_bio_getvol(sc, bd->bd_volid, volinfo);
1525 	if (error != 0)
1526 		goto out;
1527 
1528 	request[0] = ARC_FW_RAIDINFO;
1529 	request[1] = volinfo->raid_set_number;
1530 
1531 	error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1532 	    sizeof(struct arc_fw_raidinfo));
1533 	if (error != 0)
1534 		goto out;
1535 
1536 	if (bd->bd_diskid >= sc->sc_cchans ||
1537 	    bd->bd_diskid >= raidinfo->member_devices) {
1538 		error = ENODEV;
1539 		goto out;
1540 	}
1541 
1542 	if (raidinfo->device_array[bd->bd_diskid] == 0xff) {
1543 		/*
1544 		 * The disk has been disconnected, mark it offline
1545 		 * and put it on another bus.
1546 		 */
1547 		bd->bd_channel = 1;
1548 		bd->bd_target = 0;
1549 		bd->bd_lun = 0;
1550 		bd->bd_status = BIOC_SDOFFLINE;
1551 		strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor));
1552 		goto out;
1553 	}
1554 
1555 	request[0] = ARC_FW_DISKINFO;
1556 	request[1] = raidinfo->device_array[bd->bd_diskid];
1557 	error = arc_msgbuf(sc, request, sizeof(request), diskinfo,
1558 	    sizeof(struct arc_fw_diskinfo));
1559 	if (error != 0)
1560 		goto out;
1561 
1562 	/* now fill our bio disk with data from the firmware */
1563 	arc_bio_disk_filldata(sc, bd, diskinfo,
1564 	    raidinfo->device_array[bd->bd_diskid]);
1565 
1566 out:
1567 	kmem_free(raidinfo, sizeof(*raidinfo));
1568 	kmem_free(volinfo, sizeof(*volinfo));
1569 	kmem_free(diskinfo, sizeof(*diskinfo));
1570 	return error;
1571 }
1572 
1573 static uint8_t
1574 arc_msg_cksum(void *cmd, uint16_t len)
1575 {
1576 	uint8_t	*buf = cmd;
1577 	uint8_t	cksum;
1578 	int	i;
1579 
1580 	cksum = (uint8_t)(len >> 8) + (uint8_t)len;
1581 	for (i = 0; i < len; i++)
1582 		cksum += buf[i];
1583 
1584 	return cksum;
1585 }
1586 
1587 
1588 static int
1589 arc_msgbuf(struct arc_softc *sc, void *wptr, size_t wbuflen, void *rptr,
1590 	   size_t rbuflen)
1591 {
1592 	uint8_t			rwbuf[ARC_REG_IOC_RWBUF_MAXLEN];
1593 	uint8_t			*wbuf, *rbuf;
1594 	int			wlen, wdone = 0, rlen, rdone = 0;
1595 	struct arc_fw_bufhdr	*bufhdr;
1596 	uint32_t		reg, rwlen;
1597 	int			error = 0;
1598 #ifdef ARC_DEBUG
1599 	int			i;
1600 #endif
1601 
1602 	wbuf = rbuf = NULL;
1603 
1604 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wbuflen: %d rbuflen: %d\n",
1605 	    device_xname(sc->sc_dev), wbuflen, rbuflen);
1606 
1607 	wlen = sizeof(struct arc_fw_bufhdr) + wbuflen + 1; /* 1 for cksum */
1608 	wbuf = kmem_alloc(wlen, KM_SLEEP);
1609 
1610 	rlen = sizeof(struct arc_fw_bufhdr) + rbuflen + 1; /* 1 for cksum */
1611 	rbuf = kmem_alloc(rlen, KM_SLEEP);
1612 
1613 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wlen: %d rlen: %d\n",
1614 	    device_xname(sc->sc_dev), wlen, rlen);
1615 
1616 	bufhdr = (struct arc_fw_bufhdr *)wbuf;
1617 	bufhdr->hdr = arc_fw_hdr;
1618 	bufhdr->len = htole16(wbuflen);
1619 	memcpy(wbuf + sizeof(struct arc_fw_bufhdr), wptr, wbuflen);
1620 	wbuf[wlen - 1] = arc_msg_cksum(wptr, wbuflen);
1621 
1622 	arc_lock(sc);
1623 	if (arc_read(sc, ARC_REG_OUTB_DOORBELL) != 0) {
1624 		error = EBUSY;
1625 		goto out;
1626 	}
1627 
1628 	reg = ARC_REG_OUTB_DOORBELL_READ_OK;
1629 
1630 	do {
1631 		if ((reg & ARC_REG_OUTB_DOORBELL_READ_OK) && wdone < wlen) {
1632 			memset(rwbuf, 0, sizeof(rwbuf));
1633 			rwlen = (wlen - wdone) % sizeof(rwbuf);
1634 			memcpy(rwbuf, &wbuf[wdone], rwlen);
1635 
1636 #ifdef ARC_DEBUG
1637 			if (arcdebug & ARC_D_DB) {
1638 				printf("%s: write %d:",
1639 				    device_xname(sc->sc_dev), rwlen);
1640 				for (i = 0; i < rwlen; i++)
1641 					printf(" 0x%02x", rwbuf[i]);
1642 				printf("\n");
1643 			}
1644 #endif
1645 
1646 			/* copy the chunk to the hw */
1647 			arc_write(sc, ARC_REG_IOC_WBUF_LEN, rwlen);
1648 			arc_write_region(sc, ARC_REG_IOC_WBUF, rwbuf,
1649 			    sizeof(rwbuf));
1650 
1651 			/* say we have a buffer for the hw */
1652 			arc_write(sc, ARC_REG_INB_DOORBELL,
1653 			    ARC_REG_INB_DOORBELL_WRITE_OK);
1654 
1655 			wdone += rwlen;
1656 		}
1657 
1658 		while ((reg = arc_read(sc, ARC_REG_OUTB_DOORBELL)) == 0)
1659 			arc_wait(sc);
1660 
1661 		arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
1662 
1663 		DNPRINTF(ARC_D_DB, "%s: reg: 0x%08x\n",
1664 		    device_xname(sc->sc_dev), reg);
1665 
1666 		if ((reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) && rdone < rlen) {
1667 			rwlen = arc_read(sc, ARC_REG_IOC_RBUF_LEN);
1668 			if (rwlen > sizeof(rwbuf)) {
1669 				DNPRINTF(ARC_D_DB, "%s:  rwlen too big\n",
1670 				    device_xname(sc->sc_dev));
1671 				error = EIO;
1672 				goto out;
1673 			}
1674 
1675 			arc_read_region(sc, ARC_REG_IOC_RBUF, rwbuf,
1676 			    sizeof(rwbuf));
1677 
1678 			arc_write(sc, ARC_REG_INB_DOORBELL,
1679 			    ARC_REG_INB_DOORBELL_READ_OK);
1680 
1681 #ifdef ARC_DEBUG
1682 			printf("%s:  len: %d+%d=%d/%d\n",
1683 			    device_xname(sc->sc_dev),
1684 			    rwlen, rdone, rwlen + rdone, rlen);
1685 			if (arcdebug & ARC_D_DB) {
1686 				printf("%s: read:",
1687 				    device_xname(sc->sc_dev));
1688 				for (i = 0; i < rwlen; i++)
1689 					printf(" 0x%02x", rwbuf[i]);
1690 				printf("\n");
1691 			}
1692 #endif
1693 
1694 			if ((rdone + rwlen) > rlen) {
1695 				DNPRINTF(ARC_D_DB, "%s:  rwbuf too big\n",
1696 				    device_xname(sc->sc_dev));
1697 				error = EIO;
1698 				goto out;
1699 			}
1700 
1701 			memcpy(&rbuf[rdone], rwbuf, rwlen);
1702 			rdone += rwlen;
1703 		}
1704 	} while (rdone != rlen);
1705 
1706 	bufhdr = (struct arc_fw_bufhdr *)rbuf;
1707 	if (memcmp(&bufhdr->hdr, &arc_fw_hdr, sizeof(bufhdr->hdr)) != 0 ||
1708 	    bufhdr->len != htole16(rbuflen)) {
1709 		DNPRINTF(ARC_D_DB, "%s:  rbuf hdr is wrong\n",
1710 		    device_xname(sc->sc_dev));
1711 		error = EIO;
1712 		goto out;
1713 	}
1714 
1715 	memcpy(rptr, rbuf + sizeof(struct arc_fw_bufhdr), rbuflen);
1716 
1717 	if (rbuf[rlen - 1] != arc_msg_cksum(rptr, rbuflen)) {
1718 		DNPRINTF(ARC_D_DB, "%s:  invalid cksum\n",
1719 		    device_xname(sc->sc_dev));
1720 		error = EIO;
1721 		goto out;
1722 	}
1723 
1724 out:
1725 	arc_unlock(sc);
1726 	kmem_free(wbuf, wlen);
1727 	kmem_free(rbuf, rlen);
1728 
1729 	return error;
1730 }
1731 
1732 static void
1733 arc_lock(struct arc_softc *sc)
1734 {
1735 	rw_enter(&sc->sc_rwlock, RW_WRITER);
1736 	mutex_spin_enter(&sc->sc_mutex);
1737 	arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1738 	sc->sc_talking = 1;
1739 }
1740 
1741 static void
1742 arc_unlock(struct arc_softc *sc)
1743 {
1744 	KASSERT(mutex_owned(&sc->sc_mutex));
1745 
1746 	arc_write(sc, ARC_REG_INTRMASK,
1747 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1748 	sc->sc_talking = 0;
1749 	mutex_spin_exit(&sc->sc_mutex);
1750 	rw_exit(&sc->sc_rwlock);
1751 }
1752 
1753 static void
1754 arc_wait(struct arc_softc *sc)
1755 {
1756 	KASSERT(mutex_owned(&sc->sc_mutex));
1757 
1758 	arc_write(sc, ARC_REG_INTRMASK,
1759 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1760 	if (cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz) == EWOULDBLOCK)
1761 		arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1762 }
1763 
1764 
1765 static void
1766 arc_create_sensors(void *arg)
1767 {
1768 	struct arc_softc	*sc = arg;
1769 	struct bioc_inq		bi;
1770 	struct bioc_vol		bv;
1771 	int			i, j;
1772 	size_t			slen, count = 0;
1773 
1774 	memset(&bi, 0, sizeof(bi));
1775 	if (arc_bio_inq(sc, &bi) != 0) {
1776 		aprint_error("%s: unable to query firmware for sensor info\n",
1777 		    device_xname(sc->sc_dev));
1778 		kthread_exit(0);
1779 	}
1780 
1781 	/* There's no point to continue if there are no volumes */
1782 	if (!bi.bi_novol)
1783 		kthread_exit(0);
1784 
1785 	for (i = 0; i < bi.bi_novol; i++) {
1786 		memset(&bv, 0, sizeof(bv));
1787 		bv.bv_volid = i;
1788 		if (arc_bio_vol(sc, &bv) != 0)
1789 			kthread_exit(0);
1790 
1791 		/* Skip passthrough volumes */
1792 		if (bv.bv_level == BIOC_SVOL_PASSTHRU)
1793 			continue;
1794 
1795 		/* new volume found */
1796 		sc->sc_nsensors++;
1797 		/* new disk in a volume found */
1798 		sc->sc_nsensors+= bv.bv_nodisk;
1799 	}
1800 
1801 	/* No valid volumes */
1802 	if (!sc->sc_nsensors)
1803 		kthread_exit(0);
1804 
1805 	sc->sc_sme = sysmon_envsys_create();
1806 	slen = sizeof(arc_edata_t) * sc->sc_nsensors;
1807 	sc->sc_arc_sensors = kmem_zalloc(slen, KM_SLEEP);
1808 
1809 	/* Attach sensors for volumes and disks */
1810 	for (i = 0; i < bi.bi_novol; i++) {
1811 		memset(&bv, 0, sizeof(bv));
1812 		bv.bv_volid = i;
1813 		if (arc_bio_vol(sc, &bv) != 0)
1814 			goto bad;
1815 
1816 		sc->sc_arc_sensors[count].arc_sensor.units = ENVSYS_DRIVE;
1817 		sc->sc_arc_sensors[count].arc_sensor.state = ENVSYS_SINVALID;
1818 		sc->sc_arc_sensors[count].arc_sensor.value_cur =
1819 		    ENVSYS_DRIVE_EMPTY;
1820 		sc->sc_arc_sensors[count].arc_sensor.flags =
1821 		    ENVSYS_FMONSTCHANGED;
1822 
1823 		/* Skip passthrough volumes */
1824 		if (bv.bv_level == BIOC_SVOL_PASSTHRU)
1825 			continue;
1826 
1827 		if (bv.bv_level == BIOC_SVOL_RAID10)
1828 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1829 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1830 			    "RAID 1+0 volume%d (%s)", i, bv.bv_dev);
1831 		else
1832 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1833 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1834 			    "RAID %d volume%d (%s)", bv.bv_level, i,
1835 			    bv.bv_dev);
1836 
1837 		sc->sc_arc_sensors[count].arc_volid = i;
1838 
1839 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
1840 		    &sc->sc_arc_sensors[count].arc_sensor))
1841 			goto bad;
1842 
1843 		count++;
1844 
1845 		/* Attach disk sensors for this volume */
1846 		for (j = 0; j < bv.bv_nodisk; j++) {
1847 			sc->sc_arc_sensors[count].arc_sensor.state =
1848 			    ENVSYS_SINVALID;
1849 			sc->sc_arc_sensors[count].arc_sensor.units =
1850 			    ENVSYS_DRIVE;
1851 			sc->sc_arc_sensors[count].arc_sensor.value_cur =
1852 			    ENVSYS_DRIVE_EMPTY;
1853 			sc->sc_arc_sensors[count].arc_sensor.flags =
1854 			    ENVSYS_FMONSTCHANGED;
1855 
1856 			snprintf(sc->sc_arc_sensors[count].arc_sensor.desc,
1857 			    sizeof(sc->sc_arc_sensors[count].arc_sensor.desc),
1858 			    "disk%d volume%d (%s)", j, i, bv.bv_dev);
1859 			sc->sc_arc_sensors[count].arc_volid = i;
1860 			sc->sc_arc_sensors[count].arc_diskid = j + 10;
1861 
1862 			if (sysmon_envsys_sensor_attach(sc->sc_sme,
1863 			    &sc->sc_arc_sensors[count].arc_sensor))
1864 				goto bad;
1865 
1866 			count++;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Register our envsys driver with the framework now that the
1872 	 * sensors were all attached.
1873 	 */
1874 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1875 	sc->sc_sme->sme_cookie = sc;
1876 	sc->sc_sme->sme_refresh = arc_refresh_sensors;
1877 
1878 	if (sysmon_envsys_register(sc->sc_sme)) {
1879 		aprint_debug("%s: unable to register with sysmon\n",
1880 		    device_xname(sc->sc_dev));
1881 		goto bad;
1882 	}
1883 	kthread_exit(0);
1884 
1885 bad:
1886 	sysmon_envsys_destroy(sc->sc_sme);
1887 	sc->sc_sme = NULL;
1888 
1889 	kmem_free(sc->sc_arc_sensors, slen);
1890 	sc->sc_arc_sensors = NULL;
1891 
1892 	kthread_exit(0);
1893 }
1894 
1895 static void
1896 arc_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata)
1897 {
1898 	struct arc_softc	*sc = sme->sme_cookie;
1899 	struct bioc_vol		bv;
1900 	struct bioc_disk	bd;
1901 	arc_edata_t		*arcdata = (arc_edata_t *)edata;
1902 
1903 	/* sanity check */
1904 	if (edata->units != ENVSYS_DRIVE)
1905 		return;
1906 
1907 	memset(&bv, 0, sizeof(bv));
1908 	bv.bv_volid = arcdata->arc_volid;
1909 
1910 	if (arc_bio_vol(sc, &bv)) {
1911 		bv.bv_status = BIOC_SVINVALID;
1912 		bio_vol_to_envsys(edata, &bv);
1913 		return;
1914 	}
1915 
1916 	if (arcdata->arc_diskid) {
1917 		/* Current sensor is handling a disk volume member */
1918 		memset(&bd, 0, sizeof(bd));
1919 		bd.bd_volid = arcdata->arc_volid;
1920 		bd.bd_diskid = arcdata->arc_diskid - 10;
1921 
1922 		if (arc_bio_disk_volume(sc, &bd))
1923 			bd.bd_status = BIOC_SDOFFLINE;
1924 		bio_disk_to_envsys(edata, &bd);
1925 	} else {
1926 		/* Current sensor is handling a volume */
1927 		bio_vol_to_envsys(edata, &bv);
1928 	}
1929 }
1930 #endif /* NBIO > 0 */
1931 
1932 static uint32_t
1933 arc_read(struct arc_softc *sc, bus_size_t r)
1934 {
1935 	uint32_t			v;
1936 
1937 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1938 	    BUS_SPACE_BARRIER_READ);
1939 	v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
1940 
1941 	DNPRINTF(ARC_D_RW, "%s: arc_read 0x%lx 0x%08x\n",
1942 	    device_xname(sc->sc_dev), r, v);
1943 
1944 	return v;
1945 }
1946 
1947 static void
1948 arc_read_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1949 {
1950 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1951 	    BUS_SPACE_BARRIER_READ);
1952 	bus_space_read_region_4(sc->sc_iot, sc->sc_ioh, r,
1953 	    (uint32_t *)buf, len >> 2);
1954 }
1955 
1956 static void
1957 arc_write(struct arc_softc *sc, bus_size_t r, uint32_t v)
1958 {
1959 	DNPRINTF(ARC_D_RW, "%s: arc_write 0x%lx 0x%08x\n",
1960 	    device_xname(sc->sc_dev), r, v);
1961 
1962 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
1963 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1964 	    BUS_SPACE_BARRIER_WRITE);
1965 }
1966 
1967 #if NBIO > 0
1968 static void
1969 arc_write_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1970 {
1971 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, r,
1972 	    (const uint32_t *)buf, len >> 2);
1973 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1974 	    BUS_SPACE_BARRIER_WRITE);
1975 }
1976 #endif /* NBIO > 0 */
1977 
1978 static int
1979 arc_wait_eq(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1980 	    uint32_t target)
1981 {
1982 	int i;
1983 
1984 	DNPRINTF(ARC_D_RW, "%s: arc_wait_eq 0x%lx 0x%08x 0x%08x\n",
1985 	    device_xname(sc->sc_dev), r, mask, target);
1986 
1987 	for (i = 0; i < 10000; i++) {
1988 		if ((arc_read(sc, r) & mask) == target)
1989 			return 0;
1990 		delay(1000);
1991 	}
1992 
1993 	return 1;
1994 }
1995 
1996 #if unused
1997 static int
1998 arc_wait_ne(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1999 	    uint32_t target)
2000 {
2001 	int i;
2002 
2003 	DNPRINTF(ARC_D_RW, "%s: arc_wait_ne 0x%lx 0x%08x 0x%08x\n",
2004 	    device_xname(sc->sc_dev), r, mask, target);
2005 
2006 	for (i = 0; i < 10000; i++) {
2007 		if ((arc_read(sc, r) & mask) != target)
2008 			return 0;
2009 		delay(1000);
2010 	}
2011 
2012 	return 1;
2013 }
2014 #endif
2015 
2016 static int
2017 arc_msg0(struct arc_softc *sc, uint32_t m)
2018 {
2019 	/* post message */
2020 	arc_write(sc, ARC_REG_INB_MSG0, m);
2021 	/* wait for the fw to do it */
2022 	if (arc_wait_eq(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0,
2023 	    ARC_REG_INTRSTAT_MSG0) != 0)
2024 		return 1;
2025 
2026 	/* ack it */
2027 	arc_write(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0);
2028 
2029 	return 0;
2030 }
2031 
2032 static struct arc_dmamem *
2033 arc_dmamem_alloc(struct arc_softc *sc, size_t size)
2034 {
2035 	struct arc_dmamem		*adm;
2036 	int				nsegs;
2037 
2038 	adm = kmem_zalloc(sizeof(*adm), KM_SLEEP);
2039 	adm->adm_size = size;
2040 
2041 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2042 	    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &adm->adm_map) != 0)
2043 		goto admfree;
2044 
2045 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &adm->adm_seg,
2046 	    1, &nsegs, BUS_DMA_NOWAIT) != 0)
2047 		goto destroy;
2048 
2049 	if (bus_dmamem_map(sc->sc_dmat, &adm->adm_seg, nsegs, size,
2050 	    &adm->adm_kva, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) != 0)
2051 		goto free;
2052 
2053 	if (bus_dmamap_load(sc->sc_dmat, adm->adm_map, adm->adm_kva, size,
2054 	    NULL, BUS_DMA_NOWAIT) != 0)
2055 		goto unmap;
2056 
2057 	memset(adm->adm_kva, 0, size);
2058 
2059 	return adm;
2060 
2061 unmap:
2062 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, size);
2063 free:
2064 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
2065 destroy:
2066 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
2067 admfree:
2068 	kmem_free(adm, sizeof(*adm));
2069 
2070 	return NULL;
2071 }
2072 
2073 static void
2074 arc_dmamem_free(struct arc_softc *sc, struct arc_dmamem *adm)
2075 {
2076 	bus_dmamap_unload(sc->sc_dmat, adm->adm_map);
2077 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, adm->adm_size);
2078 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
2079 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
2080 	kmem_free(adm, sizeof(*adm));
2081 }
2082 
2083 static int
2084 arc_alloc_ccbs(device_t self)
2085 {
2086 	struct arc_softc 	*sc = device_private(self);
2087 	struct arc_ccb		*ccb;
2088 	uint8_t			*cmd;
2089 	int			i;
2090 	size_t			ccbslen;
2091 
2092 	TAILQ_INIT(&sc->sc_ccb_free);
2093 
2094 	ccbslen = sizeof(struct arc_ccb) * sc->sc_req_count;
2095 	sc->sc_ccbs = kmem_zalloc(ccbslen, KM_SLEEP);
2096 
2097 	sc->sc_requests = arc_dmamem_alloc(sc,
2098 	    ARC_MAX_IOCMDLEN * sc->sc_req_count);
2099 	if (sc->sc_requests == NULL) {
2100 		aprint_error_dev(self, "unable to allocate ccb dmamem\n");
2101 		goto free_ccbs;
2102 	}
2103 	cmd = ARC_DMA_KVA(sc->sc_requests);
2104 
2105 	for (i = 0; i < sc->sc_req_count; i++) {
2106 		ccb = &sc->sc_ccbs[i];
2107 
2108 		if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, ARC_SGL_MAXLEN,
2109 		    MAXPHYS, 0, 0, &ccb->ccb_dmamap) != 0) {
2110 			aprint_error_dev(self,
2111 			    "unable to create dmamap for ccb %d\n", i);
2112 			goto free_maps;
2113 		}
2114 
2115 		ccb->ccb_sc = sc;
2116 		ccb->ccb_id = i;
2117 		ccb->ccb_offset = ARC_MAX_IOCMDLEN * i;
2118 
2119 		ccb->ccb_cmd = (struct arc_io_cmd *)&cmd[ccb->ccb_offset];
2120 		ccb->ccb_cmd_post = (ARC_DMA_DVA(sc->sc_requests) +
2121 		    ccb->ccb_offset) >> ARC_REG_POST_QUEUE_ADDR_SHIFT;
2122 
2123 		arc_put_ccb(sc, ccb);
2124 	}
2125 
2126 	return 0;
2127 
2128 free_maps:
2129 	while ((ccb = arc_get_ccb(sc)) != NULL)
2130 	    bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
2131 	arc_dmamem_free(sc, sc->sc_requests);
2132 
2133 free_ccbs:
2134 	kmem_free(sc->sc_ccbs, ccbslen);
2135 
2136 	return 1;
2137 }
2138 
2139 static struct arc_ccb *
2140 arc_get_ccb(struct arc_softc *sc)
2141 {
2142 	struct arc_ccb			*ccb;
2143 
2144 	ccb = TAILQ_FIRST(&sc->sc_ccb_free);
2145 	if (ccb != NULL)
2146 		TAILQ_REMOVE(&sc->sc_ccb_free, ccb, ccb_link);
2147 
2148 	return ccb;
2149 }
2150 
2151 static void
2152 arc_put_ccb(struct arc_softc *sc, struct arc_ccb *ccb)
2153 {
2154 	ccb->ccb_xs = NULL;
2155 	memset(ccb->ccb_cmd, 0, ARC_MAX_IOCMDLEN);
2156 	TAILQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_link);
2157 }
2158