xref: /netbsd-src/sys/dev/pci/arcmsr.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: arcmsr.c,v 1.9 2008/01/02 23:48:05 xtraeme Exp $ */
2 /*	$OpenBSD: arc.c,v 1.68 2007/10/27 03:28:27 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2007 Juan Romero Pardines <xtraeme@netbsd.org>
6  * Copyright (c) 2006 David Gwynne <dlg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include "bio.h"
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: arcmsr.c,v 1.9 2008/01/02 23:48:05 xtraeme Exp $");
25 
26 #include <sys/param.h>
27 #include <sys/buf.h>
28 #include <sys/kernel.h>
29 #include <sys/malloc.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/kthread.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/rwlock.h>
36 
37 #if NBIO > 0
38 #include <sys/ioctl.h>
39 #include <dev/biovar.h>
40 #endif
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #include <dev/scsipi/scsipi_all.h>
47 #include <dev/scsipi/scsi_all.h>
48 #include <dev/scsipi/scsiconf.h>
49 
50 #include <dev/sysmon/sysmonvar.h>
51 
52 #include <sys/bus.h>
53 
54 #include <uvm/uvm_extern.h>	/* for PAGE_SIZE */
55 
56 #include <dev/pci/arcmsrvar.h>
57 
58 /* #define ARC_DEBUG */
59 #ifdef ARC_DEBUG
60 #define ARC_D_INIT	(1<<0)
61 #define ARC_D_RW	(1<<1)
62 #define ARC_D_DB	(1<<2)
63 
64 int arcdebug = 0;
65 
66 #define DPRINTF(p...)		do { if (arcdebug) printf(p); } while (0)
67 #define DNPRINTF(n, p...)	do { if ((n) & arcdebug) printf(p); } while (0)
68 
69 #else
70 #define DPRINTF(p...)		/* p */
71 #define DNPRINTF(n, p...)	/* n, p */
72 #endif
73 
74 /*
75  * the fw header must always equal this.
76  */
77 static struct arc_fw_hdr arc_fw_hdr = { 0x5e, 0x01, 0x61 };
78 
79 /*
80  * autoconf(9) glue.
81  */
82 static int 	arc_match(device_t, struct cfdata *, void *);
83 static void 	arc_attach(device_t, device_t, void *);
84 static int 	arc_detach(device_t, int);
85 static void 	arc_shutdown(void *);
86 static int 	arc_intr(void *);
87 static void	arc_minphys(struct buf *);
88 
89 CFATTACH_DECL(arcmsr, sizeof(struct arc_softc),
90 	arc_match, arc_attach, arc_detach, NULL);
91 
92 /*
93  * bio(4) and sysmon_envsys(9) glue.
94  */
95 #if NBIO > 0
96 static int 	arc_bioctl(struct device *, u_long, void *);
97 static int 	arc_bio_inq(struct arc_softc *, struct bioc_inq *);
98 static int 	arc_bio_vol(struct arc_softc *, struct bioc_vol *);
99 static int	arc_bio_disk_volume(struct arc_softc *, struct bioc_disk *);
100 static int	arc_bio_disk_novol(struct arc_softc *, struct bioc_disk *);
101 static void	arc_bio_disk_filldata(struct arc_softc *, struct bioc_disk *,
102 				      struct arc_fw_diskinfo *, int);
103 static int 	arc_bio_alarm(struct arc_softc *, struct bioc_alarm *);
104 static int 	arc_bio_alarm_state(struct arc_softc *, struct bioc_alarm *);
105 static int 	arc_bio_getvol(struct arc_softc *, int,
106 			       struct arc_fw_volinfo *);
107 static int	arc_bio_setstate(struct arc_softc *, struct bioc_setstate *);
108 static int 	arc_bio_volops(struct arc_softc *, struct bioc_volops *);
109 static void 	arc_create_sensors(void *);
110 static void 	arc_refresh_sensors(struct sysmon_envsys *, envsys_data_t *);
111 static int	arc_fw_parse_status_code(struct arc_softc *, uint8_t *);
112 #endif
113 
114 static int
115 arc_match(device_t parent, struct cfdata *match, void *aux)
116 {
117 	struct pci_attach_args *pa = aux;
118 
119 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ARECA) {
120 		switch (PCI_PRODUCT(pa->pa_id)) {
121 		case PCI_PRODUCT_ARECA_ARC1110:
122 		case PCI_PRODUCT_ARECA_ARC1120:
123 		case PCI_PRODUCT_ARECA_ARC1130:
124 		case PCI_PRODUCT_ARECA_ARC1160:
125 		case PCI_PRODUCT_ARECA_ARC1170:
126 		case PCI_PRODUCT_ARECA_ARC1200:
127 		case PCI_PRODUCT_ARECA_ARC1202:
128 		case PCI_PRODUCT_ARECA_ARC1210:
129 		case PCI_PRODUCT_ARECA_ARC1220:
130 		case PCI_PRODUCT_ARECA_ARC1230:
131 		case PCI_PRODUCT_ARECA_ARC1260:
132 		case PCI_PRODUCT_ARECA_ARC1270:
133 		case PCI_PRODUCT_ARECA_ARC1280:
134 		case PCI_PRODUCT_ARECA_ARC1380:
135 		case PCI_PRODUCT_ARECA_ARC1381:
136 		case PCI_PRODUCT_ARECA_ARC1680:
137 		case PCI_PRODUCT_ARECA_ARC1681:
138 			return 1;
139 		default:
140 			break;
141 		}
142 	}
143 
144 	return 0;
145 }
146 
147 static void
148 arc_attach(device_t parent, device_t self, void *aux)
149 {
150 	struct arc_softc	*sc = device_private(self);
151 	struct pci_attach_args	*pa = aux;
152 	struct scsipi_adapter	*adapt = &sc->sc_adapter;
153 	struct scsipi_channel	*chan = &sc->sc_chan;
154 
155 	sc->sc_talking = 0;
156 	rw_init(&sc->sc_rwlock);
157 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_BIO);
158 	cv_init(&sc->sc_condvar, "arcdb");
159 
160 	if (arc_map_pci_resources(sc, pa) != 0) {
161 		/* error message printed by arc_map_pci_resources */
162 		return;
163 	}
164 
165 	if (arc_query_firmware(sc) != 0) {
166 		/* error message printed by arc_query_firmware */
167 		goto unmap_pci;
168 	}
169 
170 	if (arc_alloc_ccbs(sc) != 0) {
171 		/* error message printed by arc_alloc_ccbs */
172 		goto unmap_pci;
173 	}
174 
175 	sc->sc_shutdownhook = shutdownhook_establish(arc_shutdown, sc);
176 	if (sc->sc_shutdownhook == NULL)
177 		panic("unable to establish arc powerhook");
178 
179 	memset(adapt, 0, sizeof(*adapt));
180 	adapt->adapt_dev = self;
181 	adapt->adapt_nchannels = 1;
182 	adapt->adapt_openings = sc->sc_req_count / ARC_MAX_TARGET;
183 	adapt->adapt_max_periph = adapt->adapt_openings;
184 	adapt->adapt_minphys = arc_minphys;
185 	adapt->adapt_request = arc_scsi_cmd;
186 
187 	memset(chan, 0, sizeof(*chan));
188 	chan->chan_adapter = adapt;
189 	chan->chan_bustype = &scsi_bustype;
190 	chan->chan_nluns = ARC_MAX_LUN;
191 	chan->chan_ntargets = ARC_MAX_TARGET;
192 	chan->chan_id = ARC_MAX_TARGET;
193 	chan->chan_channel = 0;
194 	chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
195 
196 	/*
197 	 * Save the device_t returned, because we could to attach
198 	 * devices via the management interface.
199 	 */
200 	sc->sc_scsibus_dv = config_found(self, &sc->sc_chan, scsiprint);
201 
202 	/* enable interrupts */
203 	arc_write(sc, ARC_REG_INTRMASK,
204 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRSTAT_DOORBELL));
205 
206 #if NBIO > 0
207 	/*
208 	 * Register the driver to bio(4) and setup the sensors.
209 	 */
210 	if (bio_register(self, arc_bioctl) != 0)
211 		panic("%s: bioctl registration failed\n", device_xname(self));
212 
213 	/*
214 	 * you need to talk to the firmware to get volume info. our firmware
215 	 * interface relies on being able to sleep, so we need to use a thread
216 	 * to do the work.
217 	 */
218 	if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
219 	    arc_create_sensors, sc, &sc->sc_lwp, "arcmsr_sensors") != 0)
220 		panic("%s: unable to create a kernel thread for sensors\n",
221 		    device_xname(self));
222 #endif
223 
224         return;
225 
226 unmap_pci:
227 	arc_unmap_pci_resources(sc);
228 }
229 
230 static int
231 arc_detach(device_t self, int flags)
232 {
233 	struct arc_softc		*sc = device_private(self);
234 
235 	shutdownhook_disestablish(sc->sc_shutdownhook);
236 
237 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
238 		aprint_error("%s: timeout waiting to stop bg rebuild\n",
239 		    device_xname(&sc->sc_dev));
240 
241 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
242 		aprint_error("%s: timeout waiting to flush cache\n",
243 		    device_xname(&sc->sc_dev));
244 
245 	return 0;
246 }
247 
248 static void
249 arc_shutdown(void *xsc)
250 {
251 	struct arc_softc		*sc = xsc;
252 
253 	if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0)
254 		aprint_error("%s: timeout waiting to stop bg rebuild\n",
255 		    device_xname(&sc->sc_dev));
256 
257 	if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0)
258 		aprint_error("%s: timeout waiting to flush cache\n",
259 		    device_xname(&sc->sc_dev));
260 }
261 
262 static void
263 arc_minphys(struct buf *bp)
264 {
265 	if (bp->b_bcount > MAXPHYS)
266 		bp->b_bcount = MAXPHYS;
267 	minphys(bp);
268 }
269 
270 static int
271 arc_intr(void *arg)
272 {
273 	struct arc_softc		*sc = arg;
274 	struct arc_ccb			*ccb = NULL;
275 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
276 	struct arc_io_cmd		*cmd;
277 	uint32_t			reg, intrstat;
278 
279 	mutex_spin_enter(&sc->sc_mutex);
280 	intrstat = arc_read(sc, ARC_REG_INTRSTAT);
281 	if (intrstat == 0x0) {
282 		mutex_spin_exit(&sc->sc_mutex);
283 		return 0;
284 	}
285 
286 	intrstat &= ARC_REG_INTRSTAT_POSTQUEUE | ARC_REG_INTRSTAT_DOORBELL;
287 	arc_write(sc, ARC_REG_INTRSTAT, intrstat);
288 
289 	if (intrstat & ARC_REG_INTRSTAT_DOORBELL) {
290 		if (sc->sc_talking) {
291 			arc_write(sc, ARC_REG_INTRMASK,
292 			    ~ARC_REG_INTRMASK_POSTQUEUE);
293 			cv_broadcast(&sc->sc_condvar);
294 		} else {
295 			/* otherwise drop it */
296 			reg = arc_read(sc, ARC_REG_OUTB_DOORBELL);
297 			arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
298 			if (reg & ARC_REG_OUTB_DOORBELL_WRITE_OK)
299 				arc_write(sc, ARC_REG_INB_DOORBELL,
300 				    ARC_REG_INB_DOORBELL_READ_OK);
301 		}
302 	}
303 	mutex_spin_exit(&sc->sc_mutex);
304 
305 	while ((reg = arc_pop(sc)) != 0xffffffff) {
306 		cmd = (struct arc_io_cmd *)(kva +
307 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
308 		    (uint32_t)ARC_DMA_DVA(sc->sc_requests)));
309 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
310 
311 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
312 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
313 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
314 
315 		arc_scsi_cmd_done(sc, ccb, reg);
316 	}
317 
318 
319 	return 1;
320 }
321 
322 void
323 arc_scsi_cmd(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg)
324 {
325 	struct scsipi_periph		*periph;
326 	struct scsipi_xfer		*xs;
327 	struct scsipi_adapter		*adapt = chan->chan_adapter;
328 	struct arc_softc		*sc = device_private(adapt->adapt_dev);
329 	struct arc_ccb			*ccb;
330 	struct arc_msg_scsicmd		*cmd;
331 	uint32_t			reg;
332 	uint8_t				target;
333 
334 	switch (req) {
335 	case ADAPTER_REQ_GROW_RESOURCES:
336 		/* Not supported. */
337 		return;
338 	case ADAPTER_REQ_SET_XFER_MODE:
339 		/* Not supported. */
340 		return;
341 	case ADAPTER_REQ_RUN_XFER:
342 		break;
343 	}
344 
345 	mutex_spin_enter(&sc->sc_mutex);
346 
347 	xs = arg;
348 	periph = xs->xs_periph;
349 	target = periph->periph_target;
350 
351 	if (xs->cmdlen > ARC_MSG_CDBLEN) {
352 		memset(&xs->sense, 0, sizeof(xs->sense));
353 		xs->sense.scsi_sense.response_code = SSD_RCODE_VALID | 0x70;
354 		xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
355 		xs->sense.scsi_sense.asc = 0x20;
356 		xs->error = XS_SENSE;
357 		xs->status = SCSI_CHECK;
358 		mutex_spin_exit(&sc->sc_mutex);
359 		scsipi_done(xs);
360 		return;
361 	}
362 
363 	ccb = arc_get_ccb(sc);
364 	if (ccb == NULL) {
365 		xs->error = XS_RESOURCE_SHORTAGE;
366 		mutex_spin_exit(&sc->sc_mutex);
367 		scsipi_done(xs);
368 		return;
369 	}
370 
371 	ccb->ccb_xs = xs;
372 
373 	if (arc_load_xs(ccb) != 0) {
374 		xs->error = XS_DRIVER_STUFFUP;
375 		arc_put_ccb(sc, ccb);
376 		mutex_spin_exit(&sc->sc_mutex);
377 		scsipi_done(xs);
378 		return;
379 	}
380 
381 	cmd = &ccb->ccb_cmd->cmd;
382 	reg = ccb->ccb_cmd_post;
383 
384 	/* bus is always 0 */
385 	cmd->target = target;
386 	cmd->lun = periph->periph_lun;
387 	cmd->function = 1; /* XXX magic number */
388 
389 	cmd->cdb_len = xs->cmdlen;
390 	cmd->sgl_len = ccb->ccb_dmamap->dm_nsegs;
391 	if (xs->xs_control & XS_CTL_DATA_OUT)
392 		cmd->flags = ARC_MSG_SCSICMD_FLAG_WRITE;
393 	if (ccb->ccb_dmamap->dm_nsegs > ARC_SGL_256LEN) {
394 		cmd->flags |= ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512;
395 		reg |= ARC_REG_POST_QUEUE_BIGFRAME;
396 	}
397 
398 	cmd->context = htole32(ccb->ccb_id);
399 	cmd->data_len = htole32(xs->datalen);
400 
401 	memcpy(cmd->cdb, xs->cmd, xs->cmdlen);
402 
403 	/* we've built the command, let's put it on the hw */
404 	bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
405 	    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
406 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
407 
408 	arc_push(sc, reg);
409 	if (xs->xs_control & XS_CTL_POLL) {
410 		if (arc_complete(sc, ccb, xs->timeout) != 0) {
411 			xs->error = XS_DRIVER_STUFFUP;
412 			mutex_spin_exit(&sc->sc_mutex);
413 			scsipi_done(xs);
414 			return;
415 		}
416 	}
417 
418 	mutex_spin_exit(&sc->sc_mutex);
419 }
420 
421 int
422 arc_load_xs(struct arc_ccb *ccb)
423 {
424 	struct arc_softc		*sc = ccb->ccb_sc;
425 	struct scsipi_xfer		*xs = ccb->ccb_xs;
426 	bus_dmamap_t			dmap = ccb->ccb_dmamap;
427 	struct arc_sge			*sgl = ccb->ccb_cmd->sgl, *sge;
428 	uint64_t			addr;
429 	int				i, error;
430 
431 	if (xs->datalen == 0)
432 		return 0;
433 
434 	error = bus_dmamap_load(sc->sc_dmat, dmap,
435 	    xs->data, xs->datalen, NULL,
436 	    (xs->xs_control & XS_CTL_NOSLEEP) ?
437 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
438 	if (error != 0) {
439 		aprint_error("%s: error %d loading dmamap\n",
440 		    device_xname(&sc->sc_dev), error);
441 		return 1;
442 	}
443 
444 	for (i = 0; i < dmap->dm_nsegs; i++) {
445 		sge = &sgl[i];
446 
447 		sge->sg_hdr = htole32(ARC_SGE_64BIT | dmap->dm_segs[i].ds_len);
448 		addr = dmap->dm_segs[i].ds_addr;
449 		sge->sg_hi_addr = htole32((uint32_t)(addr >> 32));
450 		sge->sg_lo_addr = htole32((uint32_t)addr);
451 	}
452 
453 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
454 	    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
455 	    BUS_DMASYNC_PREWRITE);
456 
457 	return 0;
458 }
459 
460 void
461 arc_scsi_cmd_done(struct arc_softc *sc, struct arc_ccb *ccb, uint32_t reg)
462 {
463 	struct scsipi_xfer		*xs = ccb->ccb_xs;
464 	struct arc_msg_scsicmd		*cmd;
465 
466 	if (xs->datalen != 0) {
467 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
468 		    ccb->ccb_dmamap->dm_mapsize,
469 		    (xs->xs_control & XS_CTL_DATA_IN) ?
470 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
471 		bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
472 	}
473 
474 	/* timeout_del */
475 	xs->status |= XS_STS_DONE;
476 
477 	if (reg & ARC_REG_REPLY_QUEUE_ERR) {
478 		cmd = &ccb->ccb_cmd->cmd;
479 
480 		switch (cmd->status) {
481 		case ARC_MSG_STATUS_SELTIMEOUT:
482 		case ARC_MSG_STATUS_ABORTED:
483 		case ARC_MSG_STATUS_INIT_FAIL:
484 			xs->status = SCSI_OK;
485 			xs->error = XS_SELTIMEOUT;
486 			break;
487 
488 		case SCSI_CHECK:
489 			memset(&xs->sense, 0, sizeof(xs->sense));
490 			memcpy(&xs->sense, cmd->sense_data,
491 			    min(ARC_MSG_SENSELEN, sizeof(xs->sense)));
492 			xs->sense.scsi_sense.response_code =
493 			    SSD_RCODE_VALID | 0x70;
494 			xs->status = SCSI_CHECK;
495 			xs->error = XS_SENSE;
496 			xs->resid = 0;
497 			break;
498 
499 		default:
500 			/* unknown device status */
501 			xs->error = XS_BUSY; /* try again later? */
502 			xs->status = SCSI_BUSY;
503 			break;
504 		}
505 	} else {
506 		xs->status = SCSI_OK;
507 		xs->error = XS_NOERROR;
508 		xs->resid = 0;
509 	}
510 
511 	arc_put_ccb(sc, ccb);
512 	scsipi_done(xs);
513 }
514 
515 int
516 arc_complete(struct arc_softc *sc, struct arc_ccb *nccb, int timeout)
517 {
518 	struct arc_ccb			*ccb = NULL;
519 	char				*kva = ARC_DMA_KVA(sc->sc_requests);
520 	struct arc_io_cmd		*cmd;
521 	uint32_t			reg;
522 
523 	do {
524 		reg = arc_pop(sc);
525 		if (reg == 0xffffffff) {
526 			if (timeout-- == 0)
527 				return 1;
528 
529 			delay(1000);
530 			continue;
531 		}
532 
533 		cmd = (struct arc_io_cmd *)(kva +
534 		    ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) -
535 		    ARC_DMA_DVA(sc->sc_requests)));
536 		ccb = &sc->sc_ccbs[htole32(cmd->cmd.context)];
537 
538 		bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests),
539 		    ccb->ccb_offset, ARC_MAX_IOCMDLEN,
540 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
541 
542 		arc_scsi_cmd_done(sc, ccb, reg);
543 	} while (nccb != ccb);
544 
545 	return 0;
546 }
547 
548 int
549 arc_map_pci_resources(struct arc_softc *sc, struct pci_attach_args *pa)
550 {
551 	pcireg_t			memtype;
552 	pci_intr_handle_t		ih;
553 
554 	sc->sc_pc = pa->pa_pc;
555 	sc->sc_tag = pa->pa_tag;
556 	sc->sc_dmat = pa->pa_dmat;
557 
558 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, ARC_PCI_BAR);
559 	if (pci_mapreg_map(pa, ARC_PCI_BAR, memtype, 0, &sc->sc_iot,
560 	    &sc->sc_ioh, NULL, &sc->sc_ios) != 0) {
561 		aprint_error(": unable to map system interface register\n");
562 		return 1;
563 	}
564 
565 	if (pci_intr_map(pa, &ih) != 0) {
566 		aprint_error(": unable to map interrupt\n");
567 		goto unmap;
568 	}
569 
570 	sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO,
571 	    arc_intr, sc);
572 	if (sc->sc_ih == NULL) {
573 		aprint_error(": unable to map interrupt [2]\n");
574 		goto unmap;
575 	}
576 	aprint_normal(": interrupting at %s\n",
577 	    pci_intr_string(pa->pa_pc, ih));
578 
579 	return 0;
580 
581 unmap:
582 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
583 	sc->sc_ios = 0;
584 	return 1;
585 }
586 
587 void
588 arc_unmap_pci_resources(struct arc_softc *sc)
589 {
590 	pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
591 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
592 	sc->sc_ios = 0;
593 }
594 
595 int
596 arc_query_firmware(struct arc_softc *sc)
597 {
598 	struct arc_msg_firmware_info	fwinfo;
599 	char				string[81]; /* sizeof(vendor)*2+1 */
600 
601 	if (arc_wait_eq(sc, ARC_REG_OUTB_ADDR1, ARC_REG_OUTB_ADDR1_FIRMWARE_OK,
602 	    ARC_REG_OUTB_ADDR1_FIRMWARE_OK) != 0) {
603 		aprint_debug("%s: timeout waiting for firmware ok\n",
604 		    device_xname(&sc->sc_dev));
605 		return 1;
606 	}
607 
608 	if (arc_msg0(sc, ARC_REG_INB_MSG0_GET_CONFIG) != 0) {
609 		aprint_debug("%s: timeout waiting for get config\n",
610 		    device_xname(&sc->sc_dev));
611 		return 1;
612 	}
613 
614 	if (arc_msg0(sc, ARC_REG_INB_MSG0_START_BGRB) != 0) {
615 		aprint_debug("%s: timeout waiting to start bg rebuild\n",
616 		    device_xname(&sc->sc_dev));
617 		return 1;
618 	}
619 
620 	arc_read_region(sc, ARC_REG_MSGBUF, &fwinfo, sizeof(fwinfo));
621 
622 	DNPRINTF(ARC_D_INIT, "%s: signature: 0x%08x\n",
623 	    device_xname(&sc->sc_dev), htole32(fwinfo.signature));
624 
625 	if (htole32(fwinfo.signature) != ARC_FWINFO_SIGNATURE_GET_CONFIG) {
626 		aprint_error("%s: invalid firmware info from iop\n",
627 		    device_xname(&sc->sc_dev));
628 		return 1;
629 	}
630 
631 	DNPRINTF(ARC_D_INIT, "%s: request_len: %d\n",
632 	    device_xname(&sc->sc_dev),
633 	    htole32(fwinfo.request_len));
634 	DNPRINTF(ARC_D_INIT, "%s: queue_len: %d\n",
635 	    device_xname(&sc->sc_dev),
636 	    htole32(fwinfo.queue_len));
637 	DNPRINTF(ARC_D_INIT, "%s: sdram_size: %d\n",
638 	    device_xname(&sc->sc_dev),
639 	    htole32(fwinfo.sdram_size));
640 	DNPRINTF(ARC_D_INIT, "%s: sata_ports: %d\n",
641 	    device_xname(&sc->sc_dev),
642 	    htole32(fwinfo.sata_ports));
643 
644 	scsipi_strvis(string, 81, fwinfo.vendor, sizeof(fwinfo.vendor));
645 	DNPRINTF(ARC_D_INIT, "%s: vendor: \"%s\"\n",
646 	    device_xname(&sc->sc_dev), string);
647 
648 	scsipi_strvis(string, 17, fwinfo.model, sizeof(fwinfo.model));
649 	aprint_normal("%s: Areca %s Host Adapter RAID controller\n",
650 	    device_xname(&sc->sc_dev), string);
651 
652 	scsipi_strvis(string, 33, fwinfo.fw_version, sizeof(fwinfo.fw_version));
653 	DNPRINTF(ARC_D_INIT, "%s: version: \"%s\"\n",
654 	    device_xname(&sc->sc_dev), string);
655 
656 	aprint_normal("%s: %d ports, %dMB SDRAM, firmware <%s>\n",
657 	    device_xname(&sc->sc_dev), htole32(fwinfo.sata_ports),
658 	    htole32(fwinfo.sdram_size), string);
659 
660 	/* save the number of max disks for future use */
661 	sc->sc_maxdisks = htole32(fwinfo.sata_ports);
662 
663 	if (htole32(fwinfo.request_len) != ARC_MAX_IOCMDLEN) {
664 		aprint_error("%s: unexpected request frame size (%d != %d)\n",
665 		    device_xname(&sc->sc_dev),
666 		    htole32(fwinfo.request_len), ARC_MAX_IOCMDLEN);
667 		return 1;
668 	}
669 
670 	sc->sc_req_count = htole32(fwinfo.queue_len);
671 
672 	return 0;
673 }
674 
675 #if NBIO > 0
676 static int
677 arc_bioctl(struct device *self, u_long cmd, void *addr)
678 {
679 	struct arc_softc *sc = device_private(self);
680 	int error = 0;
681 
682 	switch (cmd) {
683 	case BIOCINQ:
684 		error = arc_bio_inq(sc, (struct bioc_inq *)addr);
685 		break;
686 
687 	case BIOCVOL:
688 		error = arc_bio_vol(sc, (struct bioc_vol *)addr);
689 		break;
690 
691 	case BIOCDISK:
692 		error = arc_bio_disk_volume(sc, (struct bioc_disk *)addr);
693 		break;
694 
695 	case BIOCDISK_NOVOL:
696 		error = arc_bio_disk_novol(sc, (struct bioc_disk *)addr);
697 		break;
698 
699 	case BIOCALARM:
700 		error = arc_bio_alarm(sc, (struct bioc_alarm *)addr);
701 		break;
702 
703 	case BIOCSETSTATE:
704 		error = arc_bio_setstate(sc, (struct bioc_setstate *)addr);
705 		break;
706 
707 	case BIOCVOLOPS:
708 		error = arc_bio_volops(sc, (struct bioc_volops *)addr);
709 		break;
710 
711 	default:
712 		error = ENOTTY;
713 		break;
714 	}
715 
716 	return error;
717 }
718 
719 static int
720 arc_fw_parse_status_code(struct arc_softc *sc, uint8_t *reply)
721 {
722 	switch (*reply) {
723 	case ARC_FW_CMD_RAIDINVAL:
724 		printf("%s: firmware error (invalid raid set)\n",
725 		    device_xname(&sc->sc_dev));
726 		return EINVAL;
727 	case ARC_FW_CMD_VOLINVAL:
728 		printf("%s: firmware error (invalid volume set)\n",
729 		    device_xname(&sc->sc_dev));
730 		return EINVAL;
731 	case ARC_FW_CMD_NORAID:
732 		printf("%s: firmware error (unexistent raid set)\n",
733 		    device_xname(&sc->sc_dev));
734 		return ENODEV;
735 	case ARC_FW_CMD_NOVOLUME:
736 		printf("%s: firmware error (unexistent volume set)\n",
737 		    device_xname(&sc->sc_dev));
738 		return ENODEV;
739 	case ARC_FW_CMD_NOPHYSDRV:
740 		printf("%s: firmware error (unexistent physical drive)\n",
741 		    device_xname(&sc->sc_dev));
742 		return ENODEV;
743 	case ARC_FW_CMD_PARAM_ERR:
744 		printf("%s: firmware error (parameter error)\n",
745 		    device_xname(&sc->sc_dev));
746 		return EINVAL;
747 	case ARC_FW_CMD_UNSUPPORTED:
748 		printf("%s: firmware error (unsupported command)\n",
749 		    device_xname(&sc->sc_dev));
750 		return EOPNOTSUPP;
751 	case ARC_FW_CMD_DISKCFG_CHGD:
752 		printf("%s: firmware error (disk configuration changed)\n",
753 		    device_xname(&sc->sc_dev));
754 		return EINVAL;
755 	case ARC_FW_CMD_PASS_INVAL:
756 		printf("%s: firmware error (invalid password)\n",
757 		    device_xname(&sc->sc_dev));
758 		return EINVAL;
759 	case ARC_FW_CMD_NODISKSPACE:
760 		printf("%s: firmware error (no disk space available)\n",
761 		    device_xname(&sc->sc_dev));
762 		return EOPNOTSUPP;
763 	case ARC_FW_CMD_CHECKSUM_ERR:
764 		printf("%s: firmware error (checksum error)\n",
765 		    device_xname(&sc->sc_dev));
766 		return EINVAL;
767 	case ARC_FW_CMD_PASS_REQD:
768 		printf("%s: firmware error (password required)\n",
769 		    device_xname(&sc->sc_dev));
770 		return EPERM;
771 	case ARC_FW_CMD_OK:
772 	default:
773 		return 0;
774 	}
775 }
776 
777 static int
778 arc_bio_alarm(struct arc_softc *sc, struct bioc_alarm *ba)
779 {
780 	uint8_t	request[2], reply[1];
781 	size_t	len;
782 	int	error = 0;
783 
784 	switch (ba->ba_opcode) {
785 	case BIOC_SAENABLE:
786 	case BIOC_SADISABLE:
787 		request[0] = ARC_FW_SET_ALARM;
788 		request[1] = (ba->ba_opcode == BIOC_SAENABLE) ?
789 		    ARC_FW_SET_ALARM_ENABLE : ARC_FW_SET_ALARM_DISABLE;
790 		len = sizeof(request);
791 
792 		break;
793 
794 	case BIOC_SASILENCE:
795 		request[0] = ARC_FW_MUTE_ALARM;
796 		len = 1;
797 
798 		break;
799 
800 	case BIOC_GASTATUS:
801 		/* system info is too big/ugly to deal with here */
802 		return arc_bio_alarm_state(sc, ba);
803 
804 	default:
805 		return EOPNOTSUPP;
806 	}
807 
808 	error = arc_msgbuf(sc, request, len, reply, sizeof(reply));
809 	if (error != 0)
810 		return error;
811 
812 	return arc_fw_parse_status_code(sc, &reply[0]);
813 }
814 
815 static int
816 arc_bio_alarm_state(struct arc_softc *sc, struct bioc_alarm *ba)
817 {
818 	struct arc_fw_sysinfo	*sysinfo;
819 	uint8_t			request;
820 	int			error = 0;
821 
822 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
823 
824 	request = ARC_FW_SYSINFO;
825 	error = arc_msgbuf(sc, &request, sizeof(request),
826 	    sysinfo, sizeof(struct arc_fw_sysinfo));
827 
828 	if (error != 0)
829 		goto out;
830 
831 	ba->ba_status = sysinfo->alarm;
832 
833 out:
834 	kmem_free(sysinfo, sizeof(*sysinfo));
835 	return error;
836 }
837 
838 static int
839 arc_bio_volops(struct arc_softc *sc, struct bioc_volops *bc)
840 {
841 	/* to create a raid set */
842 	struct req_craidset {
843 		uint8_t		cmdcode;
844 		uint32_t	devmask;
845 		uint8_t 	raidset_name[16];
846 	} __packed;
847 
848 	/* to create a volume set */
849 	struct req_cvolset {
850 		uint8_t 	cmdcode;
851 		uint8_t 	raidset;
852 		uint8_t 	volset_name[16];
853 		uint64_t	capacity;
854 		uint8_t 	raidlevel;
855 		uint8_t 	stripe;
856 		uint8_t 	scsi_chan;
857 		uint8_t 	scsi_target;
858 		uint8_t 	scsi_lun;
859 		uint8_t 	tagqueue;
860 		uint8_t 	cache;
861 		uint8_t 	speed;
862 		uint8_t 	quick_init;
863 	} __packed;
864 
865 	struct scsibus_softc	*scsibus_sc = NULL;
866 	struct req_craidset	req_craidset;
867 	struct req_cvolset 	req_cvolset;
868 	uint8_t 		request[2];
869 	uint8_t 		reply[1];
870 	int 			error = 0;
871 
872 	switch (bc->bc_opcode) {
873 	case BIOC_VCREATE_VOLUME:
874 	    {
875 		/*
876 		 * Zero out the structs so that we use some defaults
877 		 * in raid and volume sets.
878 		 */
879 		memset(&req_craidset, 0, sizeof(req_craidset));
880 		memset(&req_cvolset, 0, sizeof(req_cvolset));
881 
882 		/*
883 		 * Firstly we have to create the raid set and
884 		 * use the default name for all them.
885 		 */
886 		req_craidset.cmdcode = ARC_FW_CREATE_RAIDSET;
887 		req_craidset.devmask = bc->bc_devmask;
888 		error = arc_msgbuf(sc, &req_craidset, sizeof(req_craidset),
889 		    reply, sizeof(reply));
890 		if (error != 0)
891 			return error;
892 
893 		error = arc_fw_parse_status_code(sc, &reply[0]);
894 		if (error) {
895 			printf("%s: create raidset%d failed\n",
896 			    device_xname(&sc->sc_dev), bc->bc_volid);
897 			return error;
898 		}
899 
900 		/*
901 		 * At this point the raid set was created, so it's
902 		 * time to create the volume set.
903 		 */
904 		req_cvolset.cmdcode = ARC_FW_CREATE_VOLUME;
905 		req_cvolset.raidset = bc->bc_volid;
906 		req_cvolset.capacity = bc->bc_size * ARC_BLOCKSIZE;
907 
908 		/*
909 		 * Set the RAID level.
910 		 */
911 		switch (bc->bc_level) {
912 		case 0:
913 		case 1:
914 			req_cvolset.raidlevel = bc->bc_level;
915 			break;
916 		case 3:
917 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_3;
918 			break;
919 		case 5:
920 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_5;
921 			break;
922 		case 6:
923 			req_cvolset.raidlevel = ARC_FW_VOL_RAIDLEVEL_6;
924 			break;
925 		default:
926 			return EOPNOTSUPP;
927 		}
928 
929 		/*
930 		 * Set the stripe size.
931 		 */
932 		switch (bc->bc_stripe) {
933 		case 4:
934 			req_cvolset.stripe = 0;
935 			break;
936 		case 8:
937 			req_cvolset.stripe = 1;
938 			break;
939 		case 16:
940 			req_cvolset.stripe = 2;
941 			break;
942 		case 32:
943 			req_cvolset.stripe = 3;
944 			break;
945 		case 64:
946 			req_cvolset.stripe = 4;
947 			break;
948 		case 128:
949 			req_cvolset.stripe = 5;
950 			break;
951 		default:
952 			req_cvolset.stripe = 4; /* by default 64K */
953 			break;
954 		}
955 
956 		req_cvolset.scsi_chan = bc->bc_channel;
957 		req_cvolset.scsi_target = bc->bc_target;
958 		req_cvolset.scsi_lun = bc->bc_lun;
959 		req_cvolset.tagqueue = 1; /* always enabled */
960 		req_cvolset.cache = 1; /* always enabled */
961 		req_cvolset.speed = 4; /* always max speed */
962 
963 		error = arc_msgbuf(sc, &req_cvolset, sizeof(req_cvolset),
964 		    reply, sizeof(reply));
965 		if (error != 0)
966 			return error;
967 
968 		error = arc_fw_parse_status_code(sc, &reply[0]);
969 		if (error) {
970 			printf("%s: create volumeset%d failed\n",
971 			    device_xname(&sc->sc_dev), bc->bc_volid);
972 			return error;
973 		}
974 
975 		/*
976 		 * Do a rescan on the bus to attach the device associated
977 		 * with the new volume.
978 		 */
979 		scsibus_sc = device_private(sc->sc_scsibus_dv);
980 		(void)scsi_probe_bus(scsibus_sc, bc->bc_target, bc->bc_lun);
981 
982 		break;
983 	    }
984 	case BIOC_VREMOVE_VOLUME:
985 	    {
986 		/*
987 		 * Remove the volume set specified in bc_volid.
988 		 */
989 		request[0] = ARC_FW_DELETE_VOLUME;
990 		request[1] = bc->bc_volid;
991 		error = arc_msgbuf(sc, request, sizeof(request),
992 		    reply, sizeof(reply));
993 		if (error != 0)
994 			return error;
995 
996 		error = arc_fw_parse_status_code(sc, &reply[0]);
997 		if (error) {
998 			printf("%s: delete volumeset%d failed\n",
999 			    device_xname(&sc->sc_dev), bc->bc_volid);
1000 			return error;
1001 		}
1002 
1003 		/*
1004 		 * Detach the sd(4) device associated with the volume,
1005 		 * but if there's an error don't make it a priority.
1006 		 */
1007 		error = scsipi_target_detach(&sc->sc_chan, bc->bc_target,
1008 					     bc->bc_lun, 0);
1009 		if (error)
1010 			printf("%s: couldn't detach sd device for volume %d "
1011 			    "at %u:%u.%u (error=%d)\n",
1012 			    device_xname(&sc->sc_dev), bc->bc_volid,
1013 			    bc->bc_channel, bc->bc_target, bc->bc_lun, error);
1014 
1015 		/*
1016 		 * and remove the raid set specified in bc_volid,
1017 		 * we only care about volumes.
1018 		 */
1019 		request[0] = ARC_FW_DELETE_RAIDSET;
1020 		request[1] = bc->bc_volid;
1021 		error = arc_msgbuf(sc, request, sizeof(request),
1022 		    reply, sizeof(reply));
1023 		if (error != 0)
1024 			return error;
1025 
1026 		error = arc_fw_parse_status_code(sc, &reply[0]);
1027 		if (error) {
1028 			printf("%s: delete raidset%d failed\n",
1029 			    device_xname(&sc->sc_dev), bc->bc_volid);
1030 			return error;
1031 		}
1032 
1033 		break;
1034 	    }
1035 	default:
1036 		return EOPNOTSUPP;
1037 	}
1038 
1039 	return error;
1040 }
1041 
1042 static int
1043 arc_bio_setstate(struct arc_softc *sc, struct bioc_setstate *bs)
1044 {
1045 	/* for a hotspare disk */
1046 	struct request_hs {
1047 		uint8_t		cmdcode;
1048 		uint32_t	devmask;
1049 	} __packed;
1050 
1051 	/* for a pass-through disk */
1052 	struct request_pt {
1053 		uint8_t 	cmdcode;
1054 		uint8_t		devid;
1055 		uint8_t		scsi_chan;
1056 		uint8_t 	scsi_id;
1057 		uint8_t 	scsi_lun;
1058 		uint8_t 	tagged_queue;
1059 		uint8_t 	cache_mode;
1060 		uint8_t 	max_speed;
1061 	} __packed;
1062 
1063 	struct scsibus_softc	*scsibus_sc = NULL;
1064 	struct request_hs	req_hs; /* to add/remove hotspare */
1065 	struct request_pt	req_pt;	/* to add a pass-through */
1066 	uint8_t			req_gen[2];
1067 	uint8_t			reply[1];
1068 	int			error = 0;
1069 
1070 	switch (bs->bs_status) {
1071 	case BIOC_SSHOTSPARE:
1072 	    {
1073 		req_hs.cmdcode = ARC_FW_CREATE_HOTSPARE;
1074 		req_hs.devmask = (1 << bs->bs_target);
1075 		goto hotspare;
1076 	    }
1077 	case BIOC_SSDELHOTSPARE:
1078 	    {
1079 		req_hs.cmdcode = ARC_FW_DELETE_HOTSPARE;
1080 		req_hs.devmask = (1 << bs->bs_target);
1081 		goto hotspare;
1082 	    }
1083 	case BIOC_SSPASSTHRU:
1084 	    {
1085 		req_pt.cmdcode = ARC_FW_CREATE_PASSTHRU;
1086 		req_pt.devid = bs->bs_other_id; /* this wants device# */
1087 		req_pt.scsi_chan = bs->bs_channel;
1088 		req_pt.scsi_id = bs->bs_target;
1089 		req_pt.scsi_lun = bs->bs_lun;
1090 		req_pt.tagged_queue = 1; /* always enabled */
1091 		req_pt.cache_mode = 1; /* always enabled */
1092 		req_pt.max_speed = 4; /* always max speed */
1093 
1094 		error = arc_msgbuf(sc, &req_pt, sizeof(req_pt),
1095 		    reply, sizeof(reply));
1096 		if (error != 0)
1097 			return error;
1098 
1099 		/*
1100 		 * Do a rescan on the bus to attach the new device
1101 		 * associated with the pass-through disk.
1102 		 */
1103 		scsibus_sc = device_private(sc->sc_scsibus_dv);
1104 		(void)scsi_probe_bus(scsibus_sc, bs->bs_target, bs->bs_lun);
1105 
1106 		goto out;
1107 	    }
1108 	case BIOC_SSDELPASSTHRU:
1109 	    {
1110 		req_gen[0] = ARC_FW_DELETE_PASSTHRU;
1111 		req_gen[1] = bs->bs_target;
1112 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1113 		    reply, sizeof(reply));
1114 		if (error != 0)
1115 			return error;
1116 
1117 		/*
1118 		 * Detach the sd device associated with this pass-through disk.
1119 		 */
1120 		error = scsipi_target_detach(&sc->sc_chan, bs->bs_target,
1121 					     bs->bs_lun, 0);
1122 		if (error)
1123 			printf("%s: couldn't detach sd device for the "
1124 			    "pass-through disk at %u:%u.%u (error=%d)\n",
1125 			    device_xname(&sc->sc_dev),
1126 			    bs->bs_channel, bs->bs_target, bs->bs_lun, error);
1127 
1128 		goto out;
1129 	    }
1130 	case BIOC_SSCHECKSTART_VOL:
1131 	    {
1132 		req_gen[0] = ARC_FW_START_CHECKVOL;
1133 		req_gen[1] = bs->bs_volid;
1134 		error = arc_msgbuf(sc, &req_gen, sizeof(req_gen),
1135 		    reply, sizeof(reply));
1136 		if (error != 0)
1137 			return error;
1138 
1139 		goto out;
1140 	    }
1141 	case BIOC_SSCHECKSTOP_VOL:
1142 	    {
1143 		uint8_t req = ARC_FW_STOP_CHECKVOL;
1144 		error = arc_msgbuf(sc, &req, 1, reply, sizeof(reply));
1145 		if (error != 0)
1146 			return error;
1147 
1148 		goto out;
1149 	    }
1150 	default:
1151 		return EOPNOTSUPP;
1152 	}
1153 
1154 hotspare:
1155 	error = arc_msgbuf(sc, &req_hs, sizeof(req_hs),
1156 	    reply, sizeof(reply));
1157 	if (error != 0)
1158 		return error;
1159 
1160 out:
1161 	return arc_fw_parse_status_code(sc, &reply[0]);
1162 }
1163 
1164 static int
1165 arc_bio_inq(struct arc_softc *sc, struct bioc_inq *bi)
1166 {
1167 	uint8_t			request[2];
1168 	struct arc_fw_sysinfo	*sysinfo;
1169 	struct arc_fw_raidinfo	*raidinfo;
1170 	int			maxraidset, nvols = 0, i;
1171 	int			error = 0;
1172 
1173 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
1174 	raidinfo = kmem_zalloc(sizeof(struct arc_fw_raidinfo), KM_SLEEP);
1175 
1176 	request[0] = ARC_FW_SYSINFO;
1177 	error = arc_msgbuf(sc, request, 1, sysinfo,
1178 	    sizeof(struct arc_fw_sysinfo));
1179 	if (error != 0)
1180 		goto out;
1181 
1182 	maxraidset = sysinfo->max_raid_set;
1183 
1184 	request[0] = ARC_FW_RAIDINFO;
1185 	for (i = 0; i < maxraidset; i++) {
1186 		request[1] = i;
1187 		error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1188 		    sizeof(struct arc_fw_raidinfo));
1189 		if (error != 0)
1190 			goto out;
1191 
1192 		if (raidinfo->volumes)
1193 			nvols++;
1194 	}
1195 
1196 	strlcpy(bi->bi_dev, device_xname(&sc->sc_dev), sizeof(bi->bi_dev));
1197 	bi->bi_novol = nvols;
1198 	bi->bi_nodisk = sc->sc_maxdisks;
1199 
1200 out:
1201 	kmem_free(raidinfo, sizeof(*raidinfo));
1202 	kmem_free(sysinfo, sizeof(*sysinfo));
1203 	return error;
1204 }
1205 
1206 static int
1207 arc_bio_getvol(struct arc_softc *sc, int vol, struct arc_fw_volinfo *volinfo)
1208 {
1209 	uint8_t			request[2];
1210 	struct arc_fw_sysinfo	*sysinfo;
1211 	int			error = 0;
1212 	int			maxvols, nvols = 0, i;
1213 
1214 	sysinfo = kmem_zalloc(sizeof(struct arc_fw_sysinfo), KM_SLEEP);
1215 
1216 	request[0] = ARC_FW_SYSINFO;
1217 	error = arc_msgbuf(sc, request, 1, sysinfo,
1218 	    sizeof(struct arc_fw_sysinfo));
1219 	if (error != 0)
1220 		goto out;
1221 
1222 	maxvols = sysinfo->max_volume_set;
1223 
1224 	request[0] = ARC_FW_VOLINFO;
1225 	for (i = 0; i < maxvols; i++) {
1226 		request[1] = i;
1227 		error = arc_msgbuf(sc, request, sizeof(request), volinfo,
1228 		    sizeof(struct arc_fw_volinfo));
1229 		if (error != 0)
1230 			goto out;
1231 
1232 		if (volinfo->capacity == 0 && volinfo->capacity2 == 0)
1233 			continue;
1234 
1235 		if (nvols == vol)
1236 			break;
1237 
1238 		nvols++;
1239 	}
1240 
1241 	if (nvols != vol ||
1242 	    (volinfo->capacity == 0 && volinfo->capacity2 == 0)) {
1243 		error = ENODEV;
1244 		goto out;
1245 	}
1246 
1247 out:
1248 	kmem_free(sysinfo, sizeof(*sysinfo));
1249 	return error;
1250 }
1251 
1252 static int
1253 arc_bio_vol(struct arc_softc *sc, struct bioc_vol *bv)
1254 {
1255 	struct arc_fw_volinfo	*volinfo;
1256 	uint64_t		blocks;
1257 	uint32_t		status;
1258 	int			error = 0;
1259 
1260 	volinfo = kmem_zalloc(sizeof(struct arc_fw_volinfo), KM_SLEEP);
1261 
1262 	error = arc_bio_getvol(sc, bv->bv_volid, volinfo);
1263 	if (error != 0)
1264 		goto out;
1265 
1266 	bv->bv_percent = -1;
1267 	bv->bv_seconds = 0;
1268 
1269 	status = htole32(volinfo->volume_status);
1270 	if (status == 0x0) {
1271 		if (htole32(volinfo->fail_mask) == 0x0)
1272 			bv->bv_status = BIOC_SVONLINE;
1273 		else
1274 			bv->bv_status = BIOC_SVDEGRADED;
1275 	} else if (status & ARC_FW_VOL_STATUS_NEED_REGEN) {
1276 		bv->bv_status = BIOC_SVDEGRADED;
1277 	} else if (status & ARC_FW_VOL_STATUS_FAILED) {
1278 		bv->bv_status = BIOC_SVOFFLINE;
1279 	} else if (status & ARC_FW_VOL_STATUS_INITTING) {
1280 		bv->bv_status = BIOC_SVBUILDING;
1281 		bv->bv_percent = htole32(volinfo->progress);
1282 	} else if (status & ARC_FW_VOL_STATUS_REBUILDING) {
1283 		bv->bv_status = BIOC_SVREBUILD;
1284 		bv->bv_percent = htole32(volinfo->progress);
1285 	} else if (status & ARC_FW_VOL_STATUS_MIGRATING) {
1286 		bv->bv_status = BIOC_SVMIGRATING;
1287 		bv->bv_percent = htole32(volinfo->progress);
1288 	} else if (status & ARC_FW_VOL_STATUS_CHECKING) {
1289 		bv->bv_status = BIOC_SVCHECKING;
1290 		bv->bv_percent = htole32(volinfo->progress);
1291 	}
1292 
1293 	blocks = (uint64_t)htole32(volinfo->capacity2) << 32;
1294 	blocks += (uint64_t)htole32(volinfo->capacity);
1295 	bv->bv_size = blocks * ARC_BLOCKSIZE; /* XXX */
1296 
1297 	switch (volinfo->raid_level) {
1298 	case ARC_FW_VOL_RAIDLEVEL_0:
1299 		bv->bv_level = 0;
1300 		break;
1301 	case ARC_FW_VOL_RAIDLEVEL_1:
1302 		bv->bv_level = 1;
1303 		break;
1304 	case ARC_FW_VOL_RAIDLEVEL_3:
1305 		bv->bv_level = 3;
1306 		break;
1307 	case ARC_FW_VOL_RAIDLEVEL_5:
1308 		bv->bv_level = 5;
1309 		break;
1310 	case ARC_FW_VOL_RAIDLEVEL_6:
1311 		bv->bv_level = 6;
1312 		break;
1313 	case ARC_FW_VOL_RAIDLEVEL_PASSTHRU:
1314 		bv->bv_level = BIOC_SVOL_PASSTHRU;
1315 		break;
1316 	default:
1317 		bv->bv_level = -1;
1318 		break;
1319 	}
1320 
1321 	bv->bv_nodisk = volinfo->member_disks;
1322 	bv->bv_stripe_size = volinfo->stripe_size / 2;
1323 	snprintf(bv->bv_dev, sizeof(bv->bv_dev), "sd%d", bv->bv_volid);
1324 	scsipi_strvis(bv->bv_vendor, sizeof(bv->bv_vendor), volinfo->set_name,
1325 	    sizeof(volinfo->set_name));
1326 
1327 out:
1328 	kmem_free(volinfo, sizeof(*volinfo));
1329 	return error;
1330 }
1331 
1332 static int
1333 arc_bio_disk_novol(struct arc_softc *sc, struct bioc_disk *bd)
1334 {
1335 	struct arc_fw_diskinfo	*diskinfo;
1336 	uint8_t			request[2];
1337 	int			error = 0;
1338 
1339 	diskinfo = kmem_zalloc(sizeof(struct arc_fw_diskinfo), KM_SLEEP);
1340 
1341 	if (bd->bd_diskid > sc->sc_maxdisks) {
1342 		error = ENODEV;
1343 		goto out;
1344 	}
1345 
1346 	request[0] = ARC_FW_DISKINFO;
1347 	request[1] = bd->bd_diskid;
1348 	error = arc_msgbuf(sc, request, sizeof(request),
1349 	    diskinfo, sizeof(struct arc_fw_diskinfo));
1350 	if (error != 0)
1351 		return error;
1352 
1353 	/* skip disks with no capacity */
1354 	if (htole32(diskinfo->capacity) == 0 &&
1355 	    htole32(diskinfo->capacity2) == 0)
1356 		goto out;
1357 
1358 	bd->bd_disknovol = true;
1359 	arc_bio_disk_filldata(sc, bd, diskinfo, bd->bd_diskid);
1360 
1361 out:
1362 	kmem_free(diskinfo, sizeof(*diskinfo));
1363 	return error;
1364 }
1365 
1366 static void
1367 arc_bio_disk_filldata(struct arc_softc *sc, struct bioc_disk *bd,
1368 		     struct arc_fw_diskinfo *diskinfo, int diskid)
1369 {
1370 	uint64_t		blocks;
1371 	char			model[81];
1372 	char			serial[41];
1373 	char			rev[17];
1374 
1375 	switch (htole32(diskinfo->device_state)) {
1376 	case ARC_FW_DISK_PASSTHRU:
1377 		bd->bd_status = BIOC_SDPASSTHRU;
1378 		break;
1379 	case ARC_FW_DISK_RAIDMEMBER:
1380 		bd->bd_status = BIOC_SDONLINE;
1381 		break;
1382 	case ARC_FW_DISK_HOTSPARE:
1383 		bd->bd_status = BIOC_SDHOTSPARE;
1384 		break;
1385 	case ARC_FW_DISK_UNUSED:
1386 		bd->bd_status = BIOC_SDUNUSED;
1387 		break;
1388 	default:
1389 		printf("%s: unknown disk device_state: 0x%x\n", __func__,
1390 		    htole32(diskinfo->device_state));
1391 		bd->bd_status = BIOC_SDINVALID;
1392 		return;
1393 	}
1394 
1395 	blocks = (uint64_t)htole32(diskinfo->capacity2) << 32;
1396 	blocks += (uint64_t)htole32(diskinfo->capacity);
1397 	bd->bd_size = blocks * ARC_BLOCKSIZE; /* XXX */
1398 
1399 	scsipi_strvis(model, 81, diskinfo->model, sizeof(diskinfo->model));
1400 	scsipi_strvis(serial, 41, diskinfo->serial, sizeof(diskinfo->serial));
1401 	scsipi_strvis(rev, 17, diskinfo->firmware_rev,
1402 	    sizeof(diskinfo->firmware_rev));
1403 
1404 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s", model, rev);
1405 	strlcpy(bd->bd_serial, serial, sizeof(bd->bd_serial));
1406 
1407 #if 0
1408 	bd->bd_channel = diskinfo->scsi_attr.channel;
1409 	bd->bd_target = diskinfo->scsi_attr.target;
1410 	bd->bd_lun = diskinfo->scsi_attr.lun;
1411 #endif
1412 
1413 	/*
1414 	 * the firwmare doesnt seem to fill scsi_attr in, so fake it with
1415 	 * the diskid.
1416 	 */
1417 	bd->bd_channel = 0;
1418 	bd->bd_target = diskid;
1419 	bd->bd_lun = 0;
1420 }
1421 
1422 static int
1423 arc_bio_disk_volume(struct arc_softc *sc, struct bioc_disk *bd)
1424 {
1425 	uint8_t			request[2];
1426 	struct arc_fw_raidinfo	*raidinfo;
1427 	struct arc_fw_volinfo	*volinfo;
1428 	struct arc_fw_diskinfo	*diskinfo;
1429 	int			error = 0;
1430 
1431 	volinfo = kmem_zalloc(sizeof(struct arc_fw_volinfo), KM_SLEEP);
1432 	raidinfo = kmem_zalloc(sizeof(struct arc_fw_raidinfo), KM_SLEEP);
1433 	diskinfo = kmem_zalloc(sizeof(struct arc_fw_diskinfo), KM_SLEEP);
1434 
1435 	error = arc_bio_getvol(sc, bd->bd_volid, volinfo);
1436 	if (error != 0)
1437 		goto out;
1438 
1439 	request[0] = ARC_FW_RAIDINFO;
1440 	request[1] = volinfo->raid_set_number;
1441 
1442 	error = arc_msgbuf(sc, request, sizeof(request), raidinfo,
1443 	    sizeof(struct arc_fw_raidinfo));
1444 	if (error != 0)
1445 		goto out;
1446 
1447 	if (bd->bd_diskid > raidinfo->member_devices) {
1448 		error = ENODEV;
1449 		goto out;
1450 	}
1451 
1452 	request[0] = ARC_FW_DISKINFO;
1453 	request[1] = raidinfo->device_array[bd->bd_diskid];
1454 	error = arc_msgbuf(sc, request, sizeof(request), diskinfo,
1455 	    sizeof(struct arc_fw_diskinfo));
1456 	if (error != 0)
1457 		goto out;
1458 
1459 	/* now fill our bio disk with data from the firmware */
1460 	arc_bio_disk_filldata(sc, bd, diskinfo,
1461 	    raidinfo->device_array[bd->bd_diskid]);
1462 
1463 out:
1464 	kmem_free(raidinfo, sizeof(*raidinfo));
1465 	kmem_free(volinfo, sizeof(*volinfo));
1466 	kmem_free(diskinfo, sizeof(*diskinfo));
1467 	return error;
1468 }
1469 #endif /* NBIO > 0 */
1470 
1471 uint8_t
1472 arc_msg_cksum(void *cmd, uint16_t len)
1473 {
1474 	uint8_t	*buf = cmd;
1475 	uint8_t	cksum;
1476 	int	i;
1477 
1478 	cksum = (uint8_t)(len >> 8) + (uint8_t)len;
1479 	for (i = 0; i < len; i++)
1480 		cksum += buf[i];
1481 
1482 	return cksum;
1483 }
1484 
1485 
1486 int
1487 arc_msgbuf(struct arc_softc *sc, void *wptr, size_t wbuflen, void *rptr,
1488 	   size_t rbuflen)
1489 {
1490 	uint8_t			rwbuf[ARC_REG_IOC_RWBUF_MAXLEN];
1491 	uint8_t			*wbuf, *rbuf;
1492 	int			wlen, wdone = 0, rlen, rdone = 0;
1493 	struct arc_fw_bufhdr	*bufhdr;
1494 	uint32_t		reg, rwlen;
1495 	int			error = 0;
1496 #ifdef ARC_DEBUG
1497 	int			i;
1498 #endif
1499 
1500 	wbuf = rbuf = NULL;
1501 
1502 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wbuflen: %d rbuflen: %d\n",
1503 	    device_xname(&sc->sc_dev), wbuflen, rbuflen);
1504 
1505 	wlen = sizeof(struct arc_fw_bufhdr) + wbuflen + 1; /* 1 for cksum */
1506 	wbuf = kmem_alloc(wlen, KM_SLEEP);
1507 
1508 	rlen = sizeof(struct arc_fw_bufhdr) + rbuflen + 1; /* 1 for cksum */
1509 	rbuf = kmem_alloc(rlen, KM_SLEEP);
1510 
1511 	DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wlen: %d rlen: %d\n",
1512 	    device_xname(&sc->sc_dev), wlen, rlen);
1513 
1514 	bufhdr = (struct arc_fw_bufhdr *)wbuf;
1515 	bufhdr->hdr = arc_fw_hdr;
1516 	bufhdr->len = htole16(wbuflen);
1517 	memcpy(wbuf + sizeof(struct arc_fw_bufhdr), wptr, wbuflen);
1518 	wbuf[wlen - 1] = arc_msg_cksum(wptr, wbuflen);
1519 
1520 	arc_lock(sc);
1521 	if (arc_read(sc, ARC_REG_OUTB_DOORBELL) != 0) {
1522 		error = EBUSY;
1523 		goto out;
1524 	}
1525 
1526 	reg = ARC_REG_OUTB_DOORBELL_READ_OK;
1527 
1528 	do {
1529 		if ((reg & ARC_REG_OUTB_DOORBELL_READ_OK) && wdone < wlen) {
1530 			memset(rwbuf, 0, sizeof(rwbuf));
1531 			rwlen = (wlen - wdone) % sizeof(rwbuf);
1532 			memcpy(rwbuf, &wbuf[wdone], rwlen);
1533 
1534 #ifdef ARC_DEBUG
1535 			if (arcdebug & ARC_D_DB) {
1536 				printf("%s: write %d:",
1537 				    device_xname(&sc->sc_dev), rwlen);
1538 				for (i = 0; i < rwlen; i++)
1539 					printf(" 0x%02x", rwbuf[i]);
1540 				printf("\n");
1541 			}
1542 #endif
1543 
1544 			/* copy the chunk to the hw */
1545 			arc_write(sc, ARC_REG_IOC_WBUF_LEN, rwlen);
1546 			arc_write_region(sc, ARC_REG_IOC_WBUF, rwbuf,
1547 			    sizeof(rwbuf));
1548 
1549 			/* say we have a buffer for the hw */
1550 			arc_write(sc, ARC_REG_INB_DOORBELL,
1551 			    ARC_REG_INB_DOORBELL_WRITE_OK);
1552 
1553 			wdone += rwlen;
1554 		}
1555 
1556 		while ((reg = arc_read(sc, ARC_REG_OUTB_DOORBELL)) == 0)
1557 			arc_wait(sc);
1558 
1559 		arc_write(sc, ARC_REG_OUTB_DOORBELL, reg);
1560 
1561 		DNPRINTF(ARC_D_DB, "%s: reg: 0x%08x\n",
1562 		    device_xname(&sc->sc_dev), reg);
1563 
1564 		if ((reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) && rdone < rlen) {
1565 			rwlen = arc_read(sc, ARC_REG_IOC_RBUF_LEN);
1566 			if (rwlen > sizeof(rwbuf)) {
1567 				DNPRINTF(ARC_D_DB, "%s:  rwlen too big\n",
1568 				    device_xname(&sc->sc_dev));
1569 				error = EIO;
1570 				goto out;
1571 			}
1572 
1573 			arc_read_region(sc, ARC_REG_IOC_RBUF, rwbuf,
1574 			    sizeof(rwbuf));
1575 
1576 			arc_write(sc, ARC_REG_INB_DOORBELL,
1577 			    ARC_REG_INB_DOORBELL_READ_OK);
1578 
1579 #ifdef ARC_DEBUG
1580 			printf("%s:  len: %d+%d=%d/%d\n",
1581 			    device_xname(&sc->sc_dev),
1582 			    rwlen, rdone, rwlen + rdone, rlen);
1583 			if (arcdebug & ARC_D_DB) {
1584 				printf("%s: read:",
1585 				    device_xname(&sc->sc_dev));
1586 				for (i = 0; i < rwlen; i++)
1587 					printf(" 0x%02x", rwbuf[i]);
1588 				printf("\n");
1589 			}
1590 #endif
1591 
1592 			if ((rdone + rwlen) > rlen) {
1593 				DNPRINTF(ARC_D_DB, "%s:  rwbuf too big\n",
1594 				    device_xname(&sc->sc_dev));
1595 				error = EIO;
1596 				goto out;
1597 			}
1598 
1599 			memcpy(&rbuf[rdone], rwbuf, rwlen);
1600 			rdone += rwlen;
1601 		}
1602 	} while (rdone != rlen);
1603 
1604 	bufhdr = (struct arc_fw_bufhdr *)rbuf;
1605 	if (memcmp(&bufhdr->hdr, &arc_fw_hdr, sizeof(bufhdr->hdr)) != 0 ||
1606 	    bufhdr->len != htole16(rbuflen)) {
1607 		DNPRINTF(ARC_D_DB, "%s:  rbuf hdr is wrong\n",
1608 		    device_xname(&sc->sc_dev));
1609 		error = EIO;
1610 		goto out;
1611 	}
1612 
1613 	memcpy(rptr, rbuf + sizeof(struct arc_fw_bufhdr), rbuflen);
1614 
1615 	if (rbuf[rlen - 1] != arc_msg_cksum(rptr, rbuflen)) {
1616 		DNPRINTF(ARC_D_DB, "%s:  invalid cksum\n",
1617 		    device_xname(&sc->sc_dev));
1618 		error = EIO;
1619 		goto out;
1620 	}
1621 
1622 out:
1623 	arc_unlock(sc);
1624 	kmem_free(wbuf, wlen);
1625 	kmem_free(rbuf, rlen);
1626 
1627 	return error;
1628 }
1629 
1630 void
1631 arc_lock(struct arc_softc *sc)
1632 {
1633 	rw_enter(&sc->sc_rwlock, RW_WRITER);
1634 	mutex_spin_enter(&sc->sc_mutex);
1635 	arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1636 	sc->sc_talking = 1;
1637 }
1638 
1639 void
1640 arc_unlock(struct arc_softc *sc)
1641 {
1642 	KASSERT(mutex_owned(&sc->sc_mutex));
1643 
1644 	arc_write(sc, ARC_REG_INTRMASK,
1645 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1646 	sc->sc_talking = 0;
1647 	mutex_spin_exit(&sc->sc_mutex);
1648 	rw_exit(&sc->sc_rwlock);
1649 }
1650 
1651 void
1652 arc_wait(struct arc_softc *sc)
1653 {
1654 	KASSERT(mutex_owned(&sc->sc_mutex));
1655 
1656 	arc_write(sc, ARC_REG_INTRMASK,
1657 	    ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL));
1658 	if (cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz) == EWOULDBLOCK)
1659 		arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE);
1660 }
1661 
1662 #if NBIO > 0
1663 static void
1664 arc_create_sensors(void *arg)
1665 {
1666 	struct arc_softc	*sc = arg;
1667 	struct bioc_inq		bi;
1668 	struct bioc_vol		bv;
1669 	int			i;
1670 	size_t			slen;
1671 
1672 	memset(&bi, 0, sizeof(bi));
1673 	if (arc_bio_inq(sc, &bi) != 0) {
1674 		aprint_error("%s: unable to query firmware for sensor info\n",
1675 		    device_xname(&sc->sc_dev));
1676 		kthread_exit(0);
1677 	}
1678 
1679 	sc->sc_nsensors = bi.bi_novol;
1680 	/*
1681 	 * There's no point to continue if there are no drives connected...
1682 	 */
1683 	if (!sc->sc_nsensors)
1684 		kthread_exit(0);
1685 
1686 	sc->sc_sme = sysmon_envsys_create();
1687 	slen = sizeof(envsys_data_t) * sc->sc_nsensors;
1688 	sc->sc_sensors = kmem_zalloc(slen, KM_SLEEP);
1689 
1690 	for (i = 0; i < sc->sc_nsensors; i++) {
1691 		memset(&bv, 0, sizeof(bv));
1692 		bv.bv_volid = i;
1693 		if (arc_bio_vol(sc, &bv) != 0)
1694 			goto bad;
1695 
1696 		sc->sc_sensors[i].units = ENVSYS_DRIVE;
1697 		sc->sc_sensors[i].monitor = true;
1698 		sc->sc_sensors[i].flags = ENVSYS_FMONSTCHANGED;
1699 		snprintf(sc->sc_sensors[i].desc, sizeof(sc->sc_sensors[i].desc),
1700 		     "RAID volume %s", bv.bv_dev);
1701 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensors[i]))
1702 			goto bad;
1703 	}
1704 
1705 	sc->sc_sme->sme_name = device_xname(&sc->sc_dev);
1706 	sc->sc_sme->sme_cookie = sc;
1707 	sc->sc_sme->sme_refresh = arc_refresh_sensors;
1708 	if (sysmon_envsys_register(sc->sc_sme)) {
1709 		aprint_debug("%s: unable to register with sysmon\n",
1710 		    device_xname(&sc->sc_dev));
1711 		goto bad;
1712 	}
1713 	kthread_exit(0);
1714 
1715 bad:
1716 	kmem_free(sc->sc_sensors, slen);
1717 	sysmon_envsys_destroy(sc->sc_sme);
1718 	kthread_exit(0);
1719 }
1720 
1721 static void
1722 arc_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata)
1723 {
1724 	struct arc_softc	*sc = sme->sme_cookie;
1725 	struct bioc_vol		bv;
1726 
1727 	memset(&bv, 0, sizeof(bv));
1728 	bv.bv_volid = edata->sensor;
1729 
1730 	if (arc_bio_vol(sc, &bv)) {
1731 		edata->value_cur = ENVSYS_DRIVE_EMPTY;
1732 		edata->state = ENVSYS_SINVALID;
1733 		return;
1734 	}
1735 
1736 	switch (bv.bv_status) {
1737 	case BIOC_SVOFFLINE:
1738 		edata->value_cur = ENVSYS_DRIVE_FAIL;
1739 		edata->state = ENVSYS_SCRITICAL;
1740 		break;
1741 	case BIOC_SVDEGRADED:
1742 		edata->value_cur = ENVSYS_DRIVE_PFAIL;
1743 		edata->state = ENVSYS_SCRITICAL;
1744 		break;
1745 	case BIOC_SVBUILDING:
1746 		edata->value_cur = ENVSYS_DRIVE_REBUILD;
1747 		edata->state = ENVSYS_SVALID;
1748 		break;
1749 	case BIOC_SVMIGRATING:
1750 		edata->value_cur = ENVSYS_DRIVE_MIGRATING;
1751 		edata->state = ENVSYS_SVALID;
1752 		break;
1753 	case BIOC_SVSCRUB:
1754 	case BIOC_SVONLINE:
1755 		edata->value_cur = ENVSYS_DRIVE_ONLINE;
1756 		edata->state = ENVSYS_SVALID;
1757 		break;
1758 	case BIOC_SVINVALID:
1759 		/* FALLTRHOUGH */
1760 	default:
1761 		edata->value_cur = ENVSYS_DRIVE_EMPTY; /* unknown state */
1762 		edata->state = ENVSYS_SINVALID;
1763 		break;
1764 	}
1765 }
1766 #endif /* NBIO > 0 */
1767 
1768 uint32_t
1769 arc_read(struct arc_softc *sc, bus_size_t r)
1770 {
1771 	uint32_t			v;
1772 
1773 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1774 	    BUS_SPACE_BARRIER_READ);
1775 	v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
1776 
1777 	DNPRINTF(ARC_D_RW, "%s: arc_read 0x%lx 0x%08x\n",
1778 	    device_xname(&sc->sc_dev), r, v);
1779 
1780 	return v;
1781 }
1782 
1783 void
1784 arc_read_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1785 {
1786 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1787 	    BUS_SPACE_BARRIER_READ);
1788 	bus_space_read_region_4(sc->sc_iot, sc->sc_ioh, r,
1789 	    (uint32_t *)buf, len >> 2);
1790 }
1791 
1792 void
1793 arc_write(struct arc_softc *sc, bus_size_t r, uint32_t v)
1794 {
1795 	DNPRINTF(ARC_D_RW, "%s: arc_write 0x%lx 0x%08x\n",
1796 	    device_xname(&sc->sc_dev), r, v);
1797 
1798 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
1799 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
1800 	    BUS_SPACE_BARRIER_WRITE);
1801 }
1802 
1803 void
1804 arc_write_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len)
1805 {
1806 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, r,
1807 	    (const uint32_t *)buf, len >> 2);
1808 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len,
1809 	    BUS_SPACE_BARRIER_WRITE);
1810 }
1811 
1812 int
1813 arc_wait_eq(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1814 	    uint32_t target)
1815 {
1816 	int i;
1817 
1818 	DNPRINTF(ARC_D_RW, "%s: arc_wait_eq 0x%lx 0x%08x 0x%08x\n",
1819 	    device_xname(&sc->sc_dev), r, mask, target);
1820 
1821 	for (i = 0; i < 10000; i++) {
1822 		if ((arc_read(sc, r) & mask) == target)
1823 			return 0;
1824 		delay(1000);
1825 	}
1826 
1827 	return 1;
1828 }
1829 
1830 int
1831 arc_wait_ne(struct arc_softc *sc, bus_size_t r, uint32_t mask,
1832 	    uint32_t target)
1833 {
1834 	int i;
1835 
1836 	DNPRINTF(ARC_D_RW, "%s: arc_wait_ne 0x%lx 0x%08x 0x%08x\n",
1837 	    device_xname(&sc->sc_dev), r, mask, target);
1838 
1839 	for (i = 0; i < 10000; i++) {
1840 		if ((arc_read(sc, r) & mask) != target)
1841 			return 0;
1842 		delay(1000);
1843 	}
1844 
1845 	return 1;
1846 }
1847 
1848 int
1849 arc_msg0(struct arc_softc *sc, uint32_t m)
1850 {
1851 	/* post message */
1852 	arc_write(sc, ARC_REG_INB_MSG0, m);
1853 	/* wait for the fw to do it */
1854 	if (arc_wait_eq(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0,
1855 	    ARC_REG_INTRSTAT_MSG0) != 0)
1856 		return 1;
1857 
1858 	/* ack it */
1859 	arc_write(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0);
1860 
1861 	return 0;
1862 }
1863 
1864 struct arc_dmamem *
1865 arc_dmamem_alloc(struct arc_softc *sc, size_t size)
1866 {
1867 	struct arc_dmamem		*adm;
1868 	int				nsegs;
1869 
1870 	adm = kmem_zalloc(sizeof(*adm), KM_NOSLEEP);
1871 	if (adm == NULL)
1872 		return NULL;
1873 
1874 	adm->adm_size = size;
1875 
1876 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1877 	    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &adm->adm_map) != 0)
1878 		goto admfree;
1879 
1880 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &adm->adm_seg,
1881 	    1, &nsegs, BUS_DMA_NOWAIT) != 0)
1882 		goto destroy;
1883 
1884 	if (bus_dmamem_map(sc->sc_dmat, &adm->adm_seg, nsegs, size,
1885 	    &adm->adm_kva, BUS_DMA_NOWAIT|BUS_DMA_COHERENT) != 0)
1886 		goto free;
1887 
1888 	if (bus_dmamap_load(sc->sc_dmat, adm->adm_map, adm->adm_kva, size,
1889 	    NULL, BUS_DMA_NOWAIT) != 0)
1890 		goto unmap;
1891 
1892 	memset(adm->adm_kva, 0, size);
1893 
1894 	return adm;
1895 
1896 unmap:
1897 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, size);
1898 free:
1899 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
1900 destroy:
1901 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
1902 admfree:
1903 	kmem_free(adm, sizeof(*adm));
1904 
1905 	return NULL;
1906 }
1907 
1908 void
1909 arc_dmamem_free(struct arc_softc *sc, struct arc_dmamem *adm)
1910 {
1911 	bus_dmamap_unload(sc->sc_dmat, adm->adm_map);
1912 	bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, adm->adm_size);
1913 	bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1);
1914 	bus_dmamap_destroy(sc->sc_dmat, adm->adm_map);
1915 	kmem_free(adm, sizeof(*adm));
1916 }
1917 
1918 int
1919 arc_alloc_ccbs(struct arc_softc *sc)
1920 {
1921 	struct arc_ccb		*ccb;
1922 	uint8_t			*cmd;
1923 	int			i;
1924 	size_t			ccbslen;
1925 
1926 	TAILQ_INIT(&sc->sc_ccb_free);
1927 
1928 	ccbslen = sizeof(struct arc_ccb) * sc->sc_req_count;
1929 	sc->sc_ccbs = kmem_zalloc(ccbslen, KM_SLEEP);
1930 
1931 	sc->sc_requests = arc_dmamem_alloc(sc,
1932 	    ARC_MAX_IOCMDLEN * sc->sc_req_count);
1933 	if (sc->sc_requests == NULL) {
1934 		aprint_error("%s: unable to allocate ccb dmamem\n",
1935 		    device_xname(&sc->sc_dev));
1936 		goto free_ccbs;
1937 	}
1938 	cmd = ARC_DMA_KVA(sc->sc_requests);
1939 
1940 	for (i = 0; i < sc->sc_req_count; i++) {
1941 		ccb = &sc->sc_ccbs[i];
1942 
1943 		if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, ARC_SGL_MAXLEN,
1944 		    MAXPHYS, 0, 0, &ccb->ccb_dmamap) != 0) {
1945 			aprint_error("%s: unable to create dmamap for ccb %d\n",
1946 			    device_xname(&sc->sc_dev), i);
1947 			goto free_maps;
1948 		}
1949 
1950 		ccb->ccb_sc = sc;
1951 		ccb->ccb_id = i;
1952 		ccb->ccb_offset = ARC_MAX_IOCMDLEN * i;
1953 
1954 		ccb->ccb_cmd = (struct arc_io_cmd *)&cmd[ccb->ccb_offset];
1955 		ccb->ccb_cmd_post = (ARC_DMA_DVA(sc->sc_requests) +
1956 		    ccb->ccb_offset) >> ARC_REG_POST_QUEUE_ADDR_SHIFT;
1957 
1958 		arc_put_ccb(sc, ccb);
1959 	}
1960 
1961 	return 0;
1962 
1963 free_maps:
1964 	while ((ccb = arc_get_ccb(sc)) != NULL)
1965 	    bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1966 	arc_dmamem_free(sc, sc->sc_requests);
1967 
1968 free_ccbs:
1969 	kmem_free(sc->sc_ccbs, ccbslen);
1970 
1971 	return 1;
1972 }
1973 
1974 struct arc_ccb *
1975 arc_get_ccb(struct arc_softc *sc)
1976 {
1977 	struct arc_ccb			*ccb;
1978 
1979 	ccb = TAILQ_FIRST(&sc->sc_ccb_free);
1980 	if (ccb != NULL)
1981 		TAILQ_REMOVE(&sc->sc_ccb_free, ccb, ccb_link);
1982 
1983 	return ccb;
1984 }
1985 
1986 void
1987 arc_put_ccb(struct arc_softc *sc, struct arc_ccb *ccb)
1988 {
1989 	ccb->ccb_xs = NULL;
1990 	memset(ccb->ccb_cmd, 0, ARC_MAX_IOCMDLEN);
1991 	TAILQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_link);
1992 }
1993