1 /* $NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999,2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 67 */ 68 69 /* 70 * Driver for AMI RAID controllers. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.31 2005/12/11 19:34:47 jonathan Exp $"); 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 #include <sys/proc.h> 82 #include <sys/buf.h> 83 #include <sys/malloc.h> 84 #include <sys/kthread.h> 85 86 #include <uvm/uvm_extern.h> 87 88 #include <machine/endian.h> 89 #include <machine/bus.h> 90 91 #include <dev/pci/pcidevs.h> 92 #include <dev/pci/pcivar.h> 93 #include <dev/pci/amrreg.h> 94 #include <dev/pci/amrvar.h> 95 96 #include "locators.h" 97 98 static void amr_attach(struct device *, struct device *, void *); 99 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 100 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, 101 void *); 102 static int amr_init(struct amr_softc *, const char *, 103 struct pci_attach_args *pa); 104 static int amr_intr(void *); 105 static int amr_match(struct device *, struct cfdata *, void *); 106 static int amr_print(void *, const char *); 107 static void amr_shutdown(void *); 108 static void amr_teardown(struct amr_softc *); 109 static void amr_thread(void *); 110 static void amr_thread_create(void *); 111 112 static int amr_quartz_get_work(struct amr_softc *, 113 struct amr_mailbox_resp *); 114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *); 117 118 CFATTACH_DECL(amr, sizeof(struct amr_softc), 119 amr_match, amr_attach, NULL, NULL); 120 121 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 122 #define AT_SIG 0x02 /* Check for signature */ 123 124 struct amr_pci_type { 125 u_short apt_vendor; 126 u_short apt_product; 127 u_short apt_flags; 128 } static const amr_pci_type[] = { 129 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 130 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 131 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 132 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 133 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, 134 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 135 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 136 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, 138 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ }, 139 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ }, 140 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ }, 141 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 143 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 144 }; 145 146 struct amr_typestr { 147 const char *at_str; 148 int at_sig; 149 } static const amr_typestr[] = { 150 { "Series 431", AMR_SIG_431 }, 151 { "Series 438", AMR_SIG_438 }, 152 { "Series 466", AMR_SIG_466 }, 153 { "Series 467", AMR_SIG_467 }, 154 { "Series 490", AMR_SIG_490 }, 155 { "Series 762", AMR_SIG_762 }, 156 { "HP NetRAID (T5)", AMR_SIG_T5 }, 157 { "HP NetRAID (T7)", AMR_SIG_T7 }, 158 }; 159 160 struct { 161 const char *ds_descr; 162 int ds_happy; 163 } static const amr_dstate[] = { 164 { "offline", 0 }, 165 { "degraded", 1 }, 166 { "optimal", 1 }, 167 { "online", 1 }, 168 { "failed", 0 }, 169 { "rebuilding", 1 }, 170 { "hotspare", 0 }, 171 }; 172 173 static void *amr_sdh; 174 175 static int amr_max_segs; 176 int amr_max_xfer; 177 178 static inline u_int8_t 179 amr_inb(struct amr_softc *amr, int off) 180 { 181 182 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 183 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 184 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 185 } 186 187 static inline u_int32_t 188 amr_inl(struct amr_softc *amr, int off) 189 { 190 191 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 192 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 193 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 194 } 195 196 static inline void 197 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 198 { 199 200 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 201 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 202 BUS_SPACE_BARRIER_WRITE); 203 } 204 205 static inline void 206 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 207 { 208 209 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 210 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 211 BUS_SPACE_BARRIER_WRITE); 212 } 213 214 /* 215 * Match a supported device. 216 */ 217 static int 218 amr_match(struct device *parent, struct cfdata *match, void *aux) 219 { 220 struct pci_attach_args *pa; 221 pcireg_t s; 222 int i; 223 224 pa = (struct pci_attach_args *)aux; 225 226 /* 227 * Don't match the device if it's operating in I2O mode. In this 228 * case it should be handled by the `iop' driver. 229 */ 230 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 231 return (0); 232 233 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 234 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 235 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 236 break; 237 238 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 239 return (0); 240 241 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 242 return (1); 243 244 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 245 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 246 } 247 248 /* 249 * Attach a supported device. 250 */ 251 static void 252 amr_attach(struct device *parent, struct device *self, void *aux) 253 { 254 struct pci_attach_args *pa; 255 struct amr_attach_args amra; 256 const struct amr_pci_type *apt; 257 struct amr_softc *amr; 258 pci_chipset_tag_t pc; 259 pci_intr_handle_t ih; 260 const char *intrstr; 261 pcireg_t reg; 262 int rseg, i, j, size, rv, memreg, ioreg; 263 struct amr_ccb *ac; 264 int locs[AMRCF_NLOCS]; 265 266 aprint_naive(": RAID controller\n"); 267 268 amr = (struct amr_softc *)self; 269 pa = (struct pci_attach_args *)aux; 270 pc = pa->pa_pc; 271 272 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 273 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 274 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 275 break; 276 apt = amr_pci_type + i; 277 278 memreg = ioreg = 0; 279 for (i = 0x10; i <= 0x14; i += 4) { 280 reg = pci_conf_read(pc, pa->pa_tag, i); 281 switch (PCI_MAPREG_TYPE(reg)) { 282 case PCI_MAPREG_TYPE_MEM: 283 if (PCI_MAPREG_MEM_SIZE(reg) != 0) 284 memreg = i; 285 break; 286 case PCI_MAPREG_TYPE_IO: 287 if (PCI_MAPREG_IO_SIZE(reg) != 0) 288 ioreg = i; 289 break; 290 291 } 292 } 293 294 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 296 ; 297 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 298 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 299 ; 300 else { 301 aprint_error("can't map control registers\n"); 302 amr_teardown(amr); 303 return; 304 } 305 306 amr->amr_flags |= AMRF_PCI_REGS; 307 amr->amr_dmat = pa->pa_dmat; 308 amr->amr_pc = pa->pa_pc; 309 310 /* Enable the device. */ 311 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 312 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 313 reg | PCI_COMMAND_MASTER_ENABLE); 314 315 /* Map and establish the interrupt. */ 316 if (pci_intr_map(pa, &ih)) { 317 aprint_error("can't map interrupt\n"); 318 amr_teardown(amr); 319 return; 320 } 321 intrstr = pci_intr_string(pc, ih); 322 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); 323 if (amr->amr_ih == NULL) { 324 aprint_error("can't establish interrupt"); 325 if (intrstr != NULL) 326 aprint_normal(" at %s", intrstr); 327 aprint_normal("\n"); 328 amr_teardown(amr); 329 return; 330 } 331 amr->amr_flags |= AMRF_PCI_INTR; 332 333 /* 334 * Allocate space for the mailbox and S/G lists. Some controllers 335 * don't like S/G lists to be located below 0x2000, so we allocate 336 * enough slop to enable us to compensate. 337 * 338 * The standard mailbox structure needs to be aligned on a 16-byte 339 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 340 * size, which preceeds the standard mailbox. 341 */ 342 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 343 amr->amr_dmasize = size; 344 345 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0, 346 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 347 aprint_error("%s: unable to allocate buffer, rv = %d\n", 348 amr->amr_dv.dv_xname, rv); 349 amr_teardown(amr); 350 return; 351 } 352 amr->amr_flags |= AMRF_DMA_ALLOC; 353 354 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 355 (caddr_t *)&amr->amr_mbox, 356 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 357 aprint_error("%s: unable to map buffer, rv = %d\n", 358 amr->amr_dv.dv_xname, rv); 359 amr_teardown(amr); 360 return; 361 } 362 amr->amr_flags |= AMRF_DMA_MAP; 363 364 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 365 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 366 aprint_error("%s: unable to create buffer DMA map, rv = %d\n", 367 amr->amr_dv.dv_xname, rv); 368 amr_teardown(amr); 369 return; 370 } 371 amr->amr_flags |= AMRF_DMA_CREATE; 372 373 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 374 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 375 aprint_error("%s: unable to load buffer DMA map, rv = %d\n", 376 amr->amr_dv.dv_xname, rv); 377 amr_teardown(amr); 378 return; 379 } 380 amr->amr_flags |= AMRF_DMA_LOAD; 381 382 memset(amr->amr_mbox, 0, size); 383 384 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 385 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 386 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox + 387 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 388 389 /* 390 * Allocate and initalise the command control blocks. 391 */ 392 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); 393 amr->amr_ccbs = ac; 394 SLIST_INIT(&amr->amr_ccb_freelist); 395 TAILQ_INIT(&amr->amr_ccb_active); 396 amr->amr_flags |= AMRF_CCBS; 397 398 if (amr_max_xfer == 0) { 399 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 400 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 401 } 402 403 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 404 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 405 amr_max_segs, amr_max_xfer, 0, 406 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 407 if (rv != 0) 408 break; 409 410 ac->ac_ident = i; 411 amr_ccb_free(amr, ac); 412 } 413 if (i != AMR_MAX_CMDS) { 414 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname); 415 amr_teardown(amr); 416 return; 417 } 418 419 /* 420 * Take care of model-specific tasks. 421 */ 422 if ((apt->apt_flags & AT_QUARTZ) != 0) { 423 amr->amr_submit = amr_quartz_submit; 424 amr->amr_get_work = amr_quartz_get_work; 425 } else { 426 amr->amr_submit = amr_std_submit; 427 amr->amr_get_work = amr_std_get_work; 428 429 /* Notify the controller of the mailbox location. */ 430 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 431 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 432 433 /* Clear outstanding interrupts and enable interrupts. */ 434 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 435 amr_outb(amr, AMR_SREG_TOGL, 436 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 437 } 438 439 /* 440 * Retrieve parameters, and tell the world about us. 441 */ 442 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); 443 amr->amr_flags |= AMRF_ENQBUF; 444 amr->amr_maxqueuecnt = i; 445 aprint_normal(": AMI RAID "); 446 if (amr_init(amr, intrstr, pa) != 0) { 447 amr_teardown(amr); 448 return; 449 } 450 451 /* 452 * Cap the maximum number of outstanding commands. AMI's Linux 453 * driver doesn't trust the controller's reported value, and lockups 454 * have been seen when we do. 455 */ 456 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 457 if (amr->amr_maxqueuecnt > i) 458 amr->amr_maxqueuecnt = i; 459 460 /* Set our `shutdownhook' before we start any device activity. */ 461 if (amr_sdh == NULL) 462 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 463 464 /* Attach sub-devices. */ 465 for (j = 0; j < amr->amr_numdrives; j++) { 466 if (amr->amr_drive[j].al_size == 0) 467 continue; 468 amra.amra_unit = j; 469 470 locs[AMRCF_UNIT] = j; 471 472 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv, 473 "amr", locs, &amra, amr_print, config_stdsubmatch); 474 } 475 476 SIMPLEQ_INIT(&amr->amr_ccb_queue); 477 478 /* XXX This doesn't work for newer boards yet. */ 479 if ((apt->apt_flags & AT_QUARTZ) == 0) 480 kthread_create(amr_thread_create, amr); 481 } 482 483 /* 484 * Free up resources. 485 */ 486 static void 487 amr_teardown(struct amr_softc *amr) 488 { 489 struct amr_ccb *ac; 490 int fl; 491 492 fl = amr->amr_flags; 493 494 if ((fl & AMRF_THREAD) != 0) { 495 amr->amr_flags |= AMRF_THREAD_EXIT; 496 wakeup(amr_thread); 497 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) 498 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0); 499 } 500 if ((fl & AMRF_CCBS) != 0) { 501 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 502 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 503 } 504 free(amr->amr_ccbs, M_DEVBUF); 505 } 506 if ((fl & AMRF_ENQBUF) != 0) 507 free(amr->amr_enqbuf, M_DEVBUF); 508 if ((fl & AMRF_DMA_LOAD) != 0) 509 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 510 if ((fl & AMRF_DMA_MAP) != 0) 511 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox, 512 amr->amr_dmasize); 513 if ((fl & AMRF_DMA_ALLOC) != 0) 514 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 515 if ((fl & AMRF_DMA_CREATE) != 0) 516 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 517 if ((fl & AMRF_PCI_INTR) != 0) 518 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 519 if ((fl & AMRF_PCI_REGS) != 0) 520 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 521 } 522 523 /* 524 * Print autoconfiguration message for a sub-device. 525 */ 526 static int 527 amr_print(void *aux, const char *pnp) 528 { 529 struct amr_attach_args *amra; 530 531 amra = (struct amr_attach_args *)aux; 532 533 if (pnp != NULL) 534 aprint_normal("block device at %s", pnp); 535 aprint_normal(" unit %d", amra->amra_unit); 536 return (UNCONF); 537 } 538 539 /* 540 * Retrieve operational parameters and describe the controller. 541 */ 542 static int 543 amr_init(struct amr_softc *amr, const char *intrstr, 544 struct pci_attach_args *pa) 545 { 546 struct amr_adapter_info *aa; 547 struct amr_prodinfo *ap; 548 struct amr_enquiry *ae; 549 struct amr_enquiry3 *aex; 550 const char *prodstr; 551 u_int i, sig, ishp; 552 char sbuf[64]; 553 554 /* 555 * Try to get 40LD product info, which tells us what the card is 556 * labelled as. 557 */ 558 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 559 amr->amr_enqbuf); 560 if (ap != NULL) { 561 aprint_normal("<%.80s>\n", ap->ap_product); 562 if (intrstr != NULL) 563 aprint_normal("%s: interrupting at %s\n", 564 amr->amr_dv.dv_xname, intrstr); 565 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n", 566 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios, 567 le16toh(ap->ap_memsize)); 568 569 amr->amr_maxqueuecnt = ap->ap_maxio; 570 571 /* 572 * Fetch and record state of logical drives. 573 */ 574 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 575 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 576 if (aex == NULL) { 577 aprint_error("%s ENQUIRY3 failed\n", 578 amr->amr_dv.dv_xname); 579 return (-1); 580 } 581 582 if (aex->ae_numldrives > AMR_MAX_UNITS) { 583 aprint_error( 584 "%s: adjust AMR_MAX_UNITS to %d (currently %d)" 585 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS, 586 amr->amr_numdrives); 587 amr->amr_numdrives = AMR_MAX_UNITS; 588 } else 589 amr->amr_numdrives = aex->ae_numldrives; 590 591 for (i = 0; i < amr->amr_numdrives; i++) { 592 amr->amr_drive[i].al_size = 593 le32toh(aex->ae_drivesize[i]); 594 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 595 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 596 } 597 598 return (0); 599 } 600 601 /* 602 * Try 8LD extended ENQUIRY to get the controller signature. Once 603 * found, search for a product description. 604 */ 605 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 606 if (ae != NULL) { 607 i = 0; 608 sig = le32toh(ae->ae_signature); 609 610 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 611 if (amr_typestr[i].at_sig == sig) 612 break; 613 i++; 614 } 615 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 616 snprintf(sbuf, sizeof(sbuf), 617 "unknown ENQUIRY2 sig (0x%08x)", sig); 618 prodstr = sbuf; 619 } else 620 prodstr = amr_typestr[i].at_str; 621 } else { 622 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 623 if (ae == NULL) { 624 aprint_error("%s: unsupported controller\n", 625 amr->amr_dv.dv_xname); 626 return (-1); 627 } 628 629 switch (PCI_PRODUCT(pa->pa_id)) { 630 case PCI_PRODUCT_AMI_MEGARAID: 631 prodstr = "Series 428"; 632 break; 633 case PCI_PRODUCT_AMI_MEGARAID2: 634 prodstr = "Series 434"; 635 break; 636 default: 637 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)", 638 PCI_PRODUCT(pa->pa_id)); 639 prodstr = sbuf; 640 break; 641 } 642 } 643 644 /* 645 * HP NetRaid controllers have a special encoding of the firmware 646 * and BIOS versions. The AMI version seems to have it as strings 647 * whereas the HP version does it with a leading uppercase character 648 * and two binary numbers. 649 */ 650 aa = &ae->ae_adapter; 651 652 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 653 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 654 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 655 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 656 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 657 /* The AMI 438 is a NetRaid 3si in HP-land. */ 658 prodstr = "HP NetRaid 3si"; 659 } 660 ishp = 1; 661 } else 662 ishp = 0; 663 664 aprint_normal("<%s>\n", prodstr); 665 if (intrstr != NULL) 666 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, 667 intrstr); 668 669 if (ishp) 670 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>" 671 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2], 672 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 673 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 674 else 675 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n", 676 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios, 677 aa->aa_memorysize); 678 679 amr->amr_maxqueuecnt = aa->aa_maxio; 680 681 /* 682 * Record state of logical drives. 683 */ 684 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 685 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n", 686 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, 687 AMR_MAX_UNITS); 688 amr->amr_numdrives = AMR_MAX_UNITS; 689 } else 690 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 691 692 for (i = 0; i < AMR_MAX_UNITS; i++) { 693 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 694 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 695 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 696 } 697 698 return (0); 699 } 700 701 /* 702 * Flush the internal cache on each configured controller. Called at 703 * shutdown time. 704 */ 705 static void 706 amr_shutdown(void *cookie) 707 { 708 extern struct cfdriver amr_cd; 709 struct amr_softc *amr; 710 struct amr_ccb *ac; 711 int i, rv, s; 712 713 for (i = 0; i < amr_cd.cd_ndevs; i++) { 714 if ((amr = device_lookup(&amr_cd, i)) == NULL) 715 continue; 716 717 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 718 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 719 s = splbio(); 720 rv = amr_ccb_poll(amr, ac, 30000); 721 splx(s); 722 amr_ccb_free(amr, ac); 723 } 724 if (rv != 0) 725 printf("%s: unable to flush cache (%d)\n", 726 amr->amr_dv.dv_xname, rv); 727 } 728 } 729 730 /* 731 * Interrupt service routine. 732 */ 733 static int 734 amr_intr(void *cookie) 735 { 736 struct amr_softc *amr; 737 struct amr_ccb *ac; 738 struct amr_mailbox_resp mbox; 739 u_int i, forus, idx; 740 741 amr = cookie; 742 forus = 0; 743 744 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 745 /* Iterate over completed commands in this result. */ 746 for (i = 0; i < mbox.mb_nstatus; i++) { 747 idx = mbox.mb_completed[i] - 1; 748 ac = amr->amr_ccbs + idx; 749 750 if (idx >= amr->amr_maxqueuecnt) { 751 printf("%s: bad status (bogus ID: %u=%u)\n", 752 amr->amr_dv.dv_xname, i, idx); 753 continue; 754 } 755 756 if ((ac->ac_flags & AC_ACTIVE) == 0) { 757 printf("%s: bad status (not active; 0x04%x)\n", 758 amr->amr_dv.dv_xname, ac->ac_flags); 759 continue; 760 } 761 762 ac->ac_status = mbox.mb_status; 763 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 764 AC_COMPLETE; 765 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 766 767 if ((ac->ac_flags & AC_MOAN) != 0) 768 printf("%s: ccb %d completed\n", 769 amr->amr_dv.dv_xname, ac->ac_ident); 770 771 /* Pass notification to upper layers. */ 772 if (ac->ac_handler != NULL) 773 (*ac->ac_handler)(ac); 774 else 775 wakeup(ac); 776 } 777 forus = 1; 778 } 779 780 if (forus) 781 amr_ccb_enqueue(amr, NULL); 782 783 return (forus); 784 } 785 786 /* 787 * Create the watchdog thread. 788 */ 789 static void 790 amr_thread_create(void *cookie) 791 { 792 struct amr_softc *amr; 793 int rv; 794 795 amr = cookie; 796 797 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 798 amr->amr_flags ^= AMRF_THREAD_EXIT; 799 wakeup(&amr->amr_flags); 800 return; 801 } 802 803 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s", 804 amr->amr_dv.dv_xname); 805 if (rv != 0) 806 aprint_error("%s: unable to create thread (%d)", 807 amr->amr_dv.dv_xname, rv); 808 else 809 amr->amr_flags |= AMRF_THREAD; 810 } 811 812 /* 813 * Watchdog thread. 814 */ 815 static void 816 amr_thread(void *cookie) 817 { 818 struct amr_softc *amr; 819 struct amr_ccb *ac; 820 struct amr_logdrive *al; 821 struct amr_enquiry *ae; 822 time_t curtime; 823 int rv, i, s; 824 825 amr = cookie; 826 ae = amr->amr_enqbuf; 827 828 for (;;) { 829 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS); 830 831 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 832 amr->amr_flags ^= AMRF_THREAD_EXIT; 833 wakeup(&amr->amr_flags); 834 kthread_exit(0); 835 } 836 837 s = splbio(); 838 amr_intr(cookie); 839 curtime = (time_t)mono_time.tv_sec; 840 ac = TAILQ_FIRST(&amr->amr_ccb_active); 841 while (ac != NULL) { 842 if (ac->ac_start_time + AMR_TIMEOUT > curtime) 843 break; 844 if ((ac->ac_flags & AC_MOAN) == 0) { 845 printf("%s: ccb %d timed out; mailbox:\n", 846 amr->amr_dv.dv_xname, ac->ac_ident); 847 amr_ccb_dump(amr, ac); 848 ac->ac_flags |= AC_MOAN; 849 } 850 ac = TAILQ_NEXT(ac, ac_chain.tailq); 851 } 852 splx(s); 853 854 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 855 printf("%s: ccb_alloc failed (%d)\n", 856 amr->amr_dv.dv_xname, rv); 857 continue; 858 } 859 860 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 861 862 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 863 AMR_ENQUIRY_BUFSIZE, 0); 864 if (rv != 0) { 865 printf("%s: ccb_map failed (%d)\n", 866 amr->amr_dv.dv_xname, rv); 867 amr_ccb_free(amr, ac); 868 continue; 869 } 870 871 rv = amr_ccb_wait(amr, ac); 872 amr_ccb_unmap(amr, ac); 873 if (rv != 0) { 874 printf("%s: enquiry failed (st=%d)\n", 875 amr->amr_dv.dv_xname, ac->ac_status); 876 continue; 877 } 878 amr_ccb_free(amr, ac); 879 880 al = amr->amr_drive; 881 for (i = 0; i < AMR_MAX_UNITS; i++, al++) { 882 if (al->al_dv == NULL) 883 continue; 884 if (al->al_state == ae->ae_ldrv.al_state[i]) 885 continue; 886 887 printf("%s: state changed: %s -> %s\n", 888 al->al_dv->dv_xname, 889 amr_drive_state(al->al_state, NULL), 890 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 891 892 al->al_state = ae->ae_ldrv.al_state[i]; 893 } 894 } 895 } 896 897 /* 898 * Return a text description of a logical drive's current state. 899 */ 900 const char * 901 amr_drive_state(int state, int *happy) 902 { 903 const char *str; 904 905 state = AMR_DRV_CURSTATE(state); 906 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 907 if (happy) 908 *happy = 1; 909 str = "status unknown"; 910 } else { 911 if (happy) 912 *happy = amr_dstate[state].ds_happy; 913 str = amr_dstate[state].ds_descr; 914 } 915 916 return (str); 917 } 918 919 /* 920 * Run a generic enquiry-style command. 921 */ 922 static void * 923 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 924 u_int8_t cmdqual, void *sbuf) 925 { 926 struct amr_ccb *ac; 927 u_int8_t *mb; 928 int rv; 929 930 if (amr_ccb_alloc(amr, &ac) != 0) 931 return (NULL); 932 933 /* Build the command proper. */ 934 mb = (u_int8_t *)&ac->ac_cmd; 935 mb[0] = cmd; 936 mb[2] = cmdsub; 937 mb[3] = cmdqual; 938 939 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0); 940 if (rv == 0) { 941 rv = amr_ccb_poll(amr, ac, 2000); 942 amr_ccb_unmap(amr, ac); 943 } 944 amr_ccb_free(amr, ac); 945 946 return (rv ? NULL : sbuf); 947 } 948 949 /* 950 * Allocate and initialise a CCB. 951 */ 952 int 953 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 954 { 955 int s; 956 957 s = splbio(); 958 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 959 splx(s); 960 return (EAGAIN); 961 } 962 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 963 splx(s); 964 965 return (0); 966 } 967 968 /* 969 * Free a CCB. 970 */ 971 void 972 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 973 { 974 int s; 975 976 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 977 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 978 ac->ac_cmd.mb_busy = 1; 979 ac->ac_handler = NULL; 980 ac->ac_flags = 0; 981 982 s = splbio(); 983 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 984 splx(s); 985 } 986 987 /* 988 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 989 * the order that they were enqueued and try to submit their command blocks 990 * to the controller for execution. 991 */ 992 void 993 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 994 { 995 int s; 996 997 s = splbio(); 998 999 if (ac != NULL) 1000 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1001 1002 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1003 if ((*amr->amr_submit)(amr, ac) != 0) 1004 break; 1005 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq); 1006 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1007 } 1008 1009 splx(s); 1010 } 1011 1012 /* 1013 * Map the specified CCB's data buffer onto the bus, and fill the 1014 * scatter-gather list. 1015 */ 1016 int 1017 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1018 int out) 1019 { 1020 struct amr_sgentry *sge; 1021 struct amr_mailbox_cmd *mb; 1022 int nsegs, i, rv, sgloff; 1023 bus_dmamap_t xfer; 1024 1025 xfer = ac->ac_xfer_map; 1026 1027 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1028 BUS_DMA_NOWAIT); 1029 if (rv != 0) 1030 return (rv); 1031 1032 mb = &ac->ac_cmd; 1033 ac->ac_xfer_size = size; 1034 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN); 1035 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1036 1037 /* We don't need to use a scatter/gather list for just 1 segment. */ 1038 nsegs = xfer->dm_nsegs; 1039 if (nsegs == 1) { 1040 mb->mb_nsgelem = 0; 1041 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1042 ac->ac_flags |= AC_NOSGL; 1043 } else { 1044 mb->mb_nsgelem = nsegs; 1045 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1046 1047 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff); 1048 for (i = 0; i < nsegs; i++, sge++) { 1049 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1050 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1051 } 1052 } 1053 1054 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, 1055 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD); 1056 1057 if ((ac->ac_flags & AC_NOSGL) == 0) 1058 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1059 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1060 1061 return (0); 1062 } 1063 1064 /* 1065 * Unmap the specified CCB's data buffer. 1066 */ 1067 void 1068 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1069 { 1070 1071 if ((ac->ac_flags & AC_NOSGL) == 0) 1072 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1073 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1074 BUS_DMASYNC_POSTWRITE); 1075 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1076 (ac->ac_flags & AC_XFER_IN) != 0 ? 1077 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 1078 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1079 } 1080 1081 /* 1082 * Submit a command to the controller and poll on completion. Return 1083 * non-zero on timeout or error. Must be called with interrupts blocked. 1084 */ 1085 int 1086 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1087 { 1088 int rv; 1089 1090 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) 1091 return (rv); 1092 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1093 1094 for (timo *= 10; timo != 0; timo--) { 1095 amr_intr(amr); 1096 if ((ac->ac_flags & AC_COMPLETE) != 0) 1097 break; 1098 DELAY(100); 1099 } 1100 1101 return (timo == 0 || ac->ac_status != 0 ? EIO : 0); 1102 } 1103 1104 /* 1105 * Submit a command to the controller and sleep on completion. Return 1106 * non-zero on error. 1107 */ 1108 int 1109 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1110 { 1111 int s; 1112 1113 s = splbio(); 1114 amr_ccb_enqueue(amr, ac); 1115 tsleep(ac, PRIBIO, "amrcmd", 0); 1116 splx(s); 1117 1118 return (ac->ac_status != 0 ? EIO : 0); 1119 } 1120 1121 #if 0 1122 /* 1123 * Wait for the mailbox to become available. 1124 */ 1125 static int 1126 amr_mbox_wait(struct amr_softc *amr) 1127 { 1128 int timo; 1129 1130 for (timo = 10000; timo != 0; timo--) { 1131 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1132 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1133 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1134 break; 1135 DELAY(100); 1136 } 1137 1138 if (timo == 0) 1139 printf("%s: controller wedged\n", amr->amr_dv.dv_xname); 1140 1141 return (timo != 0 ? 0 : EAGAIN); 1142 } 1143 #endif 1144 1145 /* 1146 * Tell the controller that the mailbox contains a valid command. Must be 1147 * called with interrupts blocked. 1148 */ 1149 static int 1150 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1151 { 1152 u_int32_t v; 1153 1154 amr->amr_mbox->mb_poll = 0; 1155 amr->amr_mbox->mb_ack = 0; 1156 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1157 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1158 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1159 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1160 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1161 return (EAGAIN); 1162 1163 v = amr_inl(amr, AMR_QREG_IDB); 1164 if ((v & AMR_QIDB_SUBMIT) != 0) { 1165 amr->amr_mbox->mb_cmd.mb_busy = 0; 1166 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1167 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1168 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1169 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1170 return (EAGAIN); 1171 } 1172 1173 amr->amr_mbox->mb_segment = 0; 1174 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1176 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1177 1178 ac->ac_start_time = (time_t)mono_time.tv_sec; 1179 ac->ac_flags |= AC_ACTIVE; 1180 amr_outl(amr, AMR_QREG_IDB, 1181 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT); 1182 return (0); 1183 } 1184 1185 static int 1186 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1187 { 1188 1189 amr->amr_mbox->mb_poll = 0; 1190 amr->amr_mbox->mb_ack = 0; 1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1193 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1194 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1195 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1196 return (EAGAIN); 1197 1198 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1199 amr->amr_mbox->mb_cmd.mb_busy = 0; 1200 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1201 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1202 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1203 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1204 return (EAGAIN); 1205 } 1206 1207 amr->amr_mbox->mb_segment = 0; 1208 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1210 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1211 1212 ac->ac_start_time = (time_t)mono_time.tv_sec; 1213 ac->ac_flags |= AC_ACTIVE; 1214 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1215 return (0); 1216 } 1217 1218 /* 1219 * Claim any work that the controller has completed; acknowledge completion, 1220 * save details of the completion in (mbsave). Must be called with 1221 * interrupts blocked. 1222 */ 1223 static int 1224 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1225 { 1226 1227 /* Work waiting for us? */ 1228 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1229 return (-1); 1230 1231 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1232 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1233 1234 /* Save the mailbox, which contains a list of completed commands. */ 1235 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1236 1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1239 1240 /* Ack the interrupt and mailbox transfer. */ 1241 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1242 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1243 1244 /* 1245 * This waits for the controller to notice that we've taken the 1246 * command from it. It's very inefficient, and we shouldn't do it, 1247 * but if we remove this code, we stop completing commands under 1248 * load. 1249 * 1250 * Peter J says we shouldn't do this. The documentation says we 1251 * should. Who is right? 1252 */ 1253 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1254 DELAY(10); 1255 1256 return (0); 1257 } 1258 1259 static int 1260 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1261 { 1262 u_int8_t istat; 1263 1264 /* Check for valid interrupt status. */ 1265 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1266 return (-1); 1267 1268 /* Ack the interrupt. */ 1269 amr_outb(amr, AMR_SREG_INTR, istat); 1270 1271 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1272 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1273 1274 /* Save mailbox, which contains a list of completed commands. */ 1275 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1276 1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1278 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1279 1280 /* Ack mailbox transfer. */ 1281 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1282 1283 return (0); 1284 } 1285 1286 static void 1287 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1288 { 1289 int i; 1290 1291 printf("%s: ", amr->amr_dv.dv_xname); 1292 for (i = 0; i < 4; i++) 1293 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1294 printf("\n"); 1295 } 1296