xref: /netbsd-src/sys/dev/pci/amr.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: amr.c,v 1.35 2006/06/07 22:33:36 kardel Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999,2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67  */
68 
69 /*
70  * Driver for AMI RAID controllers.
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.35 2006/06/07 22:33:36 kardel Exp $");
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85 
86 #include <uvm/uvm_extern.h>
87 
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90 
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95 
96 #include "locators.h"
97 
98 static void	amr_attach(struct device *, struct device *, void *);
99 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 			     void *);
102 static int	amr_init(struct amr_softc *, const char *,
103 			 struct pci_attach_args *pa);
104 static int	amr_intr(void *);
105 static int	amr_match(struct device *, struct cfdata *, void *);
106 static int	amr_print(void *, const char *);
107 static void	amr_shutdown(void *);
108 static void	amr_teardown(struct amr_softc *);
109 static void	amr_thread(void *);
110 static void	amr_thread_create(void *);
111 
112 static int	amr_quartz_get_work(struct amr_softc *,
113 				    struct amr_mailbox_resp *);
114 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
117 
118 CFATTACH_DECL(amr, sizeof(struct amr_softc),
119     amr_match, amr_attach, NULL, NULL);
120 
121 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
122 #define	AT_SIG		0x02	/* Check for signature */
123 
124 struct amr_pci_type {
125 	u_short	apt_vendor;
126 	u_short	apt_product;
127 	u_short	apt_flags;
128 } static const amr_pci_type[] = {
129 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
130 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
131 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
132 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
133 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
134 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
135 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
136 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
137 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
138 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
139 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
140 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
141 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
142 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
143 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
144 };
145 
146 struct amr_typestr {
147 	const char	*at_str;
148 	int		at_sig;
149 } static const amr_typestr[] = {
150 	{ "Series 431",			AMR_SIG_431 },
151 	{ "Series 438",			AMR_SIG_438 },
152 	{ "Series 466",			AMR_SIG_466 },
153 	{ "Series 467",			AMR_SIG_467 },
154 	{ "Series 490",			AMR_SIG_490 },
155 	{ "Series 762",			AMR_SIG_762 },
156 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
157 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
158 };
159 
160 struct {
161 	const char	*ds_descr;
162 	int	ds_happy;
163 } static const amr_dstate[] = {
164 	{ "offline",	0 },
165 	{ "degraded",	1 },
166 	{ "optimal",	1 },
167 	{ "online",	1 },
168 	{ "failed",	0 },
169 	{ "rebuilding",	1 },
170 	{ "hotspare",	0 },
171 };
172 
173 static void	*amr_sdh;
174 
175 static int	amr_max_segs;
176 int		amr_max_xfer;
177 
178 static inline u_int8_t
179 amr_inb(struct amr_softc *amr, int off)
180 {
181 
182 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
183 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
184 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
185 }
186 
187 static inline u_int32_t
188 amr_inl(struct amr_softc *amr, int off)
189 {
190 
191 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
192 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
193 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
194 }
195 
196 static inline void
197 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
198 {
199 
200 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
201 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 	    BUS_SPACE_BARRIER_WRITE);
203 }
204 
205 static inline void
206 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
207 {
208 
209 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
210 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
211 	    BUS_SPACE_BARRIER_WRITE);
212 }
213 
214 /*
215  * Match a supported device.
216  */
217 static int
218 amr_match(struct device *parent, struct cfdata *match, void *aux)
219 {
220 	struct pci_attach_args *pa;
221 	pcireg_t s;
222 	int i;
223 
224 	pa = (struct pci_attach_args *)aux;
225 
226 	/*
227 	 * Don't match the device if it's operating in I2O mode.  In this
228 	 * case it should be handled by the `iop' driver.
229 	 */
230 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
231 		return (0);
232 
233 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
234 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
235 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
236 		    	break;
237 
238 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
239 		return (0);
240 
241 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
242 		return (1);
243 
244 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
245 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
246 }
247 
248 /*
249  * Attach a supported device.
250  */
251 static void
252 amr_attach(struct device *parent, struct device *self, void *aux)
253 {
254 	struct pci_attach_args *pa;
255 	struct amr_attach_args amra;
256 	const struct amr_pci_type *apt;
257 	struct amr_softc *amr;
258 	pci_chipset_tag_t pc;
259 	pci_intr_handle_t ih;
260 	const char *intrstr;
261 	pcireg_t reg;
262 	int rseg, i, j, size, rv, memreg, ioreg;
263         struct amr_ccb *ac;
264 	int locs[AMRCF_NLOCS];
265 
266 	aprint_naive(": RAID controller\n");
267 
268 	amr = (struct amr_softc *)self;
269 	pa = (struct pci_attach_args *)aux;
270 	pc = pa->pa_pc;
271 
272 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
273 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
274 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
275 			break;
276 	apt = amr_pci_type + i;
277 
278 	memreg = ioreg = 0;
279 	for (i = 0x10; i <= 0x14; i += 4) {
280 		reg = pci_conf_read(pc, pa->pa_tag, i);
281 		switch (PCI_MAPREG_TYPE(reg)) {
282 		case PCI_MAPREG_TYPE_MEM:
283 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
284 				memreg = i;
285 			break;
286 		case PCI_MAPREG_TYPE_IO:
287 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
288 				ioreg = i;
289 			break;
290 
291 		}
292 	}
293 
294 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
295 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
296 		;
297 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
298 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
299 		;
300 	else {
301 		aprint_error("can't map control registers\n");
302 		amr_teardown(amr);
303 		return;
304 	}
305 
306 	amr->amr_flags |= AMRF_PCI_REGS;
307 	amr->amr_dmat = pa->pa_dmat;
308 	amr->amr_pc = pa->pa_pc;
309 
310 	/* Enable the device. */
311 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
312 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
313 	    reg | PCI_COMMAND_MASTER_ENABLE);
314 
315 	/* Map and establish the interrupt. */
316 	if (pci_intr_map(pa, &ih)) {
317 		aprint_error("can't map interrupt\n");
318 		amr_teardown(amr);
319 		return;
320 	}
321 	intrstr = pci_intr_string(pc, ih);
322 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
323 	if (amr->amr_ih == NULL) {
324 		aprint_error("can't establish interrupt");
325 		if (intrstr != NULL)
326 			aprint_normal(" at %s", intrstr);
327 		aprint_normal("\n");
328 		amr_teardown(amr);
329 		return;
330 	}
331 	amr->amr_flags |= AMRF_PCI_INTR;
332 
333 	/*
334 	 * Allocate space for the mailbox and S/G lists.  Some controllers
335 	 * don't like S/G lists to be located below 0x2000, so we allocate
336 	 * enough slop to enable us to compensate.
337 	 *
338 	 * The standard mailbox structure needs to be aligned on a 16-byte
339 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
340 	 * size, which preceeds the standard mailbox.
341 	 */
342 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
343 	amr->amr_dmasize = size;
344 
345 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
346 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
347 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
348 		    amr->amr_dv.dv_xname, rv);
349 		amr_teardown(amr);
350 		return;
351 	}
352 	amr->amr_flags |= AMRF_DMA_ALLOC;
353 
354 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
355 	    (caddr_t *)&amr->amr_mbox,
356 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
357 		aprint_error("%s: unable to map buffer, rv = %d\n",
358 		    amr->amr_dv.dv_xname, rv);
359 		amr_teardown(amr);
360 		return;
361 	}
362 	amr->amr_flags |= AMRF_DMA_MAP;
363 
364 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
365 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
366 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
367 		    amr->amr_dv.dv_xname, rv);
368 		amr_teardown(amr);
369 		return;
370 	}
371 	amr->amr_flags |= AMRF_DMA_CREATE;
372 
373 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
374 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
375 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
376 		    amr->amr_dv.dv_xname, rv);
377 		amr_teardown(amr);
378 		return;
379 	}
380 	amr->amr_flags |= AMRF_DMA_LOAD;
381 
382 	memset(amr->amr_mbox, 0, size);
383 
384 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
385 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
386 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
387 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
388 
389 	/*
390 	 * Allocate and initalise the command control blocks.
391 	 */
392 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
393 	amr->amr_ccbs = ac;
394 	SLIST_INIT(&amr->amr_ccb_freelist);
395 	TAILQ_INIT(&amr->amr_ccb_active);
396 	amr->amr_flags |= AMRF_CCBS;
397 
398 	if (amr_max_xfer == 0) {
399 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
400 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
401 	}
402 
403 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
404 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
405 		    amr_max_segs, amr_max_xfer, 0,
406 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
407 		if (rv != 0)
408 			break;
409 
410 		ac->ac_ident = i;
411 		amr_ccb_free(amr, ac);
412 	}
413 	if (i != AMR_MAX_CMDS) {
414 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
415 		amr_teardown(amr);
416 		return;
417 	}
418 
419 	/*
420 	 * Take care of model-specific tasks.
421 	 */
422 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
423 		amr->amr_submit = amr_quartz_submit;
424 		amr->amr_get_work = amr_quartz_get_work;
425 	} else {
426 		amr->amr_submit = amr_std_submit;
427 		amr->amr_get_work = amr_std_get_work;
428 
429 		/* Notify the controller of the mailbox location. */
430 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
431 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
432 
433 		/* Clear outstanding interrupts and enable interrupts. */
434 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
435 		amr_outb(amr, AMR_SREG_TOGL,
436 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
437 	}
438 
439 	/*
440 	 * Retrieve parameters, and tell the world about us.
441 	 */
442 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
443 	amr->amr_flags |= AMRF_ENQBUF;
444 	amr->amr_maxqueuecnt = i;
445 	aprint_normal(": AMI RAID ");
446 	if (amr_init(amr, intrstr, pa) != 0) {
447 		amr_teardown(amr);
448 		return;
449 	}
450 
451 	/*
452 	 * Cap the maximum number of outstanding commands.  AMI's Linux
453 	 * driver doesn't trust the controller's reported value, and lockups
454 	 * have been seen when we do.
455 	 */
456 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
457 	if (amr->amr_maxqueuecnt > i)
458 		amr->amr_maxqueuecnt = i;
459 
460 	/* Set our `shutdownhook' before we start any device activity. */
461 	if (amr_sdh == NULL)
462 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
463 
464 	/* Attach sub-devices. */
465 	for (j = 0; j < amr->amr_numdrives; j++) {
466 		if (amr->amr_drive[j].al_size == 0)
467 			continue;
468 		amra.amra_unit = j;
469 
470 		locs[AMRCF_UNIT] = j;
471 
472 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
473 			"amr", locs, &amra, amr_print, config_stdsubmatch);
474 	}
475 
476 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
477 
478 	/* XXX This doesn't work for newer boards yet. */
479 	if ((apt->apt_flags & AT_QUARTZ) == 0)
480 		kthread_create(amr_thread_create, amr);
481 }
482 
483 /*
484  * Free up resources.
485  */
486 static void
487 amr_teardown(struct amr_softc *amr)
488 {
489 	struct amr_ccb *ac;
490 	int fl;
491 
492 	fl = amr->amr_flags;
493 
494 	if ((fl & AMRF_THREAD) != 0) {
495 		amr->amr_flags |= AMRF_THREAD_EXIT;
496 		wakeup(amr_thread);
497 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
498 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
499 	}
500 	if ((fl & AMRF_CCBS) != 0) {
501 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
502 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
503 		}
504 		free(amr->amr_ccbs, M_DEVBUF);
505 	}
506 	if ((fl & AMRF_ENQBUF) != 0)
507 		free(amr->amr_enqbuf, M_DEVBUF);
508 	if ((fl & AMRF_DMA_LOAD) != 0)
509 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
510 	if ((fl & AMRF_DMA_MAP) != 0)
511 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
512 		    amr->amr_dmasize);
513 	if ((fl & AMRF_DMA_ALLOC) != 0)
514 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
515 	if ((fl & AMRF_DMA_CREATE) != 0)
516 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
517 	if ((fl & AMRF_PCI_INTR) != 0)
518 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
519 	if ((fl & AMRF_PCI_REGS) != 0)
520 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
521 }
522 
523 /*
524  * Print autoconfiguration message for a sub-device.
525  */
526 static int
527 amr_print(void *aux, const char *pnp)
528 {
529 	struct amr_attach_args *amra;
530 
531 	amra = (struct amr_attach_args *)aux;
532 
533 	if (pnp != NULL)
534 		aprint_normal("block device at %s", pnp);
535 	aprint_normal(" unit %d", amra->amra_unit);
536 	return (UNCONF);
537 }
538 
539 /*
540  * Retrieve operational parameters and describe the controller.
541  */
542 static int
543 amr_init(struct amr_softc *amr, const char *intrstr,
544 	 struct pci_attach_args *pa)
545 {
546 	struct amr_adapter_info *aa;
547 	struct amr_prodinfo *ap;
548 	struct amr_enquiry *ae;
549 	struct amr_enquiry3 *aex;
550 	const char *prodstr;
551 	u_int i, sig, ishp;
552 	char sbuf[64];
553 
554 	/*
555 	 * Try to get 40LD product info, which tells us what the card is
556 	 * labelled as.
557 	 */
558 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
559 	    amr->amr_enqbuf);
560 	if (ap != NULL) {
561 		aprint_normal("<%.80s>\n", ap->ap_product);
562 		if (intrstr != NULL)
563 			aprint_normal("%s: interrupting at %s\n",
564 			    amr->amr_dv.dv_xname, intrstr);
565 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
566 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
567 		    le16toh(ap->ap_memsize));
568 
569 		amr->amr_maxqueuecnt = ap->ap_maxio;
570 
571 		/*
572 		 * Fetch and record state of logical drives.
573 		 */
574 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
575 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
576 		if (aex == NULL) {
577 			aprint_error("%s ENQUIRY3 failed\n",
578 			    amr->amr_dv.dv_xname);
579 			return (-1);
580 		}
581 
582 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
583 			aprint_error("%s: Inquiry returned more drives (%d)"
584 			   " than the array can handle (%zu)\n",
585 			   amr->amr_dv.dv_xname, aex->ae_numldrives,
586 			   __arraycount(aex->ae_drivestate));
587 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
588 		}
589 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
590 			aprint_error(
591 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
592 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
593 			    amr->amr_numdrives);
594 			amr->amr_numdrives = AMR_MAX_UNITS;
595 		} else
596 			amr->amr_numdrives = aex->ae_numldrives;
597 
598 		for (i = 0; i < amr->amr_numdrives; i++) {
599 			amr->amr_drive[i].al_size =
600 			    le32toh(aex->ae_drivesize[i]);
601 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
602 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
603 		}
604 
605 		return (0);
606 	}
607 
608 	/*
609 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
610 	 * found, search for a product description.
611 	 */
612 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
613 	if (ae != NULL) {
614 		i = 0;
615 		sig = le32toh(ae->ae_signature);
616 
617 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
618 			if (amr_typestr[i].at_sig == sig)
619 				break;
620 			i++;
621 		}
622 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
623 			snprintf(sbuf, sizeof(sbuf),
624 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
625 			prodstr = sbuf;
626 		} else
627 			prodstr = amr_typestr[i].at_str;
628 	} else {
629 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
630 		if (ae == NULL) {
631 			aprint_error("%s: unsupported controller\n",
632 			    amr->amr_dv.dv_xname);
633 			return (-1);
634 		}
635 
636 		switch (PCI_PRODUCT(pa->pa_id)) {
637 		case PCI_PRODUCT_AMI_MEGARAID:
638 			prodstr = "Series 428";
639 			break;
640 		case PCI_PRODUCT_AMI_MEGARAID2:
641 			prodstr = "Series 434";
642 			break;
643 		default:
644 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
645 			    PCI_PRODUCT(pa->pa_id));
646 			prodstr = sbuf;
647 			break;
648 		}
649 	}
650 
651 	/*
652 	 * HP NetRaid controllers have a special encoding of the firmware
653 	 * and BIOS versions.  The AMI version seems to have it as strings
654 	 * whereas the HP version does it with a leading uppercase character
655 	 * and two binary numbers.
656 	*/
657 	aa = &ae->ae_adapter;
658 
659 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
660 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
661 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
662 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
663 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
664 			/* The AMI 438 is a NetRaid 3si in HP-land. */
665 			prodstr = "HP NetRaid 3si";
666 		}
667 		ishp = 1;
668 	} else
669 		ishp = 0;
670 
671 	aprint_normal("<%s>\n", prodstr);
672 	if (intrstr != NULL)
673 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
674 		    intrstr);
675 
676 	if (ishp)
677 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
678 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
679 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
680 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
681 	else
682 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
683 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
684 		    aa->aa_memorysize);
685 
686 	amr->amr_maxqueuecnt = aa->aa_maxio;
687 
688 	/*
689 	 * Record state of logical drives.
690 	 */
691 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
692 		aprint_error("%s: Inquiry returned more drives (%d)"
693 		   " than the array can handle (%zu)\n",
694 		   amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
695 		   __arraycount(ae->ae_ldrv.al_size));
696 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
697 	}
698 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
699 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
700 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
701 		    AMR_MAX_UNITS);
702 		amr->amr_numdrives = AMR_MAX_UNITS;
703 	} else
704 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
705 
706 	for (i = 0; i < amr->amr_numdrives; i++) {
707 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
708 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
709 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
710 	}
711 
712 	return (0);
713 }
714 
715 /*
716  * Flush the internal cache on each configured controller.  Called at
717  * shutdown time.
718  */
719 static void
720 amr_shutdown(void *cookie)
721 {
722         extern struct cfdriver amr_cd;
723 	struct amr_softc *amr;
724 	struct amr_ccb *ac;
725 	int i, rv, s;
726 
727 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
728 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
729 			continue;
730 
731 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
732 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
733 			s = splbio();
734 			rv = amr_ccb_poll(amr, ac, 30000);
735 			splx(s);
736 			amr_ccb_free(amr, ac);
737 		}
738 		if (rv != 0)
739 			printf("%s: unable to flush cache (%d)\n",
740 			    amr->amr_dv.dv_xname, rv);
741 	}
742 }
743 
744 /*
745  * Interrupt service routine.
746  */
747 static int
748 amr_intr(void *cookie)
749 {
750 	struct amr_softc *amr;
751 	struct amr_ccb *ac;
752 	struct amr_mailbox_resp mbox;
753 	u_int i, forus, idx;
754 
755 	amr = cookie;
756 	forus = 0;
757 
758 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
759 		/* Iterate over completed commands in this result. */
760 		for (i = 0; i < mbox.mb_nstatus; i++) {
761 			idx = mbox.mb_completed[i] - 1;
762 			ac = amr->amr_ccbs + idx;
763 
764 			if (idx >= amr->amr_maxqueuecnt) {
765 				printf("%s: bad status (bogus ID: %u=%u)\n",
766 				    amr->amr_dv.dv_xname, i, idx);
767 				continue;
768 			}
769 
770 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
771 				printf("%s: bad status (not active; 0x04%x)\n",
772 				    amr->amr_dv.dv_xname, ac->ac_flags);
773 				continue;
774 			}
775 
776 			ac->ac_status = mbox.mb_status;
777 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
778 			    AC_COMPLETE;
779 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
780 
781 			if ((ac->ac_flags & AC_MOAN) != 0)
782 				printf("%s: ccb %d completed\n",
783 				    amr->amr_dv.dv_xname, ac->ac_ident);
784 
785 			/* Pass notification to upper layers. */
786 			if (ac->ac_handler != NULL)
787 				(*ac->ac_handler)(ac);
788 			else
789 				wakeup(ac);
790 		}
791 		forus = 1;
792 	}
793 
794 	if (forus)
795 		amr_ccb_enqueue(amr, NULL);
796 
797 	return (forus);
798 }
799 
800 /*
801  * Create the watchdog thread.
802  */
803 static void
804 amr_thread_create(void *cookie)
805 {
806 	struct amr_softc *amr;
807 	int rv;
808 
809 	amr = cookie;
810 
811 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
812 		amr->amr_flags ^= AMRF_THREAD_EXIT;
813 		wakeup(&amr->amr_flags);
814 		return;
815 	}
816 
817 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
818 	    amr->amr_dv.dv_xname);
819  	if (rv != 0)
820 		aprint_error("%s: unable to create thread (%d)",
821  		    amr->amr_dv.dv_xname, rv);
822  	else
823  		amr->amr_flags |= AMRF_THREAD;
824 }
825 
826 /*
827  * Watchdog thread.
828  */
829 static void
830 amr_thread(void *cookie)
831 {
832 	struct amr_softc *amr;
833 	struct amr_ccb *ac;
834 	struct amr_logdrive *al;
835 	struct amr_enquiry *ae;
836 	int rv, i, s;
837 
838 	amr = cookie;
839 	ae = amr->amr_enqbuf;
840 
841 	for (;;) {
842 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
843 
844 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
845 			amr->amr_flags ^= AMRF_THREAD_EXIT;
846 			wakeup(&amr->amr_flags);
847 			kthread_exit(0);
848 		}
849 
850 		s = splbio();
851 		amr_intr(cookie);
852 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
853 		while (ac != NULL) {
854 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
855 				break;
856 			if ((ac->ac_flags & AC_MOAN) == 0) {
857 				printf("%s: ccb %d timed out; mailbox:\n",
858 				    amr->amr_dv.dv_xname, ac->ac_ident);
859 				amr_ccb_dump(amr, ac);
860 				ac->ac_flags |= AC_MOAN;
861 			}
862 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
863 		}
864 		splx(s);
865 
866 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
867 			printf("%s: ccb_alloc failed (%d)\n",
868  			    amr->amr_dv.dv_xname, rv);
869 			continue;
870 		}
871 
872 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
873 
874 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
875 		    AMR_ENQUIRY_BUFSIZE, 0);
876 		if (rv != 0) {
877 			printf("%s: ccb_map failed (%d)\n",
878  			    amr->amr_dv.dv_xname, rv);
879 			amr_ccb_free(amr, ac);
880 			continue;
881 		}
882 
883 		rv = amr_ccb_wait(amr, ac);
884 		amr_ccb_unmap(amr, ac);
885 		if (rv != 0) {
886 			printf("%s: enquiry failed (st=%d)\n",
887  			    amr->amr_dv.dv_xname, ac->ac_status);
888 			continue;
889 		}
890 		amr_ccb_free(amr, ac);
891 
892 		al = amr->amr_drive;
893 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
894 			if (al->al_dv == NULL)
895 				continue;
896 			if (al->al_state == ae->ae_ldrv.al_state[i])
897 				continue;
898 
899 			printf("%s: state changed: %s -> %s\n",
900 			    al->al_dv->dv_xname,
901 			    amr_drive_state(al->al_state, NULL),
902 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
903 
904 			al->al_state = ae->ae_ldrv.al_state[i];
905 		}
906 	}
907 }
908 
909 /*
910  * Return a text description of a logical drive's current state.
911  */
912 const char *
913 amr_drive_state(int state, int *happy)
914 {
915 	const char *str;
916 
917 	state = AMR_DRV_CURSTATE(state);
918 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
919 		if (happy)
920 			*happy = 1;
921 		str = "status unknown";
922 	} else {
923 		if (happy)
924 			*happy = amr_dstate[state].ds_happy;
925 		str = amr_dstate[state].ds_descr;
926 	}
927 
928 	return (str);
929 }
930 
931 /*
932  * Run a generic enquiry-style command.
933  */
934 static void *
935 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
936 	    u_int8_t cmdqual, void *sbuf)
937 {
938 	struct amr_ccb *ac;
939 	u_int8_t *mb;
940 	int rv;
941 
942 	if (amr_ccb_alloc(amr, &ac) != 0)
943 		return (NULL);
944 
945 	/* Build the command proper. */
946 	mb = (u_int8_t *)&ac->ac_cmd;
947 	mb[0] = cmd;
948 	mb[2] = cmdsub;
949 	mb[3] = cmdqual;
950 
951 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
952 	if (rv == 0) {
953 		rv = amr_ccb_poll(amr, ac, 2000);
954 		amr_ccb_unmap(amr, ac);
955 	}
956 	amr_ccb_free(amr, ac);
957 
958 	return (rv ? NULL : sbuf);
959 }
960 
961 /*
962  * Allocate and initialise a CCB.
963  */
964 int
965 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
966 {
967 	int s;
968 
969 	s = splbio();
970 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
971 		splx(s);
972 		return (EAGAIN);
973 	}
974 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
975 	splx(s);
976 
977 	return (0);
978 }
979 
980 /*
981  * Free a CCB.
982  */
983 void
984 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
985 {
986 	int s;
987 
988 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
989 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
990 	ac->ac_cmd.mb_busy = 1;
991 	ac->ac_handler = NULL;
992 	ac->ac_flags = 0;
993 
994 	s = splbio();
995 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
996 	splx(s);
997 }
998 
999 /*
1000  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1001  * the order that they were enqueued and try to submit their command blocks
1002  * to the controller for execution.
1003  */
1004 void
1005 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1006 {
1007 	int s;
1008 
1009 	s = splbio();
1010 
1011 	if (ac != NULL)
1012 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1013 
1014 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1015 		if ((*amr->amr_submit)(amr, ac) != 0)
1016 			break;
1017 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1018 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1019 	}
1020 
1021 	splx(s);
1022 }
1023 
1024 /*
1025  * Map the specified CCB's data buffer onto the bus, and fill the
1026  * scatter-gather list.
1027  */
1028 int
1029 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1030 	    int out)
1031 {
1032 	struct amr_sgentry *sge;
1033 	struct amr_mailbox_cmd *mb;
1034 	int nsegs, i, rv, sgloff;
1035 	bus_dmamap_t xfer;
1036 
1037 	xfer = ac->ac_xfer_map;
1038 
1039 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1040 	    BUS_DMA_NOWAIT);
1041 	if (rv != 0)
1042 		return (rv);
1043 
1044 	mb = &ac->ac_cmd;
1045 	ac->ac_xfer_size = size;
1046 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1047 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1048 
1049 	/* We don't need to use a scatter/gather list for just 1 segment. */
1050 	nsegs = xfer->dm_nsegs;
1051 	if (nsegs == 1) {
1052 		mb->mb_nsgelem = 0;
1053 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1054 		ac->ac_flags |= AC_NOSGL;
1055 	} else {
1056 		mb->mb_nsgelem = nsegs;
1057 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1058 
1059 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1060 		for (i = 0; i < nsegs; i++, sge++) {
1061 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1062 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1063 		}
1064 	}
1065 
1066 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1067 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1068 
1069 	if ((ac->ac_flags & AC_NOSGL) == 0)
1070 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1071 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1072 
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Unmap the specified CCB's data buffer.
1078  */
1079 void
1080 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1081 {
1082 
1083 	if ((ac->ac_flags & AC_NOSGL) == 0)
1084 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1085 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1086 		    BUS_DMASYNC_POSTWRITE);
1087 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1088 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
1089 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1090 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1091 }
1092 
1093 /*
1094  * Submit a command to the controller and poll on completion.  Return
1095  * non-zero on timeout or error.  Must be called with interrupts blocked.
1096  */
1097 int
1098 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1099 {
1100 	int rv;
1101 
1102 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1103 		return (rv);
1104 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1105 
1106 	for (timo *= 10; timo != 0; timo--) {
1107 		amr_intr(amr);
1108 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1109 			break;
1110 		DELAY(100);
1111 	}
1112 
1113 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1114 }
1115 
1116 /*
1117  * Submit a command to the controller and sleep on completion.  Return
1118  * non-zero on error.
1119  */
1120 int
1121 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1122 {
1123 	int s;
1124 
1125 	s = splbio();
1126 	amr_ccb_enqueue(amr, ac);
1127 	tsleep(ac, PRIBIO, "amrcmd", 0);
1128 	splx(s);
1129 
1130 	return (ac->ac_status != 0 ? EIO : 0);
1131 }
1132 
1133 #if 0
1134 /*
1135  * Wait for the mailbox to become available.
1136  */
1137 static int
1138 amr_mbox_wait(struct amr_softc *amr)
1139 {
1140 	int timo;
1141 
1142 	for (timo = 10000; timo != 0; timo--) {
1143 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1144 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1145 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1146 			break;
1147 		DELAY(100);
1148 	}
1149 
1150 	if (timo == 0)
1151 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1152 
1153 	return (timo != 0 ? 0 : EAGAIN);
1154 }
1155 #endif
1156 
1157 /*
1158  * Tell the controller that the mailbox contains a valid command.  Must be
1159  * called with interrupts blocked.
1160  */
1161 static int
1162 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1163 {
1164 	u_int32_t v;
1165 
1166 	amr->amr_mbox->mb_poll = 0;
1167 	amr->amr_mbox->mb_ack = 0;
1168 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1169 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1170 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1172 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1173 		return (EAGAIN);
1174 
1175 	v = amr_inl(amr, AMR_QREG_IDB);
1176 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1177 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1178 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1179 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1180 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1181 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1182 		return (EAGAIN);
1183 	}
1184 
1185 	amr->amr_mbox->mb_segment = 0;
1186 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1187 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1188 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1189 
1190 	ac->ac_start_time = time_uptime;
1191 	ac->ac_flags |= AC_ACTIVE;
1192 	amr_outl(amr, AMR_QREG_IDB,
1193 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1194 	return (0);
1195 }
1196 
1197 static int
1198 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1199 {
1200 
1201 	amr->amr_mbox->mb_poll = 0;
1202 	amr->amr_mbox->mb_ack = 0;
1203 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1204 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1205 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1206 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1207 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1208 		return (EAGAIN);
1209 
1210 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1211 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1212 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1213 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1214 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1215 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1216 		return (EAGAIN);
1217 	}
1218 
1219 	amr->amr_mbox->mb_segment = 0;
1220 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1221 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1222 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1223 
1224 	ac->ac_start_time = time_uptime;
1225 	ac->ac_flags |= AC_ACTIVE;
1226 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1227 	return (0);
1228 }
1229 
1230 /*
1231  * Claim any work that the controller has completed; acknowledge completion,
1232  * save details of the completion in (mbsave).  Must be called with
1233  * interrupts blocked.
1234  */
1235 static int
1236 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1237 {
1238 
1239 	/* Work waiting for us? */
1240 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1241 		return (-1);
1242 
1243 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1244 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1245 
1246 	/* Save the mailbox, which contains a list of completed commands. */
1247 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1248 
1249 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1250 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1251 
1252 	/* Ack the interrupt and mailbox transfer. */
1253 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1254 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1255 
1256 	/*
1257 	 * This waits for the controller to notice that we've taken the
1258 	 * command from it.  It's very inefficient, and we shouldn't do it,
1259 	 * but if we remove this code, we stop completing commands under
1260 	 * load.
1261 	 *
1262 	 * Peter J says we shouldn't do this.  The documentation says we
1263 	 * should.  Who is right?
1264 	 */
1265 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1266 		DELAY(10);
1267 
1268 	return (0);
1269 }
1270 
1271 static int
1272 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1273 {
1274 	u_int8_t istat;
1275 
1276 	/* Check for valid interrupt status. */
1277 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1278 		return (-1);
1279 
1280 	/* Ack the interrupt. */
1281 	amr_outb(amr, AMR_SREG_INTR, istat);
1282 
1283 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1284 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1285 
1286 	/* Save mailbox, which contains a list of completed commands. */
1287 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1288 
1289 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1290 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1291 
1292 	/* Ack mailbox transfer. */
1293 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1294 
1295 	return (0);
1296 }
1297 
1298 static void
1299 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1300 {
1301 	int i;
1302 
1303 	printf("%s: ", amr->amr_dv.dv_xname);
1304 	for (i = 0; i < 4; i++)
1305 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1306 	printf("\n");
1307 }
1308