1 /* $NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 60 */ 61 62 /* 63 * Driver for AMI RAID controllers. 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $"); 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/device.h> 73 #include <sys/queue.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/kthread.h> 79 #include <sys/kauth.h> 80 #include <sys/mutex.h> 81 #include <sys/condvar.h> 82 #include <sys/module.h> 83 84 #include <machine/endian.h> 85 #include <sys/bus.h> 86 87 #include <dev/pci/pcidevs.h> 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/amrreg.h> 90 #include <dev/pci/amrvar.h> 91 #include <dev/pci/amrio.h> 92 93 #include "locators.h" 94 95 #include "ioconf.h" 96 97 static void amr_attach(device_t, device_t, void *); 98 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 99 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, 100 void *); 101 static int amr_init(struct amr_softc *, const char *, 102 struct pci_attach_args *pa); 103 static int amr_intr(void *); 104 static int amr_match(device_t, cfdata_t, void *); 105 static int amr_rescan(device_t, const char *, const int *); 106 static int amr_print(void *, const char *); 107 static void amr_shutdown(void *); 108 static void amr_teardown(struct amr_softc *); 109 static void amr_quartz_thread(void *); 110 static void amr_std_thread(void *); 111 112 static int amr_quartz_get_work(struct amr_softc *, 113 struct amr_mailbox_resp *); 114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *); 117 118 static dev_type_open(amropen); 119 static dev_type_close(amrclose); 120 static dev_type_ioctl(amrioctl); 121 122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc), 123 amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0); 124 125 const struct cdevsw amr_cdevsw = { 126 .d_open = amropen, 127 .d_close = amrclose, 128 .d_read = noread, 129 .d_write = nowrite, 130 .d_ioctl = amrioctl, 131 .d_stop = nostop, 132 .d_tty = notty, 133 .d_poll = nopoll, 134 .d_mmap = nommap, 135 .d_kqfilter = nokqfilter, 136 .d_discard = nodiscard, 137 .d_flag = D_OTHER 138 }; 139 140 extern struct cfdriver amr_cd; 141 142 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 143 #define AT_SIG 0x02 /* Check for signature */ 144 145 static struct amr_pci_type { 146 u_short apt_vendor; 147 u_short apt_product; 148 u_short apt_flags; 149 } const amr_pci_type[] = { 150 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 151 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 152 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 154 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 156 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 158 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, 159 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ }, 160 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ }, 161 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ }, 162 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 163 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 164 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 165 }; 166 167 static struct amr_typestr { 168 const char *at_str; 169 int at_sig; 170 } const amr_typestr[] = { 171 { "Series 431", AMR_SIG_431 }, 172 { "Series 438", AMR_SIG_438 }, 173 { "Series 466", AMR_SIG_466 }, 174 { "Series 467", AMR_SIG_467 }, 175 { "Series 490", AMR_SIG_490 }, 176 { "Series 762", AMR_SIG_762 }, 177 { "HP NetRAID (T5)", AMR_SIG_T5 }, 178 { "HP NetRAID (T7)", AMR_SIG_T7 }, 179 }; 180 181 static struct { 182 const char *ds_descr; 183 int ds_happy; 184 } const amr_dstate[] = { 185 { "offline", 0 }, 186 { "degraded", 1 }, 187 { "optimal", 1 }, 188 { "online", 1 }, 189 { "failed", 0 }, 190 { "rebuilding", 1 }, 191 { "hotspare", 0 }, 192 }; 193 194 static void *amr_sdh; 195 196 static kcondvar_t thread_cv; 197 static kmutex_t thread_mutex; 198 199 static int amr_max_segs; 200 int amr_max_xfer; 201 202 static inline u_int8_t 203 amr_inb(struct amr_softc *amr, int off) 204 { 205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 207 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 208 } 209 210 static inline u_int32_t 211 amr_inl(struct amr_softc *amr, int off) 212 { 213 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 214 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 215 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 216 } 217 218 static inline void 219 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 220 { 221 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 222 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 223 BUS_SPACE_BARRIER_WRITE); 224 } 225 226 static inline void 227 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 228 { 229 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 230 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 231 BUS_SPACE_BARRIER_WRITE); 232 } 233 234 /* 235 * Match a supported device. 236 */ 237 static int 238 amr_match(device_t parent, cfdata_t match, void *aux) 239 { 240 struct pci_attach_args *pa; 241 pcireg_t s; 242 int i; 243 244 pa = (struct pci_attach_args *)aux; 245 246 /* 247 * Don't match the device if it's operating in I2O mode. In this 248 * case it should be handled by the `iop' driver. 249 */ 250 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 251 return (0); 252 253 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 254 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 255 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 256 break; 257 258 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 259 return (0); 260 261 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 262 return (1); 263 264 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 265 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 266 } 267 268 /* 269 * Attach a supported device. 270 */ 271 static void 272 amr_attach(device_t parent, device_t self, void *aux) 273 { 274 struct pci_attach_args *pa; 275 const struct amr_pci_type *apt; 276 struct amr_softc *amr; 277 pci_chipset_tag_t pc; 278 pci_intr_handle_t ih; 279 const char *intrstr; 280 pcireg_t reg; 281 int rseg, i, size, rv, memreg, ioreg; 282 struct amr_ccb *ac; 283 char intrbuf[PCI_INTRSTR_LEN]; 284 285 aprint_naive(": RAID controller\n"); 286 287 amr = device_private(self); 288 amr->amr_dv = self; 289 290 mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO); 291 292 pa = (struct pci_attach_args *)aux; 293 pc = pa->pa_pc; 294 295 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 296 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 297 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 298 break; 299 apt = amr_pci_type + i; 300 301 memreg = ioreg = 0; 302 for (i = 0x10; i <= 0x14; i += 4) { 303 reg = pci_conf_read(pc, pa->pa_tag, i); 304 switch (PCI_MAPREG_TYPE(reg)) { 305 case PCI_MAPREG_TYPE_MEM: 306 if (PCI_MAPREG_MEM_SIZE(reg) != 0) 307 memreg = i; 308 break; 309 case PCI_MAPREG_TYPE_IO: 310 if (PCI_MAPREG_IO_SIZE(reg) != 0) 311 ioreg = i; 312 break; 313 } 314 } 315 316 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 317 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 318 ; 319 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 320 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 321 ; 322 else { 323 aprint_error("can't map control registers\n"); 324 amr_teardown(amr); 325 return; 326 } 327 328 amr->amr_flags |= AMRF_PCI_REGS; 329 amr->amr_dmat = pa->pa_dmat; 330 amr->amr_pc = pa->pa_pc; 331 332 /* Enable the device. */ 333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 334 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 335 reg | PCI_COMMAND_MASTER_ENABLE); 336 337 /* Map and establish the interrupt. */ 338 if (pci_intr_map(pa, &ih)) { 339 aprint_error("can't map interrupt\n"); 340 amr_teardown(amr); 341 return; 342 } 343 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 344 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); 345 if (amr->amr_ih == NULL) { 346 aprint_error("can't establish interrupt"); 347 if (intrstr != NULL) 348 aprint_error(" at %s", intrstr); 349 aprint_error("\n"); 350 amr_teardown(amr); 351 return; 352 } 353 amr->amr_flags |= AMRF_PCI_INTR; 354 355 /* 356 * Allocate space for the mailbox and S/G lists. Some controllers 357 * don't like S/G lists to be located below 0x2000, so we allocate 358 * enough slop to enable us to compensate. 359 * 360 * The standard mailbox structure needs to be aligned on a 16-byte 361 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 362 * size, which precedes the standard mailbox. 363 */ 364 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 365 amr->amr_dmasize = size; 366 367 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0, 368 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 369 aprint_error_dev(amr->amr_dv, 370 "unable to allocate buffer, rv = %d\n", rv); 371 amr_teardown(amr); 372 return; 373 } 374 amr->amr_flags |= AMRF_DMA_ALLOC; 375 376 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 377 (void **)&amr->amr_mbox, 378 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 379 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n", 380 rv); 381 amr_teardown(amr); 382 return; 383 } 384 amr->amr_flags |= AMRF_DMA_MAP; 385 386 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 387 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 388 aprint_error_dev(amr->amr_dv, 389 "unable to create buffer DMA map, rv = %d\n", rv); 390 amr_teardown(amr); 391 return; 392 } 393 amr->amr_flags |= AMRF_DMA_CREATE; 394 395 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 396 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 397 aprint_error_dev(amr->amr_dv, 398 "unable to load buffer DMA map, rv = %d\n", rv); 399 amr_teardown(amr); 400 return; 401 } 402 amr->amr_flags |= AMRF_DMA_LOAD; 403 404 memset(amr->amr_mbox, 0, size); 405 406 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 407 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 408 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox + 409 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 410 411 /* 412 * Allocate and initalise the command control blocks. 413 */ 414 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); 415 amr->amr_ccbs = ac; 416 SLIST_INIT(&amr->amr_ccb_freelist); 417 TAILQ_INIT(&amr->amr_ccb_active); 418 amr->amr_flags |= AMRF_CCBS; 419 420 if (amr_max_xfer == 0) { 421 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 422 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 423 } 424 425 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 426 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 427 amr_max_segs, amr_max_xfer, 0, 428 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 429 if (rv != 0) 430 break; 431 432 ac->ac_ident = i; 433 cv_init(&ac->ac_cv, "amr1ccb"); 434 mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE); 435 amr_ccb_free(amr, ac); 436 } 437 if (i != AMR_MAX_CMDS) { 438 aprint_error_dev(amr->amr_dv, "memory exhausted\n"); 439 amr_teardown(amr); 440 return; 441 } 442 443 /* 444 * Take care of model-specific tasks. 445 */ 446 if ((apt->apt_flags & AT_QUARTZ) != 0) { 447 amr->amr_submit = amr_quartz_submit; 448 amr->amr_get_work = amr_quartz_get_work; 449 } else { 450 amr->amr_submit = amr_std_submit; 451 amr->amr_get_work = amr_std_get_work; 452 453 /* Notify the controller of the mailbox location. */ 454 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 455 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 456 457 /* Clear outstanding interrupts and enable interrupts. */ 458 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 459 amr_outb(amr, AMR_SREG_TOGL, 460 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 461 } 462 463 /* 464 * Retrieve parameters, and tell the world about us. 465 */ 466 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); 467 amr->amr_flags |= AMRF_ENQBUF; 468 amr->amr_maxqueuecnt = i; 469 aprint_normal(": AMI RAID "); 470 if (amr_init(amr, intrstr, pa) != 0) { 471 amr_teardown(amr); 472 return; 473 } 474 475 /* 476 * Cap the maximum number of outstanding commands. AMI's Linux 477 * driver doesn't trust the controller's reported value, and lockups 478 * have been seen when we do. 479 */ 480 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 481 if (amr->amr_maxqueuecnt > i) 482 amr->amr_maxqueuecnt = i; 483 484 /* Set our `shutdownhook' before we start any device activity. */ 485 if (amr_sdh == NULL) 486 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 487 488 /* Attach sub-devices. */ 489 amr_rescan(self, "amr", 0); 490 491 SIMPLEQ_INIT(&amr->amr_ccb_queue); 492 493 cv_init(&thread_cv, "amrwdog"); 494 mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE); 495 496 if ((apt->apt_flags & AT_QUARTZ) == 0) { 497 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 498 amr_std_thread, amr, &amr->amr_thread, 499 "%s", device_xname(amr->amr_dv)); 500 } else { 501 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 502 amr_quartz_thread, amr, &amr->amr_thread, 503 "%s", device_xname(amr->amr_dv)); 504 } 505 if (rv != 0) 506 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)", 507 rv); 508 else 509 amr->amr_flags |= AMRF_THREAD; 510 } 511 512 static int 513 amr_rescan(device_t self, const char *attr, const int *flags) 514 { 515 int j; 516 int locs[AMRCF_NLOCS]; 517 struct amr_attach_args amra; 518 struct amr_softc *amr; 519 520 amr = device_private(self); 521 for (j = 0; j < amr->amr_numdrives; j++) { 522 if (amr->amr_drive[j].al_dv) 523 continue; 524 if (amr->amr_drive[j].al_size == 0) 525 continue; 526 amra.amra_unit = j; 527 528 locs[AMRCF_UNIT] = j; 529 530 amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv, 531 attr, locs, &amra, amr_print, config_stdsubmatch); 532 } 533 return 0; 534 } 535 536 /* 537 * Free up resources. 538 */ 539 static void 540 amr_teardown(struct amr_softc *amr) 541 { 542 struct amr_ccb *ac; 543 int fl; 544 545 fl = amr->amr_flags; 546 547 if ((fl & AMRF_THREAD) != 0) { 548 amr->amr_flags |= AMRF_THREAD_EXIT; 549 mutex_enter(&thread_mutex); 550 cv_broadcast(&thread_cv); 551 mutex_exit(&thread_mutex); 552 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 553 mutex_enter(&thread_mutex); 554 cv_wait(&thread_cv, &thread_mutex); 555 mutex_exit(&thread_mutex); 556 } 557 } 558 if ((fl & AMRF_CCBS) != 0) { 559 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 560 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 561 } 562 free(amr->amr_ccbs, M_DEVBUF); 563 } 564 if ((fl & AMRF_ENQBUF) != 0) 565 free(amr->amr_enqbuf, M_DEVBUF); 566 if ((fl & AMRF_DMA_LOAD) != 0) 567 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 568 if ((fl & AMRF_DMA_MAP) != 0) 569 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox, 570 amr->amr_dmasize); 571 if ((fl & AMRF_DMA_ALLOC) != 0) 572 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 573 if ((fl & AMRF_DMA_CREATE) != 0) 574 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 575 if ((fl & AMRF_PCI_INTR) != 0) 576 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 577 if ((fl & AMRF_PCI_REGS) != 0) 578 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 579 } 580 581 /* 582 * Print autoconfiguration message for a sub-device. 583 */ 584 static int 585 amr_print(void *aux, const char *pnp) 586 { 587 struct amr_attach_args *amra; 588 589 amra = (struct amr_attach_args *)aux; 590 591 if (pnp != NULL) 592 aprint_normal("block device at %s", pnp); 593 aprint_normal(" unit %d", amra->amra_unit); 594 return (UNCONF); 595 } 596 597 /* 598 * Retrieve operational parameters and describe the controller. 599 */ 600 static int 601 amr_init(struct amr_softc *amr, const char *intrstr, 602 struct pci_attach_args *pa) 603 { 604 struct amr_adapter_info *aa; 605 struct amr_prodinfo *ap; 606 struct amr_enquiry *ae; 607 struct amr_enquiry3 *aex; 608 const char *prodstr; 609 u_int i, sig, ishp; 610 char sbuf[64]; 611 612 /* 613 * Try to get 40LD product info, which tells us what the card is 614 * labelled as. 615 */ 616 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 617 amr->amr_enqbuf); 618 if (ap != NULL) { 619 aprint_normal("<%.80s>\n", ap->ap_product); 620 if (intrstr != NULL) 621 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n", 622 intrstr); 623 aprint_normal_dev(amr->amr_dv, 624 "firmware %.16s, BIOS %.16s, %dMB RAM\n", 625 ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize)); 626 627 amr->amr_maxqueuecnt = ap->ap_maxio; 628 629 /* 630 * Fetch and record state of logical drives. 631 */ 632 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 633 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 634 if (aex == NULL) { 635 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n"); 636 return (-1); 637 } 638 639 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) { 640 aprint_error_dev(amr->amr_dv, "Inquiry returned more " 641 "drives (%d) than the array can handle (%zu)\n", 642 aex->ae_numldrives, 643 __arraycount(aex->ae_drivestate)); 644 aex->ae_numldrives = __arraycount(aex->ae_drivestate); 645 } 646 if (aex->ae_numldrives > AMR_MAX_UNITS) { 647 aprint_error_dev(amr->amr_dv, 648 "adjust AMR_MAX_UNITS to %d (currently %d)\n", 649 AMR_MAX_UNITS, amr->amr_numdrives); 650 amr->amr_numdrives = AMR_MAX_UNITS; 651 } else 652 amr->amr_numdrives = aex->ae_numldrives; 653 654 for (i = 0; i < amr->amr_numdrives; i++) { 655 amr->amr_drive[i].al_size = 656 le32toh(aex->ae_drivesize[i]); 657 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 658 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 659 } 660 661 return (0); 662 } 663 664 /* 665 * Try 8LD extended ENQUIRY to get the controller signature. Once 666 * found, search for a product description. 667 */ 668 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 669 if (ae != NULL) { 670 i = 0; 671 sig = le32toh(ae->ae_signature); 672 673 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 674 if (amr_typestr[i].at_sig == sig) 675 break; 676 i++; 677 } 678 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 679 snprintf(sbuf, sizeof(sbuf), 680 "unknown ENQUIRY2 sig (0x%08x)", sig); 681 prodstr = sbuf; 682 } else 683 prodstr = amr_typestr[i].at_str; 684 } else { 685 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 686 if (ae == NULL) { 687 aprint_error_dev(amr->amr_dv, 688 "unsupported controller\n"); 689 return (-1); 690 } 691 692 switch (PCI_PRODUCT(pa->pa_id)) { 693 case PCI_PRODUCT_AMI_MEGARAID: 694 prodstr = "Series 428"; 695 break; 696 case PCI_PRODUCT_AMI_MEGARAID2: 697 prodstr = "Series 434"; 698 break; 699 default: 700 snprintf(sbuf, sizeof(sbuf), 701 "unknown PCI dev (0x%04x)", 702 PCI_PRODUCT(pa->pa_id)); 703 prodstr = sbuf; 704 break; 705 } 706 } 707 708 /* 709 * HP NetRaid controllers have a special encoding of the firmware 710 * and BIOS versions. The AMI version seems to have it as strings 711 * whereas the HP version does it with a leading uppercase character 712 * and two binary numbers. 713 */ 714 aa = &ae->ae_adapter; 715 716 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 717 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 718 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 719 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 720 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 721 /* The AMI 438 is a NetRaid 3si in HP-land. */ 722 prodstr = "HP NetRaid 3si"; 723 } 724 ishp = 1; 725 } else 726 ishp = 0; 727 728 aprint_normal("<%s>\n", prodstr); 729 if (intrstr != NULL) 730 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n", 731 intrstr); 732 733 if (ishp) 734 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, " 735 "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2], 736 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 737 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 738 else 739 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, " 740 "%dMB RAM\n", aa->aa_firmware, aa->aa_bios, 741 aa->aa_memorysize); 742 743 amr->amr_maxqueuecnt = aa->aa_maxio; 744 745 /* 746 * Record state of logical drives. 747 */ 748 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) { 749 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives " 750 "(%d) than the array can handle (%zu)\n", 751 ae->ae_ldrv.al_numdrives, 752 __arraycount(ae->ae_ldrv.al_size)); 753 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size); 754 } 755 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 756 aprint_error_dev(amr->amr_dv, 757 "adjust AMR_MAX_UNITS to %d (currently %d)\n", 758 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS); 759 amr->amr_numdrives = AMR_MAX_UNITS; 760 } else 761 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 762 763 for (i = 0; i < amr->amr_numdrives; i++) { 764 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 765 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 766 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 767 } 768 769 return (0); 770 } 771 772 /* 773 * Flush the internal cache on each configured controller. Called at 774 * shutdown time. 775 */ 776 static void 777 amr_shutdown(void *cookie) 778 { 779 extern struct cfdriver amr_cd; 780 struct amr_softc *amr; 781 struct amr_ccb *ac; 782 int i, rv; 783 784 for (i = 0; i < amr_cd.cd_ndevs; i++) { 785 if ((amr = device_lookup_private(&amr_cd, i)) == NULL) 786 continue; 787 788 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 789 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 790 rv = amr_ccb_poll(amr, ac, 30000); 791 amr_ccb_free(amr, ac); 792 } 793 if (rv != 0) 794 aprint_error_dev(amr->amr_dv, 795 "unable to flush cache (%d)\n", rv); 796 } 797 } 798 799 /* 800 * Interrupt service routine. 801 */ 802 static int 803 amr_intr(void *cookie) 804 { 805 struct amr_softc *amr; 806 struct amr_ccb *ac; 807 struct amr_mailbox_resp mbox; 808 u_int i, forus, idx; 809 810 amr = cookie; 811 forus = 0; 812 813 mutex_spin_enter(&amr->amr_mutex); 814 815 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 816 /* Iterate over completed commands in this result. */ 817 for (i = 0; i < mbox.mb_nstatus; i++) { 818 idx = mbox.mb_completed[i] - 1; 819 ac = amr->amr_ccbs + idx; 820 821 if (idx >= amr->amr_maxqueuecnt) { 822 printf("%s: bad status (bogus ID: %u=%u)\n", 823 device_xname(amr->amr_dv), i, idx); 824 continue; 825 } 826 827 if ((ac->ac_flags & AC_ACTIVE) == 0) { 828 printf("%s: bad status (not active; 0x04%x)\n", 829 device_xname(amr->amr_dv), ac->ac_flags); 830 continue; 831 } 832 833 ac->ac_status = mbox.mb_status; 834 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 835 AC_COMPLETE; 836 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 837 838 if ((ac->ac_flags & AC_MOAN) != 0) 839 printf("%s: ccb %d completed\n", 840 device_xname(amr->amr_dv), ac->ac_ident); 841 842 /* Pass notification to upper layers. */ 843 mutex_spin_exit(&amr->amr_mutex); 844 if (ac->ac_handler != NULL) { 845 (*ac->ac_handler)(ac); 846 } else { 847 mutex_enter(&ac->ac_mutex); 848 cv_signal(&ac->ac_cv); 849 mutex_exit(&ac->ac_mutex); 850 } 851 mutex_spin_enter(&amr->amr_mutex); 852 } 853 forus = 1; 854 } 855 856 mutex_spin_exit(&amr->amr_mutex); 857 858 if (forus) 859 amr_ccb_enqueue(amr, NULL); 860 861 return (forus); 862 } 863 864 /* 865 * Watchdog thread. 866 */ 867 static void 868 amr_quartz_thread(void *cookie) 869 { 870 struct amr_softc *amr; 871 struct amr_ccb *ac; 872 873 amr = cookie; 874 875 for (;;) { 876 mutex_enter(&thread_mutex); 877 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS); 878 mutex_exit(&thread_mutex); 879 880 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 881 amr->amr_flags ^= AMRF_THREAD_EXIT; 882 mutex_enter(&thread_mutex); 883 cv_signal(&thread_cv); 884 mutex_exit(&thread_mutex); 885 kthread_exit(0); 886 } 887 888 if (amr_intr(amr) == 0) 889 amr_ccb_enqueue(amr, NULL); 890 891 mutex_spin_enter(&amr->amr_mutex); 892 ac = TAILQ_FIRST(&amr->amr_ccb_active); 893 while (ac != NULL) { 894 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime) 895 break; 896 if ((ac->ac_flags & AC_MOAN) == 0) { 897 printf("%s: ccb %d timed out; mailbox:\n", 898 device_xname(amr->amr_dv), ac->ac_ident); 899 amr_ccb_dump(amr, ac); 900 ac->ac_flags |= AC_MOAN; 901 } 902 ac = TAILQ_NEXT(ac, ac_chain.tailq); 903 } 904 mutex_spin_exit(&amr->amr_mutex); 905 } 906 } 907 908 static void 909 amr_std_thread(void *cookie) 910 { 911 struct amr_softc *amr; 912 struct amr_ccb *ac; 913 struct amr_logdrive *al; 914 struct amr_enquiry *ae; 915 int rv, i; 916 917 amr = cookie; 918 ae = amr->amr_enqbuf; 919 920 for (;;) { 921 mutex_enter(&thread_mutex); 922 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS); 923 mutex_exit(&thread_mutex); 924 925 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 926 amr->amr_flags ^= AMRF_THREAD_EXIT; 927 mutex_enter(&thread_mutex); 928 cv_signal(&thread_cv); 929 mutex_exit(&thread_mutex); 930 kthread_exit(0); 931 } 932 933 if (amr_intr(amr) == 0) 934 amr_ccb_enqueue(amr, NULL); 935 936 mutex_spin_enter(&amr->amr_mutex); 937 ac = TAILQ_FIRST(&amr->amr_ccb_active); 938 while (ac != NULL) { 939 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime) 940 break; 941 if ((ac->ac_flags & AC_MOAN) == 0) { 942 printf("%s: ccb %d timed out; mailbox:\n", 943 device_xname(amr->amr_dv), ac->ac_ident); 944 amr_ccb_dump(amr, ac); 945 ac->ac_flags |= AC_MOAN; 946 } 947 ac = TAILQ_NEXT(ac, ac_chain.tailq); 948 } 949 mutex_spin_exit(&amr->amr_mutex); 950 951 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 952 printf("%s: ccb_alloc failed (%d)\n", 953 device_xname(amr->amr_dv), rv); 954 continue; 955 } 956 957 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 958 959 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 960 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 961 if (rv != 0) { 962 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n", 963 rv); 964 amr_ccb_free(amr, ac); 965 continue; 966 } 967 968 rv = amr_ccb_wait(amr, ac); 969 amr_ccb_unmap(amr, ac); 970 if (rv != 0) { 971 aprint_error_dev(amr->amr_dv, 972 "enquiry failed (st=%d)\n", ac->ac_status); 973 continue; 974 } 975 amr_ccb_free(amr, ac); 976 977 al = amr->amr_drive; 978 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) { 979 if (al->al_dv == NULL) 980 continue; 981 if (al->al_state == ae->ae_ldrv.al_state[i]) 982 continue; 983 984 printf("%s: state changed: %s -> %s\n", 985 device_xname(al->al_dv), 986 amr_drive_state(al->al_state, NULL), 987 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 988 989 al->al_state = ae->ae_ldrv.al_state[i]; 990 } 991 } 992 } 993 994 /* 995 * Return a text description of a logical drive's current state. 996 */ 997 const char * 998 amr_drive_state(int state, int *happy) 999 { 1000 const char *str; 1001 1002 state = AMR_DRV_CURSTATE(state); 1003 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 1004 if (happy) 1005 *happy = 1; 1006 str = "status unknown"; 1007 } else { 1008 if (happy) 1009 *happy = amr_dstate[state].ds_happy; 1010 str = amr_dstate[state].ds_descr; 1011 } 1012 1013 return (str); 1014 } 1015 1016 /* 1017 * Run a generic enquiry-style command. 1018 */ 1019 static void * 1020 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 1021 u_int8_t cmdqual, void *sbuf) 1022 { 1023 struct amr_ccb *ac; 1024 u_int8_t *mb; 1025 int rv; 1026 1027 if (amr_ccb_alloc(amr, &ac) != 0) 1028 return (NULL); 1029 1030 /* Build the command proper. */ 1031 mb = (u_int8_t *)&ac->ac_cmd; 1032 mb[0] = cmd; 1033 mb[2] = cmdsub; 1034 mb[3] = cmdqual; 1035 1036 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 1037 if (rv == 0) { 1038 rv = amr_ccb_poll(amr, ac, 2000); 1039 amr_ccb_unmap(amr, ac); 1040 } 1041 amr_ccb_free(amr, ac); 1042 1043 return (rv ? NULL : sbuf); 1044 } 1045 1046 /* 1047 * Allocate and initialise a CCB. 1048 */ 1049 int 1050 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 1051 { 1052 mutex_spin_enter(&amr->amr_mutex); 1053 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 1054 mutex_spin_exit(&amr->amr_mutex); 1055 return (EAGAIN); 1056 } 1057 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 1058 mutex_spin_exit(&amr->amr_mutex); 1059 1060 return (0); 1061 } 1062 1063 /* 1064 * Free a CCB. 1065 */ 1066 void 1067 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 1068 { 1069 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 1070 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 1071 ac->ac_cmd.mb_busy = 1; 1072 ac->ac_handler = NULL; 1073 ac->ac_flags = 0; 1074 1075 mutex_spin_enter(&amr->amr_mutex); 1076 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 1077 mutex_spin_exit(&amr->amr_mutex); 1078 } 1079 1080 /* 1081 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1082 * the order that they were enqueued and try to submit their command blocks 1083 * to the controller for execution. 1084 */ 1085 void 1086 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 1087 { 1088 if (ac != NULL) { 1089 mutex_spin_enter(&amr->amr_mutex); 1090 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1091 mutex_spin_exit(&amr->amr_mutex); 1092 } 1093 1094 while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) { 1095 mutex_spin_enter(&amr->amr_mutex); 1096 if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1097 if ((*amr->amr_submit)(amr, ac) != 0) { 1098 mutex_spin_exit(&amr->amr_mutex); 1099 break; 1100 } 1101 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, 1102 ac_chain.simpleq); 1103 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, 1104 ac_chain.tailq); 1105 } 1106 mutex_spin_exit(&amr->amr_mutex); 1107 } 1108 } 1109 1110 /* 1111 * Map the specified CCB's data buffer onto the bus, and fill the 1112 * scatter-gather list. 1113 */ 1114 int 1115 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1116 int tflag) 1117 { 1118 struct amr_sgentry *sge; 1119 struct amr_mailbox_cmd *mb; 1120 int nsegs, i, rv, sgloff; 1121 bus_dmamap_t xfer; 1122 int dmaflag = 0; 1123 1124 xfer = ac->ac_xfer_map; 1125 1126 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1127 BUS_DMA_NOWAIT); 1128 if (rv != 0) 1129 return (rv); 1130 1131 mb = &ac->ac_cmd; 1132 ac->ac_xfer_size = size; 1133 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN)); 1134 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1135 1136 if (tflag & AC_XFER_OUT) 1137 dmaflag |= BUS_DMASYNC_PREWRITE; 1138 if (tflag & AC_XFER_IN) 1139 dmaflag |= BUS_DMASYNC_PREREAD; 1140 1141 /* We don't need to use a scatter/gather list for just 1 segment. */ 1142 nsegs = xfer->dm_nsegs; 1143 if (nsegs == 1) { 1144 mb->mb_nsgelem = 0; 1145 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1146 ac->ac_flags |= AC_NOSGL; 1147 } else { 1148 mb->mb_nsgelem = nsegs; 1149 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1150 1151 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff); 1152 for (i = 0; i < nsegs; i++, sge++) { 1153 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1154 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1155 } 1156 } 1157 1158 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag); 1159 1160 if ((ac->ac_flags & AC_NOSGL) == 0) 1161 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1162 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1163 1164 return (0); 1165 } 1166 1167 /* 1168 * Unmap the specified CCB's data buffer. 1169 */ 1170 void 1171 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1172 { 1173 int dmaflag = 0; 1174 1175 if (ac->ac_flags & AC_XFER_IN) 1176 dmaflag |= BUS_DMASYNC_POSTREAD; 1177 if (ac->ac_flags & AC_XFER_OUT) 1178 dmaflag |= BUS_DMASYNC_POSTWRITE; 1179 1180 if ((ac->ac_flags & AC_NOSGL) == 0) 1181 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1182 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1183 BUS_DMASYNC_POSTWRITE); 1184 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1185 dmaflag); 1186 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1187 } 1188 1189 /* 1190 * Submit a command to the controller and poll on completion. Return 1191 * non-zero on timeout or error. 1192 */ 1193 int 1194 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1195 { 1196 int rv, i; 1197 1198 mutex_spin_enter(&amr->amr_mutex); 1199 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) { 1200 mutex_spin_exit(&amr->amr_mutex); 1201 return (rv); 1202 } 1203 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1204 mutex_spin_exit(&amr->amr_mutex); 1205 1206 for (i = timo * 10; i > 0; i--) { 1207 amr_intr(amr); 1208 if ((ac->ac_flags & AC_COMPLETE) != 0) 1209 break; 1210 DELAY(100); 1211 } 1212 1213 if (i == 0) 1214 printf("%s: polled operation timed out after %d ms\n", 1215 device_xname(amr->amr_dv), timo); 1216 1217 return ((i == 0 || ac->ac_status != 0) ? EIO : 0); 1218 } 1219 1220 /* 1221 * Submit a command to the controller and sleep on completion. Return 1222 * non-zero on error. 1223 */ 1224 int 1225 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1226 { 1227 amr_ccb_enqueue(amr, ac); 1228 mutex_enter(&ac->ac_mutex); 1229 cv_wait(&ac->ac_cv, &ac->ac_mutex); 1230 mutex_exit(&ac->ac_mutex); 1231 1232 return (ac->ac_status != 0 ? EIO : 0); 1233 } 1234 1235 #if 0 1236 /* 1237 * Wait for the mailbox to become available. 1238 */ 1239 static int 1240 amr_mbox_wait(struct amr_softc *amr) 1241 { 1242 int timo; 1243 1244 for (timo = 10000; timo != 0; timo--) { 1245 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1246 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1247 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1248 break; 1249 DELAY(100); 1250 } 1251 1252 if (timo == 0) 1253 printf("%s: controller wedged\n", device_xname(amr->amr_dv)); 1254 1255 return (timo != 0 ? 0 : EAGAIN); 1256 } 1257 #endif 1258 1259 /* 1260 * Tell the controller that the mailbox contains a valid command. Must be 1261 * called with interrupts blocked. 1262 */ 1263 static int 1264 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1265 { 1266 int i = 0; 1267 u_int32_t v; 1268 1269 amr->amr_mbox->mb_poll = 0; 1270 amr->amr_mbox->mb_ack = 0; 1271 1272 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1273 sizeof(struct amr_mailbox), 1274 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1275 1276 v = amr_inl(amr, AMR_QREG_ODB); 1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1278 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1279 while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) { 1280 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1281 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1282 /* This is a no-op read that flushes pending mailbox updates */ 1283 v = amr_inl(amr, AMR_QREG_ODB); 1284 DELAY(1); 1285 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1286 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1287 } 1288 1289 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1290 return (EAGAIN); 1291 1292 v = amr_inl(amr, AMR_QREG_IDB); 1293 if ((v & AMR_QIDB_SUBMIT) != 0) { 1294 amr->amr_mbox->mb_cmd.mb_busy = 0; 1295 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1296 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1297 printf("%s: submit failed\n", device_xname(amr->amr_dv)); 1298 return (EAGAIN); 1299 } 1300 1301 amr->amr_mbox->mb_segment = 0; 1302 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1303 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1304 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1305 1306 ac->ac_start_time = time_uptime; 1307 ac->ac_flags |= AC_ACTIVE; 1308 1309 amr_outl(amr, AMR_QREG_IDB, 1310 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT); 1311 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1312 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE); 1313 1314 return (0); 1315 } 1316 1317 static int 1318 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1319 { 1320 1321 amr->amr_mbox->mb_poll = 0; 1322 amr->amr_mbox->mb_ack = 0; 1323 1324 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1325 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1326 1327 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1328 return (EAGAIN); 1329 1330 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1331 amr->amr_mbox->mb_cmd.mb_busy = 0; 1332 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1333 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1334 return (EAGAIN); 1335 } 1336 1337 amr->amr_mbox->mb_segment = 0; 1338 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1339 1340 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1341 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1342 1343 ac->ac_start_time = time_uptime; 1344 ac->ac_flags |= AC_ACTIVE; 1345 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1346 1347 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1348 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE); 1349 1350 return (0); 1351 } 1352 1353 /* 1354 * Claim any work that the controller has completed; acknowledge completion, 1355 * save details of the completion in (mbsave). Must be called with 1356 * interrupts blocked. 1357 */ 1358 static int 1359 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1360 { 1361 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1362 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1363 1364 /* Work waiting for us? */ 1365 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1366 return (-1); 1367 1368 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1369 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1370 1371 /* Save the mailbox, which contains a list of completed commands. */ 1372 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1373 1374 /* Ack the interrupt and mailbox transfer. */ 1375 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1376 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1377 1378 /* 1379 * This waits for the controller to notice that we've taken the 1380 * command from it. It's very inefficient, and we shouldn't do it, 1381 * but if we remove this code, we stop completing commands under 1382 * load. 1383 * 1384 * Peter J says we shouldn't do this. The documentation says we 1385 * should. Who is right? 1386 */ 1387 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1388 DELAY(10); 1389 1390 return (0); 1391 } 1392 1393 static int 1394 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1395 { 1396 u_int8_t istat; 1397 1398 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1399 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1400 1401 /* Check for valid interrupt status. */ 1402 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1403 return (-1); 1404 1405 /* Ack the interrupt. */ 1406 amr_outb(amr, AMR_SREG_INTR, istat); 1407 1408 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1409 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1410 1411 /* Save mailbox, which contains a list of completed commands. */ 1412 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1413 1414 /* Ack mailbox transfer. */ 1415 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1416 1417 return (0); 1418 } 1419 1420 static void 1421 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1422 { 1423 int i; 1424 1425 printf("%s: ", device_xname(amr->amr_dv)); 1426 for (i = 0; i < 4; i++) 1427 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1428 printf("\n"); 1429 } 1430 1431 static int 1432 amropen(dev_t dev, int flag, int mode, struct lwp *l) 1433 { 1434 struct amr_softc *amr; 1435 1436 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL) 1437 return (ENXIO); 1438 if ((amr->amr_flags & AMRF_OPEN) != 0) 1439 return (EBUSY); 1440 1441 amr->amr_flags |= AMRF_OPEN; 1442 return (0); 1443 } 1444 1445 static int 1446 amrclose(dev_t dev, int flag, int mode, struct lwp *l) 1447 { 1448 struct amr_softc *amr; 1449 1450 amr = device_lookup_private(&amr_cd, minor(dev)); 1451 amr->amr_flags &= ~AMRF_OPEN; 1452 return (0); 1453 } 1454 1455 /* used below to correct for a firmware bug */ 1456 static unsigned long 1457 amrioctl_buflen(unsigned long len) 1458 { 1459 if (len <= 4 * 1024) 1460 return (4 * 1024); 1461 if (len <= 8 * 1024) 1462 return (8 * 1024); 1463 if (len <= 32 * 1024) 1464 return (32 * 1024); 1465 if (len <= 64 * 1024) 1466 return (64 * 1024); 1467 return (len); 1468 } 1469 1470 static int 1471 amrioctl(dev_t dev, u_long cmd, void *data, int flag, 1472 struct lwp *l) 1473 { 1474 struct amr_softc *amr; 1475 struct amr_user_ioctl *au; 1476 struct amr_ccb *ac; 1477 struct amr_mailbox_ioctl *mbi; 1478 unsigned long au_length; 1479 uint8_t *au_cmd; 1480 int error; 1481 void *dp = NULL, *au_buffer; 1482 1483 amr = device_lookup_private(&amr_cd, minor(dev)); 1484 1485 /* This should be compatible with the FreeBSD interface */ 1486 1487 switch (cmd) { 1488 case AMR_IO_VERSION: 1489 *(int *)data = AMR_IO_VERSION_NUMBER; 1490 return 0; 1491 case AMR_IO_COMMAND: 1492 error = kauth_authorize_device_passthru(l->l_cred, dev, 1493 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1494 if (error) 1495 return (error); 1496 1497 au = (struct amr_user_ioctl *)data; 1498 au_cmd = au->au_cmd; 1499 au_buffer = au->au_buffer; 1500 au_length = au->au_length; 1501 break; 1502 default: 1503 return ENOTTY; 1504 } 1505 1506 if (au_cmd[0] == AMR_CMD_PASS) { 1507 /* not yet */ 1508 return EOPNOTSUPP; 1509 } 1510 1511 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06) 1512 return (EINVAL); 1513 1514 /* 1515 * allocate kernel memory for data, doing I/O directly to user 1516 * buffer isn't that easy. Correct allocation size for a bug 1517 * in at least some versions of the device firmware, by using 1518 * the amrioctl_buflen() function, defined above. 1519 */ 1520 dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO); 1521 if (dp == NULL) 1522 return ENOMEM; 1523 if ((error = copyin(au_buffer, dp, au_length)) != 0) 1524 goto out; 1525 1526 /* direct command to controller */ 1527 while (amr_ccb_alloc(amr, &ac) != 0) { 1528 mutex_enter(&thread_mutex); 1529 error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz); 1530 mutex_exit(&thread_mutex); 1531 if (error == EINTR) 1532 goto out; 1533 } 1534 1535 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd; 1536 mbi->mb_command = au_cmd[0]; 1537 mbi->mb_channel = au_cmd[1]; 1538 mbi->mb_param = au_cmd[2]; 1539 mbi->mb_pad[0] = au_cmd[3]; 1540 mbi->mb_drive = au_cmd[4]; 1541 error = amr_ccb_map(amr, ac, dp, (int)au_length, 1542 AC_XFER_IN | AC_XFER_OUT); 1543 if (error == 0) { 1544 error = amr_ccb_wait(amr, ac); 1545 amr_ccb_unmap(amr, ac); 1546 if (error == 0) 1547 error = copyout(dp, au_buffer, au_length); 1548 1549 } 1550 amr_ccb_free(amr, ac); 1551 out: 1552 free(dp, M_DEVBUF); 1553 return (error); 1554 } 1555 1556 MODULE(MODULE_CLASS_DRIVER, amr, "pci"); 1557 1558 #ifdef _MODULE 1559 #include "ioconf.c" 1560 #endif 1561 1562 static int 1563 amr_modcmd(modcmd_t cmd, void *opaque) 1564 { 1565 int error = 0; 1566 1567 #ifdef _MODULE 1568 switch (cmd) { 1569 case MODULE_CMD_INIT: 1570 error = config_init_component(cfdriver_ioconf_amr, 1571 cfattach_ioconf_amr, cfdata_ioconf_amr); 1572 break; 1573 case MODULE_CMD_FINI: 1574 error = config_fini_component(cfdriver_ioconf_amr, 1575 cfattach_ioconf_amr, cfdata_ioconf_amr); 1576 break; 1577 default: 1578 error = ENOTTY; 1579 break; 1580 } 1581 #endif 1582 1583 return error; 1584 } 1585 1586