xref: /netbsd-src/sys/dev/pci/amr.c (revision c9496f6b604074a9451a67df576a5b423068e71e)
1 /*	$NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60  */
61 
62 /*
63  * Driver for AMI RAID controllers.
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.62 2016/09/27 03:33:32 pgoyette Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82 #include <sys/module.h>
83 
84 #include <machine/endian.h>
85 #include <sys/bus.h>
86 
87 #include <dev/pci/pcidevs.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/amrreg.h>
90 #include <dev/pci/amrvar.h>
91 #include <dev/pci/amrio.h>
92 
93 #include "locators.h"
94 
95 #include "ioconf.h"
96 
97 static void	amr_attach(device_t, device_t, void *);
98 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
99 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
100 			     void *);
101 static int	amr_init(struct amr_softc *, const char *,
102 			 struct pci_attach_args *pa);
103 static int	amr_intr(void *);
104 static int	amr_match(device_t, cfdata_t, void *);
105 static int	amr_rescan(device_t, const char *, const int *);
106 static int	amr_print(void *, const char *);
107 static void	amr_shutdown(void *);
108 static void	amr_teardown(struct amr_softc *);
109 static void	amr_quartz_thread(void *);
110 static void	amr_std_thread(void *);
111 
112 static int	amr_quartz_get_work(struct amr_softc *,
113 				    struct amr_mailbox_resp *);
114 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
117 
118 static dev_type_open(amropen);
119 static dev_type_close(amrclose);
120 static dev_type_ioctl(amrioctl);
121 
122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc),
123     amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0);
124 
125 const struct cdevsw amr_cdevsw = {
126 	.d_open = amropen,
127 	.d_close = amrclose,
128 	.d_read = noread,
129 	.d_write = nowrite,
130 	.d_ioctl = amrioctl,
131 	.d_stop = nostop,
132 	.d_tty = notty,
133 	.d_poll = nopoll,
134 	.d_mmap = nommap,
135 	.d_kqfilter = nokqfilter,
136 	.d_discard = nodiscard,
137 	.d_flag = D_OTHER
138 };
139 
140 extern struct   cfdriver amr_cd;
141 
142 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
143 #define	AT_SIG		0x02	/* Check for signature */
144 
145 static struct amr_pci_type {
146 	u_short	apt_vendor;
147 	u_short	apt_product;
148 	u_short	apt_flags;
149 } const amr_pci_type[] = {
150 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
151 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
152 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
153 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
154 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
155 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
159 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
160 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
161 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
162 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
163 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
164 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
165 };
166 
167 static struct amr_typestr {
168 	const char	*at_str;
169 	int		at_sig;
170 } const amr_typestr[] = {
171 	{ "Series 431",			AMR_SIG_431 },
172 	{ "Series 438",			AMR_SIG_438 },
173 	{ "Series 466",			AMR_SIG_466 },
174 	{ "Series 467",			AMR_SIG_467 },
175 	{ "Series 490",			AMR_SIG_490 },
176 	{ "Series 762",			AMR_SIG_762 },
177 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
178 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
179 };
180 
181 static struct {
182 	const char	*ds_descr;
183 	int	ds_happy;
184 } const amr_dstate[] = {
185 	{ "offline",	0 },
186 	{ "degraded",	1 },
187 	{ "optimal",	1 },
188 	{ "online",	1 },
189 	{ "failed",	0 },
190 	{ "rebuilding",	1 },
191 	{ "hotspare",	0 },
192 };
193 
194 static void	*amr_sdh;
195 
196 static kcondvar_t thread_cv;
197 static kmutex_t	thread_mutex;
198 
199 static int	amr_max_segs;
200 int		amr_max_xfer;
201 
202 static inline u_int8_t
203 amr_inb(struct amr_softc *amr, int off)
204 {
205 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
206 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
208 }
209 
210 static inline u_int32_t
211 amr_inl(struct amr_softc *amr, int off)
212 {
213 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
214 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
215 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
216 }
217 
218 static inline void
219 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
220 {
221 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
222 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
223 	    BUS_SPACE_BARRIER_WRITE);
224 }
225 
226 static inline void
227 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
228 {
229 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
230 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
231 	    BUS_SPACE_BARRIER_WRITE);
232 }
233 
234 /*
235  * Match a supported device.
236  */
237 static int
238 amr_match(device_t parent, cfdata_t match, void *aux)
239 {
240 	struct pci_attach_args *pa;
241 	pcireg_t s;
242 	int i;
243 
244 	pa = (struct pci_attach_args *)aux;
245 
246 	/*
247 	 * Don't match the device if it's operating in I2O mode.  In this
248 	 * case it should be handled by the `iop' driver.
249 	 */
250 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
251 		return (0);
252 
253 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
254 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
255 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
256 		    	break;
257 
258 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
259 		return (0);
260 
261 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
262 		return (1);
263 
264 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
265 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
266 }
267 
268 /*
269  * Attach a supported device.
270  */
271 static void
272 amr_attach(device_t parent, device_t self, void *aux)
273 {
274 	struct pci_attach_args *pa;
275 	const struct amr_pci_type *apt;
276 	struct amr_softc *amr;
277 	pci_chipset_tag_t pc;
278 	pci_intr_handle_t ih;
279 	const char *intrstr;
280 	pcireg_t reg;
281 	int rseg, i, size, rv, memreg, ioreg;
282 	struct amr_ccb *ac;
283 	char intrbuf[PCI_INTRSTR_LEN];
284 
285 	aprint_naive(": RAID controller\n");
286 
287 	amr = device_private(self);
288 	amr->amr_dv = self;
289 
290 	mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
291 
292 	pa = (struct pci_attach_args *)aux;
293 	pc = pa->pa_pc;
294 
295 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
296 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
297 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
298 			break;
299 	apt = amr_pci_type + i;
300 
301 	memreg = ioreg = 0;
302 	for (i = 0x10; i <= 0x14; i += 4) {
303 		reg = pci_conf_read(pc, pa->pa_tag, i);
304 		switch (PCI_MAPREG_TYPE(reg)) {
305 		case PCI_MAPREG_TYPE_MEM:
306 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
307 				memreg = i;
308 			break;
309 		case PCI_MAPREG_TYPE_IO:
310 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
311 				ioreg = i;
312 			break;
313 		}
314 	}
315 
316 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
317 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 		;
319 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
320 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
321 		;
322 	else {
323 		aprint_error("can't map control registers\n");
324 		amr_teardown(amr);
325 		return;
326 	}
327 
328 	amr->amr_flags |= AMRF_PCI_REGS;
329 	amr->amr_dmat = pa->pa_dmat;
330 	amr->amr_pc = pa->pa_pc;
331 
332 	/* Enable the device. */
333 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
335 	    reg | PCI_COMMAND_MASTER_ENABLE);
336 
337 	/* Map and establish the interrupt. */
338 	if (pci_intr_map(pa, &ih)) {
339 		aprint_error("can't map interrupt\n");
340 		amr_teardown(amr);
341 		return;
342 	}
343 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
344 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
345 	if (amr->amr_ih == NULL) {
346 		aprint_error("can't establish interrupt");
347 		if (intrstr != NULL)
348 			aprint_error(" at %s", intrstr);
349 		aprint_error("\n");
350 		amr_teardown(amr);
351 		return;
352 	}
353 	amr->amr_flags |= AMRF_PCI_INTR;
354 
355 	/*
356 	 * Allocate space for the mailbox and S/G lists.  Some controllers
357 	 * don't like S/G lists to be located below 0x2000, so we allocate
358 	 * enough slop to enable us to compensate.
359 	 *
360 	 * The standard mailbox structure needs to be aligned on a 16-byte
361 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
362 	 * size, which precedes the standard mailbox.
363 	 */
364 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
365 	amr->amr_dmasize = size;
366 
367 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
368 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
369 		aprint_error_dev(amr->amr_dv,
370 		    "unable to allocate buffer, rv = %d\n", rv);
371 		amr_teardown(amr);
372 		return;
373 	}
374 	amr->amr_flags |= AMRF_DMA_ALLOC;
375 
376 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
377 	    (void **)&amr->amr_mbox,
378 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
379 		aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
380 		    rv);
381 		amr_teardown(amr);
382 		return;
383 	}
384 	amr->amr_flags |= AMRF_DMA_MAP;
385 
386 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
387 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
388 		aprint_error_dev(amr->amr_dv,
389 		    "unable to create buffer DMA map, rv = %d\n", rv);
390 		amr_teardown(amr);
391 		return;
392 	}
393 	amr->amr_flags |= AMRF_DMA_CREATE;
394 
395 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
396 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
397 		aprint_error_dev(amr->amr_dv,
398 		    "unable to load buffer DMA map, rv = %d\n", rv);
399 		amr_teardown(amr);
400 		return;
401 	}
402 	amr->amr_flags |= AMRF_DMA_LOAD;
403 
404 	memset(amr->amr_mbox, 0, size);
405 
406 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
407 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
408 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
409 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
410 
411 	/*
412 	 * Allocate and initalise the command control blocks.
413 	 */
414 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
415 	amr->amr_ccbs = ac;
416 	SLIST_INIT(&amr->amr_ccb_freelist);
417 	TAILQ_INIT(&amr->amr_ccb_active);
418 	amr->amr_flags |= AMRF_CCBS;
419 
420 	if (amr_max_xfer == 0) {
421 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
422 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
423 	}
424 
425 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
426 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
427 		    amr_max_segs, amr_max_xfer, 0,
428 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
429 		if (rv != 0)
430 			break;
431 
432 		ac->ac_ident = i;
433 		cv_init(&ac->ac_cv, "amr1ccb");
434 		mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
435 		amr_ccb_free(amr, ac);
436 	}
437 	if (i != AMR_MAX_CMDS) {
438 		aprint_error_dev(amr->amr_dv, "memory exhausted\n");
439 		amr_teardown(amr);
440 		return;
441 	}
442 
443 	/*
444 	 * Take care of model-specific tasks.
445 	 */
446 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
447 		amr->amr_submit = amr_quartz_submit;
448 		amr->amr_get_work = amr_quartz_get_work;
449 	} else {
450 		amr->amr_submit = amr_std_submit;
451 		amr->amr_get_work = amr_std_get_work;
452 
453 		/* Notify the controller of the mailbox location. */
454 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
455 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
456 
457 		/* Clear outstanding interrupts and enable interrupts. */
458 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
459 		amr_outb(amr, AMR_SREG_TOGL,
460 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
461 	}
462 
463 	/*
464 	 * Retrieve parameters, and tell the world about us.
465 	 */
466 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
467 	amr->amr_flags |= AMRF_ENQBUF;
468 	amr->amr_maxqueuecnt = i;
469 	aprint_normal(": AMI RAID ");
470 	if (amr_init(amr, intrstr, pa) != 0) {
471 		amr_teardown(amr);
472 		return;
473 	}
474 
475 	/*
476 	 * Cap the maximum number of outstanding commands.  AMI's Linux
477 	 * driver doesn't trust the controller's reported value, and lockups
478 	 * have been seen when we do.
479 	 */
480 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
481 	if (amr->amr_maxqueuecnt > i)
482 		amr->amr_maxqueuecnt = i;
483 
484 	/* Set our `shutdownhook' before we start any device activity. */
485 	if (amr_sdh == NULL)
486 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
487 
488 	/* Attach sub-devices. */
489 	amr_rescan(self, "amr", 0);
490 
491 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
492 
493 	cv_init(&thread_cv, "amrwdog");
494 	mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
495 
496 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
497 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
498 				    amr_std_thread, amr, &amr->amr_thread,
499 				    "%s", device_xname(amr->amr_dv));
500 	} else {
501 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
502 				    amr_quartz_thread, amr, &amr->amr_thread,
503 				    "%s", device_xname(amr->amr_dv));
504 	}
505 	if (rv != 0)
506 		aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
507  		    rv);
508  	else
509  		amr->amr_flags |= AMRF_THREAD;
510 }
511 
512 static int
513 amr_rescan(device_t self, const char *attr, const int *flags)
514 {
515 	int j;
516 	int locs[AMRCF_NLOCS];
517 	struct amr_attach_args amra;
518 	struct amr_softc *amr;
519 
520 	amr = device_private(self);
521 	for (j = 0; j < amr->amr_numdrives; j++) {
522 		if (amr->amr_drive[j].al_dv)
523 			continue;
524 		if (amr->amr_drive[j].al_size == 0)
525 			continue;
526 		amra.amra_unit = j;
527 
528 		locs[AMRCF_UNIT] = j;
529 
530 		amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
531 			attr, locs, &amra, amr_print, config_stdsubmatch);
532 	}
533 	return 0;
534 }
535 
536 /*
537  * Free up resources.
538  */
539 static void
540 amr_teardown(struct amr_softc *amr)
541 {
542 	struct amr_ccb *ac;
543 	int fl;
544 
545 	fl = amr->amr_flags;
546 
547 	if ((fl & AMRF_THREAD) != 0) {
548 		amr->amr_flags |= AMRF_THREAD_EXIT;
549 		mutex_enter(&thread_mutex);
550 		cv_broadcast(&thread_cv);
551 		mutex_exit(&thread_mutex);
552 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
553 			mutex_enter(&thread_mutex);
554 			cv_wait(&thread_cv, &thread_mutex);
555 			mutex_exit(&thread_mutex);
556 		}
557 	}
558 	if ((fl & AMRF_CCBS) != 0) {
559 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
560 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
561 		}
562 		free(amr->amr_ccbs, M_DEVBUF);
563 	}
564 	if ((fl & AMRF_ENQBUF) != 0)
565 		free(amr->amr_enqbuf, M_DEVBUF);
566 	if ((fl & AMRF_DMA_LOAD) != 0)
567 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
568 	if ((fl & AMRF_DMA_MAP) != 0)
569 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
570 		    amr->amr_dmasize);
571 	if ((fl & AMRF_DMA_ALLOC) != 0)
572 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
573 	if ((fl & AMRF_DMA_CREATE) != 0)
574 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
575 	if ((fl & AMRF_PCI_INTR) != 0)
576 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
577 	if ((fl & AMRF_PCI_REGS) != 0)
578 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
579 }
580 
581 /*
582  * Print autoconfiguration message for a sub-device.
583  */
584 static int
585 amr_print(void *aux, const char *pnp)
586 {
587 	struct amr_attach_args *amra;
588 
589 	amra = (struct amr_attach_args *)aux;
590 
591 	if (pnp != NULL)
592 		aprint_normal("block device at %s", pnp);
593 	aprint_normal(" unit %d", amra->amra_unit);
594 	return (UNCONF);
595 }
596 
597 /*
598  * Retrieve operational parameters and describe the controller.
599  */
600 static int
601 amr_init(struct amr_softc *amr, const char *intrstr,
602 	 struct pci_attach_args *pa)
603 {
604 	struct amr_adapter_info *aa;
605 	struct amr_prodinfo *ap;
606 	struct amr_enquiry *ae;
607 	struct amr_enquiry3 *aex;
608 	const char *prodstr;
609 	u_int i, sig, ishp;
610 	char sbuf[64];
611 
612 	/*
613 	 * Try to get 40LD product info, which tells us what the card is
614 	 * labelled as.
615 	 */
616 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
617 	    amr->amr_enqbuf);
618 	if (ap != NULL) {
619 		aprint_normal("<%.80s>\n", ap->ap_product);
620 		if (intrstr != NULL)
621 			aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
622 			    intrstr);
623 		aprint_normal_dev(amr->amr_dv,
624 		    "firmware %.16s, BIOS %.16s, %dMB RAM\n",
625 		    ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
626 
627 		amr->amr_maxqueuecnt = ap->ap_maxio;
628 
629 		/*
630 		 * Fetch and record state of logical drives.
631 		 */
632 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
633 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
634 		if (aex == NULL) {
635 			aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
636 			return (-1);
637 		}
638 
639 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
640 			aprint_error_dev(amr->amr_dv, "Inquiry returned more "
641 			    "drives (%d) than the array can handle (%zu)\n",
642 			    aex->ae_numldrives,
643 			    __arraycount(aex->ae_drivestate));
644 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
645 		}
646 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
647 			aprint_error_dev(amr->amr_dv,
648 			    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
649 			    AMR_MAX_UNITS, amr->amr_numdrives);
650 			amr->amr_numdrives = AMR_MAX_UNITS;
651 		} else
652 			amr->amr_numdrives = aex->ae_numldrives;
653 
654 		for (i = 0; i < amr->amr_numdrives; i++) {
655 			amr->amr_drive[i].al_size =
656 			    le32toh(aex->ae_drivesize[i]);
657 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
658 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
659 		}
660 
661 		return (0);
662 	}
663 
664 	/*
665 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
666 	 * found, search for a product description.
667 	 */
668 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
669 	if (ae != NULL) {
670 		i = 0;
671 		sig = le32toh(ae->ae_signature);
672 
673 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
674 			if (amr_typestr[i].at_sig == sig)
675 				break;
676 			i++;
677 		}
678 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
679 			snprintf(sbuf, sizeof(sbuf),
680 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
681 			prodstr = sbuf;
682 		} else
683 			prodstr = amr_typestr[i].at_str;
684 	} else {
685 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
686 		if (ae == NULL) {
687 			aprint_error_dev(amr->amr_dv,
688 			    "unsupported controller\n");
689 			return (-1);
690 		}
691 
692 		switch (PCI_PRODUCT(pa->pa_id)) {
693 		case PCI_PRODUCT_AMI_MEGARAID:
694 			prodstr = "Series 428";
695 			break;
696 		case PCI_PRODUCT_AMI_MEGARAID2:
697 			prodstr = "Series 434";
698 			break;
699 		default:
700 			snprintf(sbuf, sizeof(sbuf),
701 			    "unknown PCI dev (0x%04x)",
702 			    PCI_PRODUCT(pa->pa_id));
703 			prodstr = sbuf;
704 			break;
705 		}
706 	}
707 
708 	/*
709 	 * HP NetRaid controllers have a special encoding of the firmware
710 	 * and BIOS versions.  The AMI version seems to have it as strings
711 	 * whereas the HP version does it with a leading uppercase character
712 	 * and two binary numbers.
713 	*/
714 	aa = &ae->ae_adapter;
715 
716 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
717 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
718 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
719 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
720 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
721 			/* The AMI 438 is a NetRaid 3si in HP-land. */
722 			prodstr = "HP NetRaid 3si";
723 		}
724 		ishp = 1;
725 	} else
726 		ishp = 0;
727 
728 	aprint_normal("<%s>\n", prodstr);
729 	if (intrstr != NULL)
730 		aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
731 		    intrstr);
732 
733 	if (ishp)
734 		aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
735 		    "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
736 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
737 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
738 	else
739 		aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
740 		    "%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
741 		    aa->aa_memorysize);
742 
743 	amr->amr_maxqueuecnt = aa->aa_maxio;
744 
745 	/*
746 	 * Record state of logical drives.
747 	 */
748 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
749 		aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
750 		    "(%d) than the array can handle (%zu)\n",
751 		    ae->ae_ldrv.al_numdrives,
752 		    __arraycount(ae->ae_ldrv.al_size));
753 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
754 	}
755 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
756 		aprint_error_dev(amr->amr_dv,
757 		    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
758 		    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
759 		amr->amr_numdrives = AMR_MAX_UNITS;
760 	} else
761 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
762 
763 	for (i = 0; i < amr->amr_numdrives; i++) {
764 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
765 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
766 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
767 	}
768 
769 	return (0);
770 }
771 
772 /*
773  * Flush the internal cache on each configured controller.  Called at
774  * shutdown time.
775  */
776 static void
777 amr_shutdown(void *cookie)
778 {
779 	extern struct cfdriver amr_cd;
780 	struct amr_softc *amr;
781 	struct amr_ccb *ac;
782 	int i, rv;
783 
784 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
785 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
786 			continue;
787 
788 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
789 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
790 			rv = amr_ccb_poll(amr, ac, 30000);
791 			amr_ccb_free(amr, ac);
792 		}
793 		if (rv != 0)
794 			aprint_error_dev(amr->amr_dv,
795 			    "unable to flush cache (%d)\n", rv);
796 	}
797 }
798 
799 /*
800  * Interrupt service routine.
801  */
802 static int
803 amr_intr(void *cookie)
804 {
805 	struct amr_softc *amr;
806 	struct amr_ccb *ac;
807 	struct amr_mailbox_resp mbox;
808 	u_int i, forus, idx;
809 
810 	amr = cookie;
811 	forus = 0;
812 
813 	mutex_spin_enter(&amr->amr_mutex);
814 
815 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
816 		/* Iterate over completed commands in this result. */
817 		for (i = 0; i < mbox.mb_nstatus; i++) {
818 			idx = mbox.mb_completed[i] - 1;
819 			ac = amr->amr_ccbs + idx;
820 
821 			if (idx >= amr->amr_maxqueuecnt) {
822 				printf("%s: bad status (bogus ID: %u=%u)\n",
823 				    device_xname(amr->amr_dv), i, idx);
824 				continue;
825 			}
826 
827 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
828 				printf("%s: bad status (not active; 0x04%x)\n",
829 				    device_xname(amr->amr_dv), ac->ac_flags);
830 				continue;
831 			}
832 
833 			ac->ac_status = mbox.mb_status;
834 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
835 			    AC_COMPLETE;
836 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
837 
838 			if ((ac->ac_flags & AC_MOAN) != 0)
839 				printf("%s: ccb %d completed\n",
840 				    device_xname(amr->amr_dv), ac->ac_ident);
841 
842 			/* Pass notification to upper layers. */
843 			mutex_spin_exit(&amr->amr_mutex);
844 			if (ac->ac_handler != NULL) {
845 				(*ac->ac_handler)(ac);
846 			} else {
847 				mutex_enter(&ac->ac_mutex);
848 				cv_signal(&ac->ac_cv);
849 				mutex_exit(&ac->ac_mutex);
850 			}
851 			mutex_spin_enter(&amr->amr_mutex);
852 		}
853 		forus = 1;
854 	}
855 
856 	mutex_spin_exit(&amr->amr_mutex);
857 
858 	if (forus)
859 		amr_ccb_enqueue(amr, NULL);
860 
861 	return (forus);
862 }
863 
864 /*
865  * Watchdog thread.
866  */
867 static void
868 amr_quartz_thread(void *cookie)
869 {
870 	struct amr_softc *amr;
871 	struct amr_ccb *ac;
872 
873 	amr = cookie;
874 
875 	for (;;) {
876 		mutex_enter(&thread_mutex);
877 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
878 		mutex_exit(&thread_mutex);
879 
880 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
881 			amr->amr_flags ^= AMRF_THREAD_EXIT;
882 			mutex_enter(&thread_mutex);
883 			cv_signal(&thread_cv);
884 			mutex_exit(&thread_mutex);
885 			kthread_exit(0);
886 		}
887 
888 		if (amr_intr(amr) == 0)
889 			amr_ccb_enqueue(amr, NULL);
890 
891 		mutex_spin_enter(&amr->amr_mutex);
892 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
893 		while (ac != NULL) {
894 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
895 				break;
896 			if ((ac->ac_flags & AC_MOAN) == 0) {
897 				printf("%s: ccb %d timed out; mailbox:\n",
898 				    device_xname(amr->amr_dv), ac->ac_ident);
899 				amr_ccb_dump(amr, ac);
900 				ac->ac_flags |= AC_MOAN;
901 			}
902 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
903 		}
904 		mutex_spin_exit(&amr->amr_mutex);
905 	}
906 }
907 
908 static void
909 amr_std_thread(void *cookie)
910 {
911 	struct amr_softc *amr;
912 	struct amr_ccb *ac;
913 	struct amr_logdrive *al;
914 	struct amr_enquiry *ae;
915 	int rv, i;
916 
917 	amr = cookie;
918 	ae = amr->amr_enqbuf;
919 
920 	for (;;) {
921 		mutex_enter(&thread_mutex);
922 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
923 		mutex_exit(&thread_mutex);
924 
925 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
926 			amr->amr_flags ^= AMRF_THREAD_EXIT;
927 			mutex_enter(&thread_mutex);
928 			cv_signal(&thread_cv);
929 			mutex_exit(&thread_mutex);
930 			kthread_exit(0);
931 		}
932 
933 		if (amr_intr(amr) == 0)
934 			amr_ccb_enqueue(amr, NULL);
935 
936 		mutex_spin_enter(&amr->amr_mutex);
937 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
938 		while (ac != NULL) {
939 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
940 				break;
941 			if ((ac->ac_flags & AC_MOAN) == 0) {
942 				printf("%s: ccb %d timed out; mailbox:\n",
943 				    device_xname(amr->amr_dv), ac->ac_ident);
944 				amr_ccb_dump(amr, ac);
945 				ac->ac_flags |= AC_MOAN;
946 			}
947 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
948 		}
949 		mutex_spin_exit(&amr->amr_mutex);
950 
951 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
952 			printf("%s: ccb_alloc failed (%d)\n",
953  			    device_xname(amr->amr_dv), rv);
954 			continue;
955 		}
956 
957 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
958 
959 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
960 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
961 		if (rv != 0) {
962 			aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
963  			    rv);
964 			amr_ccb_free(amr, ac);
965 			continue;
966 		}
967 
968 		rv = amr_ccb_wait(amr, ac);
969 		amr_ccb_unmap(amr, ac);
970 		if (rv != 0) {
971 			aprint_error_dev(amr->amr_dv,
972 			    "enquiry failed (st=%d)\n", ac->ac_status);
973 			continue;
974 		}
975 		amr_ccb_free(amr, ac);
976 
977 		al = amr->amr_drive;
978 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
979 			if (al->al_dv == NULL)
980 				continue;
981 			if (al->al_state == ae->ae_ldrv.al_state[i])
982 				continue;
983 
984 			printf("%s: state changed: %s -> %s\n",
985 			    device_xname(al->al_dv),
986 			    amr_drive_state(al->al_state, NULL),
987 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
988 
989 			al->al_state = ae->ae_ldrv.al_state[i];
990 		}
991 	}
992 }
993 
994 /*
995  * Return a text description of a logical drive's current state.
996  */
997 const char *
998 amr_drive_state(int state, int *happy)
999 {
1000 	const char *str;
1001 
1002 	state = AMR_DRV_CURSTATE(state);
1003 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
1004 		if (happy)
1005 			*happy = 1;
1006 		str = "status unknown";
1007 	} else {
1008 		if (happy)
1009 			*happy = amr_dstate[state].ds_happy;
1010 		str = amr_dstate[state].ds_descr;
1011 	}
1012 
1013 	return (str);
1014 }
1015 
1016 /*
1017  * Run a generic enquiry-style command.
1018  */
1019 static void *
1020 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1021 	    u_int8_t cmdqual, void *sbuf)
1022 {
1023 	struct amr_ccb *ac;
1024 	u_int8_t *mb;
1025 	int rv;
1026 
1027 	if (amr_ccb_alloc(amr, &ac) != 0)
1028 		return (NULL);
1029 
1030 	/* Build the command proper. */
1031 	mb = (u_int8_t *)&ac->ac_cmd;
1032 	mb[0] = cmd;
1033 	mb[2] = cmdsub;
1034 	mb[3] = cmdqual;
1035 
1036 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1037 	if (rv == 0) {
1038 		rv = amr_ccb_poll(amr, ac, 2000);
1039 		amr_ccb_unmap(amr, ac);
1040 	}
1041 	amr_ccb_free(amr, ac);
1042 
1043 	return (rv ? NULL : sbuf);
1044 }
1045 
1046 /*
1047  * Allocate and initialise a CCB.
1048  */
1049 int
1050 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1051 {
1052 	mutex_spin_enter(&amr->amr_mutex);
1053 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1054 		mutex_spin_exit(&amr->amr_mutex);
1055 		return (EAGAIN);
1056 	}
1057 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1058 	mutex_spin_exit(&amr->amr_mutex);
1059 
1060 	return (0);
1061 }
1062 
1063 /*
1064  * Free a CCB.
1065  */
1066 void
1067 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1068 {
1069 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1070 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1071 	ac->ac_cmd.mb_busy = 1;
1072 	ac->ac_handler = NULL;
1073 	ac->ac_flags = 0;
1074 
1075 	mutex_spin_enter(&amr->amr_mutex);
1076 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1077 	mutex_spin_exit(&amr->amr_mutex);
1078 }
1079 
1080 /*
1081  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1082  * the order that they were enqueued and try to submit their command blocks
1083  * to the controller for execution.
1084  */
1085 void
1086 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1087 {
1088 	if (ac != NULL) {
1089 		mutex_spin_enter(&amr->amr_mutex);
1090 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1091 		mutex_spin_exit(&amr->amr_mutex);
1092 	}
1093 
1094 	while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1095 		mutex_spin_enter(&amr->amr_mutex);
1096 		if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1097 			if ((*amr->amr_submit)(amr, ac) != 0) {
1098 				mutex_spin_exit(&amr->amr_mutex);
1099 				break;
1100 			}
1101 			SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
1102 			    ac_chain.simpleq);
1103 			TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
1104 			    ac_chain.tailq);
1105 		}
1106 		mutex_spin_exit(&amr->amr_mutex);
1107 	}
1108 }
1109 
1110 /*
1111  * Map the specified CCB's data buffer onto the bus, and fill the
1112  * scatter-gather list.
1113  */
1114 int
1115 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1116 	    int tflag)
1117 {
1118 	struct amr_sgentry *sge;
1119 	struct amr_mailbox_cmd *mb;
1120 	int nsegs, i, rv, sgloff;
1121 	bus_dmamap_t xfer;
1122 	int dmaflag = 0;
1123 
1124 	xfer = ac->ac_xfer_map;
1125 
1126 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1127 	    BUS_DMA_NOWAIT);
1128 	if (rv != 0)
1129 		return (rv);
1130 
1131 	mb = &ac->ac_cmd;
1132 	ac->ac_xfer_size = size;
1133 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1134 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1135 
1136 	if (tflag & AC_XFER_OUT)
1137 		dmaflag |= BUS_DMASYNC_PREWRITE;
1138 	if (tflag & AC_XFER_IN)
1139 		dmaflag |= BUS_DMASYNC_PREREAD;
1140 
1141 	/* We don't need to use a scatter/gather list for just 1 segment. */
1142 	nsegs = xfer->dm_nsegs;
1143 	if (nsegs == 1) {
1144 		mb->mb_nsgelem = 0;
1145 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1146 		ac->ac_flags |= AC_NOSGL;
1147 	} else {
1148 		mb->mb_nsgelem = nsegs;
1149 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1150 
1151 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1152 		for (i = 0; i < nsegs; i++, sge++) {
1153 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1154 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1155 		}
1156 	}
1157 
1158 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1159 
1160 	if ((ac->ac_flags & AC_NOSGL) == 0)
1161 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1162 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1163 
1164 	return (0);
1165 }
1166 
1167 /*
1168  * Unmap the specified CCB's data buffer.
1169  */
1170 void
1171 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1172 {
1173 	int dmaflag = 0;
1174 
1175 	if (ac->ac_flags & AC_XFER_IN)
1176 		dmaflag |= BUS_DMASYNC_POSTREAD;
1177 	if (ac->ac_flags & AC_XFER_OUT)
1178 		dmaflag |= BUS_DMASYNC_POSTWRITE;
1179 
1180 	if ((ac->ac_flags & AC_NOSGL) == 0)
1181 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1182 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1183 		    BUS_DMASYNC_POSTWRITE);
1184 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1185 	    dmaflag);
1186 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1187 }
1188 
1189 /*
1190  * Submit a command to the controller and poll on completion.  Return
1191  * non-zero on timeout or error.
1192  */
1193 int
1194 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1195 {
1196 	int rv, i;
1197 
1198 	mutex_spin_enter(&amr->amr_mutex);
1199 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1200 		mutex_spin_exit(&amr->amr_mutex);
1201 		return (rv);
1202 	}
1203 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1204 	mutex_spin_exit(&amr->amr_mutex);
1205 
1206 	for (i = timo * 10; i > 0; i--) {
1207 		amr_intr(amr);
1208 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1209 			break;
1210 		DELAY(100);
1211 	}
1212 
1213 	if (i == 0)
1214 		printf("%s: polled operation timed out after %d ms\n",
1215 		       device_xname(amr->amr_dv), timo);
1216 
1217 	return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1218 }
1219 
1220 /*
1221  * Submit a command to the controller and sleep on completion.  Return
1222  * non-zero on error.
1223  */
1224 int
1225 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1226 {
1227 	amr_ccb_enqueue(amr, ac);
1228 	mutex_enter(&ac->ac_mutex);
1229 	cv_wait(&ac->ac_cv, &ac->ac_mutex);
1230 	mutex_exit(&ac->ac_mutex);
1231 
1232 	return (ac->ac_status != 0 ? EIO : 0);
1233 }
1234 
1235 #if 0
1236 /*
1237  * Wait for the mailbox to become available.
1238  */
1239 static int
1240 amr_mbox_wait(struct amr_softc *amr)
1241 {
1242 	int timo;
1243 
1244 	for (timo = 10000; timo != 0; timo--) {
1245 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1246 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1247 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1248 			break;
1249 		DELAY(100);
1250 	}
1251 
1252 	if (timo == 0)
1253 		printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1254 
1255 	return (timo != 0 ? 0 : EAGAIN);
1256 }
1257 #endif
1258 
1259 /*
1260  * Tell the controller that the mailbox contains a valid command.  Must be
1261  * called with interrupts blocked.
1262  */
1263 static int
1264 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1265 {
1266 	int i = 0;
1267 	u_int32_t v;
1268 
1269 	amr->amr_mbox->mb_poll = 0;
1270 	amr->amr_mbox->mb_ack = 0;
1271 
1272 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1273 	    sizeof(struct amr_mailbox),
1274 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1275 
1276 	v = amr_inl(amr, AMR_QREG_ODB);
1277 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1279 	while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1280 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1281 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1282 		/* This is a no-op read that flushes pending mailbox updates */
1283 		v = amr_inl(amr, AMR_QREG_ODB);
1284 		DELAY(1);
1285 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1287 	}
1288 
1289 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1290 		return (EAGAIN);
1291 
1292 	v = amr_inl(amr, AMR_QREG_IDB);
1293 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1294 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1295 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1296 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1297 		printf("%s: submit failed\n", device_xname(amr->amr_dv));
1298 		return (EAGAIN);
1299 	}
1300 
1301 	amr->amr_mbox->mb_segment = 0;
1302 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1303 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1304 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1305 
1306 	ac->ac_start_time = time_uptime;
1307 	ac->ac_flags |= AC_ACTIVE;
1308 
1309 	amr_outl(amr, AMR_QREG_IDB,
1310 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1311 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1312 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1313 
1314 	return (0);
1315 }
1316 
1317 static int
1318 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1319 {
1320 
1321 	amr->amr_mbox->mb_poll = 0;
1322 	amr->amr_mbox->mb_ack = 0;
1323 
1324 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1325 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1326 
1327 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1328 		return (EAGAIN);
1329 
1330 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1331 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1332 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1333 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1334 		return (EAGAIN);
1335 	}
1336 
1337 	amr->amr_mbox->mb_segment = 0;
1338 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1339 
1340 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1341 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1342 
1343 	ac->ac_start_time = time_uptime;
1344 	ac->ac_flags |= AC_ACTIVE;
1345 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1346 
1347 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1348 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1349 
1350 	return (0);
1351 }
1352 
1353 /*
1354  * Claim any work that the controller has completed; acknowledge completion,
1355  * save details of the completion in (mbsave).  Must be called with
1356  * interrupts blocked.
1357  */
1358 static int
1359 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1360 {
1361 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1362 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1363 
1364 	/* Work waiting for us? */
1365 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1366 		return (-1);
1367 
1368 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1369 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1370 
1371 	/* Save the mailbox, which contains a list of completed commands. */
1372 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1373 
1374 	/* Ack the interrupt and mailbox transfer. */
1375 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1376 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1377 
1378 	/*
1379 	 * This waits for the controller to notice that we've taken the
1380 	 * command from it.  It's very inefficient, and we shouldn't do it,
1381 	 * but if we remove this code, we stop completing commands under
1382 	 * load.
1383 	 *
1384 	 * Peter J says we shouldn't do this.  The documentation says we
1385 	 * should.  Who is right?
1386 	 */
1387 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1388 		DELAY(10);
1389 
1390 	return (0);
1391 }
1392 
1393 static int
1394 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1395 {
1396 	u_int8_t istat;
1397 
1398 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1399 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1400 
1401 	/* Check for valid interrupt status. */
1402 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1403 		return (-1);
1404 
1405 	/* Ack the interrupt. */
1406 	amr_outb(amr, AMR_SREG_INTR, istat);
1407 
1408 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1409 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1410 
1411 	/* Save mailbox, which contains a list of completed commands. */
1412 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1413 
1414 	/* Ack mailbox transfer. */
1415 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1416 
1417 	return (0);
1418 }
1419 
1420 static void
1421 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1422 {
1423 	int i;
1424 
1425 	printf("%s: ", device_xname(amr->amr_dv));
1426 	for (i = 0; i < 4; i++)
1427 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1428 	printf("\n");
1429 }
1430 
1431 static int
1432 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1433 {
1434 	struct amr_softc *amr;
1435 
1436 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1437 		return (ENXIO);
1438 	if ((amr->amr_flags & AMRF_OPEN) != 0)
1439 		return (EBUSY);
1440 
1441 	amr->amr_flags |= AMRF_OPEN;
1442 	return (0);
1443 }
1444 
1445 static int
1446 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1447 {
1448 	struct amr_softc *amr;
1449 
1450 	amr = device_lookup_private(&amr_cd, minor(dev));
1451 	amr->amr_flags &= ~AMRF_OPEN;
1452 	return (0);
1453 }
1454 
1455 /* used below to correct for a firmware bug */
1456 static unsigned long
1457 amrioctl_buflen(unsigned long len)
1458 {
1459 	if (len <= 4 * 1024)
1460 		return (4 * 1024);
1461 	if (len <= 8 * 1024)
1462 		return (8 * 1024);
1463 	if (len <= 32 * 1024)
1464 		return (32 * 1024);
1465 	if (len <= 64 * 1024)
1466 		return (64 * 1024);
1467 	return (len);
1468 }
1469 
1470 static int
1471 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1472     struct lwp *l)
1473 {
1474 	struct amr_softc *amr;
1475 	struct amr_user_ioctl *au;
1476 	struct amr_ccb *ac;
1477 	struct amr_mailbox_ioctl *mbi;
1478 	unsigned long au_length;
1479 	uint8_t *au_cmd;
1480 	int error;
1481 	void *dp = NULL, *au_buffer;
1482 
1483 	amr = device_lookup_private(&amr_cd, minor(dev));
1484 
1485 	/* This should be compatible with the FreeBSD interface */
1486 
1487 	switch (cmd) {
1488 	case AMR_IO_VERSION:
1489 		*(int *)data = AMR_IO_VERSION_NUMBER;
1490 		return 0;
1491 	case AMR_IO_COMMAND:
1492 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1493 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1494 		if (error)
1495 			return (error);
1496 
1497 		au = (struct amr_user_ioctl *)data;
1498 		au_cmd = au->au_cmd;
1499 		au_buffer = au->au_buffer;
1500 		au_length = au->au_length;
1501 		break;
1502 	default:
1503 		return ENOTTY;
1504 	}
1505 
1506 	if (au_cmd[0] == AMR_CMD_PASS) {
1507 		/* not yet */
1508 		return EOPNOTSUPP;
1509 	}
1510 
1511 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1512 		return (EINVAL);
1513 
1514 	/*
1515 	 * allocate kernel memory for data, doing I/O directly to user
1516 	 * buffer isn't that easy.  Correct allocation size for a bug
1517 	 * in at least some versions of the device firmware, by using
1518 	 * the amrioctl_buflen() function, defined above.
1519 	 */
1520 	dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1521 	if (dp == NULL)
1522 		return ENOMEM;
1523 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
1524 		goto out;
1525 
1526 	/* direct command to controller */
1527 	while (amr_ccb_alloc(amr, &ac) != 0) {
1528 		mutex_enter(&thread_mutex);
1529 		error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1530 		mutex_exit(&thread_mutex);
1531 		if (error == EINTR)
1532 			goto out;
1533 	}
1534 
1535 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1536 	mbi->mb_command = au_cmd[0];
1537 	mbi->mb_channel = au_cmd[1];
1538 	mbi->mb_param = au_cmd[2];
1539 	mbi->mb_pad[0] = au_cmd[3];
1540 	mbi->mb_drive = au_cmd[4];
1541 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
1542 	    AC_XFER_IN | AC_XFER_OUT);
1543 	if (error == 0) {
1544 		error = amr_ccb_wait(amr, ac);
1545 		amr_ccb_unmap(amr, ac);
1546 		if (error == 0)
1547 			error = copyout(dp, au_buffer, au_length);
1548 
1549 	}
1550 	amr_ccb_free(amr, ac);
1551 out:
1552 	free(dp, M_DEVBUF);
1553 	return (error);
1554 }
1555 
1556 MODULE(MODULE_CLASS_DRIVER, amr, "pci");
1557 
1558 #ifdef _MODULE
1559 #include "ioconf.c"
1560 #endif
1561 
1562 static int
1563 amr_modcmd(modcmd_t cmd, void *opaque)
1564 {
1565 	int error = 0;
1566 
1567 #ifdef _MODULE
1568 	switch (cmd) {
1569 	case MODULE_CMD_INIT:
1570 		error = config_init_component(cfdriver_ioconf_amr,
1571 		    cfattach_ioconf_amr, cfdata_ioconf_amr);
1572 		break;
1573 	case MODULE_CMD_FINI:
1574 		error = config_fini_component(cfdriver_ioconf_amr,
1575 		    cfattach_ioconf_amr, cfdata_ioconf_amr);
1576 		break;
1577 	default:
1578 		error = ENOTTY;
1579 		break;
1580 	}
1581 #endif
1582 
1583 	return error;
1584 }
1585 
1586