1 /* $NetBSD: amr.c,v 1.42 2006/11/25 16:48:32 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999,2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 67 */ 68 69 /* 70 * Driver for AMI RAID controllers. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.42 2006/11/25 16:48:32 christos Exp $"); 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 #include <sys/proc.h> 82 #include <sys/buf.h> 83 #include <sys/malloc.h> 84 #include <sys/conf.h> 85 #include <sys/kthread.h> 86 #include <sys/kauth.h> 87 88 #include <uvm/uvm_extern.h> 89 90 #include <machine/endian.h> 91 #include <machine/bus.h> 92 93 #include <dev/pci/pcidevs.h> 94 #include <dev/pci/pcivar.h> 95 #include <dev/pci/amrreg.h> 96 #include <dev/pci/amrvar.h> 97 #include <dev/pci/amrio.h> 98 99 #include "locators.h" 100 101 static void amr_attach(struct device *, struct device *, void *); 102 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 103 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, 104 void *); 105 static int amr_init(struct amr_softc *, const char *, 106 struct pci_attach_args *pa); 107 static int amr_intr(void *); 108 static int amr_match(struct device *, struct cfdata *, void *); 109 static int amr_print(void *, const char *); 110 static void amr_shutdown(void *); 111 static void amr_teardown(struct amr_softc *); 112 static void amr_thread(void *); 113 static void amr_thread_create(void *); 114 115 static int amr_quartz_get_work(struct amr_softc *, 116 struct amr_mailbox_resp *); 117 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 118 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 119 static int amr_std_submit(struct amr_softc *, struct amr_ccb *); 120 121 static dev_type_open(amropen); 122 static dev_type_close(amrclose); 123 static dev_type_ioctl(amrioctl); 124 125 CFATTACH_DECL(amr, sizeof(struct amr_softc), 126 amr_match, amr_attach, NULL, NULL); 127 128 const struct cdevsw amr_cdevsw = { 129 amropen, amrclose, noread, nowrite, amrioctl, 130 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER 131 }; 132 133 extern struct cfdriver amr_cd; 134 135 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 136 #define AT_SIG 0x02 /* Check for signature */ 137 138 static struct amr_pci_type { 139 u_short apt_vendor; 140 u_short apt_product; 141 u_short apt_flags; 142 } const amr_pci_type[] = { 143 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 144 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 145 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, 148 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 150 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 151 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, 152 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ }, 153 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ }, 154 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ }, 155 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 156 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 158 }; 159 160 static struct amr_typestr { 161 const char *at_str; 162 int at_sig; 163 } const amr_typestr[] = { 164 { "Series 431", AMR_SIG_431 }, 165 { "Series 438", AMR_SIG_438 }, 166 { "Series 466", AMR_SIG_466 }, 167 { "Series 467", AMR_SIG_467 }, 168 { "Series 490", AMR_SIG_490 }, 169 { "Series 762", AMR_SIG_762 }, 170 { "HP NetRAID (T5)", AMR_SIG_T5 }, 171 { "HP NetRAID (T7)", AMR_SIG_T7 }, 172 }; 173 174 static struct { 175 const char *ds_descr; 176 int ds_happy; 177 } const amr_dstate[] = { 178 { "offline", 0 }, 179 { "degraded", 1 }, 180 { "optimal", 1 }, 181 { "online", 1 }, 182 { "failed", 0 }, 183 { "rebuilding", 1 }, 184 { "hotspare", 0 }, 185 }; 186 187 static void *amr_sdh; 188 189 static int amr_max_segs; 190 int amr_max_xfer; 191 192 static inline u_int8_t 193 amr_inb(struct amr_softc *amr, int off) 194 { 195 196 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 197 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 198 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 199 } 200 201 static inline u_int32_t 202 amr_inl(struct amr_softc *amr, int off) 203 { 204 205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 207 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 208 } 209 210 static inline void 211 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 212 { 213 214 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 215 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 216 BUS_SPACE_BARRIER_WRITE); 217 } 218 219 static inline void 220 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 221 { 222 223 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 224 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 225 BUS_SPACE_BARRIER_WRITE); 226 } 227 228 /* 229 * Match a supported device. 230 */ 231 static int 232 amr_match(struct device *parent, struct cfdata *match, 233 void *aux) 234 { 235 struct pci_attach_args *pa; 236 pcireg_t s; 237 int i; 238 239 pa = (struct pci_attach_args *)aux; 240 241 /* 242 * Don't match the device if it's operating in I2O mode. In this 243 * case it should be handled by the `iop' driver. 244 */ 245 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 246 return (0); 247 248 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 249 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 250 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 251 break; 252 253 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 254 return (0); 255 256 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 257 return (1); 258 259 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 260 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 261 } 262 263 /* 264 * Attach a supported device. 265 */ 266 static void 267 amr_attach(struct device *parent, struct device *self, void *aux) 268 { 269 struct pci_attach_args *pa; 270 struct amr_attach_args amra; 271 const struct amr_pci_type *apt; 272 struct amr_softc *amr; 273 pci_chipset_tag_t pc; 274 pci_intr_handle_t ih; 275 const char *intrstr; 276 pcireg_t reg; 277 int rseg, i, j, size, rv, memreg, ioreg; 278 struct amr_ccb *ac; 279 int locs[AMRCF_NLOCS]; 280 281 aprint_naive(": RAID controller\n"); 282 283 amr = (struct amr_softc *)self; 284 pa = (struct pci_attach_args *)aux; 285 pc = pa->pa_pc; 286 287 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 288 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 289 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 290 break; 291 apt = amr_pci_type + i; 292 293 memreg = ioreg = 0; 294 for (i = 0x10; i <= 0x14; i += 4) { 295 reg = pci_conf_read(pc, pa->pa_tag, i); 296 switch (PCI_MAPREG_TYPE(reg)) { 297 case PCI_MAPREG_TYPE_MEM: 298 if (PCI_MAPREG_MEM_SIZE(reg) != 0) 299 memreg = i; 300 break; 301 case PCI_MAPREG_TYPE_IO: 302 if (PCI_MAPREG_IO_SIZE(reg) != 0) 303 ioreg = i; 304 break; 305 306 } 307 } 308 309 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 310 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 311 ; 312 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 313 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 314 ; 315 else { 316 aprint_error("can't map control registers\n"); 317 amr_teardown(amr); 318 return; 319 } 320 321 amr->amr_flags |= AMRF_PCI_REGS; 322 amr->amr_dmat = pa->pa_dmat; 323 amr->amr_pc = pa->pa_pc; 324 325 /* Enable the device. */ 326 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 327 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 328 reg | PCI_COMMAND_MASTER_ENABLE); 329 330 /* Map and establish the interrupt. */ 331 if (pci_intr_map(pa, &ih)) { 332 aprint_error("can't map interrupt\n"); 333 amr_teardown(amr); 334 return; 335 } 336 intrstr = pci_intr_string(pc, ih); 337 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); 338 if (amr->amr_ih == NULL) { 339 aprint_error("can't establish interrupt"); 340 if (intrstr != NULL) 341 aprint_normal(" at %s", intrstr); 342 aprint_normal("\n"); 343 amr_teardown(amr); 344 return; 345 } 346 amr->amr_flags |= AMRF_PCI_INTR; 347 348 /* 349 * Allocate space for the mailbox and S/G lists. Some controllers 350 * don't like S/G lists to be located below 0x2000, so we allocate 351 * enough slop to enable us to compensate. 352 * 353 * The standard mailbox structure needs to be aligned on a 16-byte 354 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 355 * size, which precedes the standard mailbox. 356 */ 357 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 358 amr->amr_dmasize = size; 359 360 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0, 361 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 362 aprint_error("%s: unable to allocate buffer, rv = %d\n", 363 amr->amr_dv.dv_xname, rv); 364 amr_teardown(amr); 365 return; 366 } 367 amr->amr_flags |= AMRF_DMA_ALLOC; 368 369 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 370 (caddr_t *)&amr->amr_mbox, 371 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 372 aprint_error("%s: unable to map buffer, rv = %d\n", 373 amr->amr_dv.dv_xname, rv); 374 amr_teardown(amr); 375 return; 376 } 377 amr->amr_flags |= AMRF_DMA_MAP; 378 379 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 380 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 381 aprint_error("%s: unable to create buffer DMA map, rv = %d\n", 382 amr->amr_dv.dv_xname, rv); 383 amr_teardown(amr); 384 return; 385 } 386 amr->amr_flags |= AMRF_DMA_CREATE; 387 388 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 389 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 390 aprint_error("%s: unable to load buffer DMA map, rv = %d\n", 391 amr->amr_dv.dv_xname, rv); 392 amr_teardown(amr); 393 return; 394 } 395 amr->amr_flags |= AMRF_DMA_LOAD; 396 397 memset(amr->amr_mbox, 0, size); 398 399 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 400 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 401 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox + 402 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 403 404 /* 405 * Allocate and initalise the command control blocks. 406 */ 407 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); 408 amr->amr_ccbs = ac; 409 SLIST_INIT(&amr->amr_ccb_freelist); 410 TAILQ_INIT(&amr->amr_ccb_active); 411 amr->amr_flags |= AMRF_CCBS; 412 413 if (amr_max_xfer == 0) { 414 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 415 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 416 } 417 418 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 419 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 420 amr_max_segs, amr_max_xfer, 0, 421 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 422 if (rv != 0) 423 break; 424 425 ac->ac_ident = i; 426 amr_ccb_free(amr, ac); 427 } 428 if (i != AMR_MAX_CMDS) { 429 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname); 430 amr_teardown(amr); 431 return; 432 } 433 434 /* 435 * Take care of model-specific tasks. 436 */ 437 if ((apt->apt_flags & AT_QUARTZ) != 0) { 438 amr->amr_submit = amr_quartz_submit; 439 amr->amr_get_work = amr_quartz_get_work; 440 } else { 441 amr->amr_submit = amr_std_submit; 442 amr->amr_get_work = amr_std_get_work; 443 444 /* Notify the controller of the mailbox location. */ 445 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 446 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 447 448 /* Clear outstanding interrupts and enable interrupts. */ 449 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 450 amr_outb(amr, AMR_SREG_TOGL, 451 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 452 } 453 454 /* 455 * Retrieve parameters, and tell the world about us. 456 */ 457 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); 458 amr->amr_flags |= AMRF_ENQBUF; 459 amr->amr_maxqueuecnt = i; 460 aprint_normal(": AMI RAID "); 461 if (amr_init(amr, intrstr, pa) != 0) { 462 amr_teardown(amr); 463 return; 464 } 465 466 /* 467 * Cap the maximum number of outstanding commands. AMI's Linux 468 * driver doesn't trust the controller's reported value, and lockups 469 * have been seen when we do. 470 */ 471 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 472 if (amr->amr_maxqueuecnt > i) 473 amr->amr_maxqueuecnt = i; 474 475 /* Set our `shutdownhook' before we start any device activity. */ 476 if (amr_sdh == NULL) 477 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 478 479 /* Attach sub-devices. */ 480 for (j = 0; j < amr->amr_numdrives; j++) { 481 if (amr->amr_drive[j].al_size == 0) 482 continue; 483 amra.amra_unit = j; 484 485 locs[AMRCF_UNIT] = j; 486 487 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv, 488 "amr", locs, &amra, amr_print, config_stdsubmatch); 489 } 490 491 SIMPLEQ_INIT(&amr->amr_ccb_queue); 492 493 /* XXX This doesn't work for newer boards yet. */ 494 if ((apt->apt_flags & AT_QUARTZ) == 0) 495 kthread_create(amr_thread_create, amr); 496 } 497 498 /* 499 * Free up resources. 500 */ 501 static void 502 amr_teardown(struct amr_softc *amr) 503 { 504 struct amr_ccb *ac; 505 int fl; 506 507 fl = amr->amr_flags; 508 509 if ((fl & AMRF_THREAD) != 0) { 510 amr->amr_flags |= AMRF_THREAD_EXIT; 511 wakeup(amr_thread); 512 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) 513 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0); 514 } 515 if ((fl & AMRF_CCBS) != 0) { 516 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 517 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 518 } 519 free(amr->amr_ccbs, M_DEVBUF); 520 } 521 if ((fl & AMRF_ENQBUF) != 0) 522 free(amr->amr_enqbuf, M_DEVBUF); 523 if ((fl & AMRF_DMA_LOAD) != 0) 524 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 525 if ((fl & AMRF_DMA_MAP) != 0) 526 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox, 527 amr->amr_dmasize); 528 if ((fl & AMRF_DMA_ALLOC) != 0) 529 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 530 if ((fl & AMRF_DMA_CREATE) != 0) 531 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 532 if ((fl & AMRF_PCI_INTR) != 0) 533 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 534 if ((fl & AMRF_PCI_REGS) != 0) 535 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 536 } 537 538 /* 539 * Print autoconfiguration message for a sub-device. 540 */ 541 static int 542 amr_print(void *aux, const char *pnp) 543 { 544 struct amr_attach_args *amra; 545 546 amra = (struct amr_attach_args *)aux; 547 548 if (pnp != NULL) 549 aprint_normal("block device at %s", pnp); 550 aprint_normal(" unit %d", amra->amra_unit); 551 return (UNCONF); 552 } 553 554 /* 555 * Retrieve operational parameters and describe the controller. 556 */ 557 static int 558 amr_init(struct amr_softc *amr, const char *intrstr, 559 struct pci_attach_args *pa) 560 { 561 struct amr_adapter_info *aa; 562 struct amr_prodinfo *ap; 563 struct amr_enquiry *ae; 564 struct amr_enquiry3 *aex; 565 const char *prodstr; 566 u_int i, sig, ishp; 567 char sbuf[64]; 568 569 /* 570 * Try to get 40LD product info, which tells us what the card is 571 * labelled as. 572 */ 573 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 574 amr->amr_enqbuf); 575 if (ap != NULL) { 576 aprint_normal("<%.80s>\n", ap->ap_product); 577 if (intrstr != NULL) 578 aprint_normal("%s: interrupting at %s\n", 579 amr->amr_dv.dv_xname, intrstr); 580 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n", 581 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios, 582 le16toh(ap->ap_memsize)); 583 584 amr->amr_maxqueuecnt = ap->ap_maxio; 585 586 /* 587 * Fetch and record state of logical drives. 588 */ 589 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 590 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 591 if (aex == NULL) { 592 aprint_error("%s ENQUIRY3 failed\n", 593 amr->amr_dv.dv_xname); 594 return (-1); 595 } 596 597 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) { 598 aprint_error("%s: Inquiry returned more drives (%d)" 599 " than the array can handle (%zu)\n", 600 amr->amr_dv.dv_xname, aex->ae_numldrives, 601 __arraycount(aex->ae_drivestate)); 602 aex->ae_numldrives = __arraycount(aex->ae_drivestate); 603 } 604 if (aex->ae_numldrives > AMR_MAX_UNITS) { 605 aprint_error( 606 "%s: adjust AMR_MAX_UNITS to %d (currently %d)" 607 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS, 608 amr->amr_numdrives); 609 amr->amr_numdrives = AMR_MAX_UNITS; 610 } else 611 amr->amr_numdrives = aex->ae_numldrives; 612 613 for (i = 0; i < amr->amr_numdrives; i++) { 614 amr->amr_drive[i].al_size = 615 le32toh(aex->ae_drivesize[i]); 616 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 617 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 618 } 619 620 return (0); 621 } 622 623 /* 624 * Try 8LD extended ENQUIRY to get the controller signature. Once 625 * found, search for a product description. 626 */ 627 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 628 if (ae != NULL) { 629 i = 0; 630 sig = le32toh(ae->ae_signature); 631 632 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 633 if (amr_typestr[i].at_sig == sig) 634 break; 635 i++; 636 } 637 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 638 snprintf(sbuf, sizeof(sbuf), 639 "unknown ENQUIRY2 sig (0x%08x)", sig); 640 prodstr = sbuf; 641 } else 642 prodstr = amr_typestr[i].at_str; 643 } else { 644 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 645 if (ae == NULL) { 646 aprint_error("%s: unsupported controller\n", 647 amr->amr_dv.dv_xname); 648 return (-1); 649 } 650 651 switch (PCI_PRODUCT(pa->pa_id)) { 652 case PCI_PRODUCT_AMI_MEGARAID: 653 prodstr = "Series 428"; 654 break; 655 case PCI_PRODUCT_AMI_MEGARAID2: 656 prodstr = "Series 434"; 657 break; 658 default: 659 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)", 660 PCI_PRODUCT(pa->pa_id)); 661 prodstr = sbuf; 662 break; 663 } 664 } 665 666 /* 667 * HP NetRaid controllers have a special encoding of the firmware 668 * and BIOS versions. The AMI version seems to have it as strings 669 * whereas the HP version does it with a leading uppercase character 670 * and two binary numbers. 671 */ 672 aa = &ae->ae_adapter; 673 674 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 675 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 676 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 677 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 678 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 679 /* The AMI 438 is a NetRaid 3si in HP-land. */ 680 prodstr = "HP NetRaid 3si"; 681 } 682 ishp = 1; 683 } else 684 ishp = 0; 685 686 aprint_normal("<%s>\n", prodstr); 687 if (intrstr != NULL) 688 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, 689 intrstr); 690 691 if (ishp) 692 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>" 693 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2], 694 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 695 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 696 else 697 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n", 698 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios, 699 aa->aa_memorysize); 700 701 amr->amr_maxqueuecnt = aa->aa_maxio; 702 703 /* 704 * Record state of logical drives. 705 */ 706 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) { 707 aprint_error("%s: Inquiry returned more drives (%d)" 708 " than the array can handle (%zu)\n", 709 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, 710 __arraycount(ae->ae_ldrv.al_size)); 711 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size); 712 } 713 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 714 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n", 715 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, 716 AMR_MAX_UNITS); 717 amr->amr_numdrives = AMR_MAX_UNITS; 718 } else 719 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 720 721 for (i = 0; i < amr->amr_numdrives; i++) { 722 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 723 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 724 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 725 } 726 727 return (0); 728 } 729 730 /* 731 * Flush the internal cache on each configured controller. Called at 732 * shutdown time. 733 */ 734 static void 735 amr_shutdown(void *cookie) 736 { 737 extern struct cfdriver amr_cd; 738 struct amr_softc *amr; 739 struct amr_ccb *ac; 740 int i, rv, s; 741 742 for (i = 0; i < amr_cd.cd_ndevs; i++) { 743 if ((amr = device_lookup(&amr_cd, i)) == NULL) 744 continue; 745 746 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 747 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 748 s = splbio(); 749 rv = amr_ccb_poll(amr, ac, 30000); 750 splx(s); 751 amr_ccb_free(amr, ac); 752 } 753 if (rv != 0) 754 printf("%s: unable to flush cache (%d)\n", 755 amr->amr_dv.dv_xname, rv); 756 } 757 } 758 759 /* 760 * Interrupt service routine. 761 */ 762 static int 763 amr_intr(void *cookie) 764 { 765 struct amr_softc *amr; 766 struct amr_ccb *ac; 767 struct amr_mailbox_resp mbox; 768 u_int i, forus, idx; 769 770 amr = cookie; 771 forus = 0; 772 773 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 774 /* Iterate over completed commands in this result. */ 775 for (i = 0; i < mbox.mb_nstatus; i++) { 776 idx = mbox.mb_completed[i] - 1; 777 ac = amr->amr_ccbs + idx; 778 779 if (idx >= amr->amr_maxqueuecnt) { 780 printf("%s: bad status (bogus ID: %u=%u)\n", 781 amr->amr_dv.dv_xname, i, idx); 782 continue; 783 } 784 785 if ((ac->ac_flags & AC_ACTIVE) == 0) { 786 printf("%s: bad status (not active; 0x04%x)\n", 787 amr->amr_dv.dv_xname, ac->ac_flags); 788 continue; 789 } 790 791 ac->ac_status = mbox.mb_status; 792 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 793 AC_COMPLETE; 794 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 795 796 if ((ac->ac_flags & AC_MOAN) != 0) 797 printf("%s: ccb %d completed\n", 798 amr->amr_dv.dv_xname, ac->ac_ident); 799 800 /* Pass notification to upper layers. */ 801 if (ac->ac_handler != NULL) 802 (*ac->ac_handler)(ac); 803 else 804 wakeup(ac); 805 } 806 forus = 1; 807 } 808 809 if (forus) 810 amr_ccb_enqueue(amr, NULL); 811 812 return (forus); 813 } 814 815 /* 816 * Create the watchdog thread. 817 */ 818 static void 819 amr_thread_create(void *cookie) 820 { 821 struct amr_softc *amr; 822 int rv; 823 824 amr = cookie; 825 826 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 827 amr->amr_flags ^= AMRF_THREAD_EXIT; 828 wakeup(&amr->amr_flags); 829 return; 830 } 831 832 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s", 833 amr->amr_dv.dv_xname); 834 if (rv != 0) 835 aprint_error("%s: unable to create thread (%d)", 836 amr->amr_dv.dv_xname, rv); 837 else 838 amr->amr_flags |= AMRF_THREAD; 839 } 840 841 /* 842 * Watchdog thread. 843 */ 844 static void 845 amr_thread(void *cookie) 846 { 847 struct amr_softc *amr; 848 struct amr_ccb *ac; 849 struct amr_logdrive *al; 850 struct amr_enquiry *ae; 851 int rv, i, s; 852 853 amr = cookie; 854 ae = amr->amr_enqbuf; 855 856 for (;;) { 857 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS); 858 859 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 860 amr->amr_flags ^= AMRF_THREAD_EXIT; 861 wakeup(&amr->amr_flags); 862 kthread_exit(0); 863 } 864 865 s = splbio(); 866 amr_intr(cookie); 867 ac = TAILQ_FIRST(&amr->amr_ccb_active); 868 while (ac != NULL) { 869 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime) 870 break; 871 if ((ac->ac_flags & AC_MOAN) == 0) { 872 printf("%s: ccb %d timed out; mailbox:\n", 873 amr->amr_dv.dv_xname, ac->ac_ident); 874 amr_ccb_dump(amr, ac); 875 ac->ac_flags |= AC_MOAN; 876 } 877 ac = TAILQ_NEXT(ac, ac_chain.tailq); 878 } 879 splx(s); 880 881 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 882 printf("%s: ccb_alloc failed (%d)\n", 883 amr->amr_dv.dv_xname, rv); 884 continue; 885 } 886 887 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 888 889 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 890 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 891 if (rv != 0) { 892 printf("%s: ccb_map failed (%d)\n", 893 amr->amr_dv.dv_xname, rv); 894 amr_ccb_free(amr, ac); 895 continue; 896 } 897 898 rv = amr_ccb_wait(amr, ac); 899 amr_ccb_unmap(amr, ac); 900 if (rv != 0) { 901 printf("%s: enquiry failed (st=%d)\n", 902 amr->amr_dv.dv_xname, ac->ac_status); 903 continue; 904 } 905 amr_ccb_free(amr, ac); 906 907 al = amr->amr_drive; 908 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) { 909 if (al->al_dv == NULL) 910 continue; 911 if (al->al_state == ae->ae_ldrv.al_state[i]) 912 continue; 913 914 printf("%s: state changed: %s -> %s\n", 915 al->al_dv->dv_xname, 916 amr_drive_state(al->al_state, NULL), 917 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 918 919 al->al_state = ae->ae_ldrv.al_state[i]; 920 } 921 } 922 } 923 924 /* 925 * Return a text description of a logical drive's current state. 926 */ 927 const char * 928 amr_drive_state(int state, int *happy) 929 { 930 const char *str; 931 932 state = AMR_DRV_CURSTATE(state); 933 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 934 if (happy) 935 *happy = 1; 936 str = "status unknown"; 937 } else { 938 if (happy) 939 *happy = amr_dstate[state].ds_happy; 940 str = amr_dstate[state].ds_descr; 941 } 942 943 return (str); 944 } 945 946 /* 947 * Run a generic enquiry-style command. 948 */ 949 static void * 950 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 951 u_int8_t cmdqual, void *sbuf) 952 { 953 struct amr_ccb *ac; 954 u_int8_t *mb; 955 int rv; 956 957 if (amr_ccb_alloc(amr, &ac) != 0) 958 return (NULL); 959 960 /* Build the command proper. */ 961 mb = (u_int8_t *)&ac->ac_cmd; 962 mb[0] = cmd; 963 mb[2] = cmdsub; 964 mb[3] = cmdqual; 965 966 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 967 if (rv == 0) { 968 rv = amr_ccb_poll(amr, ac, 2000); 969 amr_ccb_unmap(amr, ac); 970 } 971 amr_ccb_free(amr, ac); 972 973 return (rv ? NULL : sbuf); 974 } 975 976 /* 977 * Allocate and initialise a CCB. 978 */ 979 int 980 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 981 { 982 int s; 983 984 s = splbio(); 985 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 986 splx(s); 987 return (EAGAIN); 988 } 989 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 990 splx(s); 991 992 return (0); 993 } 994 995 /* 996 * Free a CCB. 997 */ 998 void 999 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 1000 { 1001 int s; 1002 1003 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 1004 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 1005 ac->ac_cmd.mb_busy = 1; 1006 ac->ac_handler = NULL; 1007 ac->ac_flags = 0; 1008 1009 s = splbio(); 1010 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 1011 splx(s); 1012 } 1013 1014 /* 1015 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1016 * the order that they were enqueued and try to submit their command blocks 1017 * to the controller for execution. 1018 */ 1019 void 1020 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 1021 { 1022 int s; 1023 1024 s = splbio(); 1025 1026 if (ac != NULL) 1027 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1028 1029 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1030 if ((*amr->amr_submit)(amr, ac) != 0) 1031 break; 1032 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq); 1033 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1034 } 1035 1036 splx(s); 1037 } 1038 1039 /* 1040 * Map the specified CCB's data buffer onto the bus, and fill the 1041 * scatter-gather list. 1042 */ 1043 int 1044 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1045 int tflag) 1046 { 1047 struct amr_sgentry *sge; 1048 struct amr_mailbox_cmd *mb; 1049 int nsegs, i, rv, sgloff; 1050 bus_dmamap_t xfer; 1051 int dmaflag = 0; 1052 1053 xfer = ac->ac_xfer_map; 1054 1055 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1056 BUS_DMA_NOWAIT); 1057 if (rv != 0) 1058 return (rv); 1059 1060 mb = &ac->ac_cmd; 1061 ac->ac_xfer_size = size; 1062 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN)); 1063 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1064 1065 if (tflag & AC_XFER_OUT) 1066 dmaflag |= BUS_DMASYNC_PREWRITE; 1067 if (tflag & AC_XFER_IN) 1068 dmaflag |= BUS_DMASYNC_PREREAD; 1069 1070 /* We don't need to use a scatter/gather list for just 1 segment. */ 1071 nsegs = xfer->dm_nsegs; 1072 if (nsegs == 1) { 1073 mb->mb_nsgelem = 0; 1074 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1075 ac->ac_flags |= AC_NOSGL; 1076 } else { 1077 mb->mb_nsgelem = nsegs; 1078 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1079 1080 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff); 1081 for (i = 0; i < nsegs; i++, sge++) { 1082 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1083 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1084 } 1085 } 1086 1087 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag); 1088 1089 if ((ac->ac_flags & AC_NOSGL) == 0) 1090 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1091 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1092 1093 return (0); 1094 } 1095 1096 /* 1097 * Unmap the specified CCB's data buffer. 1098 */ 1099 void 1100 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1101 { 1102 int dmaflag = 0; 1103 1104 if (ac->ac_flags & AC_XFER_IN) 1105 dmaflag |= BUS_DMASYNC_POSTREAD; 1106 if (ac->ac_flags & AC_XFER_OUT) 1107 dmaflag |= BUS_DMASYNC_POSTWRITE; 1108 1109 if ((ac->ac_flags & AC_NOSGL) == 0) 1110 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1111 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1112 BUS_DMASYNC_POSTWRITE); 1113 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1114 dmaflag); 1115 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1116 } 1117 1118 /* 1119 * Submit a command to the controller and poll on completion. Return 1120 * non-zero on timeout or error. Must be called with interrupts blocked. 1121 */ 1122 int 1123 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1124 { 1125 int rv; 1126 1127 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) 1128 return (rv); 1129 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1130 1131 for (timo *= 10; timo != 0; timo--) { 1132 amr_intr(amr); 1133 if ((ac->ac_flags & AC_COMPLETE) != 0) 1134 break; 1135 DELAY(100); 1136 } 1137 1138 return (timo == 0 || ac->ac_status != 0 ? EIO : 0); 1139 } 1140 1141 /* 1142 * Submit a command to the controller and sleep on completion. Return 1143 * non-zero on error. 1144 */ 1145 int 1146 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1147 { 1148 int s; 1149 1150 s = splbio(); 1151 amr_ccb_enqueue(amr, ac); 1152 tsleep(ac, PRIBIO, "amrcmd", 0); 1153 splx(s); 1154 1155 return (ac->ac_status != 0 ? EIO : 0); 1156 } 1157 1158 #if 0 1159 /* 1160 * Wait for the mailbox to become available. 1161 */ 1162 static int 1163 amr_mbox_wait(struct amr_softc *amr) 1164 { 1165 int timo; 1166 1167 for (timo = 10000; timo != 0; timo--) { 1168 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1169 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1170 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1171 break; 1172 DELAY(100); 1173 } 1174 1175 if (timo == 0) 1176 printf("%s: controller wedged\n", amr->amr_dv.dv_xname); 1177 1178 return (timo != 0 ? 0 : EAGAIN); 1179 } 1180 #endif 1181 1182 /* 1183 * Tell the controller that the mailbox contains a valid command. Must be 1184 * called with interrupts blocked. 1185 */ 1186 static int 1187 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1188 { 1189 u_int32_t v; 1190 1191 amr->amr_mbox->mb_poll = 0; 1192 amr->amr_mbox->mb_ack = 0; 1193 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1194 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1195 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1196 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1197 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1198 return (EAGAIN); 1199 1200 v = amr_inl(amr, AMR_QREG_IDB); 1201 if ((v & AMR_QIDB_SUBMIT) != 0) { 1202 amr->amr_mbox->mb_cmd.mb_busy = 0; 1203 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1204 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1205 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1206 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1207 return (EAGAIN); 1208 } 1209 1210 amr->amr_mbox->mb_segment = 0; 1211 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1212 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1213 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1214 1215 ac->ac_start_time = time_uptime; 1216 ac->ac_flags |= AC_ACTIVE; 1217 amr_outl(amr, AMR_QREG_IDB, 1218 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT); 1219 return (0); 1220 } 1221 1222 static int 1223 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1224 { 1225 1226 amr->amr_mbox->mb_poll = 0; 1227 amr->amr_mbox->mb_ack = 0; 1228 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1229 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1230 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1231 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1232 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1233 return (EAGAIN); 1234 1235 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1236 amr->amr_mbox->mb_cmd.mb_busy = 0; 1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1238 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1239 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1240 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1241 return (EAGAIN); 1242 } 1243 1244 amr->amr_mbox->mb_segment = 0; 1245 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1246 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1247 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1248 1249 ac->ac_start_time = time_uptime; 1250 ac->ac_flags |= AC_ACTIVE; 1251 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1252 return (0); 1253 } 1254 1255 /* 1256 * Claim any work that the controller has completed; acknowledge completion, 1257 * save details of the completion in (mbsave). Must be called with 1258 * interrupts blocked. 1259 */ 1260 static int 1261 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1262 { 1263 1264 /* Work waiting for us? */ 1265 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1266 return (-1); 1267 1268 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1269 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1270 1271 /* Save the mailbox, which contains a list of completed commands. */ 1272 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1273 1274 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1275 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1276 1277 /* Ack the interrupt and mailbox transfer. */ 1278 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1279 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1280 1281 /* 1282 * This waits for the controller to notice that we've taken the 1283 * command from it. It's very inefficient, and we shouldn't do it, 1284 * but if we remove this code, we stop completing commands under 1285 * load. 1286 * 1287 * Peter J says we shouldn't do this. The documentation says we 1288 * should. Who is right? 1289 */ 1290 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1291 DELAY(10); 1292 1293 return (0); 1294 } 1295 1296 static int 1297 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1298 { 1299 u_int8_t istat; 1300 1301 /* Check for valid interrupt status. */ 1302 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1303 return (-1); 1304 1305 /* Ack the interrupt. */ 1306 amr_outb(amr, AMR_SREG_INTR, istat); 1307 1308 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1309 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1310 1311 /* Save mailbox, which contains a list of completed commands. */ 1312 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1313 1314 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1315 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1316 1317 /* Ack mailbox transfer. */ 1318 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1319 1320 return (0); 1321 } 1322 1323 static void 1324 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1325 { 1326 int i; 1327 1328 printf("%s: ", amr->amr_dv.dv_xname); 1329 for (i = 0; i < 4; i++) 1330 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1331 printf("\n"); 1332 } 1333 1334 static int 1335 amropen(dev_t dev, int flag, int mode, struct lwp *l) 1336 { 1337 struct amr_softc *amr; 1338 1339 if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL) 1340 return (ENXIO); 1341 if ((amr->amr_flags & AMRF_OPEN) != 0) 1342 return (EBUSY); 1343 1344 amr->amr_flags |= AMRF_OPEN; 1345 return (0); 1346 } 1347 1348 static int 1349 amrclose(dev_t dev, int flag, int mode, struct lwp *l) 1350 { 1351 struct amr_softc *amr; 1352 1353 amr = device_lookup(&amr_cd, minor(dev)); 1354 amr->amr_flags &= ~AMRF_OPEN; 1355 return (0); 1356 } 1357 1358 static int 1359 amrioctl(dev_t dev, u_long cmd, caddr_t data, int flag, 1360 struct lwp *l) 1361 { 1362 struct amr_softc *amr; 1363 struct amr_user_ioctl *au; 1364 struct amr_ccb *ac; 1365 struct amr_mailbox_ioctl *mbi; 1366 unsigned long au_length; 1367 uint8_t *au_cmd; 1368 int error; 1369 void *dp = NULL, *au_buffer; 1370 1371 amr = device_lookup(&amr_cd, minor(dev)); 1372 1373 /* This should be compatible with the FreeBSD interface */ 1374 1375 switch (cmd) { 1376 case AMR_IO_VERSION: 1377 *(int *)data = AMR_IO_VERSION_NUMBER; 1378 return 0; 1379 case AMR_IO_COMMAND: 1380 error = kauth_authorize_device_passthru(l->l_cred, dev, data); 1381 if (error) 1382 return (error); 1383 1384 au = (struct amr_user_ioctl *)data; 1385 au_cmd = au->au_cmd; 1386 au_buffer = au->au_buffer; 1387 au_length = au->au_length; 1388 break; 1389 default: 1390 return ENOTTY; 1391 } 1392 1393 if (au_cmd[0] == AMR_CMD_PASS) { 1394 /* not yet */ 1395 return EOPNOTSUPP; 1396 } 1397 1398 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06) 1399 return (EINVAL); 1400 1401 /* 1402 * allocate kernel memory for data, doing I/O directly to user 1403 * buffer isn't that easy. 1404 */ 1405 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO); 1406 if (dp == NULL) 1407 return ENOMEM; 1408 if ((error = copyin(au_buffer, dp, au_length)) != 0) 1409 goto out; 1410 1411 /* direct command to controller */ 1412 while (amr_ccb_alloc(amr, &ac) != 0) { 1413 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz); 1414 if (error == EINTR) 1415 goto out; 1416 } 1417 1418 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd; 1419 mbi->mb_command = au_cmd[0]; 1420 mbi->mb_channel = au_cmd[1]; 1421 mbi->mb_param = au_cmd[2]; 1422 mbi->mb_pad[0] = au_cmd[3]; 1423 mbi->mb_drive = au_cmd[4]; 1424 error = amr_ccb_map(amr, ac, dp, (int)au_length, 1425 AC_XFER_IN | AC_XFER_OUT); 1426 if (error == 0) { 1427 error = amr_ccb_wait(amr, ac); 1428 amr_ccb_unmap(amr, ac); 1429 if (error == 0) 1430 error = copyout(dp, au_buffer, au_length); 1431 1432 } 1433 amr_ccb_free(amr, ac); 1434 out: 1435 free(dp, M_DEVBUF); 1436 return (error); 1437 } 1438