1 /* $NetBSD: amr.c,v 1.27 2005/06/28 00:28:41 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999,2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 67 */ 68 69 /* 70 * Driver for AMI RAID controllers. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.27 2005/06/28 00:28:41 thorpej Exp $"); 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 #include <sys/proc.h> 82 #include <sys/buf.h> 83 #include <sys/malloc.h> 84 #include <sys/kthread.h> 85 86 #include <uvm/uvm_extern.h> 87 88 #include <machine/endian.h> 89 #include <machine/bus.h> 90 91 #include <dev/pci/pcidevs.h> 92 #include <dev/pci/pcivar.h> 93 #include <dev/pci/amrreg.h> 94 #include <dev/pci/amrvar.h> 95 96 #include "locators.h" 97 98 static void amr_attach(struct device *, struct device *, void *); 99 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 100 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, 101 void *); 102 static int amr_init(struct amr_softc *, const char *, 103 struct pci_attach_args *pa); 104 static int amr_intr(void *); 105 static int amr_match(struct device *, struct cfdata *, void *); 106 static int amr_print(void *, const char *); 107 static void amr_shutdown(void *); 108 static int amr_submatch(struct device *, struct cfdata *, 109 const locdesc_t *, void *); 110 static void amr_teardown(struct amr_softc *); 111 static void amr_thread(void *); 112 static void amr_thread_create(void *); 113 114 static int amr_quartz_get_work(struct amr_softc *, 115 struct amr_mailbox_resp *); 116 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 117 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 118 static int amr_std_submit(struct amr_softc *, struct amr_ccb *); 119 120 CFATTACH_DECL(amr, sizeof(struct amr_softc), 121 amr_match, amr_attach, NULL, NULL); 122 123 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 124 #define AT_SIG 0x02 /* Check for signature */ 125 126 struct amr_pci_type { 127 u_short apt_vendor; 128 u_short apt_product; 129 u_short apt_flags; 130 } static const amr_pci_type[] = { 131 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 134 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, 136 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, 137 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ }, 138 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ }, 139 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ }, 140 }; 141 142 struct amr_typestr { 143 const char *at_str; 144 int at_sig; 145 } static const amr_typestr[] = { 146 { "Series 431", AMR_SIG_431 }, 147 { "Series 438", AMR_SIG_438 }, 148 { "Series 466", AMR_SIG_466 }, 149 { "Series 467", AMR_SIG_467 }, 150 { "Series 490", AMR_SIG_490 }, 151 { "Series 762", AMR_SIG_762 }, 152 { "HP NetRAID (T5)", AMR_SIG_T5 }, 153 { "HP NetRAID (T7)", AMR_SIG_T7 }, 154 }; 155 156 struct { 157 const char *ds_descr; 158 int ds_happy; 159 } static const amr_dstate[] = { 160 { "offline", 0 }, 161 { "degraded", 1 }, 162 { "optimal", 1 }, 163 { "online", 1 }, 164 { "failed", 0 }, 165 { "rebuilding", 1 }, 166 { "hotspare", 0 }, 167 }; 168 169 static void *amr_sdh; 170 171 static int amr_max_segs; 172 int amr_max_xfer; 173 174 static inline u_int8_t 175 amr_inb(struct amr_softc *amr, int off) 176 { 177 178 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 179 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 180 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 181 } 182 183 static inline u_int32_t 184 amr_inl(struct amr_softc *amr, int off) 185 { 186 187 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 188 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 189 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 190 } 191 192 static inline void 193 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 194 { 195 196 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 197 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 198 BUS_SPACE_BARRIER_WRITE); 199 } 200 201 static inline void 202 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 203 { 204 205 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 206 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 207 BUS_SPACE_BARRIER_WRITE); 208 } 209 210 /* 211 * Match a supported device. 212 */ 213 static int 214 amr_match(struct device *parent, struct cfdata *match, void *aux) 215 { 216 struct pci_attach_args *pa; 217 pcireg_t s; 218 int i; 219 220 pa = (struct pci_attach_args *)aux; 221 222 /* 223 * Don't match the device if it's operating in I2O mode. In this 224 * case it should be handled by the `iop' driver. 225 */ 226 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 227 return (0); 228 229 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 230 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 231 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 232 break; 233 234 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 235 return (0); 236 237 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 238 return (1); 239 240 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 241 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 242 } 243 244 /* 245 * Attach a supported device. 246 */ 247 static void 248 amr_attach(struct device *parent, struct device *self, void *aux) 249 { 250 struct pci_attach_args *pa; 251 struct amr_attach_args amra; 252 const struct amr_pci_type *apt; 253 struct amr_softc *amr; 254 pci_chipset_tag_t pc; 255 pci_intr_handle_t ih; 256 const char *intrstr; 257 pcireg_t reg; 258 int rseg, i, j, size, rv, memreg, ioreg; 259 struct amr_ccb *ac; 260 int help[2]; 261 locdesc_t *ldesc = (void *)help; /* XXX */ 262 263 aprint_naive(": RAID controller\n"); 264 265 amr = (struct amr_softc *)self; 266 pa = (struct pci_attach_args *)aux; 267 pc = pa->pa_pc; 268 269 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 270 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 271 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 272 break; 273 apt = amr_pci_type + i; 274 275 memreg = ioreg = 0; 276 for (i = 0x10; i <= 0x14; i += 4) { 277 reg = pci_conf_read(pc, pa->pa_tag, i); 278 switch (PCI_MAPREG_TYPE(reg)) { 279 case PCI_MAPREG_TYPE_MEM: 280 if (PCI_MAPREG_MEM_SIZE(reg) != 0) 281 memreg = i; 282 break; 283 case PCI_MAPREG_TYPE_IO: 284 if (PCI_MAPREG_IO_SIZE(reg) != 0) 285 ioreg = i; 286 break; 287 288 } 289 } 290 291 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 292 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 293 ; 294 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 295 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 296 ; 297 else { 298 aprint_error("can't map control registers\n"); 299 amr_teardown(amr); 300 return; 301 } 302 303 amr->amr_flags |= AMRF_PCI_REGS; 304 amr->amr_dmat = pa->pa_dmat; 305 amr->amr_pc = pa->pa_pc; 306 307 /* Enable the device. */ 308 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 309 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 310 reg | PCI_COMMAND_MASTER_ENABLE); 311 312 /* Map and establish the interrupt. */ 313 if (pci_intr_map(pa, &ih)) { 314 aprint_error("can't map interrupt\n"); 315 amr_teardown(amr); 316 return; 317 } 318 intrstr = pci_intr_string(pc, ih); 319 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); 320 if (amr->amr_ih == NULL) { 321 aprint_error("can't establish interrupt"); 322 if (intrstr != NULL) 323 aprint_normal(" at %s", intrstr); 324 aprint_normal("\n"); 325 amr_teardown(amr); 326 return; 327 } 328 amr->amr_flags |= AMRF_PCI_INTR; 329 330 /* 331 * Allocate space for the mailbox and S/G lists. Some controllers 332 * don't like S/G lists to be located below 0x2000, so we allocate 333 * enough slop to enable us to compensate. 334 * 335 * The standard mailbox structure needs to be aligned on a 16-byte 336 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 337 * size, which preceeds the standard mailbox. 338 */ 339 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 340 amr->amr_dmasize = size; 341 342 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0, 343 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 344 aprint_error("%s: unable to allocate buffer, rv = %d\n", 345 amr->amr_dv.dv_xname, rv); 346 amr_teardown(amr); 347 return; 348 } 349 amr->amr_flags |= AMRF_DMA_ALLOC; 350 351 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 352 (caddr_t *)&amr->amr_mbox, 353 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 354 aprint_error("%s: unable to map buffer, rv = %d\n", 355 amr->amr_dv.dv_xname, rv); 356 amr_teardown(amr); 357 return; 358 } 359 amr->amr_flags |= AMRF_DMA_MAP; 360 361 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 362 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 363 aprint_error("%s: unable to create buffer DMA map, rv = %d\n", 364 amr->amr_dv.dv_xname, rv); 365 amr_teardown(amr); 366 return; 367 } 368 amr->amr_flags |= AMRF_DMA_CREATE; 369 370 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 371 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 372 aprint_error("%s: unable to load buffer DMA map, rv = %d\n", 373 amr->amr_dv.dv_xname, rv); 374 amr_teardown(amr); 375 return; 376 } 377 amr->amr_flags |= AMRF_DMA_LOAD; 378 379 memset(amr->amr_mbox, 0, size); 380 381 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 382 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 383 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox + 384 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 385 386 /* 387 * Allocate and initalise the command control blocks. 388 */ 389 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); 390 amr->amr_ccbs = ac; 391 SLIST_INIT(&amr->amr_ccb_freelist); 392 TAILQ_INIT(&amr->amr_ccb_active); 393 amr->amr_flags |= AMRF_CCBS; 394 395 if (amr_max_xfer == 0) { 396 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 397 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 398 } 399 400 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 401 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 402 amr_max_segs, amr_max_xfer, 0, 403 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 404 if (rv != 0) 405 break; 406 407 ac->ac_ident = i; 408 amr_ccb_free(amr, ac); 409 } 410 if (i != AMR_MAX_CMDS) { 411 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname); 412 amr_teardown(amr); 413 return; 414 } 415 416 /* 417 * Take care of model-specific tasks. 418 */ 419 if ((apt->apt_flags & AT_QUARTZ) != 0) { 420 amr->amr_submit = amr_quartz_submit; 421 amr->amr_get_work = amr_quartz_get_work; 422 } else { 423 amr->amr_submit = amr_std_submit; 424 amr->amr_get_work = amr_std_get_work; 425 426 /* Notify the controller of the mailbox location. */ 427 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 428 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 429 430 /* Clear outstanding interrupts and enable interrupts. */ 431 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 432 amr_outb(amr, AMR_SREG_TOGL, 433 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 434 } 435 436 /* 437 * Retrieve parameters, and tell the world about us. 438 */ 439 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); 440 amr->amr_flags |= AMRF_ENQBUF; 441 amr->amr_maxqueuecnt = i; 442 aprint_normal(": AMI RAID "); 443 if (amr_init(amr, intrstr, pa) != 0) { 444 amr_teardown(amr); 445 return; 446 } 447 448 /* 449 * Cap the maximum number of outstanding commands. AMI's Linux 450 * driver doesn't trust the controller's reported value, and lockups 451 * have been seen when we do. 452 */ 453 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 454 if (amr->amr_maxqueuecnt > i) 455 amr->amr_maxqueuecnt = i; 456 457 /* Set our `shutdownhook' before we start any device activity. */ 458 if (amr_sdh == NULL) 459 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 460 461 /* Attach sub-devices. */ 462 for (j = 0; j < amr->amr_numdrives; j++) { 463 if (amr->amr_drive[j].al_size == 0) 464 continue; 465 amra.amra_unit = j; 466 467 ldesc->len = 1; 468 ldesc->locs[AMRCF_UNIT] = j; 469 470 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv, 471 "amr", ldesc, &amra, amr_print, amr_submatch); 472 } 473 474 SIMPLEQ_INIT(&amr->amr_ccb_queue); 475 476 /* XXX This doesn't work for newer boards yet. */ 477 if ((apt->apt_flags & AT_QUARTZ) == 0) 478 kthread_create(amr_thread_create, amr); 479 } 480 481 /* 482 * Free up resources. 483 */ 484 static void 485 amr_teardown(struct amr_softc *amr) 486 { 487 struct amr_ccb *ac; 488 int fl; 489 490 fl = amr->amr_flags; 491 492 if ((fl & AMRF_THREAD) != 0) { 493 amr->amr_flags |= AMRF_THREAD_EXIT; 494 wakeup(amr_thread); 495 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) 496 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0); 497 } 498 if ((fl & AMRF_CCBS) != 0) { 499 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 500 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 501 } 502 free(amr->amr_ccbs, M_DEVBUF); 503 } 504 if ((fl & AMRF_ENQBUF) != 0) 505 free(amr->amr_enqbuf, M_DEVBUF); 506 if ((fl & AMRF_DMA_LOAD) != 0) 507 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 508 if ((fl & AMRF_DMA_MAP) != 0) 509 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox, 510 amr->amr_dmasize); 511 if ((fl & AMRF_DMA_ALLOC) != 0) 512 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 513 if ((fl & AMRF_DMA_CREATE) != 0) 514 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 515 if ((fl & AMRF_PCI_INTR) != 0) 516 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 517 if ((fl & AMRF_PCI_REGS) != 0) 518 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 519 } 520 521 /* 522 * Print autoconfiguration message for a sub-device. 523 */ 524 static int 525 amr_print(void *aux, const char *pnp) 526 { 527 struct amr_attach_args *amra; 528 529 amra = (struct amr_attach_args *)aux; 530 531 if (pnp != NULL) 532 aprint_normal("block device at %s", pnp); 533 aprint_normal(" unit %d", amra->amra_unit); 534 return (UNCONF); 535 } 536 537 /* 538 * Match a sub-device. 539 */ 540 static int 541 amr_submatch(struct device *parent, struct cfdata *cf, 542 const locdesc_t *ldesc, void *aux) 543 { 544 struct amr_attach_args *amra; 545 546 amra = (struct amr_attach_args *)aux; 547 548 if (cf->cf_loc[AMRCF_UNIT] != AMRCF_UNIT_DEFAULT && 549 cf->cf_loc[AMRCF_UNIT] != ldesc->locs[AMRCF_UNIT]) 550 return (0); 551 552 return (config_match(parent, cf, aux)); 553 } 554 555 /* 556 * Retrieve operational parameters and describe the controller. 557 */ 558 static int 559 amr_init(struct amr_softc *amr, const char *intrstr, 560 struct pci_attach_args *pa) 561 { 562 struct amr_adapter_info *aa; 563 struct amr_prodinfo *ap; 564 struct amr_enquiry *ae; 565 struct amr_enquiry3 *aex; 566 const char *prodstr; 567 u_int i, sig, ishp; 568 char sbuf[64]; 569 570 /* 571 * Try to get 40LD product info, which tells us what the card is 572 * labelled as. 573 */ 574 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 575 amr->amr_enqbuf); 576 if (ap != NULL) { 577 aprint_normal("<%.80s>\n", ap->ap_product); 578 if (intrstr != NULL) 579 aprint_normal("%s: interrupting at %s\n", 580 amr->amr_dv.dv_xname, intrstr); 581 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n", 582 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios, 583 le16toh(ap->ap_memsize)); 584 585 amr->amr_maxqueuecnt = ap->ap_maxio; 586 587 /* 588 * Fetch and record state of logical drives. 589 */ 590 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 591 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 592 if (aex == NULL) { 593 aprint_error("%s ENQUIRY3 failed\n", 594 amr->amr_dv.dv_xname); 595 return (-1); 596 } 597 598 if (aex->ae_numldrives > AMR_MAX_UNITS) { 599 aprint_error( 600 "%s: adjust AMR_MAX_UNITS to %d (currently %d)" 601 "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS, 602 amr->amr_numdrives); 603 amr->amr_numdrives = AMR_MAX_UNITS; 604 } else 605 amr->amr_numdrives = aex->ae_numldrives; 606 607 for (i = 0; i < amr->amr_numdrives; i++) { 608 amr->amr_drive[i].al_size = 609 le32toh(aex->ae_drivesize[i]); 610 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 611 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 612 } 613 614 return (0); 615 } 616 617 /* 618 * Try 8LD extended ENQUIRY to get the controller signature. Once 619 * found, search for a product description. 620 */ 621 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 622 if (ae != NULL) { 623 i = 0; 624 sig = le32toh(ae->ae_signature); 625 626 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 627 if (amr_typestr[i].at_sig == sig) 628 break; 629 i++; 630 } 631 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 632 snprintf(sbuf, sizeof(sbuf), 633 "unknown ENQUIRY2 sig (0x%08x)", sig); 634 prodstr = sbuf; 635 } else 636 prodstr = amr_typestr[i].at_str; 637 } else { 638 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 639 if (ae == NULL) { 640 aprint_error("%s: unsupported controller\n", 641 amr->amr_dv.dv_xname); 642 return (-1); 643 } 644 645 switch (PCI_PRODUCT(pa->pa_id)) { 646 case PCI_PRODUCT_AMI_MEGARAID: 647 prodstr = "Series 428"; 648 break; 649 case PCI_PRODUCT_AMI_MEGARAID2: 650 prodstr = "Series 434"; 651 break; 652 default: 653 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)", 654 PCI_PRODUCT(pa->pa_id)); 655 prodstr = sbuf; 656 break; 657 } 658 } 659 660 /* 661 * HP NetRaid controllers have a special encoding of the firmware 662 * and BIOS versions. The AMI version seems to have it as strings 663 * whereas the HP version does it with a leading uppercase character 664 * and two binary numbers. 665 */ 666 aa = &ae->ae_adapter; 667 668 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 669 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 670 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 671 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 672 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 673 /* The AMI 438 is a NetRaid 3si in HP-land. */ 674 prodstr = "HP NetRaid 3si"; 675 } 676 ishp = 1; 677 } else 678 ishp = 0; 679 680 aprint_normal("<%s>\n", prodstr); 681 if (intrstr != NULL) 682 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, 683 intrstr); 684 685 if (ishp) 686 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>" 687 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2], 688 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 689 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 690 else 691 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n", 692 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios, 693 aa->aa_memorysize); 694 695 amr->amr_maxqueuecnt = aa->aa_maxio; 696 697 /* 698 * Record state of logical drives. 699 */ 700 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 701 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n", 702 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, 703 AMR_MAX_UNITS); 704 amr->amr_numdrives = AMR_MAX_UNITS; 705 } else 706 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 707 708 for (i = 0; i < AMR_MAX_UNITS; i++) { 709 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 710 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 711 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 712 } 713 714 return (0); 715 } 716 717 /* 718 * Flush the internal cache on each configured controller. Called at 719 * shutdown time. 720 */ 721 static void 722 amr_shutdown(void *cookie) 723 { 724 extern struct cfdriver amr_cd; 725 struct amr_softc *amr; 726 struct amr_ccb *ac; 727 int i, rv, s; 728 729 for (i = 0; i < amr_cd.cd_ndevs; i++) { 730 if ((amr = device_lookup(&amr_cd, i)) == NULL) 731 continue; 732 733 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 734 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 735 s = splbio(); 736 rv = amr_ccb_poll(amr, ac, 30000); 737 splx(s); 738 amr_ccb_free(amr, ac); 739 } 740 if (rv != 0) 741 printf("%s: unable to flush cache (%d)\n", 742 amr->amr_dv.dv_xname, rv); 743 } 744 } 745 746 /* 747 * Interrupt service routine. 748 */ 749 static int 750 amr_intr(void *cookie) 751 { 752 struct amr_softc *amr; 753 struct amr_ccb *ac; 754 struct amr_mailbox_resp mbox; 755 u_int i, forus, idx; 756 757 amr = cookie; 758 forus = 0; 759 760 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 761 /* Iterate over completed commands in this result. */ 762 for (i = 0; i < mbox.mb_nstatus; i++) { 763 idx = mbox.mb_completed[i] - 1; 764 ac = amr->amr_ccbs + idx; 765 766 if (idx >= amr->amr_maxqueuecnt) { 767 printf("%s: bad status (bogus ID: %u=%u)\n", 768 amr->amr_dv.dv_xname, i, idx); 769 continue; 770 } 771 772 if ((ac->ac_flags & AC_ACTIVE) == 0) { 773 printf("%s: bad status (not active; 0x04%x)\n", 774 amr->amr_dv.dv_xname, ac->ac_flags); 775 continue; 776 } 777 778 ac->ac_status = mbox.mb_status; 779 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 780 AC_COMPLETE; 781 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 782 783 if ((ac->ac_flags & AC_MOAN) != 0) 784 printf("%s: ccb %d completed\n", 785 amr->amr_dv.dv_xname, ac->ac_ident); 786 787 /* Pass notification to upper layers. */ 788 if (ac->ac_handler != NULL) 789 (*ac->ac_handler)(ac); 790 else 791 wakeup(ac); 792 } 793 forus = 1; 794 } 795 796 if (forus) 797 amr_ccb_enqueue(amr, NULL); 798 799 return (forus); 800 } 801 802 /* 803 * Create the watchdog thread. 804 */ 805 static void 806 amr_thread_create(void *cookie) 807 { 808 struct amr_softc *amr; 809 int rv; 810 811 amr = cookie; 812 813 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 814 amr->amr_flags ^= AMRF_THREAD_EXIT; 815 wakeup(&amr->amr_flags); 816 return; 817 } 818 819 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s", 820 amr->amr_dv.dv_xname); 821 if (rv != 0) 822 aprint_error("%s: unable to create thread (%d)", 823 amr->amr_dv.dv_xname, rv); 824 else 825 amr->amr_flags |= AMRF_THREAD; 826 } 827 828 /* 829 * Watchdog thread. 830 */ 831 static void 832 amr_thread(void *cookie) 833 { 834 struct amr_softc *amr; 835 struct amr_ccb *ac; 836 struct amr_logdrive *al; 837 struct amr_enquiry *ae; 838 time_t curtime; 839 int rv, i, s; 840 841 amr = cookie; 842 ae = amr->amr_enqbuf; 843 844 for (;;) { 845 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS); 846 847 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 848 amr->amr_flags ^= AMRF_THREAD_EXIT; 849 wakeup(&amr->amr_flags); 850 kthread_exit(0); 851 } 852 853 s = splbio(); 854 amr_intr(cookie); 855 curtime = (time_t)mono_time.tv_sec; 856 ac = TAILQ_FIRST(&amr->amr_ccb_active); 857 while (ac != NULL) { 858 if (ac->ac_start_time + AMR_TIMEOUT > curtime) 859 break; 860 if ((ac->ac_flags & AC_MOAN) == 0) { 861 printf("%s: ccb %d timed out; mailbox:\n", 862 amr->amr_dv.dv_xname, ac->ac_ident); 863 amr_ccb_dump(amr, ac); 864 ac->ac_flags |= AC_MOAN; 865 } 866 ac = TAILQ_NEXT(ac, ac_chain.tailq); 867 } 868 splx(s); 869 870 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 871 printf("%s: ccb_alloc failed (%d)\n", 872 amr->amr_dv.dv_xname, rv); 873 continue; 874 } 875 876 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 877 878 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 879 AMR_ENQUIRY_BUFSIZE, 0); 880 if (rv != 0) { 881 printf("%s: ccb_map failed (%d)\n", 882 amr->amr_dv.dv_xname, rv); 883 amr_ccb_free(amr, ac); 884 continue; 885 } 886 887 rv = amr_ccb_wait(amr, ac); 888 amr_ccb_unmap(amr, ac); 889 if (rv != 0) { 890 printf("%s: enquiry failed (st=%d)\n", 891 amr->amr_dv.dv_xname, ac->ac_status); 892 continue; 893 } 894 amr_ccb_free(amr, ac); 895 896 al = amr->amr_drive; 897 for (i = 0; i < AMR_MAX_UNITS; i++, al++) { 898 if (al->al_dv == NULL) 899 continue; 900 if (al->al_state == ae->ae_ldrv.al_state[i]) 901 continue; 902 903 printf("%s: state changed: %s -> %s\n", 904 al->al_dv->dv_xname, 905 amr_drive_state(al->al_state, NULL), 906 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 907 908 al->al_state = ae->ae_ldrv.al_state[i]; 909 } 910 } 911 } 912 913 /* 914 * Return a text description of a logical drive's current state. 915 */ 916 const char * 917 amr_drive_state(int state, int *happy) 918 { 919 const char *str; 920 921 state = AMR_DRV_CURSTATE(state); 922 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 923 if (happy) 924 *happy = 1; 925 str = "status unknown"; 926 } else { 927 if (happy) 928 *happy = amr_dstate[state].ds_happy; 929 str = amr_dstate[state].ds_descr; 930 } 931 932 return (str); 933 } 934 935 /* 936 * Run a generic enquiry-style command. 937 */ 938 static void * 939 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 940 u_int8_t cmdqual, void *sbuf) 941 { 942 struct amr_ccb *ac; 943 u_int8_t *mb; 944 int rv; 945 946 if (amr_ccb_alloc(amr, &ac) != 0) 947 return (NULL); 948 949 /* Build the command proper. */ 950 mb = (u_int8_t *)&ac->ac_cmd; 951 mb[0] = cmd; 952 mb[2] = cmdsub; 953 mb[3] = cmdqual; 954 955 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0); 956 if (rv == 0) { 957 rv = amr_ccb_poll(amr, ac, 2000); 958 amr_ccb_unmap(amr, ac); 959 } 960 amr_ccb_free(amr, ac); 961 962 return (rv ? NULL : sbuf); 963 } 964 965 /* 966 * Allocate and initialise a CCB. 967 */ 968 int 969 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 970 { 971 int s; 972 973 s = splbio(); 974 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 975 splx(s); 976 return (EAGAIN); 977 } 978 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 979 splx(s); 980 981 return (0); 982 } 983 984 /* 985 * Free a CCB. 986 */ 987 void 988 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 989 { 990 int s; 991 992 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 993 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 994 ac->ac_cmd.mb_busy = 1; 995 ac->ac_handler = NULL; 996 ac->ac_flags = 0; 997 998 s = splbio(); 999 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 1000 splx(s); 1001 } 1002 1003 /* 1004 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1005 * the order that they were enqueued and try to submit their command blocks 1006 * to the controller for execution. 1007 */ 1008 void 1009 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 1010 { 1011 int s; 1012 1013 s = splbio(); 1014 1015 if (ac != NULL) 1016 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1017 1018 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1019 if ((*amr->amr_submit)(amr, ac) != 0) 1020 break; 1021 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq); 1022 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1023 } 1024 1025 splx(s); 1026 } 1027 1028 /* 1029 * Map the specified CCB's data buffer onto the bus, and fill the 1030 * scatter-gather list. 1031 */ 1032 int 1033 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1034 int out) 1035 { 1036 struct amr_sgentry *sge; 1037 struct amr_mailbox_cmd *mb; 1038 int nsegs, i, rv, sgloff; 1039 bus_dmamap_t xfer; 1040 1041 xfer = ac->ac_xfer_map; 1042 1043 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1044 BUS_DMA_NOWAIT); 1045 if (rv != 0) 1046 return (rv); 1047 1048 mb = &ac->ac_cmd; 1049 ac->ac_xfer_size = size; 1050 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN); 1051 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1052 1053 /* We don't need to use a scatter/gather list for just 1 segment. */ 1054 nsegs = xfer->dm_nsegs; 1055 if (nsegs == 1) { 1056 mb->mb_nsgelem = 0; 1057 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1058 ac->ac_flags |= AC_NOSGL; 1059 } else { 1060 mb->mb_nsgelem = nsegs; 1061 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1062 1063 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff); 1064 for (i = 0; i < nsegs; i++, sge++) { 1065 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1066 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1067 } 1068 } 1069 1070 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, 1071 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD); 1072 1073 if ((ac->ac_flags & AC_NOSGL) == 0) 1074 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1075 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1076 1077 return (0); 1078 } 1079 1080 /* 1081 * Unmap the specified CCB's data buffer. 1082 */ 1083 void 1084 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1085 { 1086 1087 if ((ac->ac_flags & AC_NOSGL) == 0) 1088 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1089 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1090 BUS_DMASYNC_POSTWRITE); 1091 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1092 (ac->ac_flags & AC_XFER_IN) != 0 ? 1093 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 1094 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1095 } 1096 1097 /* 1098 * Submit a command to the controller and poll on completion. Return 1099 * non-zero on timeout or error. Must be called with interrupts blocked. 1100 */ 1101 int 1102 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1103 { 1104 int rv; 1105 1106 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) 1107 return (rv); 1108 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1109 1110 for (timo *= 10; timo != 0; timo--) { 1111 amr_intr(amr); 1112 if ((ac->ac_flags & AC_COMPLETE) != 0) 1113 break; 1114 DELAY(100); 1115 } 1116 1117 return (timo == 0 || ac->ac_status != 0 ? EIO : 0); 1118 } 1119 1120 /* 1121 * Submit a command to the controller and sleep on completion. Return 1122 * non-zero on error. 1123 */ 1124 int 1125 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1126 { 1127 int s; 1128 1129 s = splbio(); 1130 amr_ccb_enqueue(amr, ac); 1131 tsleep(ac, PRIBIO, "amrcmd", 0); 1132 splx(s); 1133 1134 return (ac->ac_status != 0 ? EIO : 0); 1135 } 1136 1137 #if 0 1138 /* 1139 * Wait for the mailbox to become available. 1140 */ 1141 static int 1142 amr_mbox_wait(struct amr_softc *amr) 1143 { 1144 int timo; 1145 1146 for (timo = 10000; timo != 0; timo--) { 1147 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1148 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1149 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1150 break; 1151 DELAY(100); 1152 } 1153 1154 if (timo == 0) 1155 printf("%s: controller wedged\n", amr->amr_dv.dv_xname); 1156 1157 return (timo != 0 ? 0 : EAGAIN); 1158 } 1159 #endif 1160 1161 /* 1162 * Tell the controller that the mailbox contains a valid command. Must be 1163 * called with interrupts blocked. 1164 */ 1165 static int 1166 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1167 { 1168 u_int32_t v; 1169 1170 amr->amr_mbox->mb_poll = 0; 1171 amr->amr_mbox->mb_ack = 0; 1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1174 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1175 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1176 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1177 return (EAGAIN); 1178 1179 v = amr_inl(amr, AMR_QREG_IDB); 1180 if ((v & AMR_QIDB_SUBMIT) != 0) { 1181 amr->amr_mbox->mb_cmd.mb_busy = 0; 1182 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1183 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1184 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1185 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1186 return (EAGAIN); 1187 } 1188 1189 amr->amr_mbox->mb_segment = 0; 1190 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1191 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1192 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1193 1194 ac->ac_start_time = (time_t)mono_time.tv_sec; 1195 ac->ac_flags |= AC_ACTIVE; 1196 amr_outl(amr, AMR_QREG_IDB, 1197 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT); 1198 return (0); 1199 } 1200 1201 static int 1202 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1203 { 1204 1205 amr->amr_mbox->mb_poll = 0; 1206 amr->amr_mbox->mb_ack = 0; 1207 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1208 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1209 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1210 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1211 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1212 return (EAGAIN); 1213 1214 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1215 amr->amr_mbox->mb_cmd.mb_busy = 0; 1216 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1217 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1218 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1219 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1220 return (EAGAIN); 1221 } 1222 1223 amr->amr_mbox->mb_segment = 0; 1224 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1225 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1226 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1227 1228 ac->ac_start_time = (time_t)mono_time.tv_sec; 1229 ac->ac_flags |= AC_ACTIVE; 1230 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1231 return (0); 1232 } 1233 1234 /* 1235 * Claim any work that the controller has completed; acknowledge completion, 1236 * save details of the completion in (mbsave). Must be called with 1237 * interrupts blocked. 1238 */ 1239 static int 1240 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1241 { 1242 1243 /* Work waiting for us? */ 1244 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1245 return (-1); 1246 1247 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1248 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1249 1250 /* Save the mailbox, which contains a list of completed commands. */ 1251 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1252 1253 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1254 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1255 1256 /* Ack the interrupt and mailbox transfer. */ 1257 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1258 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1259 1260 /* 1261 * This waits for the controller to notice that we've taken the 1262 * command from it. It's very inefficient, and we shouldn't do it, 1263 * but if we remove this code, we stop completing commands under 1264 * load. 1265 * 1266 * Peter J says we shouldn't do this. The documentation says we 1267 * should. Who is right? 1268 */ 1269 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1270 DELAY(10); 1271 1272 return (0); 1273 } 1274 1275 static int 1276 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1277 { 1278 u_int8_t istat; 1279 1280 /* Check for valid interrupt status. */ 1281 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1282 return (-1); 1283 1284 /* Ack the interrupt. */ 1285 amr_outb(amr, AMR_SREG_INTR, istat); 1286 1287 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1288 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1289 1290 /* Save mailbox, which contains a list of completed commands. */ 1291 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1292 1293 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1294 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1295 1296 /* Ack mailbox transfer. */ 1297 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1298 1299 return (0); 1300 } 1301 1302 static void 1303 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1304 { 1305 int i; 1306 1307 printf("%s: ", amr->amr_dv.dv_xname); 1308 for (i = 0; i < 4; i++) 1309 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1310 printf("\n"); 1311 } 1312