xref: /netbsd-src/sys/dev/pci/amr.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: amr.c,v 1.57 2014/03/29 19:28:24 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60  */
61 
62 /*
63  * Driver for AMI RAID controllers.
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.57 2014/03/29 19:28:24 christos Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 
81 #include <machine/endian.h>
82 #include <sys/bus.h>
83 
84 #include <dev/pci/pcidevs.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/amrreg.h>
87 #include <dev/pci/amrvar.h>
88 #include <dev/pci/amrio.h>
89 
90 #include "locators.h"
91 
92 static void	amr_attach(device_t, device_t, void *);
93 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
94 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
95 			     void *);
96 static int	amr_init(struct amr_softc *, const char *,
97 			 struct pci_attach_args *pa);
98 static int	amr_intr(void *);
99 static int	amr_match(device_t, cfdata_t, void *);
100 static int	amr_print(void *, const char *);
101 static void	amr_shutdown(void *);
102 static void	amr_teardown(struct amr_softc *);
103 static void	amr_thread(void *);
104 
105 static int	amr_quartz_get_work(struct amr_softc *,
106 				    struct amr_mailbox_resp *);
107 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
108 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
109 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
110 
111 static dev_type_open(amropen);
112 static dev_type_close(amrclose);
113 static dev_type_ioctl(amrioctl);
114 
115 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
116     amr_match, amr_attach, NULL, NULL);
117 
118 const struct cdevsw amr_cdevsw = {
119 	.d_open = amropen,
120 	.d_close = amrclose,
121 	.d_read = noread,
122 	.d_write = nowrite,
123 	.d_ioctl = amrioctl,
124 	.d_stop = nostop,
125 	.d_tty = notty,
126 	.d_poll = nopoll,
127 	.d_mmap = nommap,
128 	.d_kqfilter = nokqfilter,
129 	.d_flag = D_OTHER
130 };
131 
132 extern struct   cfdriver amr_cd;
133 
134 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
135 #define	AT_SIG		0x02	/* Check for signature */
136 
137 static struct amr_pci_type {
138 	u_short	apt_vendor;
139 	u_short	apt_product;
140 	u_short	apt_flags;
141 } const amr_pci_type[] = {
142 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
143 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
144 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
145 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
147 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
151 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
152 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
154 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
155 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
156 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
157 };
158 
159 static struct amr_typestr {
160 	const char	*at_str;
161 	int		at_sig;
162 } const amr_typestr[] = {
163 	{ "Series 431",			AMR_SIG_431 },
164 	{ "Series 438",			AMR_SIG_438 },
165 	{ "Series 466",			AMR_SIG_466 },
166 	{ "Series 467",			AMR_SIG_467 },
167 	{ "Series 490",			AMR_SIG_490 },
168 	{ "Series 762",			AMR_SIG_762 },
169 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
170 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
171 };
172 
173 static struct {
174 	const char	*ds_descr;
175 	int	ds_happy;
176 } const amr_dstate[] = {
177 	{ "offline",	0 },
178 	{ "degraded",	1 },
179 	{ "optimal",	1 },
180 	{ "online",	1 },
181 	{ "failed",	0 },
182 	{ "rebuilding",	1 },
183 	{ "hotspare",	0 },
184 };
185 
186 static void	*amr_sdh;
187 
188 static int	amr_max_segs;
189 int		amr_max_xfer;
190 
191 static inline u_int8_t
192 amr_inb(struct amr_softc *amr, int off)
193 {
194 
195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
198 }
199 
200 static inline u_int32_t
201 amr_inl(struct amr_softc *amr, int off)
202 {
203 
204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
206 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
207 }
208 
209 static inline void
210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
211 {
212 
213 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
215 	    BUS_SPACE_BARRIER_WRITE);
216 }
217 
218 static inline void
219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
220 {
221 
222 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
223 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
224 	    BUS_SPACE_BARRIER_WRITE);
225 }
226 
227 /*
228  * Match a supported device.
229  */
230 static int
231 amr_match(device_t parent, cfdata_t match, void *aux)
232 {
233 	struct pci_attach_args *pa;
234 	pcireg_t s;
235 	int i;
236 
237 	pa = (struct pci_attach_args *)aux;
238 
239 	/*
240 	 * Don't match the device if it's operating in I2O mode.  In this
241 	 * case it should be handled by the `iop' driver.
242 	 */
243 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
244 		return (0);
245 
246 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
247 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
248 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
249 		    	break;
250 
251 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
252 		return (0);
253 
254 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
255 		return (1);
256 
257 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
258 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
259 }
260 
261 /*
262  * Attach a supported device.
263  */
264 static void
265 amr_attach(device_t parent, device_t self, void *aux)
266 {
267 	struct pci_attach_args *pa;
268 	struct amr_attach_args amra;
269 	const struct amr_pci_type *apt;
270 	struct amr_softc *amr;
271 	pci_chipset_tag_t pc;
272 	pci_intr_handle_t ih;
273 	const char *intrstr;
274 	pcireg_t reg;
275 	int rseg, i, j, size, rv, memreg, ioreg;
276 	struct amr_ccb *ac;
277 	int locs[AMRCF_NLOCS];
278 	char intrbuf[PCI_INTRSTR_LEN];
279 
280 	aprint_naive(": RAID controller\n");
281 
282 	amr = device_private(self);
283 	amr->amr_dv = self;
284 	pa = (struct pci_attach_args *)aux;
285 	pc = pa->pa_pc;
286 
287 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
288 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
289 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
290 			break;
291 	apt = amr_pci_type + i;
292 
293 	memreg = ioreg = 0;
294 	for (i = 0x10; i <= 0x14; i += 4) {
295 		reg = pci_conf_read(pc, pa->pa_tag, i);
296 		switch (PCI_MAPREG_TYPE(reg)) {
297 		case PCI_MAPREG_TYPE_MEM:
298 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
299 				memreg = i;
300 			break;
301 		case PCI_MAPREG_TYPE_IO:
302 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
303 				ioreg = i;
304 			break;
305 
306 		}
307 	}
308 
309 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
310 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
311 		;
312 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
313 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
314 		;
315 	else {
316 		aprint_error("can't map control registers\n");
317 		amr_teardown(amr);
318 		return;
319 	}
320 
321 	amr->amr_flags |= AMRF_PCI_REGS;
322 	amr->amr_dmat = pa->pa_dmat;
323 	amr->amr_pc = pa->pa_pc;
324 
325 	/* Enable the device. */
326 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
327 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
328 	    reg | PCI_COMMAND_MASTER_ENABLE);
329 
330 	/* Map and establish the interrupt. */
331 	if (pci_intr_map(pa, &ih)) {
332 		aprint_error("can't map interrupt\n");
333 		amr_teardown(amr);
334 		return;
335 	}
336 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
337 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
338 	if (amr->amr_ih == NULL) {
339 		aprint_error("can't establish interrupt");
340 		if (intrstr != NULL)
341 			aprint_error(" at %s", intrstr);
342 		aprint_error("\n");
343 		amr_teardown(amr);
344 		return;
345 	}
346 	amr->amr_flags |= AMRF_PCI_INTR;
347 
348 	/*
349 	 * Allocate space for the mailbox and S/G lists.  Some controllers
350 	 * don't like S/G lists to be located below 0x2000, so we allocate
351 	 * enough slop to enable us to compensate.
352 	 *
353 	 * The standard mailbox structure needs to be aligned on a 16-byte
354 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
355 	 * size, which precedes the standard mailbox.
356 	 */
357 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
358 	amr->amr_dmasize = size;
359 
360 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
361 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
362 		aprint_error_dev(amr->amr_dv, "unable to allocate buffer, rv = %d\n",
363 		    rv);
364 		amr_teardown(amr);
365 		return;
366 	}
367 	amr->amr_flags |= AMRF_DMA_ALLOC;
368 
369 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
370 	    (void **)&amr->amr_mbox,
371 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
372 		aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
373 		    rv);
374 		amr_teardown(amr);
375 		return;
376 	}
377 	amr->amr_flags |= AMRF_DMA_MAP;
378 
379 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
380 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
381 		aprint_error_dev(amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
382 		    rv);
383 		amr_teardown(amr);
384 		return;
385 	}
386 	amr->amr_flags |= AMRF_DMA_CREATE;
387 
388 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
389 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
390 		aprint_error_dev(amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
391 		    rv);
392 		amr_teardown(amr);
393 		return;
394 	}
395 	amr->amr_flags |= AMRF_DMA_LOAD;
396 
397 	memset(amr->amr_mbox, 0, size);
398 
399 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
400 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
401 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
402 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
403 
404 	/*
405 	 * Allocate and initalise the command control blocks.
406 	 */
407 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
408 	amr->amr_ccbs = ac;
409 	SLIST_INIT(&amr->amr_ccb_freelist);
410 	TAILQ_INIT(&amr->amr_ccb_active);
411 	amr->amr_flags |= AMRF_CCBS;
412 
413 	if (amr_max_xfer == 0) {
414 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
415 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
416 	}
417 
418 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
419 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
420 		    amr_max_segs, amr_max_xfer, 0,
421 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
422 		if (rv != 0)
423 			break;
424 
425 		ac->ac_ident = i;
426 		amr_ccb_free(amr, ac);
427 	}
428 	if (i != AMR_MAX_CMDS) {
429 		aprint_error_dev(amr->amr_dv, "memory exhausted\n");
430 		amr_teardown(amr);
431 		return;
432 	}
433 
434 	/*
435 	 * Take care of model-specific tasks.
436 	 */
437 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
438 		amr->amr_submit = amr_quartz_submit;
439 		amr->amr_get_work = amr_quartz_get_work;
440 	} else {
441 		amr->amr_submit = amr_std_submit;
442 		amr->amr_get_work = amr_std_get_work;
443 
444 		/* Notify the controller of the mailbox location. */
445 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
446 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
447 
448 		/* Clear outstanding interrupts and enable interrupts. */
449 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
450 		amr_outb(amr, AMR_SREG_TOGL,
451 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
452 	}
453 
454 	/*
455 	 * Retrieve parameters, and tell the world about us.
456 	 */
457 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
458 	amr->amr_flags |= AMRF_ENQBUF;
459 	amr->amr_maxqueuecnt = i;
460 	aprint_normal(": AMI RAID ");
461 	if (amr_init(amr, intrstr, pa) != 0) {
462 		amr_teardown(amr);
463 		return;
464 	}
465 
466 	/*
467 	 * Cap the maximum number of outstanding commands.  AMI's Linux
468 	 * driver doesn't trust the controller's reported value, and lockups
469 	 * have been seen when we do.
470 	 */
471 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
472 	if (amr->amr_maxqueuecnt > i)
473 		amr->amr_maxqueuecnt = i;
474 
475 	/* Set our `shutdownhook' before we start any device activity. */
476 	if (amr_sdh == NULL)
477 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
478 
479 	/* Attach sub-devices. */
480 	for (j = 0; j < amr->amr_numdrives; j++) {
481 		if (amr->amr_drive[j].al_size == 0)
482 			continue;
483 		amra.amra_unit = j;
484 
485 		locs[AMRCF_UNIT] = j;
486 
487 		amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
488 			"amr", locs, &amra, amr_print, config_stdsubmatch);
489 	}
490 
491 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
492 
493 	/* XXX This doesn't work for newer boards yet. */
494 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
495 		rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
496 		    &amr->amr_thread, "%s", device_xname(amr->amr_dv));
497  		if (rv != 0)
498 			aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
499  			    rv);
500  		else
501  			amr->amr_flags |= AMRF_THREAD;
502 	}
503 }
504 
505 /*
506  * Free up resources.
507  */
508 static void
509 amr_teardown(struct amr_softc *amr)
510 {
511 	struct amr_ccb *ac;
512 	int fl;
513 
514 	fl = amr->amr_flags;
515 
516 	if ((fl & AMRF_THREAD) != 0) {
517 		amr->amr_flags |= AMRF_THREAD_EXIT;
518 		wakeup(amr_thread);
519 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
520 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
521 	}
522 	if ((fl & AMRF_CCBS) != 0) {
523 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
524 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
525 		}
526 		free(amr->amr_ccbs, M_DEVBUF);
527 	}
528 	if ((fl & AMRF_ENQBUF) != 0)
529 		free(amr->amr_enqbuf, M_DEVBUF);
530 	if ((fl & AMRF_DMA_LOAD) != 0)
531 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
532 	if ((fl & AMRF_DMA_MAP) != 0)
533 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
534 		    amr->amr_dmasize);
535 	if ((fl & AMRF_DMA_ALLOC) != 0)
536 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
537 	if ((fl & AMRF_DMA_CREATE) != 0)
538 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
539 	if ((fl & AMRF_PCI_INTR) != 0)
540 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
541 	if ((fl & AMRF_PCI_REGS) != 0)
542 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
543 }
544 
545 /*
546  * Print autoconfiguration message for a sub-device.
547  */
548 static int
549 amr_print(void *aux, const char *pnp)
550 {
551 	struct amr_attach_args *amra;
552 
553 	amra = (struct amr_attach_args *)aux;
554 
555 	if (pnp != NULL)
556 		aprint_normal("block device at %s", pnp);
557 	aprint_normal(" unit %d", amra->amra_unit);
558 	return (UNCONF);
559 }
560 
561 /*
562  * Retrieve operational parameters and describe the controller.
563  */
564 static int
565 amr_init(struct amr_softc *amr, const char *intrstr,
566 	 struct pci_attach_args *pa)
567 {
568 	struct amr_adapter_info *aa;
569 	struct amr_prodinfo *ap;
570 	struct amr_enquiry *ae;
571 	struct amr_enquiry3 *aex;
572 	const char *prodstr;
573 	u_int i, sig, ishp;
574 	char sbuf[64];
575 
576 	/*
577 	 * Try to get 40LD product info, which tells us what the card is
578 	 * labelled as.
579 	 */
580 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
581 	    amr->amr_enqbuf);
582 	if (ap != NULL) {
583 		aprint_normal("<%.80s>\n", ap->ap_product);
584 		if (intrstr != NULL)
585 			aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
586 			    intrstr);
587 		aprint_normal_dev(amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
588 		    ap->ap_firmware, ap->ap_bios,
589 		    le16toh(ap->ap_memsize));
590 
591 		amr->amr_maxqueuecnt = ap->ap_maxio;
592 
593 		/*
594 		 * Fetch and record state of logical drives.
595 		 */
596 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
597 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
598 		if (aex == NULL) {
599 			aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
600 			return (-1);
601 		}
602 
603 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
604 			aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
605 			   " than the array can handle (%zu)\n",
606 			   aex->ae_numldrives,
607 			   __arraycount(aex->ae_drivestate));
608 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
609 		}
610 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
611 			aprint_error_dev(amr->amr_dv,
612 			    "adjust AMR_MAX_UNITS to %d (currently %d)"
613 			    "\n", AMR_MAX_UNITS,
614 			    amr->amr_numdrives);
615 			amr->amr_numdrives = AMR_MAX_UNITS;
616 		} else
617 			amr->amr_numdrives = aex->ae_numldrives;
618 
619 		for (i = 0; i < amr->amr_numdrives; i++) {
620 			amr->amr_drive[i].al_size =
621 			    le32toh(aex->ae_drivesize[i]);
622 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
623 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
624 		}
625 
626 		return (0);
627 	}
628 
629 	/*
630 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
631 	 * found, search for a product description.
632 	 */
633 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
634 	if (ae != NULL) {
635 		i = 0;
636 		sig = le32toh(ae->ae_signature);
637 
638 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
639 			if (amr_typestr[i].at_sig == sig)
640 				break;
641 			i++;
642 		}
643 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
644 			snprintf(sbuf, sizeof(sbuf),
645 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
646 			prodstr = sbuf;
647 		} else
648 			prodstr = amr_typestr[i].at_str;
649 	} else {
650 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
651 		if (ae == NULL) {
652 			aprint_error_dev(amr->amr_dv, "unsupported controller\n");
653 			return (-1);
654 		}
655 
656 		switch (PCI_PRODUCT(pa->pa_id)) {
657 		case PCI_PRODUCT_AMI_MEGARAID:
658 			prodstr = "Series 428";
659 			break;
660 		case PCI_PRODUCT_AMI_MEGARAID2:
661 			prodstr = "Series 434";
662 			break;
663 		default:
664 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
665 			    PCI_PRODUCT(pa->pa_id));
666 			prodstr = sbuf;
667 			break;
668 		}
669 	}
670 
671 	/*
672 	 * HP NetRaid controllers have a special encoding of the firmware
673 	 * and BIOS versions.  The AMI version seems to have it as strings
674 	 * whereas the HP version does it with a leading uppercase character
675 	 * and two binary numbers.
676 	*/
677 	aa = &ae->ae_adapter;
678 
679 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
680 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
681 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
682 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
683 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
684 			/* The AMI 438 is a NetRaid 3si in HP-land. */
685 			prodstr = "HP NetRaid 3si";
686 		}
687 		ishp = 1;
688 	} else
689 		ishp = 0;
690 
691 	aprint_normal("<%s>\n", prodstr);
692 	if (intrstr != NULL)
693 		aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
694 		    intrstr);
695 
696 	if (ishp)
697 		aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
698 		    ", %dMB RAM\n", aa->aa_firmware[2],
699 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
700 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
701 	else
702 		aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
703 		    aa->aa_firmware, aa->aa_bios,
704 		    aa->aa_memorysize);
705 
706 	amr->amr_maxqueuecnt = aa->aa_maxio;
707 
708 	/*
709 	 * Record state of logical drives.
710 	 */
711 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
712 		aprint_error_dev(amr->amr_dv, "Inquiry returned more drives (%d)"
713 		   " than the array can handle (%zu)\n",
714 		   ae->ae_ldrv.al_numdrives,
715 		   __arraycount(ae->ae_ldrv.al_size));
716 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
717 	}
718 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
719 		aprint_error_dev(amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
720 		    ae->ae_ldrv.al_numdrives,
721 		    AMR_MAX_UNITS);
722 		amr->amr_numdrives = AMR_MAX_UNITS;
723 	} else
724 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
725 
726 	for (i = 0; i < amr->amr_numdrives; i++) {
727 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
728 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
729 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
730 	}
731 
732 	return (0);
733 }
734 
735 /*
736  * Flush the internal cache on each configured controller.  Called at
737  * shutdown time.
738  */
739 static void
740 amr_shutdown(void *cookie)
741 {
742 	extern struct cfdriver amr_cd;
743 	struct amr_softc *amr;
744 	struct amr_ccb *ac;
745 	int i, rv, s;
746 
747 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
748 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
749 			continue;
750 
751 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
752 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
753 			s = splbio();
754 			rv = amr_ccb_poll(amr, ac, 30000);
755 			splx(s);
756 			amr_ccb_free(amr, ac);
757 		}
758 		if (rv != 0)
759 			aprint_error_dev(amr->amr_dv, "unable to flush cache (%d)\n", rv);
760 	}
761 }
762 
763 /*
764  * Interrupt service routine.
765  */
766 static int
767 amr_intr(void *cookie)
768 {
769 	struct amr_softc *amr;
770 	struct amr_ccb *ac;
771 	struct amr_mailbox_resp mbox;
772 	u_int i, forus, idx;
773 
774 	amr = cookie;
775 	forus = 0;
776 
777 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
778 		/* Iterate over completed commands in this result. */
779 		for (i = 0; i < mbox.mb_nstatus; i++) {
780 			idx = mbox.mb_completed[i] - 1;
781 			ac = amr->amr_ccbs + idx;
782 
783 			if (idx >= amr->amr_maxqueuecnt) {
784 				printf("%s: bad status (bogus ID: %u=%u)\n",
785 				    device_xname(amr->amr_dv), i, idx);
786 				continue;
787 			}
788 
789 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
790 				printf("%s: bad status (not active; 0x04%x)\n",
791 				    device_xname(amr->amr_dv), ac->ac_flags);
792 				continue;
793 			}
794 
795 			ac->ac_status = mbox.mb_status;
796 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
797 			    AC_COMPLETE;
798 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
799 
800 			if ((ac->ac_flags & AC_MOAN) != 0)
801 				printf("%s: ccb %d completed\n",
802 				    device_xname(amr->amr_dv), ac->ac_ident);
803 
804 			/* Pass notification to upper layers. */
805 			if (ac->ac_handler != NULL)
806 				(*ac->ac_handler)(ac);
807 			else
808 				wakeup(ac);
809 		}
810 		forus = 1;
811 	}
812 
813 	if (forus)
814 		amr_ccb_enqueue(amr, NULL);
815 
816 	return (forus);
817 }
818 
819 /*
820  * Watchdog thread.
821  */
822 static void
823 amr_thread(void *cookie)
824 {
825 	struct amr_softc *amr;
826 	struct amr_ccb *ac;
827 	struct amr_logdrive *al;
828 	struct amr_enquiry *ae;
829 	int rv, i, s;
830 
831 	amr = cookie;
832 	ae = amr->amr_enqbuf;
833 
834 	for (;;) {
835 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
836 
837 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
838 			amr->amr_flags ^= AMRF_THREAD_EXIT;
839 			wakeup(&amr->amr_flags);
840 			kthread_exit(0);
841 		}
842 
843 		s = splbio();
844 		amr_intr(cookie);
845 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
846 		while (ac != NULL) {
847 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
848 				break;
849 			if ((ac->ac_flags & AC_MOAN) == 0) {
850 				printf("%s: ccb %d timed out; mailbox:\n",
851 				    device_xname(amr->amr_dv), ac->ac_ident);
852 				amr_ccb_dump(amr, ac);
853 				ac->ac_flags |= AC_MOAN;
854 			}
855 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
856 		}
857 		splx(s);
858 
859 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
860 			printf("%s: ccb_alloc failed (%d)\n",
861  			    device_xname(amr->amr_dv), rv);
862 			continue;
863 		}
864 
865 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
866 
867 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
868 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
869 		if (rv != 0) {
870 			aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
871  			    rv);
872 			amr_ccb_free(amr, ac);
873 			continue;
874 		}
875 
876 		rv = amr_ccb_wait(amr, ac);
877 		amr_ccb_unmap(amr, ac);
878 		if (rv != 0) {
879 			aprint_error_dev(amr->amr_dv, "enquiry failed (st=%d)\n",
880  			    ac->ac_status);
881 			continue;
882 		}
883 		amr_ccb_free(amr, ac);
884 
885 		al = amr->amr_drive;
886 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
887 			if (al->al_dv == NULL)
888 				continue;
889 			if (al->al_state == ae->ae_ldrv.al_state[i])
890 				continue;
891 
892 			printf("%s: state changed: %s -> %s\n",
893 			    device_xname(al->al_dv),
894 			    amr_drive_state(al->al_state, NULL),
895 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
896 
897 			al->al_state = ae->ae_ldrv.al_state[i];
898 		}
899 	}
900 }
901 
902 /*
903  * Return a text description of a logical drive's current state.
904  */
905 const char *
906 amr_drive_state(int state, int *happy)
907 {
908 	const char *str;
909 
910 	state = AMR_DRV_CURSTATE(state);
911 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
912 		if (happy)
913 			*happy = 1;
914 		str = "status unknown";
915 	} else {
916 		if (happy)
917 			*happy = amr_dstate[state].ds_happy;
918 		str = amr_dstate[state].ds_descr;
919 	}
920 
921 	return (str);
922 }
923 
924 /*
925  * Run a generic enquiry-style command.
926  */
927 static void *
928 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
929 	    u_int8_t cmdqual, void *sbuf)
930 {
931 	struct amr_ccb *ac;
932 	u_int8_t *mb;
933 	int rv;
934 
935 	if (amr_ccb_alloc(amr, &ac) != 0)
936 		return (NULL);
937 
938 	/* Build the command proper. */
939 	mb = (u_int8_t *)&ac->ac_cmd;
940 	mb[0] = cmd;
941 	mb[2] = cmdsub;
942 	mb[3] = cmdqual;
943 
944 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
945 	if (rv == 0) {
946 		rv = amr_ccb_poll(amr, ac, 2000);
947 		amr_ccb_unmap(amr, ac);
948 	}
949 	amr_ccb_free(amr, ac);
950 
951 	return (rv ? NULL : sbuf);
952 }
953 
954 /*
955  * Allocate and initialise a CCB.
956  */
957 int
958 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
959 {
960 	int s;
961 
962 	s = splbio();
963 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
964 		splx(s);
965 		return (EAGAIN);
966 	}
967 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
968 	splx(s);
969 
970 	return (0);
971 }
972 
973 /*
974  * Free a CCB.
975  */
976 void
977 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
978 {
979 	int s;
980 
981 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
982 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
983 	ac->ac_cmd.mb_busy = 1;
984 	ac->ac_handler = NULL;
985 	ac->ac_flags = 0;
986 
987 	s = splbio();
988 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
989 	splx(s);
990 }
991 
992 /*
993  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
994  * the order that they were enqueued and try to submit their command blocks
995  * to the controller for execution.
996  */
997 void
998 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
999 {
1000 	int s;
1001 
1002 	s = splbio();
1003 
1004 	if (ac != NULL)
1005 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1006 
1007 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1008 		if ((*amr->amr_submit)(amr, ac) != 0)
1009 			break;
1010 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1011 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1012 	}
1013 
1014 	splx(s);
1015 }
1016 
1017 /*
1018  * Map the specified CCB's data buffer onto the bus, and fill the
1019  * scatter-gather list.
1020  */
1021 int
1022 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1023 	    int tflag)
1024 {
1025 	struct amr_sgentry *sge;
1026 	struct amr_mailbox_cmd *mb;
1027 	int nsegs, i, rv, sgloff;
1028 	bus_dmamap_t xfer;
1029 	int dmaflag = 0;
1030 
1031 	xfer = ac->ac_xfer_map;
1032 
1033 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1034 	    BUS_DMA_NOWAIT);
1035 	if (rv != 0)
1036 		return (rv);
1037 
1038 	mb = &ac->ac_cmd;
1039 	ac->ac_xfer_size = size;
1040 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1041 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1042 
1043 	if (tflag & AC_XFER_OUT)
1044 		dmaflag |= BUS_DMASYNC_PREWRITE;
1045 	if (tflag & AC_XFER_IN)
1046 		dmaflag |= BUS_DMASYNC_PREREAD;
1047 
1048 	/* We don't need to use a scatter/gather list for just 1 segment. */
1049 	nsegs = xfer->dm_nsegs;
1050 	if (nsegs == 1) {
1051 		mb->mb_nsgelem = 0;
1052 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1053 		ac->ac_flags |= AC_NOSGL;
1054 	} else {
1055 		mb->mb_nsgelem = nsegs;
1056 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1057 
1058 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1059 		for (i = 0; i < nsegs; i++, sge++) {
1060 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1061 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1062 		}
1063 	}
1064 
1065 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1066 
1067 	if ((ac->ac_flags & AC_NOSGL) == 0)
1068 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1069 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1070 
1071 	return (0);
1072 }
1073 
1074 /*
1075  * Unmap the specified CCB's data buffer.
1076  */
1077 void
1078 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1079 {
1080 	int dmaflag = 0;
1081 
1082 	if (ac->ac_flags & AC_XFER_IN)
1083 		dmaflag |= BUS_DMASYNC_POSTREAD;
1084 	if (ac->ac_flags & AC_XFER_OUT)
1085 		dmaflag |= BUS_DMASYNC_POSTWRITE;
1086 
1087 	if ((ac->ac_flags & AC_NOSGL) == 0)
1088 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1089 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1090 		    BUS_DMASYNC_POSTWRITE);
1091 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1092 	    dmaflag);
1093 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1094 }
1095 
1096 /*
1097  * Submit a command to the controller and poll on completion.  Return
1098  * non-zero on timeout or error.  Must be called with interrupts blocked.
1099  */
1100 int
1101 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1102 {
1103 	int rv;
1104 
1105 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1106 		return (rv);
1107 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1108 
1109 	for (timo *= 10; timo != 0; timo--) {
1110 		amr_intr(amr);
1111 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1112 			break;
1113 		DELAY(100);
1114 	}
1115 
1116 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1117 }
1118 
1119 /*
1120  * Submit a command to the controller and sleep on completion.  Return
1121  * non-zero on error.
1122  */
1123 int
1124 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1125 {
1126 	int s;
1127 
1128 	s = splbio();
1129 	amr_ccb_enqueue(amr, ac);
1130 	tsleep(ac, PRIBIO, "amrcmd", 0);
1131 	splx(s);
1132 
1133 	return (ac->ac_status != 0 ? EIO : 0);
1134 }
1135 
1136 #if 0
1137 /*
1138  * Wait for the mailbox to become available.
1139  */
1140 static int
1141 amr_mbox_wait(struct amr_softc *amr)
1142 {
1143 	int timo;
1144 
1145 	for (timo = 10000; timo != 0; timo--) {
1146 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1147 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1148 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1149 			break;
1150 		DELAY(100);
1151 	}
1152 
1153 	if (timo == 0)
1154 		printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1155 
1156 	return (timo != 0 ? 0 : EAGAIN);
1157 }
1158 #endif
1159 
1160 /*
1161  * Tell the controller that the mailbox contains a valid command.  Must be
1162  * called with interrupts blocked.
1163  */
1164 static int
1165 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1166 {
1167 	u_int32_t v;
1168 
1169 	amr->amr_mbox->mb_poll = 0;
1170 	amr->amr_mbox->mb_ack = 0;
1171 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1172 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1173 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1175 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1176 		return (EAGAIN);
1177 
1178 	v = amr_inl(amr, AMR_QREG_IDB);
1179 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1180 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1181 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1182 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1183 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1185 		return (EAGAIN);
1186 	}
1187 
1188 	amr->amr_mbox->mb_segment = 0;
1189 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1190 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1191 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1192 
1193 	ac->ac_start_time = time_uptime;
1194 	ac->ac_flags |= AC_ACTIVE;
1195 	amr_outl(amr, AMR_QREG_IDB,
1196 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1197 	return (0);
1198 }
1199 
1200 static int
1201 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1202 {
1203 
1204 	amr->amr_mbox->mb_poll = 0;
1205 	amr->amr_mbox->mb_ack = 0;
1206 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1208 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1210 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1211 		return (EAGAIN);
1212 
1213 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1214 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1215 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1216 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1217 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1219 		return (EAGAIN);
1220 	}
1221 
1222 	amr->amr_mbox->mb_segment = 0;
1223 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1224 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1225 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1226 
1227 	ac->ac_start_time = time_uptime;
1228 	ac->ac_flags |= AC_ACTIVE;
1229 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1230 	return (0);
1231 }
1232 
1233 /*
1234  * Claim any work that the controller has completed; acknowledge completion,
1235  * save details of the completion in (mbsave).  Must be called with
1236  * interrupts blocked.
1237  */
1238 static int
1239 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1240 {
1241 
1242 	/* Work waiting for us? */
1243 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1244 		return (-1);
1245 
1246 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1247 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1248 
1249 	/* Save the mailbox, which contains a list of completed commands. */
1250 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1251 
1252 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1253 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1254 
1255 	/* Ack the interrupt and mailbox transfer. */
1256 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1257 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1258 
1259 	/*
1260 	 * This waits for the controller to notice that we've taken the
1261 	 * command from it.  It's very inefficient, and we shouldn't do it,
1262 	 * but if we remove this code, we stop completing commands under
1263 	 * load.
1264 	 *
1265 	 * Peter J says we shouldn't do this.  The documentation says we
1266 	 * should.  Who is right?
1267 	 */
1268 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1269 		DELAY(10);
1270 
1271 	return (0);
1272 }
1273 
1274 static int
1275 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1276 {
1277 	u_int8_t istat;
1278 
1279 	/* Check for valid interrupt status. */
1280 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1281 		return (-1);
1282 
1283 	/* Ack the interrupt. */
1284 	amr_outb(amr, AMR_SREG_INTR, istat);
1285 
1286 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1287 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1288 
1289 	/* Save mailbox, which contains a list of completed commands. */
1290 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1291 
1292 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1293 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1294 
1295 	/* Ack mailbox transfer. */
1296 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1297 
1298 	return (0);
1299 }
1300 
1301 static void
1302 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1303 {
1304 	int i;
1305 
1306 	printf("%s: ", device_xname(amr->amr_dv));
1307 	for (i = 0; i < 4; i++)
1308 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1309 	printf("\n");
1310 }
1311 
1312 static int
1313 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1314 {
1315 	struct amr_softc *amr;
1316 
1317 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1318 		return (ENXIO);
1319 	if ((amr->amr_flags & AMRF_OPEN) != 0)
1320 		return (EBUSY);
1321 
1322 	amr->amr_flags |= AMRF_OPEN;
1323 	return (0);
1324 }
1325 
1326 static int
1327 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1328 {
1329 	struct amr_softc *amr;
1330 
1331 	amr = device_lookup_private(&amr_cd, minor(dev));
1332 	amr->amr_flags &= ~AMRF_OPEN;
1333 	return (0);
1334 }
1335 
1336 static int
1337 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1338     struct lwp *l)
1339 {
1340 	struct amr_softc *amr;
1341 	struct amr_user_ioctl *au;
1342 	struct amr_ccb *ac;
1343 	struct amr_mailbox_ioctl *mbi;
1344 	unsigned long au_length;
1345 	uint8_t *au_cmd;
1346 	int error;
1347 	void *dp = NULL, *au_buffer;
1348 
1349 	amr = device_lookup_private(&amr_cd, minor(dev));
1350 
1351 	/* This should be compatible with the FreeBSD interface */
1352 
1353 	switch (cmd) {
1354 	case AMR_IO_VERSION:
1355 		*(int *)data = AMR_IO_VERSION_NUMBER;
1356 		return 0;
1357 	case AMR_IO_COMMAND:
1358 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1359 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1360 		if (error)
1361 			return (error);
1362 
1363 		au = (struct amr_user_ioctl *)data;
1364 		au_cmd = au->au_cmd;
1365 		au_buffer = au->au_buffer;
1366 		au_length = au->au_length;
1367 		break;
1368 	default:
1369 		return ENOTTY;
1370 	}
1371 
1372 	if (au_cmd[0] == AMR_CMD_PASS) {
1373 		/* not yet */
1374 		return EOPNOTSUPP;
1375 	}
1376 
1377 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1378 		return (EINVAL);
1379 
1380 	/*
1381 	 * allocate kernel memory for data, doing I/O directly to user
1382 	 * buffer isn't that easy.
1383 	 */
1384 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1385 	if (dp == NULL)
1386 		return ENOMEM;
1387 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
1388 		goto out;
1389 
1390 	/* direct command to controller */
1391 	while (amr_ccb_alloc(amr, &ac) != 0) {
1392 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1393 		if (error == EINTR)
1394 			goto out;
1395 	}
1396 
1397 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1398 	mbi->mb_command = au_cmd[0];
1399 	mbi->mb_channel = au_cmd[1];
1400 	mbi->mb_param = au_cmd[2];
1401 	mbi->mb_pad[0] = au_cmd[3];
1402 	mbi->mb_drive = au_cmd[4];
1403 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
1404 	    AC_XFER_IN | AC_XFER_OUT);
1405 	if (error == 0) {
1406 		error = amr_ccb_wait(amr, ac);
1407 		amr_ccb_unmap(amr, ac);
1408 		if (error == 0)
1409 			error = copyout(dp, au_buffer, au_length);
1410 
1411 	}
1412 	amr_ccb_free(amr, ac);
1413 out:
1414 	free(dp, M_DEVBUF);
1415 	return (error);
1416 }
1417