xref: /netbsd-src/sys/dev/pci/amr.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: amr.c,v 1.46 2007/10/19 12:00:39 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999,2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67  */
68 
69 /*
70  * Driver for AMI RAID controllers.
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.46 2007/10/19 12:00:39 ad Exp $");
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/kthread.h>
86 #include <sys/kauth.h>
87 
88 #include <uvm/uvm_extern.h>
89 
90 #include <machine/endian.h>
91 #include <sys/bus.h>
92 
93 #include <dev/pci/pcidevs.h>
94 #include <dev/pci/pcivar.h>
95 #include <dev/pci/amrreg.h>
96 #include <dev/pci/amrvar.h>
97 #include <dev/pci/amrio.h>
98 
99 #include "locators.h"
100 
101 static void	amr_attach(struct device *, struct device *, void *);
102 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
103 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
104 			     void *);
105 static int	amr_init(struct amr_softc *, const char *,
106 			 struct pci_attach_args *pa);
107 static int	amr_intr(void *);
108 static int	amr_match(struct device *, struct cfdata *, void *);
109 static int	amr_print(void *, const char *);
110 static void	amr_shutdown(void *);
111 static void	amr_teardown(struct amr_softc *);
112 static void	amr_thread(void *);
113 
114 static int	amr_quartz_get_work(struct amr_softc *,
115 				    struct amr_mailbox_resp *);
116 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
117 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
118 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
119 
120 static dev_type_open(amropen);
121 static dev_type_close(amrclose);
122 static dev_type_ioctl(amrioctl);
123 
124 CFATTACH_DECL(amr, sizeof(struct amr_softc),
125     amr_match, amr_attach, NULL, NULL);
126 
127 const struct cdevsw amr_cdevsw = {
128 	amropen, amrclose, noread, nowrite, amrioctl,
129 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
130 };
131 
132 extern struct   cfdriver amr_cd;
133 
134 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
135 #define	AT_SIG		0x02	/* Check for signature */
136 
137 static struct amr_pci_type {
138 	u_short	apt_vendor;
139 	u_short	apt_product;
140 	u_short	apt_flags;
141 } const amr_pci_type[] = {
142 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
143 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
144 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
145 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
146 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
147 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
150 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
151 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
152 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
154 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
155 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
156 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
157 };
158 
159 static struct amr_typestr {
160 	const char	*at_str;
161 	int		at_sig;
162 } const amr_typestr[] = {
163 	{ "Series 431",			AMR_SIG_431 },
164 	{ "Series 438",			AMR_SIG_438 },
165 	{ "Series 466",			AMR_SIG_466 },
166 	{ "Series 467",			AMR_SIG_467 },
167 	{ "Series 490",			AMR_SIG_490 },
168 	{ "Series 762",			AMR_SIG_762 },
169 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
170 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
171 };
172 
173 static struct {
174 	const char	*ds_descr;
175 	int	ds_happy;
176 } const amr_dstate[] = {
177 	{ "offline",	0 },
178 	{ "degraded",	1 },
179 	{ "optimal",	1 },
180 	{ "online",	1 },
181 	{ "failed",	0 },
182 	{ "rebuilding",	1 },
183 	{ "hotspare",	0 },
184 };
185 
186 static void	*amr_sdh;
187 
188 static int	amr_max_segs;
189 int		amr_max_xfer;
190 
191 static inline u_int8_t
192 amr_inb(struct amr_softc *amr, int off)
193 {
194 
195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
197 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
198 }
199 
200 static inline u_int32_t
201 amr_inl(struct amr_softc *amr, int off)
202 {
203 
204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
206 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
207 }
208 
209 static inline void
210 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
211 {
212 
213 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
214 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
215 	    BUS_SPACE_BARRIER_WRITE);
216 }
217 
218 static inline void
219 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
220 {
221 
222 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
223 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
224 	    BUS_SPACE_BARRIER_WRITE);
225 }
226 
227 /*
228  * Match a supported device.
229  */
230 static int
231 amr_match(struct device *parent, struct cfdata *match,
232     void *aux)
233 {
234 	struct pci_attach_args *pa;
235 	pcireg_t s;
236 	int i;
237 
238 	pa = (struct pci_attach_args *)aux;
239 
240 	/*
241 	 * Don't match the device if it's operating in I2O mode.  In this
242 	 * case it should be handled by the `iop' driver.
243 	 */
244 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
245 		return (0);
246 
247 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
248 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
249 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
250 		    	break;
251 
252 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
253 		return (0);
254 
255 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
256 		return (1);
257 
258 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
259 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
260 }
261 
262 /*
263  * Attach a supported device.
264  */
265 static void
266 amr_attach(struct device *parent, struct device *self, void *aux)
267 {
268 	struct pci_attach_args *pa;
269 	struct amr_attach_args amra;
270 	const struct amr_pci_type *apt;
271 	struct amr_softc *amr;
272 	pci_chipset_tag_t pc;
273 	pci_intr_handle_t ih;
274 	const char *intrstr;
275 	pcireg_t reg;
276 	int rseg, i, j, size, rv, memreg, ioreg;
277 	struct amr_ccb *ac;
278 	int locs[AMRCF_NLOCS];
279 
280 	aprint_naive(": RAID controller\n");
281 
282 	amr = (struct amr_softc *)self;
283 	pa = (struct pci_attach_args *)aux;
284 	pc = pa->pa_pc;
285 
286 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
287 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
288 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
289 			break;
290 	apt = amr_pci_type + i;
291 
292 	memreg = ioreg = 0;
293 	for (i = 0x10; i <= 0x14; i += 4) {
294 		reg = pci_conf_read(pc, pa->pa_tag, i);
295 		switch (PCI_MAPREG_TYPE(reg)) {
296 		case PCI_MAPREG_TYPE_MEM:
297 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
298 				memreg = i;
299 			break;
300 		case PCI_MAPREG_TYPE_IO:
301 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
302 				ioreg = i;
303 			break;
304 
305 		}
306 	}
307 
308 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
309 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
310 		;
311 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
312 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
313 		;
314 	else {
315 		aprint_error("can't map control registers\n");
316 		amr_teardown(amr);
317 		return;
318 	}
319 
320 	amr->amr_flags |= AMRF_PCI_REGS;
321 	amr->amr_dmat = pa->pa_dmat;
322 	amr->amr_pc = pa->pa_pc;
323 
324 	/* Enable the device. */
325 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
326 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
327 	    reg | PCI_COMMAND_MASTER_ENABLE);
328 
329 	/* Map and establish the interrupt. */
330 	if (pci_intr_map(pa, &ih)) {
331 		aprint_error("can't map interrupt\n");
332 		amr_teardown(amr);
333 		return;
334 	}
335 	intrstr = pci_intr_string(pc, ih);
336 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
337 	if (amr->amr_ih == NULL) {
338 		aprint_error("can't establish interrupt");
339 		if (intrstr != NULL)
340 			aprint_normal(" at %s", intrstr);
341 		aprint_normal("\n");
342 		amr_teardown(amr);
343 		return;
344 	}
345 	amr->amr_flags |= AMRF_PCI_INTR;
346 
347 	/*
348 	 * Allocate space for the mailbox and S/G lists.  Some controllers
349 	 * don't like S/G lists to be located below 0x2000, so we allocate
350 	 * enough slop to enable us to compensate.
351 	 *
352 	 * The standard mailbox structure needs to be aligned on a 16-byte
353 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
354 	 * size, which precedes the standard mailbox.
355 	 */
356 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
357 	amr->amr_dmasize = size;
358 
359 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
360 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
361 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
362 		    amr->amr_dv.dv_xname, rv);
363 		amr_teardown(amr);
364 		return;
365 	}
366 	amr->amr_flags |= AMRF_DMA_ALLOC;
367 
368 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
369 	    (void **)&amr->amr_mbox,
370 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
371 		aprint_error("%s: unable to map buffer, rv = %d\n",
372 		    amr->amr_dv.dv_xname, rv);
373 		amr_teardown(amr);
374 		return;
375 	}
376 	amr->amr_flags |= AMRF_DMA_MAP;
377 
378 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
379 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
380 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
381 		    amr->amr_dv.dv_xname, rv);
382 		amr_teardown(amr);
383 		return;
384 	}
385 	amr->amr_flags |= AMRF_DMA_CREATE;
386 
387 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
388 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
389 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
390 		    amr->amr_dv.dv_xname, rv);
391 		amr_teardown(amr);
392 		return;
393 	}
394 	amr->amr_flags |= AMRF_DMA_LOAD;
395 
396 	memset(amr->amr_mbox, 0, size);
397 
398 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
399 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
400 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
401 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
402 
403 	/*
404 	 * Allocate and initalise the command control blocks.
405 	 */
406 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
407 	amr->amr_ccbs = ac;
408 	SLIST_INIT(&amr->amr_ccb_freelist);
409 	TAILQ_INIT(&amr->amr_ccb_active);
410 	amr->amr_flags |= AMRF_CCBS;
411 
412 	if (amr_max_xfer == 0) {
413 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
414 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
415 	}
416 
417 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
418 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
419 		    amr_max_segs, amr_max_xfer, 0,
420 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
421 		if (rv != 0)
422 			break;
423 
424 		ac->ac_ident = i;
425 		amr_ccb_free(amr, ac);
426 	}
427 	if (i != AMR_MAX_CMDS) {
428 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
429 		amr_teardown(amr);
430 		return;
431 	}
432 
433 	/*
434 	 * Take care of model-specific tasks.
435 	 */
436 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
437 		amr->amr_submit = amr_quartz_submit;
438 		amr->amr_get_work = amr_quartz_get_work;
439 	} else {
440 		amr->amr_submit = amr_std_submit;
441 		amr->amr_get_work = amr_std_get_work;
442 
443 		/* Notify the controller of the mailbox location. */
444 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
445 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
446 
447 		/* Clear outstanding interrupts and enable interrupts. */
448 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
449 		amr_outb(amr, AMR_SREG_TOGL,
450 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
451 	}
452 
453 	/*
454 	 * Retrieve parameters, and tell the world about us.
455 	 */
456 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
457 	amr->amr_flags |= AMRF_ENQBUF;
458 	amr->amr_maxqueuecnt = i;
459 	aprint_normal(": AMI RAID ");
460 	if (amr_init(amr, intrstr, pa) != 0) {
461 		amr_teardown(amr);
462 		return;
463 	}
464 
465 	/*
466 	 * Cap the maximum number of outstanding commands.  AMI's Linux
467 	 * driver doesn't trust the controller's reported value, and lockups
468 	 * have been seen when we do.
469 	 */
470 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
471 	if (amr->amr_maxqueuecnt > i)
472 		amr->amr_maxqueuecnt = i;
473 
474 	/* Set our `shutdownhook' before we start any device activity. */
475 	if (amr_sdh == NULL)
476 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
477 
478 	/* Attach sub-devices. */
479 	for (j = 0; j < amr->amr_numdrives; j++) {
480 		if (amr->amr_drive[j].al_size == 0)
481 			continue;
482 		amra.amra_unit = j;
483 
484 		locs[AMRCF_UNIT] = j;
485 
486 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
487 			"amr", locs, &amra, amr_print, config_stdsubmatch);
488 	}
489 
490 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
491 
492 	/* XXX This doesn't work for newer boards yet. */
493 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
494 		rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
495 		    &amr->amr_thread, "%s", amr->amr_dv.dv_xname);
496  		if (rv != 0)
497 			aprint_error("%s: unable to create thread (%d)",
498  			    amr->amr_dv.dv_xname, rv);
499  		else
500  			amr->amr_flags |= AMRF_THREAD;
501 	}
502 }
503 
504 /*
505  * Free up resources.
506  */
507 static void
508 amr_teardown(struct amr_softc *amr)
509 {
510 	struct amr_ccb *ac;
511 	int fl;
512 
513 	fl = amr->amr_flags;
514 
515 	if ((fl & AMRF_THREAD) != 0) {
516 		amr->amr_flags |= AMRF_THREAD_EXIT;
517 		wakeup(amr_thread);
518 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
519 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
520 	}
521 	if ((fl & AMRF_CCBS) != 0) {
522 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
523 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
524 		}
525 		free(amr->amr_ccbs, M_DEVBUF);
526 	}
527 	if ((fl & AMRF_ENQBUF) != 0)
528 		free(amr->amr_enqbuf, M_DEVBUF);
529 	if ((fl & AMRF_DMA_LOAD) != 0)
530 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
531 	if ((fl & AMRF_DMA_MAP) != 0)
532 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
533 		    amr->amr_dmasize);
534 	if ((fl & AMRF_DMA_ALLOC) != 0)
535 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
536 	if ((fl & AMRF_DMA_CREATE) != 0)
537 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
538 	if ((fl & AMRF_PCI_INTR) != 0)
539 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
540 	if ((fl & AMRF_PCI_REGS) != 0)
541 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
542 }
543 
544 /*
545  * Print autoconfiguration message for a sub-device.
546  */
547 static int
548 amr_print(void *aux, const char *pnp)
549 {
550 	struct amr_attach_args *amra;
551 
552 	amra = (struct amr_attach_args *)aux;
553 
554 	if (pnp != NULL)
555 		aprint_normal("block device at %s", pnp);
556 	aprint_normal(" unit %d", amra->amra_unit);
557 	return (UNCONF);
558 }
559 
560 /*
561  * Retrieve operational parameters and describe the controller.
562  */
563 static int
564 amr_init(struct amr_softc *amr, const char *intrstr,
565 	 struct pci_attach_args *pa)
566 {
567 	struct amr_adapter_info *aa;
568 	struct amr_prodinfo *ap;
569 	struct amr_enquiry *ae;
570 	struct amr_enquiry3 *aex;
571 	const char *prodstr;
572 	u_int i, sig, ishp;
573 	char sbuf[64];
574 
575 	/*
576 	 * Try to get 40LD product info, which tells us what the card is
577 	 * labelled as.
578 	 */
579 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
580 	    amr->amr_enqbuf);
581 	if (ap != NULL) {
582 		aprint_normal("<%.80s>\n", ap->ap_product);
583 		if (intrstr != NULL)
584 			aprint_normal("%s: interrupting at %s\n",
585 			    amr->amr_dv.dv_xname, intrstr);
586 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
587 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
588 		    le16toh(ap->ap_memsize));
589 
590 		amr->amr_maxqueuecnt = ap->ap_maxio;
591 
592 		/*
593 		 * Fetch and record state of logical drives.
594 		 */
595 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
596 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
597 		if (aex == NULL) {
598 			aprint_error("%s ENQUIRY3 failed\n",
599 			    amr->amr_dv.dv_xname);
600 			return (-1);
601 		}
602 
603 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
604 			aprint_error("%s: Inquiry returned more drives (%d)"
605 			   " than the array can handle (%zu)\n",
606 			   amr->amr_dv.dv_xname, aex->ae_numldrives,
607 			   __arraycount(aex->ae_drivestate));
608 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
609 		}
610 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
611 			aprint_error(
612 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
613 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
614 			    amr->amr_numdrives);
615 			amr->amr_numdrives = AMR_MAX_UNITS;
616 		} else
617 			amr->amr_numdrives = aex->ae_numldrives;
618 
619 		for (i = 0; i < amr->amr_numdrives; i++) {
620 			amr->amr_drive[i].al_size =
621 			    le32toh(aex->ae_drivesize[i]);
622 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
623 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
624 		}
625 
626 		return (0);
627 	}
628 
629 	/*
630 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
631 	 * found, search for a product description.
632 	 */
633 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
634 	if (ae != NULL) {
635 		i = 0;
636 		sig = le32toh(ae->ae_signature);
637 
638 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
639 			if (amr_typestr[i].at_sig == sig)
640 				break;
641 			i++;
642 		}
643 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
644 			snprintf(sbuf, sizeof(sbuf),
645 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
646 			prodstr = sbuf;
647 		} else
648 			prodstr = amr_typestr[i].at_str;
649 	} else {
650 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
651 		if (ae == NULL) {
652 			aprint_error("%s: unsupported controller\n",
653 			    amr->amr_dv.dv_xname);
654 			return (-1);
655 		}
656 
657 		switch (PCI_PRODUCT(pa->pa_id)) {
658 		case PCI_PRODUCT_AMI_MEGARAID:
659 			prodstr = "Series 428";
660 			break;
661 		case PCI_PRODUCT_AMI_MEGARAID2:
662 			prodstr = "Series 434";
663 			break;
664 		default:
665 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
666 			    PCI_PRODUCT(pa->pa_id));
667 			prodstr = sbuf;
668 			break;
669 		}
670 	}
671 
672 	/*
673 	 * HP NetRaid controllers have a special encoding of the firmware
674 	 * and BIOS versions.  The AMI version seems to have it as strings
675 	 * whereas the HP version does it with a leading uppercase character
676 	 * and two binary numbers.
677 	*/
678 	aa = &ae->ae_adapter;
679 
680 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
681 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
682 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
683 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
684 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
685 			/* The AMI 438 is a NetRaid 3si in HP-land. */
686 			prodstr = "HP NetRaid 3si";
687 		}
688 		ishp = 1;
689 	} else
690 		ishp = 0;
691 
692 	aprint_normal("<%s>\n", prodstr);
693 	if (intrstr != NULL)
694 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
695 		    intrstr);
696 
697 	if (ishp)
698 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
699 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
700 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
701 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
702 	else
703 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
704 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
705 		    aa->aa_memorysize);
706 
707 	amr->amr_maxqueuecnt = aa->aa_maxio;
708 
709 	/*
710 	 * Record state of logical drives.
711 	 */
712 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
713 		aprint_error("%s: Inquiry returned more drives (%d)"
714 		   " than the array can handle (%zu)\n",
715 		   amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
716 		   __arraycount(ae->ae_ldrv.al_size));
717 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
718 	}
719 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
720 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
721 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
722 		    AMR_MAX_UNITS);
723 		amr->amr_numdrives = AMR_MAX_UNITS;
724 	} else
725 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
726 
727 	for (i = 0; i < amr->amr_numdrives; i++) {
728 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
729 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
730 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
731 	}
732 
733 	return (0);
734 }
735 
736 /*
737  * Flush the internal cache on each configured controller.  Called at
738  * shutdown time.
739  */
740 static void
741 amr_shutdown(void *cookie)
742 {
743 	extern struct cfdriver amr_cd;
744 	struct amr_softc *amr;
745 	struct amr_ccb *ac;
746 	int i, rv, s;
747 
748 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
749 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
750 			continue;
751 
752 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
753 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
754 			s = splbio();
755 			rv = amr_ccb_poll(amr, ac, 30000);
756 			splx(s);
757 			amr_ccb_free(amr, ac);
758 		}
759 		if (rv != 0)
760 			printf("%s: unable to flush cache (%d)\n",
761 			    amr->amr_dv.dv_xname, rv);
762 	}
763 }
764 
765 /*
766  * Interrupt service routine.
767  */
768 static int
769 amr_intr(void *cookie)
770 {
771 	struct amr_softc *amr;
772 	struct amr_ccb *ac;
773 	struct amr_mailbox_resp mbox;
774 	u_int i, forus, idx;
775 
776 	amr = cookie;
777 	forus = 0;
778 
779 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
780 		/* Iterate over completed commands in this result. */
781 		for (i = 0; i < mbox.mb_nstatus; i++) {
782 			idx = mbox.mb_completed[i] - 1;
783 			ac = amr->amr_ccbs + idx;
784 
785 			if (idx >= amr->amr_maxqueuecnt) {
786 				printf("%s: bad status (bogus ID: %u=%u)\n",
787 				    amr->amr_dv.dv_xname, i, idx);
788 				continue;
789 			}
790 
791 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
792 				printf("%s: bad status (not active; 0x04%x)\n",
793 				    amr->amr_dv.dv_xname, ac->ac_flags);
794 				continue;
795 			}
796 
797 			ac->ac_status = mbox.mb_status;
798 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
799 			    AC_COMPLETE;
800 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
801 
802 			if ((ac->ac_flags & AC_MOAN) != 0)
803 				printf("%s: ccb %d completed\n",
804 				    amr->amr_dv.dv_xname, ac->ac_ident);
805 
806 			/* Pass notification to upper layers. */
807 			if (ac->ac_handler != NULL)
808 				(*ac->ac_handler)(ac);
809 			else
810 				wakeup(ac);
811 		}
812 		forus = 1;
813 	}
814 
815 	if (forus)
816 		amr_ccb_enqueue(amr, NULL);
817 
818 	return (forus);
819 }
820 
821 /*
822  * Watchdog thread.
823  */
824 static void
825 amr_thread(void *cookie)
826 {
827 	struct amr_softc *amr;
828 	struct amr_ccb *ac;
829 	struct amr_logdrive *al;
830 	struct amr_enquiry *ae;
831 	int rv, i, s;
832 
833 	amr = cookie;
834 	ae = amr->amr_enqbuf;
835 
836 	for (;;) {
837 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
838 
839 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
840 			amr->amr_flags ^= AMRF_THREAD_EXIT;
841 			wakeup(&amr->amr_flags);
842 			kthread_exit(0);
843 		}
844 
845 		s = splbio();
846 		amr_intr(cookie);
847 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
848 		while (ac != NULL) {
849 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
850 				break;
851 			if ((ac->ac_flags & AC_MOAN) == 0) {
852 				printf("%s: ccb %d timed out; mailbox:\n",
853 				    amr->amr_dv.dv_xname, ac->ac_ident);
854 				amr_ccb_dump(amr, ac);
855 				ac->ac_flags |= AC_MOAN;
856 			}
857 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
858 		}
859 		splx(s);
860 
861 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
862 			printf("%s: ccb_alloc failed (%d)\n",
863  			    amr->amr_dv.dv_xname, rv);
864 			continue;
865 		}
866 
867 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
868 
869 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
870 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
871 		if (rv != 0) {
872 			printf("%s: ccb_map failed (%d)\n",
873  			    amr->amr_dv.dv_xname, rv);
874 			amr_ccb_free(amr, ac);
875 			continue;
876 		}
877 
878 		rv = amr_ccb_wait(amr, ac);
879 		amr_ccb_unmap(amr, ac);
880 		if (rv != 0) {
881 			printf("%s: enquiry failed (st=%d)\n",
882  			    amr->amr_dv.dv_xname, ac->ac_status);
883 			continue;
884 		}
885 		amr_ccb_free(amr, ac);
886 
887 		al = amr->amr_drive;
888 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
889 			if (al->al_dv == NULL)
890 				continue;
891 			if (al->al_state == ae->ae_ldrv.al_state[i])
892 				continue;
893 
894 			printf("%s: state changed: %s -> %s\n",
895 			    al->al_dv->dv_xname,
896 			    amr_drive_state(al->al_state, NULL),
897 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
898 
899 			al->al_state = ae->ae_ldrv.al_state[i];
900 		}
901 	}
902 }
903 
904 /*
905  * Return a text description of a logical drive's current state.
906  */
907 const char *
908 amr_drive_state(int state, int *happy)
909 {
910 	const char *str;
911 
912 	state = AMR_DRV_CURSTATE(state);
913 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
914 		if (happy)
915 			*happy = 1;
916 		str = "status unknown";
917 	} else {
918 		if (happy)
919 			*happy = amr_dstate[state].ds_happy;
920 		str = amr_dstate[state].ds_descr;
921 	}
922 
923 	return (str);
924 }
925 
926 /*
927  * Run a generic enquiry-style command.
928  */
929 static void *
930 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
931 	    u_int8_t cmdqual, void *sbuf)
932 {
933 	struct amr_ccb *ac;
934 	u_int8_t *mb;
935 	int rv;
936 
937 	if (amr_ccb_alloc(amr, &ac) != 0)
938 		return (NULL);
939 
940 	/* Build the command proper. */
941 	mb = (u_int8_t *)&ac->ac_cmd;
942 	mb[0] = cmd;
943 	mb[2] = cmdsub;
944 	mb[3] = cmdqual;
945 
946 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
947 	if (rv == 0) {
948 		rv = amr_ccb_poll(amr, ac, 2000);
949 		amr_ccb_unmap(amr, ac);
950 	}
951 	amr_ccb_free(amr, ac);
952 
953 	return (rv ? NULL : sbuf);
954 }
955 
956 /*
957  * Allocate and initialise a CCB.
958  */
959 int
960 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
961 {
962 	int s;
963 
964 	s = splbio();
965 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
966 		splx(s);
967 		return (EAGAIN);
968 	}
969 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
970 	splx(s);
971 
972 	return (0);
973 }
974 
975 /*
976  * Free a CCB.
977  */
978 void
979 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
980 {
981 	int s;
982 
983 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
984 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
985 	ac->ac_cmd.mb_busy = 1;
986 	ac->ac_handler = NULL;
987 	ac->ac_flags = 0;
988 
989 	s = splbio();
990 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
991 	splx(s);
992 }
993 
994 /*
995  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
996  * the order that they were enqueued and try to submit their command blocks
997  * to the controller for execution.
998  */
999 void
1000 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1001 {
1002 	int s;
1003 
1004 	s = splbio();
1005 
1006 	if (ac != NULL)
1007 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1008 
1009 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1010 		if ((*amr->amr_submit)(amr, ac) != 0)
1011 			break;
1012 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1013 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1014 	}
1015 
1016 	splx(s);
1017 }
1018 
1019 /*
1020  * Map the specified CCB's data buffer onto the bus, and fill the
1021  * scatter-gather list.
1022  */
1023 int
1024 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1025 	    int tflag)
1026 {
1027 	struct amr_sgentry *sge;
1028 	struct amr_mailbox_cmd *mb;
1029 	int nsegs, i, rv, sgloff;
1030 	bus_dmamap_t xfer;
1031 	int dmaflag = 0;
1032 
1033 	xfer = ac->ac_xfer_map;
1034 
1035 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1036 	    BUS_DMA_NOWAIT);
1037 	if (rv != 0)
1038 		return (rv);
1039 
1040 	mb = &ac->ac_cmd;
1041 	ac->ac_xfer_size = size;
1042 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1043 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1044 
1045 	if (tflag & AC_XFER_OUT)
1046 		dmaflag |= BUS_DMASYNC_PREWRITE;
1047 	if (tflag & AC_XFER_IN)
1048 		dmaflag |= BUS_DMASYNC_PREREAD;
1049 
1050 	/* We don't need to use a scatter/gather list for just 1 segment. */
1051 	nsegs = xfer->dm_nsegs;
1052 	if (nsegs == 1) {
1053 		mb->mb_nsgelem = 0;
1054 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1055 		ac->ac_flags |= AC_NOSGL;
1056 	} else {
1057 		mb->mb_nsgelem = nsegs;
1058 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1059 
1060 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1061 		for (i = 0; i < nsegs; i++, sge++) {
1062 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1063 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1064 		}
1065 	}
1066 
1067 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1068 
1069 	if ((ac->ac_flags & AC_NOSGL) == 0)
1070 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1071 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1072 
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Unmap the specified CCB's data buffer.
1078  */
1079 void
1080 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1081 {
1082 	int dmaflag = 0;
1083 
1084 	if (ac->ac_flags & AC_XFER_IN)
1085 		dmaflag |= BUS_DMASYNC_POSTREAD;
1086 	if (ac->ac_flags & AC_XFER_OUT)
1087 		dmaflag |= BUS_DMASYNC_POSTWRITE;
1088 
1089 	if ((ac->ac_flags & AC_NOSGL) == 0)
1090 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1091 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1092 		    BUS_DMASYNC_POSTWRITE);
1093 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1094 	    dmaflag);
1095 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1096 }
1097 
1098 /*
1099  * Submit a command to the controller and poll on completion.  Return
1100  * non-zero on timeout or error.  Must be called with interrupts blocked.
1101  */
1102 int
1103 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1104 {
1105 	int rv;
1106 
1107 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1108 		return (rv);
1109 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1110 
1111 	for (timo *= 10; timo != 0; timo--) {
1112 		amr_intr(amr);
1113 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1114 			break;
1115 		DELAY(100);
1116 	}
1117 
1118 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1119 }
1120 
1121 /*
1122  * Submit a command to the controller and sleep on completion.  Return
1123  * non-zero on error.
1124  */
1125 int
1126 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1127 {
1128 	int s;
1129 
1130 	s = splbio();
1131 	amr_ccb_enqueue(amr, ac);
1132 	tsleep(ac, PRIBIO, "amrcmd", 0);
1133 	splx(s);
1134 
1135 	return (ac->ac_status != 0 ? EIO : 0);
1136 }
1137 
1138 #if 0
1139 /*
1140  * Wait for the mailbox to become available.
1141  */
1142 static int
1143 amr_mbox_wait(struct amr_softc *amr)
1144 {
1145 	int timo;
1146 
1147 	for (timo = 10000; timo != 0; timo--) {
1148 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1149 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1150 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1151 			break;
1152 		DELAY(100);
1153 	}
1154 
1155 	if (timo == 0)
1156 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1157 
1158 	return (timo != 0 ? 0 : EAGAIN);
1159 }
1160 #endif
1161 
1162 /*
1163  * Tell the controller that the mailbox contains a valid command.  Must be
1164  * called with interrupts blocked.
1165  */
1166 static int
1167 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1168 {
1169 	u_int32_t v;
1170 
1171 	amr->amr_mbox->mb_poll = 0;
1172 	amr->amr_mbox->mb_ack = 0;
1173 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1174 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1175 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1176 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1177 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1178 		return (EAGAIN);
1179 
1180 	v = amr_inl(amr, AMR_QREG_IDB);
1181 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1182 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1183 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1184 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1185 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1186 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1187 		return (EAGAIN);
1188 	}
1189 
1190 	amr->amr_mbox->mb_segment = 0;
1191 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1192 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1193 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1194 
1195 	ac->ac_start_time = time_uptime;
1196 	ac->ac_flags |= AC_ACTIVE;
1197 	amr_outl(amr, AMR_QREG_IDB,
1198 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1199 	return (0);
1200 }
1201 
1202 static int
1203 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1204 {
1205 
1206 	amr->amr_mbox->mb_poll = 0;
1207 	amr->amr_mbox->mb_ack = 0;
1208 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1210 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1211 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1212 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1213 		return (EAGAIN);
1214 
1215 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1216 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1217 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1218 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1219 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1220 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1221 		return (EAGAIN);
1222 	}
1223 
1224 	amr->amr_mbox->mb_segment = 0;
1225 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1226 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1227 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1228 
1229 	ac->ac_start_time = time_uptime;
1230 	ac->ac_flags |= AC_ACTIVE;
1231 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1232 	return (0);
1233 }
1234 
1235 /*
1236  * Claim any work that the controller has completed; acknowledge completion,
1237  * save details of the completion in (mbsave).  Must be called with
1238  * interrupts blocked.
1239  */
1240 static int
1241 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1242 {
1243 
1244 	/* Work waiting for us? */
1245 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1246 		return (-1);
1247 
1248 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1249 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1250 
1251 	/* Save the mailbox, which contains a list of completed commands. */
1252 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1253 
1254 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1255 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1256 
1257 	/* Ack the interrupt and mailbox transfer. */
1258 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1259 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1260 
1261 	/*
1262 	 * This waits for the controller to notice that we've taken the
1263 	 * command from it.  It's very inefficient, and we shouldn't do it,
1264 	 * but if we remove this code, we stop completing commands under
1265 	 * load.
1266 	 *
1267 	 * Peter J says we shouldn't do this.  The documentation says we
1268 	 * should.  Who is right?
1269 	 */
1270 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1271 		DELAY(10);
1272 
1273 	return (0);
1274 }
1275 
1276 static int
1277 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1278 {
1279 	u_int8_t istat;
1280 
1281 	/* Check for valid interrupt status. */
1282 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1283 		return (-1);
1284 
1285 	/* Ack the interrupt. */
1286 	amr_outb(amr, AMR_SREG_INTR, istat);
1287 
1288 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1289 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1290 
1291 	/* Save mailbox, which contains a list of completed commands. */
1292 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1293 
1294 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1296 
1297 	/* Ack mailbox transfer. */
1298 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1299 
1300 	return (0);
1301 }
1302 
1303 static void
1304 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1305 {
1306 	int i;
1307 
1308 	printf("%s: ", amr->amr_dv.dv_xname);
1309 	for (i = 0; i < 4; i++)
1310 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1311 	printf("\n");
1312 }
1313 
1314 static int
1315 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1316 {
1317 	struct amr_softc *amr;
1318 
1319 	if ((amr = device_lookup(&amr_cd, minor(dev))) == NULL)
1320 		return (ENXIO);
1321 	if ((amr->amr_flags & AMRF_OPEN) != 0)
1322 		return (EBUSY);
1323 
1324 	amr->amr_flags |= AMRF_OPEN;
1325 	return (0);
1326 }
1327 
1328 static int
1329 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1330 {
1331 	struct amr_softc *amr;
1332 
1333 	amr = device_lookup(&amr_cd, minor(dev));
1334 	amr->amr_flags &= ~AMRF_OPEN;
1335 	return (0);
1336 }
1337 
1338 static int
1339 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1340     struct lwp *l)
1341 {
1342 	struct amr_softc *amr;
1343 	struct amr_user_ioctl *au;
1344 	struct amr_ccb *ac;
1345 	struct amr_mailbox_ioctl *mbi;
1346 	unsigned long au_length;
1347 	uint8_t *au_cmd;
1348 	int error;
1349 	void *dp = NULL, *au_buffer;
1350 
1351 	amr = device_lookup(&amr_cd, minor(dev));
1352 
1353 	/* This should be compatible with the FreeBSD interface */
1354 
1355 	switch (cmd) {
1356 	case AMR_IO_VERSION:
1357 		*(int *)data = AMR_IO_VERSION_NUMBER;
1358 		return 0;
1359 	case AMR_IO_COMMAND:
1360 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1361 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1362 		if (error)
1363 			return (error);
1364 
1365 		au = (struct amr_user_ioctl *)data;
1366 		au_cmd = au->au_cmd;
1367 		au_buffer = au->au_buffer;
1368 		au_length = au->au_length;
1369 		break;
1370 	default:
1371 		return ENOTTY;
1372 	}
1373 
1374 	if (au_cmd[0] == AMR_CMD_PASS) {
1375 		/* not yet */
1376 		return EOPNOTSUPP;
1377 	}
1378 
1379 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1380 		return (EINVAL);
1381 
1382 	/*
1383 	 * allocate kernel memory for data, doing I/O directly to user
1384 	 * buffer isn't that easy.
1385 	 */
1386 	dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1387 	if (dp == NULL)
1388 		return ENOMEM;
1389 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
1390 		goto out;
1391 
1392 	/* direct command to controller */
1393 	while (amr_ccb_alloc(amr, &ac) != 0) {
1394 		error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1395 		if (error == EINTR)
1396 			goto out;
1397 	}
1398 
1399 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1400 	mbi->mb_command = au_cmd[0];
1401 	mbi->mb_channel = au_cmd[1];
1402 	mbi->mb_param = au_cmd[2];
1403 	mbi->mb_pad[0] = au_cmd[3];
1404 	mbi->mb_drive = au_cmd[4];
1405 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
1406 	    AC_XFER_IN | AC_XFER_OUT);
1407 	if (error == 0) {
1408 		error = amr_ccb_wait(amr, ac);
1409 		amr_ccb_unmap(amr, ac);
1410 		if (error == 0)
1411 			error = copyout(dp, au_buffer, au_length);
1412 
1413 	}
1414 	amr_ccb_free(amr, ac);
1415 out:
1416 	free(dp, M_DEVBUF);
1417 	return (error);
1418 }
1419