xref: /netbsd-src/sys/dev/pci/amr.c (revision 5b84b3983f71fd20a534cfa5d1556623a8aaa717)
1 /*	$NetBSD: amr.c,v 1.29 2005/08/26 11:20:33 drochner Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999,2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67  */
68 
69 /*
70  * Driver for AMI RAID controllers.
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.29 2005/08/26 11:20:33 drochner Exp $");
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85 
86 #include <uvm/uvm_extern.h>
87 
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90 
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95 
96 #include "locators.h"
97 
98 static void	amr_attach(struct device *, struct device *, void *);
99 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
100 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
101 			     void *);
102 static int	amr_init(struct amr_softc *, const char *,
103 			 struct pci_attach_args *pa);
104 static int	amr_intr(void *);
105 static int	amr_match(struct device *, struct cfdata *, void *);
106 static int	amr_print(void *, const char *);
107 static void	amr_shutdown(void *);
108 static void	amr_teardown(struct amr_softc *);
109 static void	amr_thread(void *);
110 static void	amr_thread_create(void *);
111 
112 static int	amr_quartz_get_work(struct amr_softc *,
113 				    struct amr_mailbox_resp *);
114 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
117 
118 CFATTACH_DECL(amr, sizeof(struct amr_softc),
119     amr_match, amr_attach, NULL, NULL);
120 
121 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
122 #define	AT_SIG		0x02	/* Check for signature */
123 
124 struct amr_pci_type {
125 	u_short	apt_vendor;
126 	u_short	apt_product;
127 	u_short	apt_flags;
128 } static const amr_pci_type[] = {
129 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
130 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
131 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
132 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
133 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
134 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
135 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
136 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
137 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
138 };
139 
140 struct amr_typestr {
141 	const char	*at_str;
142 	int		at_sig;
143 } static const amr_typestr[] = {
144 	{ "Series 431",			AMR_SIG_431 },
145 	{ "Series 438",			AMR_SIG_438 },
146 	{ "Series 466",			AMR_SIG_466 },
147 	{ "Series 467",			AMR_SIG_467 },
148 	{ "Series 490",			AMR_SIG_490 },
149 	{ "Series 762",			AMR_SIG_762 },
150 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
151 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
152 };
153 
154 struct {
155 	const char	*ds_descr;
156 	int	ds_happy;
157 } static const amr_dstate[] = {
158 	{ "offline",	0 },
159 	{ "degraded",	1 },
160 	{ "optimal",	1 },
161 	{ "online",	1 },
162 	{ "failed",	0 },
163 	{ "rebuilding",	1 },
164 	{ "hotspare",	0 },
165 };
166 
167 static void	*amr_sdh;
168 
169 static int	amr_max_segs;
170 int		amr_max_xfer;
171 
172 static inline u_int8_t
173 amr_inb(struct amr_softc *amr, int off)
174 {
175 
176 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
177 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
178 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
179 }
180 
181 static inline u_int32_t
182 amr_inl(struct amr_softc *amr, int off)
183 {
184 
185 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
186 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
187 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
188 }
189 
190 static inline void
191 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
192 {
193 
194 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
195 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
196 	    BUS_SPACE_BARRIER_WRITE);
197 }
198 
199 static inline void
200 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
201 {
202 
203 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
204 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
205 	    BUS_SPACE_BARRIER_WRITE);
206 }
207 
208 /*
209  * Match a supported device.
210  */
211 static int
212 amr_match(struct device *parent, struct cfdata *match, void *aux)
213 {
214 	struct pci_attach_args *pa;
215 	pcireg_t s;
216 	int i;
217 
218 	pa = (struct pci_attach_args *)aux;
219 
220 	/*
221 	 * Don't match the device if it's operating in I2O mode.  In this
222 	 * case it should be handled by the `iop' driver.
223 	 */
224 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
225 		return (0);
226 
227 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
228 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
229 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
230 		    	break;
231 
232 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
233 		return (0);
234 
235 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
236 		return (1);
237 
238 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
239 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
240 }
241 
242 /*
243  * Attach a supported device.
244  */
245 static void
246 amr_attach(struct device *parent, struct device *self, void *aux)
247 {
248 	struct pci_attach_args *pa;
249 	struct amr_attach_args amra;
250 	const struct amr_pci_type *apt;
251 	struct amr_softc *amr;
252 	pci_chipset_tag_t pc;
253 	pci_intr_handle_t ih;
254 	const char *intrstr;
255 	pcireg_t reg;
256 	int rseg, i, j, size, rv, memreg, ioreg;
257         struct amr_ccb *ac;
258 	int locs[AMRCF_NLOCS];
259 
260 	aprint_naive(": RAID controller\n");
261 
262 	amr = (struct amr_softc *)self;
263 	pa = (struct pci_attach_args *)aux;
264 	pc = pa->pa_pc;
265 
266 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
267 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
268 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
269 			break;
270 	apt = amr_pci_type + i;
271 
272 	memreg = ioreg = 0;
273 	for (i = 0x10; i <= 0x14; i += 4) {
274 		reg = pci_conf_read(pc, pa->pa_tag, i);
275 		switch (PCI_MAPREG_TYPE(reg)) {
276 		case PCI_MAPREG_TYPE_MEM:
277 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
278 				memreg = i;
279 			break;
280 		case PCI_MAPREG_TYPE_IO:
281 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
282 				ioreg = i;
283 			break;
284 
285 		}
286 	}
287 
288 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
289 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
290 		;
291 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
292 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
293 		;
294 	else {
295 		aprint_error("can't map control registers\n");
296 		amr_teardown(amr);
297 		return;
298 	}
299 
300 	amr->amr_flags |= AMRF_PCI_REGS;
301 	amr->amr_dmat = pa->pa_dmat;
302 	amr->amr_pc = pa->pa_pc;
303 
304 	/* Enable the device. */
305 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
306 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
307 	    reg | PCI_COMMAND_MASTER_ENABLE);
308 
309 	/* Map and establish the interrupt. */
310 	if (pci_intr_map(pa, &ih)) {
311 		aprint_error("can't map interrupt\n");
312 		amr_teardown(amr);
313 		return;
314 	}
315 	intrstr = pci_intr_string(pc, ih);
316 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
317 	if (amr->amr_ih == NULL) {
318 		aprint_error("can't establish interrupt");
319 		if (intrstr != NULL)
320 			aprint_normal(" at %s", intrstr);
321 		aprint_normal("\n");
322 		amr_teardown(amr);
323 		return;
324 	}
325 	amr->amr_flags |= AMRF_PCI_INTR;
326 
327 	/*
328 	 * Allocate space for the mailbox and S/G lists.  Some controllers
329 	 * don't like S/G lists to be located below 0x2000, so we allocate
330 	 * enough slop to enable us to compensate.
331 	 *
332 	 * The standard mailbox structure needs to be aligned on a 16-byte
333 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
334 	 * size, which preceeds the standard mailbox.
335 	 */
336 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
337 	amr->amr_dmasize = size;
338 
339 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
340 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
341 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
342 		    amr->amr_dv.dv_xname, rv);
343 		amr_teardown(amr);
344 		return;
345 	}
346 	amr->amr_flags |= AMRF_DMA_ALLOC;
347 
348 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
349 	    (caddr_t *)&amr->amr_mbox,
350 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
351 		aprint_error("%s: unable to map buffer, rv = %d\n",
352 		    amr->amr_dv.dv_xname, rv);
353 		amr_teardown(amr);
354 		return;
355 	}
356 	amr->amr_flags |= AMRF_DMA_MAP;
357 
358 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
359 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
360 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
361 		    amr->amr_dv.dv_xname, rv);
362 		amr_teardown(amr);
363 		return;
364 	}
365 	amr->amr_flags |= AMRF_DMA_CREATE;
366 
367 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
368 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
369 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
370 		    amr->amr_dv.dv_xname, rv);
371 		amr_teardown(amr);
372 		return;
373 	}
374 	amr->amr_flags |= AMRF_DMA_LOAD;
375 
376 	memset(amr->amr_mbox, 0, size);
377 
378 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
379 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
380 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
381 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
382 
383 	/*
384 	 * Allocate and initalise the command control blocks.
385 	 */
386 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
387 	amr->amr_ccbs = ac;
388 	SLIST_INIT(&amr->amr_ccb_freelist);
389 	TAILQ_INIT(&amr->amr_ccb_active);
390 	amr->amr_flags |= AMRF_CCBS;
391 
392 	if (amr_max_xfer == 0) {
393 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
394 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
395 	}
396 
397 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
398 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
399 		    amr_max_segs, amr_max_xfer, 0,
400 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
401 		if (rv != 0)
402 			break;
403 
404 		ac->ac_ident = i;
405 		amr_ccb_free(amr, ac);
406 	}
407 	if (i != AMR_MAX_CMDS) {
408 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
409 		amr_teardown(amr);
410 		return;
411 	}
412 
413 	/*
414 	 * Take care of model-specific tasks.
415 	 */
416 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
417 		amr->amr_submit = amr_quartz_submit;
418 		amr->amr_get_work = amr_quartz_get_work;
419 	} else {
420 		amr->amr_submit = amr_std_submit;
421 		amr->amr_get_work = amr_std_get_work;
422 
423 		/* Notify the controller of the mailbox location. */
424 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
425 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
426 
427 		/* Clear outstanding interrupts and enable interrupts. */
428 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
429 		amr_outb(amr, AMR_SREG_TOGL,
430 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
431 	}
432 
433 	/*
434 	 * Retrieve parameters, and tell the world about us.
435 	 */
436 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
437 	amr->amr_flags |= AMRF_ENQBUF;
438 	amr->amr_maxqueuecnt = i;
439 	aprint_normal(": AMI RAID ");
440 	if (amr_init(amr, intrstr, pa) != 0) {
441 		amr_teardown(amr);
442 		return;
443 	}
444 
445 	/*
446 	 * Cap the maximum number of outstanding commands.  AMI's Linux
447 	 * driver doesn't trust the controller's reported value, and lockups
448 	 * have been seen when we do.
449 	 */
450 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
451 	if (amr->amr_maxqueuecnt > i)
452 		amr->amr_maxqueuecnt = i;
453 
454 	/* Set our `shutdownhook' before we start any device activity. */
455 	if (amr_sdh == NULL)
456 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
457 
458 	/* Attach sub-devices. */
459 	for (j = 0; j < amr->amr_numdrives; j++) {
460 		if (amr->amr_drive[j].al_size == 0)
461 			continue;
462 		amra.amra_unit = j;
463 
464 		locs[AMRCF_UNIT] = j;
465 
466 		amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
467 			"amr", locs, &amra, amr_print, config_stdsubmatch);
468 	}
469 
470 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
471 
472 	/* XXX This doesn't work for newer boards yet. */
473 	if ((apt->apt_flags & AT_QUARTZ) == 0)
474 		kthread_create(amr_thread_create, amr);
475 }
476 
477 /*
478  * Free up resources.
479  */
480 static void
481 amr_teardown(struct amr_softc *amr)
482 {
483 	struct amr_ccb *ac;
484 	int fl;
485 
486 	fl = amr->amr_flags;
487 
488 	if ((fl & AMRF_THREAD) != 0) {
489 		amr->amr_flags |= AMRF_THREAD_EXIT;
490 		wakeup(amr_thread);
491 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
492 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
493 	}
494 	if ((fl & AMRF_CCBS) != 0) {
495 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
496 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
497 		}
498 		free(amr->amr_ccbs, M_DEVBUF);
499 	}
500 	if ((fl & AMRF_ENQBUF) != 0)
501 		free(amr->amr_enqbuf, M_DEVBUF);
502 	if ((fl & AMRF_DMA_LOAD) != 0)
503 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
504 	if ((fl & AMRF_DMA_MAP) != 0)
505 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
506 		    amr->amr_dmasize);
507 	if ((fl & AMRF_DMA_ALLOC) != 0)
508 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
509 	if ((fl & AMRF_DMA_CREATE) != 0)
510 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
511 	if ((fl & AMRF_PCI_INTR) != 0)
512 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
513 	if ((fl & AMRF_PCI_REGS) != 0)
514 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
515 }
516 
517 /*
518  * Print autoconfiguration message for a sub-device.
519  */
520 static int
521 amr_print(void *aux, const char *pnp)
522 {
523 	struct amr_attach_args *amra;
524 
525 	amra = (struct amr_attach_args *)aux;
526 
527 	if (pnp != NULL)
528 		aprint_normal("block device at %s", pnp);
529 	aprint_normal(" unit %d", amra->amra_unit);
530 	return (UNCONF);
531 }
532 
533 /*
534  * Retrieve operational parameters and describe the controller.
535  */
536 static int
537 amr_init(struct amr_softc *amr, const char *intrstr,
538 	 struct pci_attach_args *pa)
539 {
540 	struct amr_adapter_info *aa;
541 	struct amr_prodinfo *ap;
542 	struct amr_enquiry *ae;
543 	struct amr_enquiry3 *aex;
544 	const char *prodstr;
545 	u_int i, sig, ishp;
546 	char sbuf[64];
547 
548 	/*
549 	 * Try to get 40LD product info, which tells us what the card is
550 	 * labelled as.
551 	 */
552 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
553 	    amr->amr_enqbuf);
554 	if (ap != NULL) {
555 		aprint_normal("<%.80s>\n", ap->ap_product);
556 		if (intrstr != NULL)
557 			aprint_normal("%s: interrupting at %s\n",
558 			    amr->amr_dv.dv_xname, intrstr);
559 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
560 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
561 		    le16toh(ap->ap_memsize));
562 
563 		amr->amr_maxqueuecnt = ap->ap_maxio;
564 
565 		/*
566 		 * Fetch and record state of logical drives.
567 		 */
568 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
569 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
570 		if (aex == NULL) {
571 			aprint_error("%s ENQUIRY3 failed\n",
572 			    amr->amr_dv.dv_xname);
573 			return (-1);
574 		}
575 
576 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
577 			aprint_error(
578 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
579 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
580 			    amr->amr_numdrives);
581 			amr->amr_numdrives = AMR_MAX_UNITS;
582 		} else
583 			amr->amr_numdrives = aex->ae_numldrives;
584 
585 		for (i = 0; i < amr->amr_numdrives; i++) {
586 			amr->amr_drive[i].al_size =
587 			    le32toh(aex->ae_drivesize[i]);
588 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
589 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
590 		}
591 
592 		return (0);
593 	}
594 
595 	/*
596 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
597 	 * found, search for a product description.
598 	 */
599 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
600 	if (ae != NULL) {
601 		i = 0;
602 		sig = le32toh(ae->ae_signature);
603 
604 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
605 			if (amr_typestr[i].at_sig == sig)
606 				break;
607 			i++;
608 		}
609 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
610 			snprintf(sbuf, sizeof(sbuf),
611 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
612 			prodstr = sbuf;
613 		} else
614 			prodstr = amr_typestr[i].at_str;
615 	} else {
616 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
617 		if (ae == NULL) {
618 			aprint_error("%s: unsupported controller\n",
619 			    amr->amr_dv.dv_xname);
620 			return (-1);
621 		}
622 
623 		switch (PCI_PRODUCT(pa->pa_id)) {
624 		case PCI_PRODUCT_AMI_MEGARAID:
625 			prodstr = "Series 428";
626 			break;
627 		case PCI_PRODUCT_AMI_MEGARAID2:
628 			prodstr = "Series 434";
629 			break;
630 		default:
631 			snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
632 			    PCI_PRODUCT(pa->pa_id));
633 			prodstr = sbuf;
634 			break;
635 		}
636 	}
637 
638 	/*
639 	 * HP NetRaid controllers have a special encoding of the firmware
640 	 * and BIOS versions.  The AMI version seems to have it as strings
641 	 * whereas the HP version does it with a leading uppercase character
642 	 * and two binary numbers.
643 	*/
644 	aa = &ae->ae_adapter;
645 
646 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
647 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
648 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
649 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
650 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
651 			/* The AMI 438 is a NetRaid 3si in HP-land. */
652 			prodstr = "HP NetRaid 3si";
653 		}
654 		ishp = 1;
655 	} else
656 		ishp = 0;
657 
658 	aprint_normal("<%s>\n", prodstr);
659 	if (intrstr != NULL)
660 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
661 		    intrstr);
662 
663 	if (ishp)
664 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
665 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
666 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
667 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
668 	else
669 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
670 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
671 		    aa->aa_memorysize);
672 
673 	amr->amr_maxqueuecnt = aa->aa_maxio;
674 
675 	/*
676 	 * Record state of logical drives.
677 	 */
678 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
679 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
680 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
681 		    AMR_MAX_UNITS);
682 		amr->amr_numdrives = AMR_MAX_UNITS;
683 	} else
684 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
685 
686 	for (i = 0; i < AMR_MAX_UNITS; i++) {
687 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
688 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
689 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
690 	}
691 
692 	return (0);
693 }
694 
695 /*
696  * Flush the internal cache on each configured controller.  Called at
697  * shutdown time.
698  */
699 static void
700 amr_shutdown(void *cookie)
701 {
702         extern struct cfdriver amr_cd;
703 	struct amr_softc *amr;
704 	struct amr_ccb *ac;
705 	int i, rv, s;
706 
707 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
708 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
709 			continue;
710 
711 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
712 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
713 			s = splbio();
714 			rv = amr_ccb_poll(amr, ac, 30000);
715 			splx(s);
716 			amr_ccb_free(amr, ac);
717 		}
718 		if (rv != 0)
719 			printf("%s: unable to flush cache (%d)\n",
720 			    amr->amr_dv.dv_xname, rv);
721 	}
722 }
723 
724 /*
725  * Interrupt service routine.
726  */
727 static int
728 amr_intr(void *cookie)
729 {
730 	struct amr_softc *amr;
731 	struct amr_ccb *ac;
732 	struct amr_mailbox_resp mbox;
733 	u_int i, forus, idx;
734 
735 	amr = cookie;
736 	forus = 0;
737 
738 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
739 		/* Iterate over completed commands in this result. */
740 		for (i = 0; i < mbox.mb_nstatus; i++) {
741 			idx = mbox.mb_completed[i] - 1;
742 			ac = amr->amr_ccbs + idx;
743 
744 			if (idx >= amr->amr_maxqueuecnt) {
745 				printf("%s: bad status (bogus ID: %u=%u)\n",
746 				    amr->amr_dv.dv_xname, i, idx);
747 				continue;
748 			}
749 
750 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
751 				printf("%s: bad status (not active; 0x04%x)\n",
752 				    amr->amr_dv.dv_xname, ac->ac_flags);
753 				continue;
754 			}
755 
756 			ac->ac_status = mbox.mb_status;
757 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
758 			    AC_COMPLETE;
759 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
760 
761 			if ((ac->ac_flags & AC_MOAN) != 0)
762 				printf("%s: ccb %d completed\n",
763 				    amr->amr_dv.dv_xname, ac->ac_ident);
764 
765 			/* Pass notification to upper layers. */
766 			if (ac->ac_handler != NULL)
767 				(*ac->ac_handler)(ac);
768 			else
769 				wakeup(ac);
770 		}
771 		forus = 1;
772 	}
773 
774 	if (forus)
775 		amr_ccb_enqueue(amr, NULL);
776 
777 	return (forus);
778 }
779 
780 /*
781  * Create the watchdog thread.
782  */
783 static void
784 amr_thread_create(void *cookie)
785 {
786 	struct amr_softc *amr;
787 	int rv;
788 
789 	amr = cookie;
790 
791 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
792 		amr->amr_flags ^= AMRF_THREAD_EXIT;
793 		wakeup(&amr->amr_flags);
794 		return;
795 	}
796 
797 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
798 	    amr->amr_dv.dv_xname);
799  	if (rv != 0)
800 		aprint_error("%s: unable to create thread (%d)",
801  		    amr->amr_dv.dv_xname, rv);
802  	else
803  		amr->amr_flags |= AMRF_THREAD;
804 }
805 
806 /*
807  * Watchdog thread.
808  */
809 static void
810 amr_thread(void *cookie)
811 {
812 	struct amr_softc *amr;
813 	struct amr_ccb *ac;
814 	struct amr_logdrive *al;
815 	struct amr_enquiry *ae;
816 	time_t curtime;
817 	int rv, i, s;
818 
819 	amr = cookie;
820 	ae = amr->amr_enqbuf;
821 
822 	for (;;) {
823 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
824 
825 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
826 			amr->amr_flags ^= AMRF_THREAD_EXIT;
827 			wakeup(&amr->amr_flags);
828 			kthread_exit(0);
829 		}
830 
831 		s = splbio();
832 		amr_intr(cookie);
833 		curtime = (time_t)mono_time.tv_sec;
834 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
835 		while (ac != NULL) {
836 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
837 				break;
838 			if ((ac->ac_flags & AC_MOAN) == 0) {
839 				printf("%s: ccb %d timed out; mailbox:\n",
840 				    amr->amr_dv.dv_xname, ac->ac_ident);
841 				amr_ccb_dump(amr, ac);
842 				ac->ac_flags |= AC_MOAN;
843 			}
844 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
845 		}
846 		splx(s);
847 
848 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
849 			printf("%s: ccb_alloc failed (%d)\n",
850  			    amr->amr_dv.dv_xname, rv);
851 			continue;
852 		}
853 
854 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
855 
856 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
857 		    AMR_ENQUIRY_BUFSIZE, 0);
858 		if (rv != 0) {
859 			printf("%s: ccb_map failed (%d)\n",
860  			    amr->amr_dv.dv_xname, rv);
861 			amr_ccb_free(amr, ac);
862 			continue;
863 		}
864 
865 		rv = amr_ccb_wait(amr, ac);
866 		amr_ccb_unmap(amr, ac);
867 		if (rv != 0) {
868 			printf("%s: enquiry failed (st=%d)\n",
869  			    amr->amr_dv.dv_xname, ac->ac_status);
870 			continue;
871 		}
872 		amr_ccb_free(amr, ac);
873 
874 		al = amr->amr_drive;
875 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
876 			if (al->al_dv == NULL)
877 				continue;
878 			if (al->al_state == ae->ae_ldrv.al_state[i])
879 				continue;
880 
881 			printf("%s: state changed: %s -> %s\n",
882 			    al->al_dv->dv_xname,
883 			    amr_drive_state(al->al_state, NULL),
884 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
885 
886 			al->al_state = ae->ae_ldrv.al_state[i];
887 		}
888 	}
889 }
890 
891 /*
892  * Return a text description of a logical drive's current state.
893  */
894 const char *
895 amr_drive_state(int state, int *happy)
896 {
897 	const char *str;
898 
899 	state = AMR_DRV_CURSTATE(state);
900 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
901 		if (happy)
902 			*happy = 1;
903 		str = "status unknown";
904 	} else {
905 		if (happy)
906 			*happy = amr_dstate[state].ds_happy;
907 		str = amr_dstate[state].ds_descr;
908 	}
909 
910 	return (str);
911 }
912 
913 /*
914  * Run a generic enquiry-style command.
915  */
916 static void *
917 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
918 	    u_int8_t cmdqual, void *sbuf)
919 {
920 	struct amr_ccb *ac;
921 	u_int8_t *mb;
922 	int rv;
923 
924 	if (amr_ccb_alloc(amr, &ac) != 0)
925 		return (NULL);
926 
927 	/* Build the command proper. */
928 	mb = (u_int8_t *)&ac->ac_cmd;
929 	mb[0] = cmd;
930 	mb[2] = cmdsub;
931 	mb[3] = cmdqual;
932 
933 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, 0);
934 	if (rv == 0) {
935 		rv = amr_ccb_poll(amr, ac, 2000);
936 		amr_ccb_unmap(amr, ac);
937 	}
938 	amr_ccb_free(amr, ac);
939 
940 	return (rv ? NULL : sbuf);
941 }
942 
943 /*
944  * Allocate and initialise a CCB.
945  */
946 int
947 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
948 {
949 	int s;
950 
951 	s = splbio();
952 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
953 		splx(s);
954 		return (EAGAIN);
955 	}
956 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
957 	splx(s);
958 
959 	return (0);
960 }
961 
962 /*
963  * Free a CCB.
964  */
965 void
966 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
967 {
968 	int s;
969 
970 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
971 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
972 	ac->ac_cmd.mb_busy = 1;
973 	ac->ac_handler = NULL;
974 	ac->ac_flags = 0;
975 
976 	s = splbio();
977 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
978 	splx(s);
979 }
980 
981 /*
982  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
983  * the order that they were enqueued and try to submit their command blocks
984  * to the controller for execution.
985  */
986 void
987 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
988 {
989 	int s;
990 
991 	s = splbio();
992 
993 	if (ac != NULL)
994 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
995 
996 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
997 		if ((*amr->amr_submit)(amr, ac) != 0)
998 			break;
999 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1000 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1001 	}
1002 
1003 	splx(s);
1004 }
1005 
1006 /*
1007  * Map the specified CCB's data buffer onto the bus, and fill the
1008  * scatter-gather list.
1009  */
1010 int
1011 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1012 	    int out)
1013 {
1014 	struct amr_sgentry *sge;
1015 	struct amr_mailbox_cmd *mb;
1016 	int nsegs, i, rv, sgloff;
1017 	bus_dmamap_t xfer;
1018 
1019 	xfer = ac->ac_xfer_map;
1020 
1021 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1022 	    BUS_DMA_NOWAIT);
1023 	if (rv != 0)
1024 		return (rv);
1025 
1026 	mb = &ac->ac_cmd;
1027 	ac->ac_xfer_size = size;
1028 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1029 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1030 
1031 	/* We don't need to use a scatter/gather list for just 1 segment. */
1032 	nsegs = xfer->dm_nsegs;
1033 	if (nsegs == 1) {
1034 		mb->mb_nsgelem = 0;
1035 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1036 		ac->ac_flags |= AC_NOSGL;
1037 	} else {
1038 		mb->mb_nsgelem = nsegs;
1039 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1040 
1041 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1042 		for (i = 0; i < nsegs; i++, sge++) {
1043 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1044 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1045 		}
1046 	}
1047 
1048 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1049 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1050 
1051 	if ((ac->ac_flags & AC_NOSGL) == 0)
1052 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1053 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1054 
1055 	return (0);
1056 }
1057 
1058 /*
1059  * Unmap the specified CCB's data buffer.
1060  */
1061 void
1062 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1063 {
1064 
1065 	if ((ac->ac_flags & AC_NOSGL) == 0)
1066 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1067 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1068 		    BUS_DMASYNC_POSTWRITE);
1069 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1070 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
1071 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1072 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1073 }
1074 
1075 /*
1076  * Submit a command to the controller and poll on completion.  Return
1077  * non-zero on timeout or error.  Must be called with interrupts blocked.
1078  */
1079 int
1080 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1081 {
1082 	int rv;
1083 
1084 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1085 		return (rv);
1086 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1087 
1088 	for (timo *= 10; timo != 0; timo--) {
1089 		amr_intr(amr);
1090 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1091 			break;
1092 		DELAY(100);
1093 	}
1094 
1095 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1096 }
1097 
1098 /*
1099  * Submit a command to the controller and sleep on completion.  Return
1100  * non-zero on error.
1101  */
1102 int
1103 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1104 {
1105 	int s;
1106 
1107 	s = splbio();
1108 	amr_ccb_enqueue(amr, ac);
1109 	tsleep(ac, PRIBIO, "amrcmd", 0);
1110 	splx(s);
1111 
1112 	return (ac->ac_status != 0 ? EIO : 0);
1113 }
1114 
1115 #if 0
1116 /*
1117  * Wait for the mailbox to become available.
1118  */
1119 static int
1120 amr_mbox_wait(struct amr_softc *amr)
1121 {
1122 	int timo;
1123 
1124 	for (timo = 10000; timo != 0; timo--) {
1125 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1126 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1127 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1128 			break;
1129 		DELAY(100);
1130 	}
1131 
1132 	if (timo == 0)
1133 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1134 
1135 	return (timo != 0 ? 0 : EAGAIN);
1136 }
1137 #endif
1138 
1139 /*
1140  * Tell the controller that the mailbox contains a valid command.  Must be
1141  * called with interrupts blocked.
1142  */
1143 static int
1144 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1145 {
1146 	u_int32_t v;
1147 
1148 	amr->amr_mbox->mb_poll = 0;
1149 	amr->amr_mbox->mb_ack = 0;
1150 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1151 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1152 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1153 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1154 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1155 		return (EAGAIN);
1156 
1157 	v = amr_inl(amr, AMR_QREG_IDB);
1158 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1159 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1160 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1161 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1162 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1163 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1164 		return (EAGAIN);
1165 	}
1166 
1167 	amr->amr_mbox->mb_segment = 0;
1168 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1169 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1170 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1171 
1172 	ac->ac_start_time = (time_t)mono_time.tv_sec;
1173 	ac->ac_flags |= AC_ACTIVE;
1174 	amr_outl(amr, AMR_QREG_IDB,
1175 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1176 	return (0);
1177 }
1178 
1179 static int
1180 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1181 {
1182 
1183 	amr->amr_mbox->mb_poll = 0;
1184 	amr->amr_mbox->mb_ack = 0;
1185 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1186 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1187 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1188 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1189 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1190 		return (EAGAIN);
1191 
1192 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1193 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1194 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1195 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1196 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1197 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1198 		return (EAGAIN);
1199 	}
1200 
1201 	amr->amr_mbox->mb_segment = 0;
1202 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1203 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1204 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1205 
1206 	ac->ac_start_time = (time_t)mono_time.tv_sec;
1207 	ac->ac_flags |= AC_ACTIVE;
1208 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1209 	return (0);
1210 }
1211 
1212 /*
1213  * Claim any work that the controller has completed; acknowledge completion,
1214  * save details of the completion in (mbsave).  Must be called with
1215  * interrupts blocked.
1216  */
1217 static int
1218 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1219 {
1220 
1221 	/* Work waiting for us? */
1222 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1223 		return (-1);
1224 
1225 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1226 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1227 
1228 	/* Save the mailbox, which contains a list of completed commands. */
1229 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1230 
1231 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1232 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1233 
1234 	/* Ack the interrupt and mailbox transfer. */
1235 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1236 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1237 
1238 	/*
1239 	 * This waits for the controller to notice that we've taken the
1240 	 * command from it.  It's very inefficient, and we shouldn't do it,
1241 	 * but if we remove this code, we stop completing commands under
1242 	 * load.
1243 	 *
1244 	 * Peter J says we shouldn't do this.  The documentation says we
1245 	 * should.  Who is right?
1246 	 */
1247 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1248 		DELAY(10);
1249 
1250 	return (0);
1251 }
1252 
1253 static int
1254 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1255 {
1256 	u_int8_t istat;
1257 
1258 	/* Check for valid interrupt status. */
1259 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1260 		return (-1);
1261 
1262 	/* Ack the interrupt. */
1263 	amr_outb(amr, AMR_SREG_INTR, istat);
1264 
1265 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1266 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1267 
1268 	/* Save mailbox, which contains a list of completed commands. */
1269 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1270 
1271 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1272 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1273 
1274 	/* Ack mailbox transfer. */
1275 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1276 
1277 	return (0);
1278 }
1279 
1280 static void
1281 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1282 {
1283 	int i;
1284 
1285 	printf("%s: ", amr->amr_dv.dv_xname);
1286 	for (i = 0; i < 4; i++)
1287 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1288 	printf("\n");
1289 }
1290