xref: /netbsd-src/sys/dev/pci/amr.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /*	$NetBSD: amr.c,v 1.66 2021/04/24 23:36:57 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60  */
61 
62 /*
63  * Driver for AMI RAID controllers.
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.66 2021/04/24 23:36:57 thorpej Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82 #include <sys/module.h>
83 
84 #include <machine/endian.h>
85 #include <sys/bus.h>
86 
87 #include <dev/pci/pcidevs.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/amrreg.h>
90 #include <dev/pci/amrvar.h>
91 #include <dev/pci/amrio.h>
92 
93 #include "locators.h"
94 
95 #include "ioconf.h"
96 
97 static void	amr_attach(device_t, device_t, void *);
98 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
99 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
100 			     void *);
101 static int	amr_init(struct amr_softc *, const char *,
102 			 struct pci_attach_args *pa);
103 static int	amr_intr(void *);
104 static int	amr_match(device_t, cfdata_t, void *);
105 static int	amr_rescan(device_t, const char *, const int *);
106 static int	amr_print(void *, const char *);
107 static void	amr_shutdown(void *);
108 static void	amr_teardown(struct amr_softc *);
109 static void	amr_quartz_thread(void *);
110 static void	amr_std_thread(void *);
111 
112 static int	amr_quartz_get_work(struct amr_softc *,
113 				    struct amr_mailbox_resp *);
114 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
115 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
116 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
117 
118 static dev_type_open(amropen);
119 static dev_type_close(amrclose);
120 static dev_type_ioctl(amrioctl);
121 
122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc),
123     amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0);
124 
125 const struct cdevsw amr_cdevsw = {
126 	.d_open = amropen,
127 	.d_close = amrclose,
128 	.d_read = noread,
129 	.d_write = nowrite,
130 	.d_ioctl = amrioctl,
131 	.d_stop = nostop,
132 	.d_tty = notty,
133 	.d_poll = nopoll,
134 	.d_mmap = nommap,
135 	.d_kqfilter = nokqfilter,
136 	.d_discard = nodiscard,
137 	.d_flag = D_OTHER
138 };
139 
140 extern struct   cfdriver amr_cd;
141 
142 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
143 #define	AT_SIG		0x02	/* Check for signature */
144 
145 static struct amr_pci_type {
146 	u_short	apt_vendor;
147 	u_short	apt_product;
148 	u_short	apt_flags;
149 } const amr_pci_type[] = {
150 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
151 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
152 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
153 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
154 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
155 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
156 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
157 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
158 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
159 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
160 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
161 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
162 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
163 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
164 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
165 };
166 
167 static struct amr_typestr {
168 	const char	*at_str;
169 	int		at_sig;
170 } const amr_typestr[] = {
171 	{ "Series 431",			AMR_SIG_431 },
172 	{ "Series 438",			AMR_SIG_438 },
173 	{ "Series 466",			AMR_SIG_466 },
174 	{ "Series 467",			AMR_SIG_467 },
175 	{ "Series 490",			AMR_SIG_490 },
176 	{ "Series 762",			AMR_SIG_762 },
177 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
178 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
179 };
180 
181 static struct {
182 	const char	*ds_descr;
183 	int	ds_happy;
184 } const amr_dstate[] = {
185 	{ "offline",	0 },
186 	{ "degraded",	1 },
187 	{ "optimal",	1 },
188 	{ "online",	1 },
189 	{ "failed",	0 },
190 	{ "rebuilding",	1 },
191 	{ "hotspare",	0 },
192 };
193 
194 static void	*amr_sdh;
195 
196 static kcondvar_t thread_cv;
197 static kmutex_t	thread_mutex;
198 
199 static int	amr_max_segs;
200 int		amr_max_xfer;
201 
202 static inline u_int8_t
203 amr_inb(struct amr_softc *amr, int off)
204 {
205 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
206 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
207 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
208 }
209 
210 static inline u_int32_t
211 amr_inl(struct amr_softc *amr, int off)
212 {
213 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
214 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
215 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
216 }
217 
218 static inline void
219 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
220 {
221 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
222 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
223 	    BUS_SPACE_BARRIER_WRITE);
224 }
225 
226 static inline void
227 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
228 {
229 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
230 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
231 	    BUS_SPACE_BARRIER_WRITE);
232 }
233 
234 /*
235  * Match a supported device.
236  */
237 static int
238 amr_match(device_t parent, cfdata_t match, void *aux)
239 {
240 	struct pci_attach_args *pa;
241 	pcireg_t s;
242 	int i;
243 
244 	pa = (struct pci_attach_args *)aux;
245 
246 	/*
247 	 * Don't match the device if it's operating in I2O mode.  In this
248 	 * case it should be handled by the `iop' driver.
249 	 */
250 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
251 		return (0);
252 
253 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
254 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
255 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
256 		    	break;
257 
258 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
259 		return (0);
260 
261 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
262 		return (1);
263 
264 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
265 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
266 }
267 
268 /*
269  * Attach a supported device.
270  */
271 static void
272 amr_attach(device_t parent, device_t self, void *aux)
273 {
274 	struct pci_attach_args *pa;
275 	const struct amr_pci_type *apt;
276 	struct amr_softc *amr;
277 	pci_chipset_tag_t pc;
278 	pci_intr_handle_t ih;
279 	const char *intrstr;
280 	pcireg_t reg;
281 	int rseg, i, size, rv, memreg, ioreg;
282 	struct amr_ccb *ac;
283 	char intrbuf[PCI_INTRSTR_LEN];
284 
285 	aprint_naive(": RAID controller\n");
286 
287 	amr = device_private(self);
288 	amr->amr_dv = self;
289 
290 	mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
291 
292 	pa = (struct pci_attach_args *)aux;
293 	pc = pa->pa_pc;
294 
295 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
296 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
297 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
298 			break;
299 	apt = amr_pci_type + i;
300 
301 	memreg = ioreg = 0;
302 	for (i = 0x10; i <= 0x14; i += 4) {
303 		reg = pci_conf_read(pc, pa->pa_tag, i);
304 		switch (PCI_MAPREG_TYPE(reg)) {
305 		case PCI_MAPREG_TYPE_MEM:
306 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
307 				memreg = i;
308 			break;
309 		case PCI_MAPREG_TYPE_IO:
310 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
311 				ioreg = i;
312 			break;
313 		}
314 	}
315 
316 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
317 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
318 		;
319 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
320 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
321 		;
322 	else {
323 		aprint_error("can't map control registers\n");
324 		amr_teardown(amr);
325 		return;
326 	}
327 
328 	amr->amr_flags |= AMRF_PCI_REGS;
329 	amr->amr_dmat = pa->pa_dmat;
330 	amr->amr_pc = pa->pa_pc;
331 
332 	/* Enable the device. */
333 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
335 	    reg | PCI_COMMAND_MASTER_ENABLE);
336 
337 	/* Map and establish the interrupt. */
338 	if (pci_intr_map(pa, &ih)) {
339 		aprint_error("can't map interrupt\n");
340 		amr_teardown(amr);
341 		return;
342 	}
343 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
344 	amr->amr_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, amr_intr, amr,
345 	    device_xname(self));
346 	if (amr->amr_ih == NULL) {
347 		aprint_error("can't establish interrupt");
348 		if (intrstr != NULL)
349 			aprint_error(" at %s", intrstr);
350 		aprint_error("\n");
351 		amr_teardown(amr);
352 		return;
353 	}
354 	amr->amr_flags |= AMRF_PCI_INTR;
355 
356 	/*
357 	 * Allocate space for the mailbox and S/G lists.  Some controllers
358 	 * don't like S/G lists to be located below 0x2000, so we allocate
359 	 * enough slop to enable us to compensate.
360 	 *
361 	 * The standard mailbox structure needs to be aligned on a 16-byte
362 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
363 	 * size, which precedes the standard mailbox.
364 	 */
365 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
366 	amr->amr_dmasize = size;
367 
368 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
369 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
370 		aprint_error_dev(amr->amr_dv,
371 		    "unable to allocate buffer, rv = %d\n", rv);
372 		amr_teardown(amr);
373 		return;
374 	}
375 	amr->amr_flags |= AMRF_DMA_ALLOC;
376 
377 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
378 	    (void **)&amr->amr_mbox,
379 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
380 		aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
381 		    rv);
382 		amr_teardown(amr);
383 		return;
384 	}
385 	amr->amr_flags |= AMRF_DMA_MAP;
386 
387 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
388 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
389 		aprint_error_dev(amr->amr_dv,
390 		    "unable to create buffer DMA map, rv = %d\n", rv);
391 		amr_teardown(amr);
392 		return;
393 	}
394 	amr->amr_flags |= AMRF_DMA_CREATE;
395 
396 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
397 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
398 		aprint_error_dev(amr->amr_dv,
399 		    "unable to load buffer DMA map, rv = %d\n", rv);
400 		amr_teardown(amr);
401 		return;
402 	}
403 	amr->amr_flags |= AMRF_DMA_LOAD;
404 
405 	memset(amr->amr_mbox, 0, size);
406 
407 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
408 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
409 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
410 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
411 
412 	/*
413 	 * Allocate and initalise the command control blocks.
414 	 */
415 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_WAITOK | M_ZERO);
416 	amr->amr_ccbs = ac;
417 	SLIST_INIT(&amr->amr_ccb_freelist);
418 	TAILQ_INIT(&amr->amr_ccb_active);
419 	amr->amr_flags |= AMRF_CCBS;
420 
421 	if (amr_max_xfer == 0) {
422 		amr_max_xfer = uimin(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
423 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
424 	}
425 
426 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
427 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
428 		    amr_max_segs, amr_max_xfer, 0,
429 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
430 		if (rv != 0)
431 			break;
432 
433 		ac->ac_ident = i;
434 		cv_init(&ac->ac_cv, "amr1ccb");
435 		mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
436 		amr_ccb_free(amr, ac);
437 	}
438 	if (i != AMR_MAX_CMDS) {
439 		aprint_error_dev(amr->amr_dv, "memory exhausted\n");
440 		amr_teardown(amr);
441 		return;
442 	}
443 
444 	/*
445 	 * Take care of model-specific tasks.
446 	 */
447 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
448 		amr->amr_submit = amr_quartz_submit;
449 		amr->amr_get_work = amr_quartz_get_work;
450 	} else {
451 		amr->amr_submit = amr_std_submit;
452 		amr->amr_get_work = amr_std_get_work;
453 
454 		/* Notify the controller of the mailbox location. */
455 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
456 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
457 
458 		/* Clear outstanding interrupts and enable interrupts. */
459 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
460 		amr_outb(amr, AMR_SREG_TOGL,
461 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
462 	}
463 
464 	/*
465 	 * Retrieve parameters, and tell the world about us.
466 	 */
467 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_WAITOK);
468 	amr->amr_flags |= AMRF_ENQBUF;
469 	amr->amr_maxqueuecnt = i;
470 	aprint_normal(": AMI RAID ");
471 	if (amr_init(amr, intrstr, pa) != 0) {
472 		amr_teardown(amr);
473 		return;
474 	}
475 
476 	/*
477 	 * Cap the maximum number of outstanding commands.  AMI's Linux
478 	 * driver doesn't trust the controller's reported value, and lockups
479 	 * have been seen when we do.
480 	 */
481 	amr->amr_maxqueuecnt = uimin(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
482 	if (amr->amr_maxqueuecnt > i)
483 		amr->amr_maxqueuecnt = i;
484 
485 	/* Set our `shutdownhook' before we start any device activity. */
486 	if (amr_sdh == NULL)
487 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
488 
489 	/* Attach sub-devices. */
490 	amr_rescan(self, NULL, NULL);
491 
492 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
493 
494 	cv_init(&thread_cv, "amrwdog");
495 	mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
496 
497 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
498 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
499 				    amr_std_thread, amr, &amr->amr_thread,
500 				    "%s", device_xname(amr->amr_dv));
501 	} else {
502 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
503 				    amr_quartz_thread, amr, &amr->amr_thread,
504 				    "%s", device_xname(amr->amr_dv));
505 	}
506 	if (rv != 0)
507 		aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
508  		    rv);
509  	else
510  		amr->amr_flags |= AMRF_THREAD;
511 }
512 
513 static int
514 amr_rescan(device_t self, const char *ifattr, const int *ulocs)
515 {
516 	int j;
517 	int locs[AMRCF_NLOCS];
518 	struct amr_attach_args amra;
519 	struct amr_softc *amr;
520 
521 	amr = device_private(self);
522 	for (j = 0; j < amr->amr_numdrives; j++) {
523 		if (amr->amr_drive[j].al_dv)
524 			continue;
525 		if (amr->amr_drive[j].al_size == 0)
526 			continue;
527 		amra.amra_unit = j;
528 
529 		locs[AMRCF_UNIT] = j;
530 
531 		amr->amr_drive[j].al_dv =
532 		    config_found(amr->amr_dv, &amra, amr_print,
533 				 CFARG_SUBMATCH, config_stdsubmatch,
534 				 CFARG_IATTR, ifattr,
535 				 CFARG_LOCATORS, locs,
536 				 CFARG_EOL);
537 	}
538 	return 0;
539 }
540 
541 /*
542  * Free up resources.
543  */
544 static void
545 amr_teardown(struct amr_softc *amr)
546 {
547 	struct amr_ccb *ac;
548 	int fl;
549 
550 	fl = amr->amr_flags;
551 
552 	if ((fl & AMRF_THREAD) != 0) {
553 		amr->amr_flags |= AMRF_THREAD_EXIT;
554 		mutex_enter(&thread_mutex);
555 		cv_broadcast(&thread_cv);
556 		mutex_exit(&thread_mutex);
557 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
558 			mutex_enter(&thread_mutex);
559 			cv_wait(&thread_cv, &thread_mutex);
560 			mutex_exit(&thread_mutex);
561 		}
562 	}
563 	if ((fl & AMRF_CCBS) != 0) {
564 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
565 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
566 		}
567 		free(amr->amr_ccbs, M_DEVBUF);
568 	}
569 	if ((fl & AMRF_ENQBUF) != 0)
570 		free(amr->amr_enqbuf, M_DEVBUF);
571 	if ((fl & AMRF_DMA_LOAD) != 0)
572 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
573 	if ((fl & AMRF_DMA_MAP) != 0)
574 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
575 		    amr->amr_dmasize);
576 	if ((fl & AMRF_DMA_ALLOC) != 0)
577 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
578 	if ((fl & AMRF_DMA_CREATE) != 0)
579 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
580 	if ((fl & AMRF_PCI_INTR) != 0)
581 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
582 	if ((fl & AMRF_PCI_REGS) != 0)
583 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
584 }
585 
586 /*
587  * Print autoconfiguration message for a sub-device.
588  */
589 static int
590 amr_print(void *aux, const char *pnp)
591 {
592 	struct amr_attach_args *amra;
593 
594 	amra = (struct amr_attach_args *)aux;
595 
596 	if (pnp != NULL)
597 		aprint_normal("block device at %s", pnp);
598 	aprint_normal(" unit %d", amra->amra_unit);
599 	return (UNCONF);
600 }
601 
602 /*
603  * Retrieve operational parameters and describe the controller.
604  */
605 static int
606 amr_init(struct amr_softc *amr, const char *intrstr,
607 	 struct pci_attach_args *pa)
608 {
609 	struct amr_adapter_info *aa;
610 	struct amr_prodinfo *ap;
611 	struct amr_enquiry *ae;
612 	struct amr_enquiry3 *aex;
613 	const char *prodstr;
614 	u_int i, sig, ishp;
615 	char sbuf[64];
616 
617 	/*
618 	 * Try to get 40LD product info, which tells us what the card is
619 	 * labelled as.
620 	 */
621 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
622 	    amr->amr_enqbuf);
623 	if (ap != NULL) {
624 		aprint_normal("<%.80s>\n", ap->ap_product);
625 		if (intrstr != NULL)
626 			aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
627 			    intrstr);
628 		aprint_normal_dev(amr->amr_dv,
629 		    "firmware %.16s, BIOS %.16s, %dMB RAM\n",
630 		    ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
631 
632 		amr->amr_maxqueuecnt = ap->ap_maxio;
633 
634 		/*
635 		 * Fetch and record state of logical drives.
636 		 */
637 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
638 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
639 		if (aex == NULL) {
640 			aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
641 			return (-1);
642 		}
643 
644 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
645 			aprint_error_dev(amr->amr_dv, "Inquiry returned more "
646 			    "drives (%d) than the array can handle (%zu)\n",
647 			    aex->ae_numldrives,
648 			    __arraycount(aex->ae_drivestate));
649 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
650 		}
651 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
652 			aprint_error_dev(amr->amr_dv,
653 			    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
654 			    AMR_MAX_UNITS, amr->amr_numdrives);
655 			amr->amr_numdrives = AMR_MAX_UNITS;
656 		} else
657 			amr->amr_numdrives = aex->ae_numldrives;
658 
659 		for (i = 0; i < amr->amr_numdrives; i++) {
660 			amr->amr_drive[i].al_size =
661 			    le32toh(aex->ae_drivesize[i]);
662 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
663 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
664 		}
665 
666 		return (0);
667 	}
668 
669 	/*
670 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
671 	 * found, search for a product description.
672 	 */
673 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
674 	if (ae != NULL) {
675 		i = 0;
676 		sig = le32toh(ae->ae_signature);
677 
678 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
679 			if (amr_typestr[i].at_sig == sig)
680 				break;
681 			i++;
682 		}
683 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
684 			snprintf(sbuf, sizeof(sbuf),
685 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
686 			prodstr = sbuf;
687 		} else
688 			prodstr = amr_typestr[i].at_str;
689 	} else {
690 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
691 		if (ae == NULL) {
692 			aprint_error_dev(amr->amr_dv,
693 			    "unsupported controller\n");
694 			return (-1);
695 		}
696 
697 		switch (PCI_PRODUCT(pa->pa_id)) {
698 		case PCI_PRODUCT_AMI_MEGARAID:
699 			prodstr = "Series 428";
700 			break;
701 		case PCI_PRODUCT_AMI_MEGARAID2:
702 			prodstr = "Series 434";
703 			break;
704 		default:
705 			snprintf(sbuf, sizeof(sbuf),
706 			    "unknown PCI dev (0x%04x)",
707 			    PCI_PRODUCT(pa->pa_id));
708 			prodstr = sbuf;
709 			break;
710 		}
711 	}
712 
713 	/*
714 	 * HP NetRaid controllers have a special encoding of the firmware
715 	 * and BIOS versions.  The AMI version seems to have it as strings
716 	 * whereas the HP version does it with a leading uppercase character
717 	 * and two binary numbers.
718 	*/
719 	aa = &ae->ae_adapter;
720 
721 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
722 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
723 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
724 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
725 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
726 			/* The AMI 438 is a NetRaid 3si in HP-land. */
727 			prodstr = "HP NetRaid 3si";
728 		}
729 		ishp = 1;
730 	} else
731 		ishp = 0;
732 
733 	aprint_normal("<%s>\n", prodstr);
734 	if (intrstr != NULL)
735 		aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
736 		    intrstr);
737 
738 	if (ishp)
739 		aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
740 		    "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
741 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
742 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
743 	else
744 		aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
745 		    "%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
746 		    aa->aa_memorysize);
747 
748 	amr->amr_maxqueuecnt = aa->aa_maxio;
749 
750 	/*
751 	 * Record state of logical drives.
752 	 */
753 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
754 		aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
755 		    "(%d) than the array can handle (%zu)\n",
756 		    ae->ae_ldrv.al_numdrives,
757 		    __arraycount(ae->ae_ldrv.al_size));
758 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
759 	}
760 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
761 		aprint_error_dev(amr->amr_dv,
762 		    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
763 		    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
764 		amr->amr_numdrives = AMR_MAX_UNITS;
765 	} else
766 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
767 
768 	for (i = 0; i < amr->amr_numdrives; i++) {
769 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
770 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
771 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
772 	}
773 
774 	return (0);
775 }
776 
777 /*
778  * Flush the internal cache on each configured controller.  Called at
779  * shutdown time.
780  */
781 static void
782 amr_shutdown(void *cookie)
783 {
784 	extern struct cfdriver amr_cd;
785 	struct amr_softc *amr;
786 	struct amr_ccb *ac;
787 	int i, rv;
788 
789 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
790 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
791 			continue;
792 
793 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
794 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
795 			rv = amr_ccb_poll(amr, ac, 30000);
796 			amr_ccb_free(amr, ac);
797 		}
798 		if (rv != 0)
799 			aprint_error_dev(amr->amr_dv,
800 			    "unable to flush cache (%d)\n", rv);
801 	}
802 }
803 
804 /*
805  * Interrupt service routine.
806  */
807 static int
808 amr_intr(void *cookie)
809 {
810 	struct amr_softc *amr;
811 	struct amr_ccb *ac;
812 	struct amr_mailbox_resp mbox;
813 	u_int i, forus, idx;
814 
815 	amr = cookie;
816 	forus = 0;
817 
818 	mutex_spin_enter(&amr->amr_mutex);
819 
820 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
821 		/* Iterate over completed commands in this result. */
822 		for (i = 0; i < mbox.mb_nstatus; i++) {
823 			idx = mbox.mb_completed[i] - 1;
824 			ac = amr->amr_ccbs + idx;
825 
826 			if (idx >= amr->amr_maxqueuecnt) {
827 				printf("%s: bad status (bogus ID: %u=%u)\n",
828 				    device_xname(amr->amr_dv), i, idx);
829 				continue;
830 			}
831 
832 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
833 				printf("%s: bad status (not active; 0x04%x)\n",
834 				    device_xname(amr->amr_dv), ac->ac_flags);
835 				continue;
836 			}
837 
838 			ac->ac_status = mbox.mb_status;
839 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
840 			    AC_COMPLETE;
841 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
842 
843 			if ((ac->ac_flags & AC_MOAN) != 0)
844 				printf("%s: ccb %d completed\n",
845 				    device_xname(amr->amr_dv), ac->ac_ident);
846 
847 			/* Pass notification to upper layers. */
848 			mutex_spin_exit(&amr->amr_mutex);
849 			if (ac->ac_handler != NULL) {
850 				(*ac->ac_handler)(ac);
851 			} else {
852 				mutex_enter(&ac->ac_mutex);
853 				cv_signal(&ac->ac_cv);
854 				mutex_exit(&ac->ac_mutex);
855 			}
856 			mutex_spin_enter(&amr->amr_mutex);
857 		}
858 		forus = 1;
859 	}
860 
861 	mutex_spin_exit(&amr->amr_mutex);
862 
863 	if (forus)
864 		amr_ccb_enqueue(amr, NULL);
865 
866 	return (forus);
867 }
868 
869 /*
870  * Watchdog thread.
871  */
872 static void
873 amr_quartz_thread(void *cookie)
874 {
875 	struct amr_softc *amr;
876 	struct amr_ccb *ac;
877 
878 	amr = cookie;
879 
880 	for (;;) {
881 		mutex_enter(&thread_mutex);
882 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
883 		mutex_exit(&thread_mutex);
884 
885 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
886 			amr->amr_flags ^= AMRF_THREAD_EXIT;
887 			mutex_enter(&thread_mutex);
888 			cv_signal(&thread_cv);
889 			mutex_exit(&thread_mutex);
890 			kthread_exit(0);
891 		}
892 
893 		if (amr_intr(amr) == 0)
894 			amr_ccb_enqueue(amr, NULL);
895 
896 		mutex_spin_enter(&amr->amr_mutex);
897 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
898 		while (ac != NULL) {
899 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
900 				break;
901 			if ((ac->ac_flags & AC_MOAN) == 0) {
902 				printf("%s: ccb %d timed out; mailbox:\n",
903 				    device_xname(amr->amr_dv), ac->ac_ident);
904 				amr_ccb_dump(amr, ac);
905 				ac->ac_flags |= AC_MOAN;
906 			}
907 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
908 		}
909 		mutex_spin_exit(&amr->amr_mutex);
910 	}
911 }
912 
913 static void
914 amr_std_thread(void *cookie)
915 {
916 	struct amr_softc *amr;
917 	struct amr_ccb *ac;
918 	struct amr_logdrive *al;
919 	struct amr_enquiry *ae;
920 	int rv, i;
921 
922 	amr = cookie;
923 	ae = amr->amr_enqbuf;
924 
925 	for (;;) {
926 		mutex_enter(&thread_mutex);
927 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
928 		mutex_exit(&thread_mutex);
929 
930 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
931 			amr->amr_flags ^= AMRF_THREAD_EXIT;
932 			mutex_enter(&thread_mutex);
933 			cv_signal(&thread_cv);
934 			mutex_exit(&thread_mutex);
935 			kthread_exit(0);
936 		}
937 
938 		if (amr_intr(amr) == 0)
939 			amr_ccb_enqueue(amr, NULL);
940 
941 		mutex_spin_enter(&amr->amr_mutex);
942 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
943 		while (ac != NULL) {
944 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
945 				break;
946 			if ((ac->ac_flags & AC_MOAN) == 0) {
947 				printf("%s: ccb %d timed out; mailbox:\n",
948 				    device_xname(amr->amr_dv), ac->ac_ident);
949 				amr_ccb_dump(amr, ac);
950 				ac->ac_flags |= AC_MOAN;
951 			}
952 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
953 		}
954 		mutex_spin_exit(&amr->amr_mutex);
955 
956 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
957 			printf("%s: ccb_alloc failed (%d)\n",
958  			    device_xname(amr->amr_dv), rv);
959 			continue;
960 		}
961 
962 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
963 
964 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
965 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
966 		if (rv != 0) {
967 			aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
968  			    rv);
969 			amr_ccb_free(amr, ac);
970 			continue;
971 		}
972 
973 		rv = amr_ccb_wait(amr, ac);
974 		amr_ccb_unmap(amr, ac);
975 		if (rv != 0) {
976 			aprint_error_dev(amr->amr_dv,
977 			    "enquiry failed (st=%d)\n", ac->ac_status);
978 			continue;
979 		}
980 		amr_ccb_free(amr, ac);
981 
982 		al = amr->amr_drive;
983 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
984 			if (al->al_dv == NULL)
985 				continue;
986 			if (al->al_state == ae->ae_ldrv.al_state[i])
987 				continue;
988 
989 			printf("%s: state changed: %s -> %s\n",
990 			    device_xname(al->al_dv),
991 			    amr_drive_state(al->al_state, NULL),
992 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
993 
994 			al->al_state = ae->ae_ldrv.al_state[i];
995 		}
996 	}
997 }
998 
999 /*
1000  * Return a text description of a logical drive's current state.
1001  */
1002 const char *
1003 amr_drive_state(int state, int *happy)
1004 {
1005 	const char *str;
1006 
1007 	state = AMR_DRV_CURSTATE(state);
1008 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
1009 		if (happy)
1010 			*happy = 1;
1011 		str = "status unknown";
1012 	} else {
1013 		if (happy)
1014 			*happy = amr_dstate[state].ds_happy;
1015 		str = amr_dstate[state].ds_descr;
1016 	}
1017 
1018 	return (str);
1019 }
1020 
1021 /*
1022  * Run a generic enquiry-style command.
1023  */
1024 static void *
1025 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1026 	    u_int8_t cmdqual, void *sbuf)
1027 {
1028 	struct amr_ccb *ac;
1029 	u_int8_t *mb;
1030 	int rv;
1031 
1032 	if (amr_ccb_alloc(amr, &ac) != 0)
1033 		return (NULL);
1034 
1035 	/* Build the command proper. */
1036 	mb = (u_int8_t *)&ac->ac_cmd;
1037 	mb[0] = cmd;
1038 	mb[2] = cmdsub;
1039 	mb[3] = cmdqual;
1040 
1041 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1042 	if (rv == 0) {
1043 		rv = amr_ccb_poll(amr, ac, 2000);
1044 		amr_ccb_unmap(amr, ac);
1045 	}
1046 	amr_ccb_free(amr, ac);
1047 
1048 	return (rv ? NULL : sbuf);
1049 }
1050 
1051 /*
1052  * Allocate and initialise a CCB.
1053  */
1054 int
1055 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1056 {
1057 	mutex_spin_enter(&amr->amr_mutex);
1058 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1059 		mutex_spin_exit(&amr->amr_mutex);
1060 		return (EAGAIN);
1061 	}
1062 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1063 	mutex_spin_exit(&amr->amr_mutex);
1064 
1065 	return (0);
1066 }
1067 
1068 /*
1069  * Free a CCB.
1070  */
1071 void
1072 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1073 {
1074 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1075 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1076 	ac->ac_cmd.mb_busy = 1;
1077 	ac->ac_handler = NULL;
1078 	ac->ac_flags = 0;
1079 
1080 	mutex_spin_enter(&amr->amr_mutex);
1081 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1082 	mutex_spin_exit(&amr->amr_mutex);
1083 }
1084 
1085 /*
1086  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1087  * the order that they were enqueued and try to submit their command blocks
1088  * to the controller for execution.
1089  */
1090 void
1091 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1092 {
1093 	if (ac != NULL) {
1094 		mutex_spin_enter(&amr->amr_mutex);
1095 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1096 		mutex_spin_exit(&amr->amr_mutex);
1097 	}
1098 
1099 	while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1100 		mutex_spin_enter(&amr->amr_mutex);
1101 		if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1102 			if ((*amr->amr_submit)(amr, ac) != 0) {
1103 				mutex_spin_exit(&amr->amr_mutex);
1104 				break;
1105 			}
1106 			SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
1107 			    ac_chain.simpleq);
1108 			TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
1109 			    ac_chain.tailq);
1110 		}
1111 		mutex_spin_exit(&amr->amr_mutex);
1112 	}
1113 }
1114 
1115 /*
1116  * Map the specified CCB's data buffer onto the bus, and fill the
1117  * scatter-gather list.
1118  */
1119 int
1120 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1121 	    int tflag)
1122 {
1123 	struct amr_sgentry *sge;
1124 	struct amr_mailbox_cmd *mb;
1125 	int nsegs, i, rv, sgloff;
1126 	bus_dmamap_t xfer;
1127 	int dmaflag = 0;
1128 
1129 	xfer = ac->ac_xfer_map;
1130 
1131 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1132 	    BUS_DMA_NOWAIT);
1133 	if (rv != 0)
1134 		return (rv);
1135 
1136 	mb = &ac->ac_cmd;
1137 	ac->ac_xfer_size = size;
1138 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1139 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1140 
1141 	if (tflag & AC_XFER_OUT)
1142 		dmaflag |= BUS_DMASYNC_PREWRITE;
1143 	if (tflag & AC_XFER_IN)
1144 		dmaflag |= BUS_DMASYNC_PREREAD;
1145 
1146 	/* We don't need to use a scatter/gather list for just 1 segment. */
1147 	nsegs = xfer->dm_nsegs;
1148 	if (nsegs == 1) {
1149 		mb->mb_nsgelem = 0;
1150 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1151 		ac->ac_flags |= AC_NOSGL;
1152 	} else {
1153 		mb->mb_nsgelem = nsegs;
1154 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1155 
1156 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1157 		for (i = 0; i < nsegs; i++, sge++) {
1158 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1159 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1160 		}
1161 	}
1162 
1163 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1164 
1165 	if ((ac->ac_flags & AC_NOSGL) == 0)
1166 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1167 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Unmap the specified CCB's data buffer.
1174  */
1175 void
1176 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1177 {
1178 	int dmaflag = 0;
1179 
1180 	if (ac->ac_flags & AC_XFER_IN)
1181 		dmaflag |= BUS_DMASYNC_POSTREAD;
1182 	if (ac->ac_flags & AC_XFER_OUT)
1183 		dmaflag |= BUS_DMASYNC_POSTWRITE;
1184 
1185 	if ((ac->ac_flags & AC_NOSGL) == 0)
1186 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1187 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1188 		    BUS_DMASYNC_POSTWRITE);
1189 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1190 	    dmaflag);
1191 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1192 }
1193 
1194 /*
1195  * Submit a command to the controller and poll on completion.  Return
1196  * non-zero on timeout or error.
1197  */
1198 int
1199 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1200 {
1201 	int rv, i;
1202 
1203 	mutex_spin_enter(&amr->amr_mutex);
1204 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1205 		mutex_spin_exit(&amr->amr_mutex);
1206 		return (rv);
1207 	}
1208 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1209 	mutex_spin_exit(&amr->amr_mutex);
1210 
1211 	for (i = timo * 10; i > 0; i--) {
1212 		amr_intr(amr);
1213 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1214 			break;
1215 		DELAY(100);
1216 	}
1217 
1218 	if (i == 0)
1219 		printf("%s: polled operation timed out after %d ms\n",
1220 		       device_xname(amr->amr_dv), timo);
1221 
1222 	return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1223 }
1224 
1225 /*
1226  * Submit a command to the controller and sleep on completion.  Return
1227  * non-zero on error.
1228  */
1229 int
1230 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1231 {
1232 	amr_ccb_enqueue(amr, ac);
1233 	mutex_enter(&ac->ac_mutex);
1234 	cv_wait(&ac->ac_cv, &ac->ac_mutex);
1235 	mutex_exit(&ac->ac_mutex);
1236 
1237 	return (ac->ac_status != 0 ? EIO : 0);
1238 }
1239 
1240 #if 0
1241 /*
1242  * Wait for the mailbox to become available.
1243  */
1244 static int
1245 amr_mbox_wait(struct amr_softc *amr)
1246 {
1247 	int timo;
1248 
1249 	for (timo = 10000; timo != 0; timo--) {
1250 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1251 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1252 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1253 			break;
1254 		DELAY(100);
1255 	}
1256 
1257 	if (timo == 0)
1258 		printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1259 
1260 	return (timo != 0 ? 0 : EAGAIN);
1261 }
1262 #endif
1263 
1264 /*
1265  * Tell the controller that the mailbox contains a valid command.  Must be
1266  * called with interrupts blocked.
1267  */
1268 static int
1269 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1270 {
1271 	int i = 0;
1272 	u_int32_t v;
1273 
1274 	amr->amr_mbox->mb_poll = 0;
1275 	amr->amr_mbox->mb_ack = 0;
1276 
1277 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 	    sizeof(struct amr_mailbox),
1279 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1280 
1281 	v = amr_inl(amr, AMR_QREG_ODB);
1282 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1283 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1284 	while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1285 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1286 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1287 		/* This is a no-op read that flushes pending mailbox updates */
1288 		v = amr_inl(amr, AMR_QREG_ODB);
1289 		DELAY(1);
1290 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1291 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1292 	}
1293 
1294 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1295 		return (EAGAIN);
1296 
1297 	v = amr_inl(amr, AMR_QREG_IDB);
1298 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1299 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1300 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1301 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1302 		printf("%s: submit failed\n", device_xname(amr->amr_dv));
1303 		return (EAGAIN);
1304 	}
1305 
1306 	amr->amr_mbox->mb_segment = 0;
1307 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1308 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1309 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1310 
1311 	ac->ac_start_time = time_uptime;
1312 	ac->ac_flags |= AC_ACTIVE;
1313 
1314 	amr_outl(amr, AMR_QREG_IDB,
1315 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1316 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1317 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1318 
1319 	return (0);
1320 }
1321 
1322 static int
1323 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1324 {
1325 
1326 	amr->amr_mbox->mb_poll = 0;
1327 	amr->amr_mbox->mb_ack = 0;
1328 
1329 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1330 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1331 
1332 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1333 		return (EAGAIN);
1334 
1335 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1336 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1337 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1338 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1339 		return (EAGAIN);
1340 	}
1341 
1342 	amr->amr_mbox->mb_segment = 0;
1343 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1344 
1345 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1346 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1347 
1348 	ac->ac_start_time = time_uptime;
1349 	ac->ac_flags |= AC_ACTIVE;
1350 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1351 
1352 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1353 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1354 
1355 	return (0);
1356 }
1357 
1358 /*
1359  * Claim any work that the controller has completed; acknowledge completion,
1360  * save details of the completion in (mbsave).  Must be called with
1361  * interrupts blocked.
1362  */
1363 static int
1364 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1365 {
1366 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1367 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1368 
1369 	/* Work waiting for us? */
1370 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1371 		return (-1);
1372 
1373 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1374 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1375 
1376 	/* Save the mailbox, which contains a list of completed commands. */
1377 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1378 
1379 	/* Ack the interrupt and mailbox transfer. */
1380 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1381 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1382 
1383 	/*
1384 	 * This waits for the controller to notice that we've taken the
1385 	 * command from it.  It's very inefficient, and we shouldn't do it,
1386 	 * but if we remove this code, we stop completing commands under
1387 	 * load.
1388 	 *
1389 	 * Peter J says we shouldn't do this.  The documentation says we
1390 	 * should.  Who is right?
1391 	 */
1392 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1393 		DELAY(10);
1394 
1395 	return (0);
1396 }
1397 
1398 static int
1399 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1400 {
1401 	u_int8_t istat;
1402 
1403 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1404 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1405 
1406 	/* Check for valid interrupt status. */
1407 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1408 		return (-1);
1409 
1410 	/* Ack the interrupt. */
1411 	amr_outb(amr, AMR_SREG_INTR, istat);
1412 
1413 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1414 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1415 
1416 	/* Save mailbox, which contains a list of completed commands. */
1417 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1418 
1419 	/* Ack mailbox transfer. */
1420 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1421 
1422 	return (0);
1423 }
1424 
1425 static void
1426 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1427 {
1428 	int i;
1429 
1430 	printf("%s: ", device_xname(amr->amr_dv));
1431 	for (i = 0; i < 4; i++)
1432 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1433 	printf("\n");
1434 }
1435 
1436 static int
1437 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1438 {
1439 	struct amr_softc *amr;
1440 
1441 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1442 		return (ENXIO);
1443 	if ((amr->amr_flags & AMRF_OPEN) != 0)
1444 		return (EBUSY);
1445 
1446 	amr->amr_flags |= AMRF_OPEN;
1447 	return (0);
1448 }
1449 
1450 static int
1451 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1452 {
1453 	struct amr_softc *amr;
1454 
1455 	amr = device_lookup_private(&amr_cd, minor(dev));
1456 	amr->amr_flags &= ~AMRF_OPEN;
1457 	return (0);
1458 }
1459 
1460 /* used below to correct for a firmware bug */
1461 static unsigned long
1462 amrioctl_buflen(unsigned long len)
1463 {
1464 	if (len <= 4 * 1024)
1465 		return (4 * 1024);
1466 	if (len <= 8 * 1024)
1467 		return (8 * 1024);
1468 	if (len <= 32 * 1024)
1469 		return (32 * 1024);
1470 	if (len <= 64 * 1024)
1471 		return (64 * 1024);
1472 	return (len);
1473 }
1474 
1475 static int
1476 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1477     struct lwp *l)
1478 {
1479 	struct amr_softc *amr;
1480 	struct amr_user_ioctl *au;
1481 	struct amr_ccb *ac;
1482 	struct amr_mailbox_ioctl *mbi;
1483 	unsigned long au_length;
1484 	uint8_t *au_cmd;
1485 	int error;
1486 	void *dp = NULL, *au_buffer;
1487 
1488 	amr = device_lookup_private(&amr_cd, minor(dev));
1489 
1490 	/* This should be compatible with the FreeBSD interface */
1491 
1492 	switch (cmd) {
1493 	case AMR_IO_VERSION:
1494 		*(int *)data = AMR_IO_VERSION_NUMBER;
1495 		return 0;
1496 	case AMR_IO_COMMAND:
1497 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1498 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1499 		if (error)
1500 			return (error);
1501 
1502 		au = (struct amr_user_ioctl *)data;
1503 		au_cmd = au->au_cmd;
1504 		au_buffer = au->au_buffer;
1505 		au_length = au->au_length;
1506 		break;
1507 	default:
1508 		return ENOTTY;
1509 	}
1510 
1511 	if (au_cmd[0] == AMR_CMD_PASS) {
1512 		/* not yet */
1513 		return EOPNOTSUPP;
1514 	}
1515 
1516 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1517 		return (EINVAL);
1518 
1519 	/*
1520 	 * allocate kernel memory for data, doing I/O directly to user
1521 	 * buffer isn't that easy.  Correct allocation size for a bug
1522 	 * in at least some versions of the device firmware, by using
1523 	 * the amrioctl_buflen() function, defined above.
1524 	 */
1525 	dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1526 	if (dp == NULL)
1527 		return ENOMEM;
1528 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
1529 		goto out;
1530 
1531 	/* direct command to controller */
1532 	while (amr_ccb_alloc(amr, &ac) != 0) {
1533 		mutex_enter(&thread_mutex);
1534 		error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1535 		mutex_exit(&thread_mutex);
1536 		if (error == EINTR)
1537 			goto out;
1538 	}
1539 
1540 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1541 	mbi->mb_command = au_cmd[0];
1542 	mbi->mb_channel = au_cmd[1];
1543 	mbi->mb_param = au_cmd[2];
1544 	mbi->mb_pad[0] = au_cmd[3];
1545 	mbi->mb_drive = au_cmd[4];
1546 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
1547 	    AC_XFER_IN | AC_XFER_OUT);
1548 	if (error == 0) {
1549 		error = amr_ccb_wait(amr, ac);
1550 		amr_ccb_unmap(amr, ac);
1551 		if (error == 0)
1552 			error = copyout(dp, au_buffer, au_length);
1553 
1554 	}
1555 	amr_ccb_free(amr, ac);
1556 out:
1557 	free(dp, M_DEVBUF);
1558 	return (error);
1559 }
1560 
1561 MODULE(MODULE_CLASS_DRIVER, amr, "pci");
1562 
1563 #ifdef _MODULE
1564 #include "ioconf.c"
1565 #endif
1566 
1567 static int
1568 amr_modcmd(modcmd_t cmd, void *opaque)
1569 {
1570 	int error = 0;
1571 
1572 #ifdef _MODULE
1573 	switch (cmd) {
1574 	case MODULE_CMD_INIT:
1575 		error = config_init_component(cfdriver_ioconf_amr,
1576 		    cfattach_ioconf_amr, cfdata_ioconf_amr);
1577 		break;
1578 	case MODULE_CMD_FINI:
1579 		error = config_fini_component(cfdriver_ioconf_amr,
1580 		    cfattach_ioconf_amr, cfdata_ioconf_amr);
1581 		break;
1582 	default:
1583 		error = ENOTTY;
1584 		break;
1585 	}
1586 #endif
1587 
1588 	return error;
1589 }
1590