1 /* $NetBSD: amr.c,v 1.67 2021/08/07 16:19:14 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 60 */ 61 62 /* 63 * Driver for AMI RAID controllers. 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.67 2021/08/07 16:19:14 thorpej Exp $"); 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/device.h> 73 #include <sys/queue.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/kthread.h> 79 #include <sys/kauth.h> 80 #include <sys/mutex.h> 81 #include <sys/condvar.h> 82 #include <sys/module.h> 83 84 #include <machine/endian.h> 85 #include <sys/bus.h> 86 87 #include <dev/pci/pcidevs.h> 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/amrreg.h> 90 #include <dev/pci/amrvar.h> 91 #include <dev/pci/amrio.h> 92 93 #include "locators.h" 94 95 #include "ioconf.h" 96 97 static void amr_attach(device_t, device_t, void *); 98 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 99 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, 100 void *); 101 static int amr_init(struct amr_softc *, const char *, 102 struct pci_attach_args *pa); 103 static int amr_intr(void *); 104 static int amr_match(device_t, cfdata_t, void *); 105 static int amr_rescan(device_t, const char *, const int *); 106 static int amr_print(void *, const char *); 107 static void amr_shutdown(void *); 108 static void amr_teardown(struct amr_softc *); 109 static void amr_quartz_thread(void *); 110 static void amr_std_thread(void *); 111 112 static int amr_quartz_get_work(struct amr_softc *, 113 struct amr_mailbox_resp *); 114 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 115 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 116 static int amr_std_submit(struct amr_softc *, struct amr_ccb *); 117 118 static dev_type_open(amropen); 119 static dev_type_close(amrclose); 120 static dev_type_ioctl(amrioctl); 121 122 CFATTACH_DECL3_NEW(amr, sizeof(struct amr_softc), 123 amr_match, amr_attach, NULL, NULL, amr_rescan, NULL, 0); 124 125 const struct cdevsw amr_cdevsw = { 126 .d_open = amropen, 127 .d_close = amrclose, 128 .d_read = noread, 129 .d_write = nowrite, 130 .d_ioctl = amrioctl, 131 .d_stop = nostop, 132 .d_tty = notty, 133 .d_poll = nopoll, 134 .d_mmap = nommap, 135 .d_kqfilter = nokqfilter, 136 .d_discard = nodiscard, 137 .d_flag = D_OTHER 138 }; 139 140 extern struct cfdriver amr_cd; 141 142 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 143 #define AT_SIG 0x02 /* Check for signature */ 144 145 static struct amr_pci_type { 146 u_short apt_vendor; 147 u_short apt_product; 148 u_short apt_flags; 149 } const amr_pci_type[] = { 150 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 151 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 152 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 153 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 154 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 156 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 157 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 158 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ }, 159 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ }, 160 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ }, 161 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ }, 162 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ }, 163 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ }, 164 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ }, 165 }; 166 167 static struct amr_typestr { 168 const char *at_str; 169 int at_sig; 170 } const amr_typestr[] = { 171 { "Series 431", AMR_SIG_431 }, 172 { "Series 438", AMR_SIG_438 }, 173 { "Series 466", AMR_SIG_466 }, 174 { "Series 467", AMR_SIG_467 }, 175 { "Series 490", AMR_SIG_490 }, 176 { "Series 762", AMR_SIG_762 }, 177 { "HP NetRAID (T5)", AMR_SIG_T5 }, 178 { "HP NetRAID (T7)", AMR_SIG_T7 }, 179 }; 180 181 static struct { 182 const char *ds_descr; 183 int ds_happy; 184 } const amr_dstate[] = { 185 { "offline", 0 }, 186 { "degraded", 1 }, 187 { "optimal", 1 }, 188 { "online", 1 }, 189 { "failed", 0 }, 190 { "rebuilding", 1 }, 191 { "hotspare", 0 }, 192 }; 193 194 static void *amr_sdh; 195 196 static kcondvar_t thread_cv; 197 static kmutex_t thread_mutex; 198 199 static int amr_max_segs; 200 int amr_max_xfer; 201 202 static inline u_int8_t 203 amr_inb(struct amr_softc *amr, int off) 204 { 205 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 206 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 207 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 208 } 209 210 static inline u_int32_t 211 amr_inl(struct amr_softc *amr, int off) 212 { 213 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 214 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 215 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 216 } 217 218 static inline void 219 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 220 { 221 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 222 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 223 BUS_SPACE_BARRIER_WRITE); 224 } 225 226 static inline void 227 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 228 { 229 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 230 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 231 BUS_SPACE_BARRIER_WRITE); 232 } 233 234 /* 235 * Match a supported device. 236 */ 237 static int 238 amr_match(device_t parent, cfdata_t match, void *aux) 239 { 240 struct pci_attach_args *pa; 241 pcireg_t s; 242 int i; 243 244 pa = (struct pci_attach_args *)aux; 245 246 /* 247 * Don't match the device if it's operating in I2O mode. In this 248 * case it should be handled by the `iop' driver. 249 */ 250 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 251 return (0); 252 253 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 254 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 255 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 256 break; 257 258 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 259 return (0); 260 261 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 262 return (1); 263 264 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 265 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 266 } 267 268 /* 269 * Attach a supported device. 270 */ 271 static void 272 amr_attach(device_t parent, device_t self, void *aux) 273 { 274 struct pci_attach_args *pa; 275 const struct amr_pci_type *apt; 276 struct amr_softc *amr; 277 pci_chipset_tag_t pc; 278 pci_intr_handle_t ih; 279 const char *intrstr; 280 pcireg_t reg; 281 int rseg, i, size, rv, memreg, ioreg; 282 struct amr_ccb *ac; 283 char intrbuf[PCI_INTRSTR_LEN]; 284 285 aprint_naive(": RAID controller\n"); 286 287 amr = device_private(self); 288 amr->amr_dv = self; 289 290 mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO); 291 292 pa = (struct pci_attach_args *)aux; 293 pc = pa->pa_pc; 294 295 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 296 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 297 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 298 break; 299 apt = amr_pci_type + i; 300 301 memreg = ioreg = 0; 302 for (i = 0x10; i <= 0x14; i += 4) { 303 reg = pci_conf_read(pc, pa->pa_tag, i); 304 switch (PCI_MAPREG_TYPE(reg)) { 305 case PCI_MAPREG_TYPE_MEM: 306 if (PCI_MAPREG_MEM_SIZE(reg) != 0) 307 memreg = i; 308 break; 309 case PCI_MAPREG_TYPE_IO: 310 if (PCI_MAPREG_IO_SIZE(reg) != 0) 311 ioreg = i; 312 break; 313 } 314 } 315 316 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 317 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 318 ; 319 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 320 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0) 321 ; 322 else { 323 aprint_error("can't map control registers\n"); 324 amr_teardown(amr); 325 return; 326 } 327 328 amr->amr_flags |= AMRF_PCI_REGS; 329 amr->amr_dmat = pa->pa_dmat; 330 amr->amr_pc = pa->pa_pc; 331 332 /* Enable the device. */ 333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 334 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 335 reg | PCI_COMMAND_MASTER_ENABLE); 336 337 /* Map and establish the interrupt. */ 338 if (pci_intr_map(pa, &ih)) { 339 aprint_error("can't map interrupt\n"); 340 amr_teardown(amr); 341 return; 342 } 343 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 344 amr->amr_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, amr_intr, amr, 345 device_xname(self)); 346 if (amr->amr_ih == NULL) { 347 aprint_error("can't establish interrupt"); 348 if (intrstr != NULL) 349 aprint_error(" at %s", intrstr); 350 aprint_error("\n"); 351 amr_teardown(amr); 352 return; 353 } 354 amr->amr_flags |= AMRF_PCI_INTR; 355 356 /* 357 * Allocate space for the mailbox and S/G lists. Some controllers 358 * don't like S/G lists to be located below 0x2000, so we allocate 359 * enough slop to enable us to compensate. 360 * 361 * The standard mailbox structure needs to be aligned on a 16-byte 362 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 363 * size, which precedes the standard mailbox. 364 */ 365 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 366 amr->amr_dmasize = size; 367 368 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0, 369 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 370 aprint_error_dev(amr->amr_dv, 371 "unable to allocate buffer, rv = %d\n", rv); 372 amr_teardown(amr); 373 return; 374 } 375 amr->amr_flags |= AMRF_DMA_ALLOC; 376 377 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 378 (void **)&amr->amr_mbox, 379 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 380 aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n", 381 rv); 382 amr_teardown(amr); 383 return; 384 } 385 amr->amr_flags |= AMRF_DMA_MAP; 386 387 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 388 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 389 aprint_error_dev(amr->amr_dv, 390 "unable to create buffer DMA map, rv = %d\n", rv); 391 amr_teardown(amr); 392 return; 393 } 394 amr->amr_flags |= AMRF_DMA_CREATE; 395 396 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 397 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 398 aprint_error_dev(amr->amr_dv, 399 "unable to load buffer DMA map, rv = %d\n", rv); 400 amr_teardown(amr); 401 return; 402 } 403 amr->amr_flags |= AMRF_DMA_LOAD; 404 405 memset(amr->amr_mbox, 0, size); 406 407 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 408 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 409 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox + 410 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 411 412 /* 413 * Allocate and initalise the command control blocks. 414 */ 415 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_WAITOK | M_ZERO); 416 amr->amr_ccbs = ac; 417 SLIST_INIT(&amr->amr_ccb_freelist); 418 TAILQ_INIT(&amr->amr_ccb_active); 419 amr->amr_flags |= AMRF_CCBS; 420 421 if (amr_max_xfer == 0) { 422 amr_max_xfer = uimin(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 423 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 424 } 425 426 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 427 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 428 amr_max_segs, amr_max_xfer, 0, 429 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 430 if (rv != 0) 431 break; 432 433 ac->ac_ident = i; 434 cv_init(&ac->ac_cv, "amr1ccb"); 435 mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE); 436 amr_ccb_free(amr, ac); 437 } 438 if (i != AMR_MAX_CMDS) { 439 aprint_error_dev(amr->amr_dv, "memory exhausted\n"); 440 amr_teardown(amr); 441 return; 442 } 443 444 /* 445 * Take care of model-specific tasks. 446 */ 447 if ((apt->apt_flags & AT_QUARTZ) != 0) { 448 amr->amr_submit = amr_quartz_submit; 449 amr->amr_get_work = amr_quartz_get_work; 450 } else { 451 amr->amr_submit = amr_std_submit; 452 amr->amr_get_work = amr_std_get_work; 453 454 /* Notify the controller of the mailbox location. */ 455 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 456 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 457 458 /* Clear outstanding interrupts and enable interrupts. */ 459 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 460 amr_outb(amr, AMR_SREG_TOGL, 461 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 462 } 463 464 /* 465 * Retrieve parameters, and tell the world about us. 466 */ 467 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_WAITOK); 468 amr->amr_flags |= AMRF_ENQBUF; 469 amr->amr_maxqueuecnt = i; 470 aprint_normal(": AMI RAID "); 471 if (amr_init(amr, intrstr, pa) != 0) { 472 amr_teardown(amr); 473 return; 474 } 475 476 /* 477 * Cap the maximum number of outstanding commands. AMI's Linux 478 * driver doesn't trust the controller's reported value, and lockups 479 * have been seen when we do. 480 */ 481 amr->amr_maxqueuecnt = uimin(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 482 if (amr->amr_maxqueuecnt > i) 483 amr->amr_maxqueuecnt = i; 484 485 /* Set our `shutdownhook' before we start any device activity. */ 486 if (amr_sdh == NULL) 487 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 488 489 /* Attach sub-devices. */ 490 amr_rescan(self, NULL, NULL); 491 492 SIMPLEQ_INIT(&amr->amr_ccb_queue); 493 494 cv_init(&thread_cv, "amrwdog"); 495 mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE); 496 497 if ((apt->apt_flags & AT_QUARTZ) == 0) { 498 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 499 amr_std_thread, amr, &amr->amr_thread, 500 "%s", device_xname(amr->amr_dv)); 501 } else { 502 rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 503 amr_quartz_thread, amr, &amr->amr_thread, 504 "%s", device_xname(amr->amr_dv)); 505 } 506 if (rv != 0) 507 aprint_error_dev(amr->amr_dv, "unable to create thread (%d)", 508 rv); 509 else 510 amr->amr_flags |= AMRF_THREAD; 511 } 512 513 static int 514 amr_rescan(device_t self, const char *ifattr, const int *ulocs) 515 { 516 int j; 517 int locs[AMRCF_NLOCS]; 518 struct amr_attach_args amra; 519 struct amr_softc *amr; 520 521 amr = device_private(self); 522 for (j = 0; j < amr->amr_numdrives; j++) { 523 if (amr->amr_drive[j].al_dv) 524 continue; 525 if (amr->amr_drive[j].al_size == 0) 526 continue; 527 amra.amra_unit = j; 528 529 locs[AMRCF_UNIT] = j; 530 531 amr->amr_drive[j].al_dv = 532 config_found(amr->amr_dv, &amra, amr_print, 533 CFARGS(.submatch = config_stdsubmatch, 534 .iattr = ifattr, 535 .locators = locs)); 536 } 537 return 0; 538 } 539 540 /* 541 * Free up resources. 542 */ 543 static void 544 amr_teardown(struct amr_softc *amr) 545 { 546 struct amr_ccb *ac; 547 int fl; 548 549 fl = amr->amr_flags; 550 551 if ((fl & AMRF_THREAD) != 0) { 552 amr->amr_flags |= AMRF_THREAD_EXIT; 553 mutex_enter(&thread_mutex); 554 cv_broadcast(&thread_cv); 555 mutex_exit(&thread_mutex); 556 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 557 mutex_enter(&thread_mutex); 558 cv_wait(&thread_cv, &thread_mutex); 559 mutex_exit(&thread_mutex); 560 } 561 } 562 if ((fl & AMRF_CCBS) != 0) { 563 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 564 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 565 } 566 free(amr->amr_ccbs, M_DEVBUF); 567 } 568 if ((fl & AMRF_ENQBUF) != 0) 569 free(amr->amr_enqbuf, M_DEVBUF); 570 if ((fl & AMRF_DMA_LOAD) != 0) 571 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 572 if ((fl & AMRF_DMA_MAP) != 0) 573 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox, 574 amr->amr_dmasize); 575 if ((fl & AMRF_DMA_ALLOC) != 0) 576 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 577 if ((fl & AMRF_DMA_CREATE) != 0) 578 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 579 if ((fl & AMRF_PCI_INTR) != 0) 580 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 581 if ((fl & AMRF_PCI_REGS) != 0) 582 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 583 } 584 585 /* 586 * Print autoconfiguration message for a sub-device. 587 */ 588 static int 589 amr_print(void *aux, const char *pnp) 590 { 591 struct amr_attach_args *amra; 592 593 amra = (struct amr_attach_args *)aux; 594 595 if (pnp != NULL) 596 aprint_normal("block device at %s", pnp); 597 aprint_normal(" unit %d", amra->amra_unit); 598 return (UNCONF); 599 } 600 601 /* 602 * Retrieve operational parameters and describe the controller. 603 */ 604 static int 605 amr_init(struct amr_softc *amr, const char *intrstr, 606 struct pci_attach_args *pa) 607 { 608 struct amr_adapter_info *aa; 609 struct amr_prodinfo *ap; 610 struct amr_enquiry *ae; 611 struct amr_enquiry3 *aex; 612 const char *prodstr; 613 u_int i, sig, ishp; 614 char sbuf[64]; 615 616 /* 617 * Try to get 40LD product info, which tells us what the card is 618 * labelled as. 619 */ 620 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 621 amr->amr_enqbuf); 622 if (ap != NULL) { 623 aprint_normal("<%.80s>\n", ap->ap_product); 624 if (intrstr != NULL) 625 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n", 626 intrstr); 627 aprint_normal_dev(amr->amr_dv, 628 "firmware %.16s, BIOS %.16s, %dMB RAM\n", 629 ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize)); 630 631 amr->amr_maxqueuecnt = ap->ap_maxio; 632 633 /* 634 * Fetch and record state of logical drives. 635 */ 636 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 637 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 638 if (aex == NULL) { 639 aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n"); 640 return (-1); 641 } 642 643 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) { 644 aprint_error_dev(amr->amr_dv, "Inquiry returned more " 645 "drives (%d) than the array can handle (%zu)\n", 646 aex->ae_numldrives, 647 __arraycount(aex->ae_drivestate)); 648 aex->ae_numldrives = __arraycount(aex->ae_drivestate); 649 } 650 if (aex->ae_numldrives > AMR_MAX_UNITS) { 651 aprint_error_dev(amr->amr_dv, 652 "adjust AMR_MAX_UNITS to %d (currently %d)\n", 653 AMR_MAX_UNITS, amr->amr_numdrives); 654 amr->amr_numdrives = AMR_MAX_UNITS; 655 } else 656 amr->amr_numdrives = aex->ae_numldrives; 657 658 for (i = 0; i < amr->amr_numdrives; i++) { 659 amr->amr_drive[i].al_size = 660 le32toh(aex->ae_drivesize[i]); 661 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 662 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 663 } 664 665 return (0); 666 } 667 668 /* 669 * Try 8LD extended ENQUIRY to get the controller signature. Once 670 * found, search for a product description. 671 */ 672 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 673 if (ae != NULL) { 674 i = 0; 675 sig = le32toh(ae->ae_signature); 676 677 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 678 if (amr_typestr[i].at_sig == sig) 679 break; 680 i++; 681 } 682 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 683 snprintf(sbuf, sizeof(sbuf), 684 "unknown ENQUIRY2 sig (0x%08x)", sig); 685 prodstr = sbuf; 686 } else 687 prodstr = amr_typestr[i].at_str; 688 } else { 689 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 690 if (ae == NULL) { 691 aprint_error_dev(amr->amr_dv, 692 "unsupported controller\n"); 693 return (-1); 694 } 695 696 switch (PCI_PRODUCT(pa->pa_id)) { 697 case PCI_PRODUCT_AMI_MEGARAID: 698 prodstr = "Series 428"; 699 break; 700 case PCI_PRODUCT_AMI_MEGARAID2: 701 prodstr = "Series 434"; 702 break; 703 default: 704 snprintf(sbuf, sizeof(sbuf), 705 "unknown PCI dev (0x%04x)", 706 PCI_PRODUCT(pa->pa_id)); 707 prodstr = sbuf; 708 break; 709 } 710 } 711 712 /* 713 * HP NetRaid controllers have a special encoding of the firmware 714 * and BIOS versions. The AMI version seems to have it as strings 715 * whereas the HP version does it with a leading uppercase character 716 * and two binary numbers. 717 */ 718 aa = &ae->ae_adapter; 719 720 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 721 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 722 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 723 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 724 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 725 /* The AMI 438 is a NetRaid 3si in HP-land. */ 726 prodstr = "HP NetRaid 3si"; 727 } 728 ishp = 1; 729 } else 730 ishp = 0; 731 732 aprint_normal("<%s>\n", prodstr); 733 if (intrstr != NULL) 734 aprint_normal_dev(amr->amr_dv, "interrupting at %s\n", 735 intrstr); 736 737 if (ishp) 738 aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, " 739 "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2], 740 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 741 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 742 else 743 aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, " 744 "%dMB RAM\n", aa->aa_firmware, aa->aa_bios, 745 aa->aa_memorysize); 746 747 amr->amr_maxqueuecnt = aa->aa_maxio; 748 749 /* 750 * Record state of logical drives. 751 */ 752 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) { 753 aprint_error_dev(amr->amr_dv, "Inquiry returned more drives " 754 "(%d) than the array can handle (%zu)\n", 755 ae->ae_ldrv.al_numdrives, 756 __arraycount(ae->ae_ldrv.al_size)); 757 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size); 758 } 759 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 760 aprint_error_dev(amr->amr_dv, 761 "adjust AMR_MAX_UNITS to %d (currently %d)\n", 762 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS); 763 amr->amr_numdrives = AMR_MAX_UNITS; 764 } else 765 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 766 767 for (i = 0; i < amr->amr_numdrives; i++) { 768 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 769 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 770 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 771 } 772 773 return (0); 774 } 775 776 /* 777 * Flush the internal cache on each configured controller. Called at 778 * shutdown time. 779 */ 780 static void 781 amr_shutdown(void *cookie) 782 { 783 extern struct cfdriver amr_cd; 784 struct amr_softc *amr; 785 struct amr_ccb *ac; 786 int i, rv; 787 788 for (i = 0; i < amr_cd.cd_ndevs; i++) { 789 if ((amr = device_lookup_private(&amr_cd, i)) == NULL) 790 continue; 791 792 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 793 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 794 rv = amr_ccb_poll(amr, ac, 30000); 795 amr_ccb_free(amr, ac); 796 } 797 if (rv != 0) 798 aprint_error_dev(amr->amr_dv, 799 "unable to flush cache (%d)\n", rv); 800 } 801 } 802 803 /* 804 * Interrupt service routine. 805 */ 806 static int 807 amr_intr(void *cookie) 808 { 809 struct amr_softc *amr; 810 struct amr_ccb *ac; 811 struct amr_mailbox_resp mbox; 812 u_int i, forus, idx; 813 814 amr = cookie; 815 forus = 0; 816 817 mutex_spin_enter(&amr->amr_mutex); 818 819 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 820 /* Iterate over completed commands in this result. */ 821 for (i = 0; i < mbox.mb_nstatus; i++) { 822 idx = mbox.mb_completed[i] - 1; 823 ac = amr->amr_ccbs + idx; 824 825 if (idx >= amr->amr_maxqueuecnt) { 826 printf("%s: bad status (bogus ID: %u=%u)\n", 827 device_xname(amr->amr_dv), i, idx); 828 continue; 829 } 830 831 if ((ac->ac_flags & AC_ACTIVE) == 0) { 832 printf("%s: bad status (not active; 0x04%x)\n", 833 device_xname(amr->amr_dv), ac->ac_flags); 834 continue; 835 } 836 837 ac->ac_status = mbox.mb_status; 838 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 839 AC_COMPLETE; 840 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 841 842 if ((ac->ac_flags & AC_MOAN) != 0) 843 printf("%s: ccb %d completed\n", 844 device_xname(amr->amr_dv), ac->ac_ident); 845 846 /* Pass notification to upper layers. */ 847 mutex_spin_exit(&amr->amr_mutex); 848 if (ac->ac_handler != NULL) { 849 (*ac->ac_handler)(ac); 850 } else { 851 mutex_enter(&ac->ac_mutex); 852 cv_signal(&ac->ac_cv); 853 mutex_exit(&ac->ac_mutex); 854 } 855 mutex_spin_enter(&amr->amr_mutex); 856 } 857 forus = 1; 858 } 859 860 mutex_spin_exit(&amr->amr_mutex); 861 862 if (forus) 863 amr_ccb_enqueue(amr, NULL); 864 865 return (forus); 866 } 867 868 /* 869 * Watchdog thread. 870 */ 871 static void 872 amr_quartz_thread(void *cookie) 873 { 874 struct amr_softc *amr; 875 struct amr_ccb *ac; 876 877 amr = cookie; 878 879 for (;;) { 880 mutex_enter(&thread_mutex); 881 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS); 882 mutex_exit(&thread_mutex); 883 884 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 885 amr->amr_flags ^= AMRF_THREAD_EXIT; 886 mutex_enter(&thread_mutex); 887 cv_signal(&thread_cv); 888 mutex_exit(&thread_mutex); 889 kthread_exit(0); 890 } 891 892 if (amr_intr(amr) == 0) 893 amr_ccb_enqueue(amr, NULL); 894 895 mutex_spin_enter(&amr->amr_mutex); 896 ac = TAILQ_FIRST(&amr->amr_ccb_active); 897 while (ac != NULL) { 898 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime) 899 break; 900 if ((ac->ac_flags & AC_MOAN) == 0) { 901 printf("%s: ccb %d timed out; mailbox:\n", 902 device_xname(amr->amr_dv), ac->ac_ident); 903 amr_ccb_dump(amr, ac); 904 ac->ac_flags |= AC_MOAN; 905 } 906 ac = TAILQ_NEXT(ac, ac_chain.tailq); 907 } 908 mutex_spin_exit(&amr->amr_mutex); 909 } 910 } 911 912 static void 913 amr_std_thread(void *cookie) 914 { 915 struct amr_softc *amr; 916 struct amr_ccb *ac; 917 struct amr_logdrive *al; 918 struct amr_enquiry *ae; 919 int rv, i; 920 921 amr = cookie; 922 ae = amr->amr_enqbuf; 923 924 for (;;) { 925 mutex_enter(&thread_mutex); 926 cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS); 927 mutex_exit(&thread_mutex); 928 929 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 930 amr->amr_flags ^= AMRF_THREAD_EXIT; 931 mutex_enter(&thread_mutex); 932 cv_signal(&thread_cv); 933 mutex_exit(&thread_mutex); 934 kthread_exit(0); 935 } 936 937 if (amr_intr(amr) == 0) 938 amr_ccb_enqueue(amr, NULL); 939 940 mutex_spin_enter(&amr->amr_mutex); 941 ac = TAILQ_FIRST(&amr->amr_ccb_active); 942 while (ac != NULL) { 943 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime) 944 break; 945 if ((ac->ac_flags & AC_MOAN) == 0) { 946 printf("%s: ccb %d timed out; mailbox:\n", 947 device_xname(amr->amr_dv), ac->ac_ident); 948 amr_ccb_dump(amr, ac); 949 ac->ac_flags |= AC_MOAN; 950 } 951 ac = TAILQ_NEXT(ac, ac_chain.tailq); 952 } 953 mutex_spin_exit(&amr->amr_mutex); 954 955 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 956 printf("%s: ccb_alloc failed (%d)\n", 957 device_xname(amr->amr_dv), rv); 958 continue; 959 } 960 961 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 962 963 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 964 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 965 if (rv != 0) { 966 aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n", 967 rv); 968 amr_ccb_free(amr, ac); 969 continue; 970 } 971 972 rv = amr_ccb_wait(amr, ac); 973 amr_ccb_unmap(amr, ac); 974 if (rv != 0) { 975 aprint_error_dev(amr->amr_dv, 976 "enquiry failed (st=%d)\n", ac->ac_status); 977 continue; 978 } 979 amr_ccb_free(amr, ac); 980 981 al = amr->amr_drive; 982 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) { 983 if (al->al_dv == NULL) 984 continue; 985 if (al->al_state == ae->ae_ldrv.al_state[i]) 986 continue; 987 988 printf("%s: state changed: %s -> %s\n", 989 device_xname(al->al_dv), 990 amr_drive_state(al->al_state, NULL), 991 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 992 993 al->al_state = ae->ae_ldrv.al_state[i]; 994 } 995 } 996 } 997 998 /* 999 * Return a text description of a logical drive's current state. 1000 */ 1001 const char * 1002 amr_drive_state(int state, int *happy) 1003 { 1004 const char *str; 1005 1006 state = AMR_DRV_CURSTATE(state); 1007 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 1008 if (happy) 1009 *happy = 1; 1010 str = "status unknown"; 1011 } else { 1012 if (happy) 1013 *happy = amr_dstate[state].ds_happy; 1014 str = amr_dstate[state].ds_descr; 1015 } 1016 1017 return (str); 1018 } 1019 1020 /* 1021 * Run a generic enquiry-style command. 1022 */ 1023 static void * 1024 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 1025 u_int8_t cmdqual, void *sbuf) 1026 { 1027 struct amr_ccb *ac; 1028 u_int8_t *mb; 1029 int rv; 1030 1031 if (amr_ccb_alloc(amr, &ac) != 0) 1032 return (NULL); 1033 1034 /* Build the command proper. */ 1035 mb = (u_int8_t *)&ac->ac_cmd; 1036 mb[0] = cmd; 1037 mb[2] = cmdsub; 1038 mb[3] = cmdqual; 1039 1040 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN); 1041 if (rv == 0) { 1042 rv = amr_ccb_poll(amr, ac, 2000); 1043 amr_ccb_unmap(amr, ac); 1044 } 1045 amr_ccb_free(amr, ac); 1046 1047 return (rv ? NULL : sbuf); 1048 } 1049 1050 /* 1051 * Allocate and initialise a CCB. 1052 */ 1053 int 1054 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 1055 { 1056 mutex_spin_enter(&amr->amr_mutex); 1057 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 1058 mutex_spin_exit(&amr->amr_mutex); 1059 return (EAGAIN); 1060 } 1061 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 1062 mutex_spin_exit(&amr->amr_mutex); 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * Free a CCB. 1069 */ 1070 void 1071 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 1072 { 1073 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 1074 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 1075 ac->ac_cmd.mb_busy = 1; 1076 ac->ac_handler = NULL; 1077 ac->ac_flags = 0; 1078 1079 mutex_spin_enter(&amr->amr_mutex); 1080 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 1081 mutex_spin_exit(&amr->amr_mutex); 1082 } 1083 1084 /* 1085 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1086 * the order that they were enqueued and try to submit their command blocks 1087 * to the controller for execution. 1088 */ 1089 void 1090 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 1091 { 1092 if (ac != NULL) { 1093 mutex_spin_enter(&amr->amr_mutex); 1094 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1095 mutex_spin_exit(&amr->amr_mutex); 1096 } 1097 1098 while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) { 1099 mutex_spin_enter(&amr->amr_mutex); 1100 if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1101 if ((*amr->amr_submit)(amr, ac) != 0) { 1102 mutex_spin_exit(&amr->amr_mutex); 1103 break; 1104 } 1105 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, 1106 ac_chain.simpleq); 1107 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, 1108 ac_chain.tailq); 1109 } 1110 mutex_spin_exit(&amr->amr_mutex); 1111 } 1112 } 1113 1114 /* 1115 * Map the specified CCB's data buffer onto the bus, and fill the 1116 * scatter-gather list. 1117 */ 1118 int 1119 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1120 int tflag) 1121 { 1122 struct amr_sgentry *sge; 1123 struct amr_mailbox_cmd *mb; 1124 int nsegs, i, rv, sgloff; 1125 bus_dmamap_t xfer; 1126 int dmaflag = 0; 1127 1128 xfer = ac->ac_xfer_map; 1129 1130 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1131 BUS_DMA_NOWAIT); 1132 if (rv != 0) 1133 return (rv); 1134 1135 mb = &ac->ac_cmd; 1136 ac->ac_xfer_size = size; 1137 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN)); 1138 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1139 1140 if (tflag & AC_XFER_OUT) 1141 dmaflag |= BUS_DMASYNC_PREWRITE; 1142 if (tflag & AC_XFER_IN) 1143 dmaflag |= BUS_DMASYNC_PREREAD; 1144 1145 /* We don't need to use a scatter/gather list for just 1 segment. */ 1146 nsegs = xfer->dm_nsegs; 1147 if (nsegs == 1) { 1148 mb->mb_nsgelem = 0; 1149 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1150 ac->ac_flags |= AC_NOSGL; 1151 } else { 1152 mb->mb_nsgelem = nsegs; 1153 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1154 1155 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff); 1156 for (i = 0; i < nsegs; i++, sge++) { 1157 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1158 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1159 } 1160 } 1161 1162 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag); 1163 1164 if ((ac->ac_flags & AC_NOSGL) == 0) 1165 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1166 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1167 1168 return (0); 1169 } 1170 1171 /* 1172 * Unmap the specified CCB's data buffer. 1173 */ 1174 void 1175 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1176 { 1177 int dmaflag = 0; 1178 1179 if (ac->ac_flags & AC_XFER_IN) 1180 dmaflag |= BUS_DMASYNC_POSTREAD; 1181 if (ac->ac_flags & AC_XFER_OUT) 1182 dmaflag |= BUS_DMASYNC_POSTWRITE; 1183 1184 if ((ac->ac_flags & AC_NOSGL) == 0) 1185 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1186 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1187 BUS_DMASYNC_POSTWRITE); 1188 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1189 dmaflag); 1190 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1191 } 1192 1193 /* 1194 * Submit a command to the controller and poll on completion. Return 1195 * non-zero on timeout or error. 1196 */ 1197 int 1198 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1199 { 1200 int rv, i; 1201 1202 mutex_spin_enter(&amr->amr_mutex); 1203 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) { 1204 mutex_spin_exit(&amr->amr_mutex); 1205 return (rv); 1206 } 1207 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1208 mutex_spin_exit(&amr->amr_mutex); 1209 1210 for (i = timo * 10; i > 0; i--) { 1211 amr_intr(amr); 1212 if ((ac->ac_flags & AC_COMPLETE) != 0) 1213 break; 1214 DELAY(100); 1215 } 1216 1217 if (i == 0) 1218 printf("%s: polled operation timed out after %d ms\n", 1219 device_xname(amr->amr_dv), timo); 1220 1221 return ((i == 0 || ac->ac_status != 0) ? EIO : 0); 1222 } 1223 1224 /* 1225 * Submit a command to the controller and sleep on completion. Return 1226 * non-zero on error. 1227 */ 1228 int 1229 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1230 { 1231 amr_ccb_enqueue(amr, ac); 1232 mutex_enter(&ac->ac_mutex); 1233 cv_wait(&ac->ac_cv, &ac->ac_mutex); 1234 mutex_exit(&ac->ac_mutex); 1235 1236 return (ac->ac_status != 0 ? EIO : 0); 1237 } 1238 1239 #if 0 1240 /* 1241 * Wait for the mailbox to become available. 1242 */ 1243 static int 1244 amr_mbox_wait(struct amr_softc *amr) 1245 { 1246 int timo; 1247 1248 for (timo = 10000; timo != 0; timo--) { 1249 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1250 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1251 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1252 break; 1253 DELAY(100); 1254 } 1255 1256 if (timo == 0) 1257 printf("%s: controller wedged\n", device_xname(amr->amr_dv)); 1258 1259 return (timo != 0 ? 0 : EAGAIN); 1260 } 1261 #endif 1262 1263 /* 1264 * Tell the controller that the mailbox contains a valid command. Must be 1265 * called with interrupts blocked. 1266 */ 1267 static int 1268 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1269 { 1270 int i = 0; 1271 u_int32_t v; 1272 1273 amr->amr_mbox->mb_poll = 0; 1274 amr->amr_mbox->mb_ack = 0; 1275 1276 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1277 sizeof(struct amr_mailbox), 1278 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1279 1280 v = amr_inl(amr, AMR_QREG_ODB); 1281 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1282 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1283 while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) { 1284 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1285 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1286 /* This is a no-op read that flushes pending mailbox updates */ 1287 v = amr_inl(amr, AMR_QREG_ODB); 1288 DELAY(1); 1289 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1290 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1291 } 1292 1293 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1294 return (EAGAIN); 1295 1296 v = amr_inl(amr, AMR_QREG_IDB); 1297 if ((v & AMR_QIDB_SUBMIT) != 0) { 1298 amr->amr_mbox->mb_cmd.mb_busy = 0; 1299 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1300 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1301 printf("%s: submit failed\n", device_xname(amr->amr_dv)); 1302 return (EAGAIN); 1303 } 1304 1305 amr->amr_mbox->mb_segment = 0; 1306 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1307 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1308 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1309 1310 ac->ac_start_time = time_uptime; 1311 ac->ac_flags |= AC_ACTIVE; 1312 1313 amr_outl(amr, AMR_QREG_IDB, 1314 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT); 1315 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1316 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE); 1317 1318 return (0); 1319 } 1320 1321 static int 1322 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1323 { 1324 1325 amr->amr_mbox->mb_poll = 0; 1326 amr->amr_mbox->mb_ack = 0; 1327 1328 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1329 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1330 1331 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1332 return (EAGAIN); 1333 1334 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1335 amr->amr_mbox->mb_cmd.mb_busy = 0; 1336 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1337 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1338 return (EAGAIN); 1339 } 1340 1341 amr->amr_mbox->mb_segment = 0; 1342 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1343 1344 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1345 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1346 1347 ac->ac_start_time = time_uptime; 1348 ac->ac_flags |= AC_ACTIVE; 1349 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1350 1351 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1352 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE); 1353 1354 return (0); 1355 } 1356 1357 /* 1358 * Claim any work that the controller has completed; acknowledge completion, 1359 * save details of the completion in (mbsave). Must be called with 1360 * interrupts blocked. 1361 */ 1362 static int 1363 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1364 { 1365 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1366 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1367 1368 /* Work waiting for us? */ 1369 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1370 return (-1); 1371 1372 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1373 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1374 1375 /* Save the mailbox, which contains a list of completed commands. */ 1376 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1377 1378 /* Ack the interrupt and mailbox transfer. */ 1379 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1380 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1381 1382 /* 1383 * This waits for the controller to notice that we've taken the 1384 * command from it. It's very inefficient, and we shouldn't do it, 1385 * but if we remove this code, we stop completing commands under 1386 * load. 1387 * 1388 * Peter J says we shouldn't do this. The documentation says we 1389 * should. Who is right? 1390 */ 1391 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1392 DELAY(10); 1393 1394 return (0); 1395 } 1396 1397 static int 1398 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1399 { 1400 u_int8_t istat; 1401 1402 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1403 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1404 1405 /* Check for valid interrupt status. */ 1406 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1407 return (-1); 1408 1409 /* Ack the interrupt. */ 1410 amr_outb(amr, AMR_SREG_INTR, istat); 1411 1412 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1413 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1414 1415 /* Save mailbox, which contains a list of completed commands. */ 1416 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1417 1418 /* Ack mailbox transfer. */ 1419 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1420 1421 return (0); 1422 } 1423 1424 static void 1425 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1426 { 1427 int i; 1428 1429 printf("%s: ", device_xname(amr->amr_dv)); 1430 for (i = 0; i < 4; i++) 1431 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1432 printf("\n"); 1433 } 1434 1435 static int 1436 amropen(dev_t dev, int flag, int mode, struct lwp *l) 1437 { 1438 struct amr_softc *amr; 1439 1440 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL) 1441 return (ENXIO); 1442 if ((amr->amr_flags & AMRF_OPEN) != 0) 1443 return (EBUSY); 1444 1445 amr->amr_flags |= AMRF_OPEN; 1446 return (0); 1447 } 1448 1449 static int 1450 amrclose(dev_t dev, int flag, int mode, struct lwp *l) 1451 { 1452 struct amr_softc *amr; 1453 1454 amr = device_lookup_private(&amr_cd, minor(dev)); 1455 amr->amr_flags &= ~AMRF_OPEN; 1456 return (0); 1457 } 1458 1459 /* used below to correct for a firmware bug */ 1460 static unsigned long 1461 amrioctl_buflen(unsigned long len) 1462 { 1463 if (len <= 4 * 1024) 1464 return (4 * 1024); 1465 if (len <= 8 * 1024) 1466 return (8 * 1024); 1467 if (len <= 32 * 1024) 1468 return (32 * 1024); 1469 if (len <= 64 * 1024) 1470 return (64 * 1024); 1471 return (len); 1472 } 1473 1474 static int 1475 amrioctl(dev_t dev, u_long cmd, void *data, int flag, 1476 struct lwp *l) 1477 { 1478 struct amr_softc *amr; 1479 struct amr_user_ioctl *au; 1480 struct amr_ccb *ac; 1481 struct amr_mailbox_ioctl *mbi; 1482 unsigned long au_length; 1483 uint8_t *au_cmd; 1484 int error; 1485 void *dp = NULL, *au_buffer; 1486 1487 amr = device_lookup_private(&amr_cd, minor(dev)); 1488 1489 /* This should be compatible with the FreeBSD interface */ 1490 1491 switch (cmd) { 1492 case AMR_IO_VERSION: 1493 *(int *)data = AMR_IO_VERSION_NUMBER; 1494 return 0; 1495 case AMR_IO_COMMAND: 1496 error = kauth_authorize_device_passthru(l->l_cred, dev, 1497 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1498 if (error) 1499 return (error); 1500 1501 au = (struct amr_user_ioctl *)data; 1502 au_cmd = au->au_cmd; 1503 au_buffer = au->au_buffer; 1504 au_length = au->au_length; 1505 break; 1506 default: 1507 return ENOTTY; 1508 } 1509 1510 if (au_cmd[0] == AMR_CMD_PASS) { 1511 /* not yet */ 1512 return EOPNOTSUPP; 1513 } 1514 1515 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06) 1516 return (EINVAL); 1517 1518 /* 1519 * allocate kernel memory for data, doing I/O directly to user 1520 * buffer isn't that easy. Correct allocation size for a bug 1521 * in at least some versions of the device firmware, by using 1522 * the amrioctl_buflen() function, defined above. 1523 */ 1524 dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO); 1525 if (dp == NULL) 1526 return ENOMEM; 1527 if ((error = copyin(au_buffer, dp, au_length)) != 0) 1528 goto out; 1529 1530 /* direct command to controller */ 1531 while (amr_ccb_alloc(amr, &ac) != 0) { 1532 mutex_enter(&thread_mutex); 1533 error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz); 1534 mutex_exit(&thread_mutex); 1535 if (error == EINTR) 1536 goto out; 1537 } 1538 1539 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd; 1540 mbi->mb_command = au_cmd[0]; 1541 mbi->mb_channel = au_cmd[1]; 1542 mbi->mb_param = au_cmd[2]; 1543 mbi->mb_pad[0] = au_cmd[3]; 1544 mbi->mb_drive = au_cmd[4]; 1545 error = amr_ccb_map(amr, ac, dp, (int)au_length, 1546 AC_XFER_IN | AC_XFER_OUT); 1547 if (error == 0) { 1548 error = amr_ccb_wait(amr, ac); 1549 amr_ccb_unmap(amr, ac); 1550 if (error == 0) 1551 error = copyout(dp, au_buffer, au_length); 1552 1553 } 1554 amr_ccb_free(amr, ac); 1555 out: 1556 free(dp, M_DEVBUF); 1557 return (error); 1558 } 1559 1560 MODULE(MODULE_CLASS_DRIVER, amr, "pci"); 1561 1562 #ifdef _MODULE 1563 #include "ioconf.c" 1564 #endif 1565 1566 static int 1567 amr_modcmd(modcmd_t cmd, void *opaque) 1568 { 1569 int error = 0; 1570 1571 #ifdef _MODULE 1572 switch (cmd) { 1573 case MODULE_CMD_INIT: 1574 error = config_init_component(cfdriver_ioconf_amr, 1575 cfattach_ioconf_amr, cfdata_ioconf_amr); 1576 break; 1577 case MODULE_CMD_FINI: 1578 error = config_fini_component(cfdriver_ioconf_amr, 1579 cfattach_ioconf_amr, cfdata_ioconf_amr); 1580 break; 1581 default: 1582 error = ENOTTY; 1583 break; 1584 } 1585 #endif 1586 1587 return error; 1588 } 1589