xref: /netbsd-src/sys/dev/pci/amr.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: amr.c,v 1.20 2004/04/22 00:17:12 itojun Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999,2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
66  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
67  */
68 
69 /*
70  * Driver for AMI RAID controllers.
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.20 2004/04/22 00:17:12 itojun Exp $");
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81 #include <sys/proc.h>
82 #include <sys/buf.h>
83 #include <sys/malloc.h>
84 #include <sys/kthread.h>
85 
86 #include <uvm/uvm_extern.h>
87 
88 #include <machine/endian.h>
89 #include <machine/bus.h>
90 
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/amrreg.h>
94 #include <dev/pci/amrvar.h>
95 
96 void	amr_attach(struct device *, struct device *, void *);
97 void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
98 void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *);
99 int	amr_init(struct amr_softc *, const char *,
100 			 struct pci_attach_args *pa);
101 int	amr_intr(void *);
102 int	amr_match(struct device *, struct cfdata *, void *);
103 int	amr_print(void *, const char *);
104 void	amr_shutdown(void *);
105 int	amr_submatch(struct device *, struct cfdata *, void *);
106 void	amr_teardown(struct amr_softc *);
107 void	amr_thread(void *);
108 void	amr_thread_create(void *);
109 
110 int	amr_mbox_wait(struct amr_softc *);
111 int	amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
113 int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
114 int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
115 
116 static inline u_int8_t	amr_inb(struct amr_softc *, int);
117 static inline u_int32_t	amr_inl(struct amr_softc *, int);
118 static inline void	amr_outb(struct amr_softc *, int, u_int8_t);
119 static inline void	amr_outl(struct amr_softc *, int, u_int32_t);
120 
121 CFATTACH_DECL(amr, sizeof(struct amr_softc),
122     amr_match, amr_attach, NULL, NULL);
123 
124 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
125 #define	AT_SIG		0x02	/* Check for signature */
126 
127 struct amr_pci_type {
128 	u_short	apt_vendor;
129 	u_short	apt_product;
130 	u_short	apt_flags;
131 } const amr_pci_type[] = {
132 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
133 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
134 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
135 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
136 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
137 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
138 };
139 
140 struct amr_typestr {
141 	const char	*at_str;
142 	int		at_sig;
143 } const amr_typestr[] = {
144 	{ "Series 431",			AMR_SIG_431 },
145 	{ "Series 438",			AMR_SIG_438 },
146 	{ "Series 466",			AMR_SIG_466 },
147 	{ "Series 467",			AMR_SIG_467 },
148 	{ "Series 490",			AMR_SIG_490 },
149 	{ "Series 762",			AMR_SIG_762 },
150 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
151 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
152 };
153 
154 struct {
155 	const char	*ds_descr;
156 	int	ds_happy;
157 } const amr_dstate[] = {
158 	{ "offline",	0 },
159 	{ "degraded",	1 },
160 	{ "optimal",	1 },
161 	{ "online",	1 },
162 	{ "failed",	0 },
163 	{ "rebuilding",	1 },
164 	{ "hotspare",	0 },
165 };
166 
167 void	*amr_sdh;
168 int	amr_max_segs;
169 int	amr_max_xfer;
170 
171 static inline u_int8_t
172 amr_inb(struct amr_softc *amr, int off)
173 {
174 
175 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
176 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
177 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
178 }
179 
180 static inline u_int32_t
181 amr_inl(struct amr_softc *amr, int off)
182 {
183 
184 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
185 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
186 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
187 }
188 
189 static inline void
190 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
191 {
192 
193 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
194 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
195 	    BUS_SPACE_BARRIER_WRITE);
196 }
197 
198 static inline void
199 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
200 {
201 
202 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
203 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
204 	    BUS_SPACE_BARRIER_WRITE);
205 }
206 
207 /*
208  * Match a supported device.
209  */
210 int
211 amr_match(struct device *parent, struct cfdata *match, void *aux)
212 {
213 	struct pci_attach_args *pa;
214 	pcireg_t s;
215 	int i;
216 
217 	pa = (struct pci_attach_args *)aux;
218 
219 	/*
220 	 * Don't match the device if it's operating in I2O mode.  In this
221 	 * case it should be handled by the `iop' driver.
222 	 */
223 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
224 		return (0);
225 
226 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
227 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
228 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
229 		    	break;
230 
231 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
232 		return (0);
233 
234 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
235 		return (1);
236 
237 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
238 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
239 }
240 
241 /*
242  * Attach a supported device.
243  */
244 void
245 amr_attach(struct device *parent, struct device *self, void *aux)
246 {
247 	struct pci_attach_args *pa;
248 	struct amr_attach_args amra;
249 	const struct amr_pci_type *apt;
250 	struct amr_softc *amr;
251 	pci_chipset_tag_t pc;
252 	pci_intr_handle_t ih;
253 	const char *intrstr;
254 	pcireg_t reg;
255 	int rseg, i, j, size, rv, memreg, ioreg;
256         struct amr_ccb *ac;
257 
258 	aprint_naive(": RAID controller\n");
259 
260 	amr = (struct amr_softc *)self;
261 	pa = (struct pci_attach_args *)aux;
262 	pc = pa->pa_pc;
263 
264 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
265 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
266 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
267 			break;
268 	apt = amr_pci_type + i;
269 
270 	memreg = ioreg = 0;
271 	for (i = 0x10; i <= 0x14; i += 4) {
272 		reg = pci_conf_read(pc, pa->pa_tag, i);
273 		switch (PCI_MAPREG_TYPE(reg)) {
274 		case PCI_MAPREG_TYPE_MEM:
275 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
276 				memreg = i;
277 			break;
278 		case PCI_MAPREG_TYPE_IO:
279 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
280 				ioreg = i;
281 			break;
282 
283 		}
284 	}
285 
286 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
287 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
288 		;
289 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
290 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
291 		;
292 	else {
293 		aprint_error("can't map control registers\n");
294 		amr_teardown(amr);
295 		return;
296 	}
297 
298 	amr->amr_flags |= AMRF_PCI_REGS;
299 	amr->amr_dmat = pa->pa_dmat;
300 	amr->amr_pc = pa->pa_pc;
301 
302 	/* Enable the device. */
303 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
304 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
305 	    reg | PCI_COMMAND_MASTER_ENABLE);
306 
307 	/* Map and establish the interrupt. */
308 	if (pci_intr_map(pa, &ih)) {
309 		aprint_error("can't map interrupt\n");
310 		amr_teardown(amr);
311 		return;
312 	}
313 	intrstr = pci_intr_string(pc, ih);
314 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
315 	if (amr->amr_ih == NULL) {
316 		aprint_error("can't establish interrupt");
317 		if (intrstr != NULL)
318 			aprint_normal(" at %s", intrstr);
319 		aprint_normal("\n");
320 		amr_teardown(amr);
321 		return;
322 	}
323 	amr->amr_flags |= AMRF_PCI_INTR;
324 
325 	/*
326 	 * Allocate space for the mailbox and S/G lists.  Some controllers
327 	 * don't like S/G lists to be located below 0x2000, so we allocate
328 	 * enough slop to enable us to compensate.
329 	 *
330 	 * The standard mailbox structure needs to be aligned on a 16-byte
331 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
332 	 * size, which preceeds the standard mailbox.
333 	 */
334 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
335 	amr->amr_dmasize = size;
336 
337 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
338 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
339 		aprint_error("%s: unable to allocate buffer, rv = %d\n",
340 		    amr->amr_dv.dv_xname, rv);
341 		amr_teardown(amr);
342 		return;
343 	}
344 	amr->amr_flags |= AMRF_DMA_ALLOC;
345 
346 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
347 	    (caddr_t *)&amr->amr_mbox,
348 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
349 		aprint_error("%s: unable to map buffer, rv = %d\n",
350 		    amr->amr_dv.dv_xname, rv);
351 		amr_teardown(amr);
352 		return;
353 	}
354 	amr->amr_flags |= AMRF_DMA_MAP;
355 
356 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
357 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
358 		aprint_error("%s: unable to create buffer DMA map, rv = %d\n",
359 		    amr->amr_dv.dv_xname, rv);
360 		amr_teardown(amr);
361 		return;
362 	}
363 	amr->amr_flags |= AMRF_DMA_CREATE;
364 
365 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
366 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
367 		aprint_error("%s: unable to load buffer DMA map, rv = %d\n",
368 		    amr->amr_dv.dv_xname, rv);
369 		amr_teardown(amr);
370 		return;
371 	}
372 	amr->amr_flags |= AMRF_DMA_LOAD;
373 
374 	memset(amr->amr_mbox, 0, size);
375 
376 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
377 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
378 	amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
379 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
380 
381 	/*
382 	 * Allocate and initalise the command control blocks.
383 	 */
384 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
385 	amr->amr_ccbs = ac;
386 	SLIST_INIT(&amr->amr_ccb_freelist);
387 	TAILQ_INIT(&amr->amr_ccb_active);
388 	amr->amr_flags |= AMRF_CCBS;
389 
390 	if (amr_max_xfer == 0) {
391 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
392 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
393 	}
394 
395 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
396 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
397 		    amr_max_segs, amr_max_xfer, 0,
398 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
399 		if (rv != 0)
400 			break;
401 
402 		ac->ac_ident = i;
403 		amr_ccb_free(amr, ac);
404 	}
405 	if (i != AMR_MAX_CMDS) {
406 		aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname);
407 		amr_teardown(amr);
408 		return;
409 	}
410 
411 	/*
412 	 * Take care of model-specific tasks.
413 	 */
414 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
415 		amr->amr_submit = amr_quartz_submit;
416 		amr->amr_get_work = amr_quartz_get_work;
417 	} else {
418 		amr->amr_submit = amr_std_submit;
419 		amr->amr_get_work = amr_std_get_work;
420 
421 		/* Notify the controller of the mailbox location. */
422 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
423 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
424 
425 		/* Clear outstanding interrupts and enable interrupts. */
426 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
427 		amr_outb(amr, AMR_SREG_TOGL,
428 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
429 	}
430 
431 	/*
432 	 * Retrieve parameters, and tell the world about us.
433 	 */
434 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
435 	amr->amr_flags |= AMRF_ENQBUF;
436 	amr->amr_maxqueuecnt = i;
437 	aprint_normal(": AMI RAID ");
438 	if (amr_init(amr, intrstr, pa) != 0) {
439 		amr_teardown(amr);
440 		return;
441 	}
442 
443 	/*
444 	 * Cap the maximum number of outstanding commands.  AMI's Linux
445 	 * driver doesn't trust the controller's reported value, and lockups
446 	 * have been seen when we do.
447 	 */
448 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
449 	if (amr->amr_maxqueuecnt > i)
450 		amr->amr_maxqueuecnt = i;
451 
452 	/* Set our `shutdownhook' before we start any device activity. */
453 	if (amr_sdh == NULL)
454 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
455 
456 	/* Attach sub-devices. */
457 	for (j = 0; j < amr->amr_numdrives; j++) {
458 		if (amr->amr_drive[j].al_size == 0)
459 			continue;
460 		amra.amra_unit = j;
461 		amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra,
462 		    amr_print, amr_submatch);
463 	}
464 
465 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
466 
467 	/* XXX This doesn't work for newer boards yet. */
468 	if ((apt->apt_flags & AT_QUARTZ) == 0)
469 		kthread_create(amr_thread_create, amr);
470 }
471 
472 /*
473  * Free up resources.
474  */
475 void
476 amr_teardown(struct amr_softc *amr)
477 {
478 	struct amr_ccb *ac;
479 	int fl;
480 
481 	fl = amr->amr_flags;
482 
483 	if ((fl & AMRF_THREAD) != 0) {
484 		amr->amr_flags |= AMRF_THREAD_EXIT;
485 		wakeup(amr_thread);
486 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
487 			tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
488 	}
489 	if ((fl & AMRF_CCBS) != 0) {
490 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
491 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
492 		}
493 		free(amr->amr_ccbs, M_DEVBUF);
494 	}
495 	if ((fl & AMRF_ENQBUF) != 0)
496 		free(amr->amr_enqbuf, M_DEVBUF);
497 	if ((fl & AMRF_DMA_LOAD) != 0)
498 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
499 	if ((fl & AMRF_DMA_MAP) != 0)
500 		bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox,
501 		    amr->amr_dmasize);
502 	if ((fl & AMRF_DMA_ALLOC) != 0)
503 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
504 	if ((fl & AMRF_DMA_CREATE) != 0)
505 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
506 	if ((fl & AMRF_PCI_INTR) != 0)
507 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
508 	if ((fl & AMRF_PCI_REGS) != 0)
509 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
510 }
511 
512 /*
513  * Print autoconfiguration message for a sub-device.
514  */
515 int
516 amr_print(void *aux, const char *pnp)
517 {
518 	struct amr_attach_args *amra;
519 
520 	amra = (struct amr_attach_args *)aux;
521 
522 	if (pnp != NULL)
523 		aprint_normal("block device at %s", pnp);
524 	aprint_normal(" unit %d", amra->amra_unit);
525 	return (UNCONF);
526 }
527 
528 /*
529  * Match a sub-device.
530  */
531 int
532 amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
533 {
534 	struct amr_attach_args *amra;
535 
536 	amra = (struct amr_attach_args *)aux;
537 
538 	if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
539 	    cf->amracf_unit != amra->amra_unit)
540 		return (0);
541 
542 	return (config_match(parent, cf, aux));
543 }
544 
545 /*
546  * Retrieve operational parameters and describe the controller.
547  */
548 int
549 amr_init(struct amr_softc *amr, const char *intrstr,
550 	 struct pci_attach_args *pa)
551 {
552 	struct amr_adapter_info *aa;
553 	struct amr_prodinfo *ap;
554 	struct amr_enquiry *ae;
555 	struct amr_enquiry3 *aex;
556 	const char *prodstr;
557 	u_int i, sig, ishp;
558 	char buf[64];
559 
560 	/*
561 	 * Try to get 40LD product info, which tells us what the card is
562 	 * labelled as.
563 	 */
564 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
565 	    amr->amr_enqbuf);
566 	if (ap != NULL) {
567 		aprint_normal("<%.80s>\n", ap->ap_product);
568 		if (intrstr != NULL)
569 			aprint_normal("%s: interrupting at %s\n",
570 			    amr->amr_dv.dv_xname, intrstr);
571 		aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
572 		    amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
573 		    le16toh(ap->ap_memsize));
574 
575 		amr->amr_maxqueuecnt = ap->ap_maxio;
576 
577 		/*
578 		 * Fetch and record state of logical drives.
579 		 */
580 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
581 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
582 		if (aex == NULL) {
583 			aprint_error("%s ENQUIRY3 failed\n",
584 			    amr->amr_dv.dv_xname);
585 			return (-1);
586 		}
587 
588 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
589 			aprint_error(
590 			    "%s: adjust AMR_MAX_UNITS to %d (currently %d)"
591 			    "\n", amr->amr_dv.dv_xname, AMR_MAX_UNITS,
592 			    amr->amr_numdrives);
593 			amr->amr_numdrives = AMR_MAX_UNITS;
594 		} else
595 			amr->amr_numdrives = aex->ae_numldrives;
596 
597 		for (i = 0; i < amr->amr_numdrives; i++) {
598 			amr->amr_drive[i].al_size =
599 			    le32toh(aex->ae_drivesize[i]);
600 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
601 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
602 		}
603 
604 		return (0);
605 	}
606 
607 	/*
608 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
609 	 * found, search for a product description.
610 	 */
611 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
612 	if (ae != NULL) {
613 		i = 0;
614 		sig = le32toh(ae->ae_signature);
615 
616 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
617 			if (amr_typestr[i].at_sig == sig)
618 				break;
619 			i++;
620 		}
621 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
622 			snprintf(buf, sizeof(buf),
623 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
624 			prodstr = buf;
625 		} else
626 			prodstr = amr_typestr[i].at_str;
627 	} else {
628 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
629 		if (ae == NULL) {
630 			aprint_error("%s: unsupported controller\n",
631 			    amr->amr_dv.dv_xname);
632 			return (-1);
633 		}
634 
635 		switch (PCI_PRODUCT(pa->pa_id)) {
636 		case PCI_PRODUCT_AMI_MEGARAID:
637 			prodstr = "Series 428";
638 			break;
639 		case PCI_PRODUCT_AMI_MEGARAID2:
640 			prodstr = "Series 434";
641 			break;
642 		default:
643 			snprintf(buf, sizeof(buf), "unknown PCI dev (0x%04x)",
644 			    PCI_PRODUCT(pa->pa_id));
645 			prodstr = buf;
646 			break;
647 		}
648 	}
649 
650 	/*
651 	 * HP NetRaid controllers have a special encoding of the firmware
652 	 * and BIOS versions.  The AMI version seems to have it as strings
653 	 * whereas the HP version does it with a leading uppercase character
654 	 * and two binary numbers.
655 	*/
656 	aa = &ae->ae_adapter;
657 
658 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
659 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
660 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
661 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
662 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
663 			/* The AMI 438 is a NetRaid 3si in HP-land. */
664 			prodstr = "HP NetRaid 3si";
665 		}
666 		ishp = 1;
667 	} else
668 		ishp = 0;
669 
670 	aprint_normal("<%s>\n", prodstr);
671 	if (intrstr != NULL)
672 		aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
673 		    intrstr);
674 
675 	if (ishp)
676 		aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
677 		    ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2],
678 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
679 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
680 	else
681 		aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
682 		    amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios,
683 		    aa->aa_memorysize);
684 
685 	amr->amr_maxqueuecnt = aa->aa_maxio;
686 
687 	/*
688 	 * Record state of logical drives.
689 	 */
690 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
691 		aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
692 		    amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
693 		    AMR_MAX_UNITS);
694 		amr->amr_numdrives = AMR_MAX_UNITS;
695 	} else
696 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
697 
698 	for (i = 0; i < AMR_MAX_UNITS; i++) {
699 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
700 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
701 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
702 	}
703 
704 	return (0);
705 }
706 
707 /*
708  * Flush the internal cache on each configured controller.  Called at
709  * shutdown time.
710  */
711 void
712 amr_shutdown(void *cookie)
713 {
714         extern struct cfdriver amr_cd;
715 	struct amr_softc *amr;
716 	struct amr_ccb *ac;
717 	int i, rv, s;
718 
719 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
720 		if ((amr = device_lookup(&amr_cd, i)) == NULL)
721 			continue;
722 
723 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
724 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
725 			s = splbio();
726 			rv = amr_ccb_poll(amr, ac, 30000);
727 			splx(s);
728 			amr_ccb_free(amr, ac);
729 		}
730 		if (rv != 0)
731 			printf("%s: unable to flush cache (%d)\n",
732 			    amr->amr_dv.dv_xname, rv);
733 	}
734 }
735 
736 /*
737  * Interrupt service routine.
738  */
739 int
740 amr_intr(void *cookie)
741 {
742 	struct amr_softc *amr;
743 	struct amr_ccb *ac;
744 	struct amr_mailbox_resp mbox;
745 	u_int i, forus, idx;
746 
747 	amr = cookie;
748 	forus = 0;
749 
750 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
751 		/* Iterate over completed commands in this result. */
752 		for (i = 0; i < mbox.mb_nstatus; i++) {
753 			idx = mbox.mb_completed[i] - 1;
754 			ac = amr->amr_ccbs + idx;
755 
756 			if (idx >= amr->amr_maxqueuecnt) {
757 				printf("%s: bad status (bogus ID: %u=%u)\n",
758 				    amr->amr_dv.dv_xname, i, idx);
759 				continue;
760 			}
761 
762 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
763 				printf("%s: bad status (not active; 0x04%x)\n",
764 				    amr->amr_dv.dv_xname, ac->ac_flags);
765 				continue;
766 			}
767 
768 			ac->ac_status = mbox.mb_status;
769 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
770 			    AC_COMPLETE;
771 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
772 
773 			if ((ac->ac_flags & AC_MOAN) != 0)
774 				printf("%s: ccb %d completed\n",
775 				    amr->amr_dv.dv_xname, ac->ac_ident);
776 
777 			/* Pass notification to upper layers. */
778 			if (ac->ac_handler != NULL)
779 				(*ac->ac_handler)(ac);
780 			else
781 				wakeup(ac);
782 		}
783 		forus = 1;
784 	}
785 
786 	if (forus)
787 		amr_ccb_enqueue(amr, NULL);
788 
789 	return (forus);
790 }
791 
792 /*
793  * Create the watchdog thread.
794  */
795 void
796 amr_thread_create(void *cookie)
797 {
798 	struct amr_softc *amr;
799 	int rv;
800 
801 	amr = cookie;
802 
803 	if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
804 		amr->amr_flags ^= AMRF_THREAD_EXIT;
805 		wakeup(&amr->amr_flags);
806 		return;
807 	}
808 
809 	rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s",
810 	    amr->amr_dv.dv_xname);
811  	if (rv != 0)
812 		aprint_error("%s: unable to create thread (%d)",
813  		    amr->amr_dv.dv_xname, rv);
814  	else
815  		amr->amr_flags |= AMRF_THREAD;
816 }
817 
818 /*
819  * Watchdog thread.
820  */
821 void
822 amr_thread(void *cookie)
823 {
824 	struct amr_softc *amr;
825 	struct amr_ccb *ac;
826 	struct amr_logdrive *al;
827 	struct amr_enquiry *ae;
828 	time_t curtime;
829 	int rv, i, s;
830 
831 	amr = cookie;
832 	ae = amr->amr_enqbuf;
833 
834 	for (;;) {
835 		tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
836 
837 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
838 			amr->amr_flags ^= AMRF_THREAD_EXIT;
839 			wakeup(&amr->amr_flags);
840 			kthread_exit(0);
841 		}
842 
843 		s = splbio();
844 		amr_intr(cookie);
845 		curtime = (time_t)mono_time.tv_sec;
846 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
847 		while (ac != NULL) {
848 			if (ac->ac_start_time + AMR_TIMEOUT > curtime)
849 				break;
850 			if ((ac->ac_flags & AC_MOAN) == 0) {
851 				printf("%s: ccb %d timed out; mailbox:\n",
852 				    amr->amr_dv.dv_xname, ac->ac_ident);
853 				amr_ccb_dump(amr, ac);
854 				ac->ac_flags |= AC_MOAN;
855 			}
856 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
857 		}
858 		splx(s);
859 
860 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
861 			printf("%s: ccb_alloc failed (%d)\n",
862  			    amr->amr_dv.dv_xname, rv);
863 			continue;
864 		}
865 
866 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
867 
868 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
869 		    AMR_ENQUIRY_BUFSIZE, 0);
870 		if (rv != 0) {
871 			printf("%s: ccb_map failed (%d)\n",
872  			    amr->amr_dv.dv_xname, rv);
873 			amr_ccb_free(amr, ac);
874 			continue;
875 		}
876 
877 		rv = amr_ccb_wait(amr, ac);
878 		amr_ccb_unmap(amr, ac);
879 		if (rv != 0) {
880 			printf("%s: enquiry failed (st=%d)\n",
881  			    amr->amr_dv.dv_xname, ac->ac_status);
882 			continue;
883 		}
884 		amr_ccb_free(amr, ac);
885 
886 		al = amr->amr_drive;
887 		for (i = 0; i < AMR_MAX_UNITS; i++, al++) {
888 			if (al->al_dv == NULL)
889 				continue;
890 			if (al->al_state == ae->ae_ldrv.al_state[i])
891 				continue;
892 
893 			printf("%s: state changed: %s -> %s\n",
894 			    al->al_dv->dv_xname,
895 			    amr_drive_state(al->al_state, NULL),
896 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
897 
898 			al->al_state = ae->ae_ldrv.al_state[i];
899 		}
900 	}
901 }
902 
903 /*
904  * Return a text description of a logical drive's current state.
905  */
906 const char *
907 amr_drive_state(int state, int *happy)
908 {
909 	const char *str;
910 
911 	state = AMR_DRV_CURSTATE(state);
912 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
913 		if (happy)
914 			*happy = 1;
915 		str = "status unknown";
916 	} else {
917 		if (happy)
918 			*happy = amr_dstate[state].ds_happy;
919 		str = amr_dstate[state].ds_descr;
920 	}
921 
922 	return (str);
923 }
924 
925 /*
926  * Run a generic enquiry-style command.
927  */
928 void *
929 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
930 	    u_int8_t cmdqual, void *buf)
931 {
932 	struct amr_ccb *ac;
933 	u_int8_t *mb;
934 	int rv;
935 
936 	if (amr_ccb_alloc(amr, &ac) != 0)
937 		return (NULL);
938 
939 	/* Build the command proper. */
940 	mb = (u_int8_t *)&ac->ac_cmd;
941 	mb[0] = cmd;
942 	mb[2] = cmdsub;
943 	mb[3] = cmdqual;
944 
945 	rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0);
946 	if (rv == 0) {
947 		rv = amr_ccb_poll(amr, ac, 2000);
948 		amr_ccb_unmap(amr, ac);
949 	}
950 	amr_ccb_free(amr, ac);
951 
952 	return (rv ? NULL : buf);
953 }
954 
955 /*
956  * Allocate and initialise a CCB.
957  */
958 int
959 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
960 {
961 	int s;
962 
963 	s = splbio();
964 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
965 		splx(s);
966 		return (EAGAIN);
967 	}
968 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
969 	splx(s);
970 
971 	return (0);
972 }
973 
974 /*
975  * Free a CCB.
976  */
977 void
978 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
979 {
980 	int s;
981 
982 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
983 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
984 	ac->ac_cmd.mb_busy = 1;
985 	ac->ac_handler = NULL;
986 	ac->ac_flags = 0;
987 
988 	s = splbio();
989 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
990 	splx(s);
991 }
992 
993 /*
994  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
995  * the order that they were enqueued and try to submit their command blocks
996  * to the controller for execution.
997  */
998 void
999 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1000 {
1001 	int s;
1002 
1003 	s = splbio();
1004 
1005 	if (ac != NULL)
1006 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1007 
1008 	while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1009 		if ((*amr->amr_submit)(amr, ac) != 0)
1010 			break;
1011 		SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1012 		TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1013 	}
1014 
1015 	splx(s);
1016 }
1017 
1018 /*
1019  * Map the specified CCB's data buffer onto the bus, and fill the
1020  * scatter-gather list.
1021  */
1022 int
1023 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1024 	    int out)
1025 {
1026 	struct amr_sgentry *sge;
1027 	struct amr_mailbox_cmd *mb;
1028 	int nsegs, i, rv, sgloff;
1029 	bus_dmamap_t xfer;
1030 
1031 	xfer = ac->ac_xfer_map;
1032 
1033 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1034 	    BUS_DMA_NOWAIT);
1035 	if (rv != 0)
1036 		return (rv);
1037 
1038 	mb = &ac->ac_cmd;
1039 	ac->ac_xfer_size = size;
1040 	ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
1041 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1042 
1043 	/* We don't need to use a scatter/gather list for just 1 segment. */
1044 	nsegs = xfer->dm_nsegs;
1045 	if (nsegs == 1) {
1046 		mb->mb_nsgelem = 0;
1047 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1048 		ac->ac_flags |= AC_NOSGL;
1049 	} else {
1050 		mb->mb_nsgelem = nsegs;
1051 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1052 
1053 		sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
1054 		for (i = 0; i < nsegs; i++, sge++) {
1055 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1056 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1057 		}
1058 	}
1059 
1060 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
1061 	    out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
1062 
1063 	if ((ac->ac_flags & AC_NOSGL) == 0)
1064 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1065 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Unmap the specified CCB's data buffer.
1072  */
1073 void
1074 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1075 {
1076 
1077 	if ((ac->ac_flags & AC_NOSGL) == 0)
1078 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1079 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1080 		    BUS_DMASYNC_POSTWRITE);
1081 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1082 	    (ac->ac_flags & AC_XFER_IN) != 0 ?
1083 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1084 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1085 }
1086 
1087 /*
1088  * Submit a command to the controller and poll on completion.  Return
1089  * non-zero on timeout or error.  Must be called with interrupts blocked.
1090  */
1091 int
1092 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1093 {
1094 	int rv;
1095 
1096 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1097 		return (rv);
1098 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1099 
1100 	for (timo *= 10; timo != 0; timo--) {
1101 		amr_intr(amr);
1102 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1103 			break;
1104 		DELAY(100);
1105 	}
1106 
1107 	return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1108 }
1109 
1110 /*
1111  * Submit a command to the controller and sleep on completion.  Return
1112  * non-zero on error.
1113  */
1114 int
1115 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1116 {
1117 	int s;
1118 
1119 	s = splbio();
1120 	amr_ccb_enqueue(amr, ac);
1121 	tsleep(ac, PRIBIO, "amrcmd", 0);
1122 	splx(s);
1123 
1124 	return (ac->ac_status != 0 ? EIO : 0);
1125 }
1126 
1127 /*
1128  * Wait for the mailbox to become available.
1129  */
1130 int
1131 amr_mbox_wait(struct amr_softc *amr)
1132 {
1133 	int timo;
1134 
1135 	for (timo = 10000; timo != 0; timo--) {
1136 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1137 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1138 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1139 			break;
1140 		DELAY(100);
1141 	}
1142 
1143 	if (timo == 0)
1144 		printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
1145 
1146 	return (timo != 0 ? 0 : EAGAIN);
1147 }
1148 
1149 /*
1150  * Tell the controller that the mailbox contains a valid command.  Must be
1151  * called with interrupts blocked.
1152  */
1153 int
1154 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1155 {
1156 	u_int32_t v;
1157 
1158 	amr->amr_mbox->mb_poll = 0;
1159 	amr->amr_mbox->mb_ack = 0;
1160 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1161 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1162 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1163 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1164 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1165 		return (EAGAIN);
1166 
1167 	v = amr_inl(amr, AMR_QREG_IDB);
1168 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1169 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1170 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1171 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1172 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1174 		return (EAGAIN);
1175 	}
1176 
1177 	amr->amr_mbox->mb_segment = 0;
1178 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1179 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1180 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1181 
1182 	ac->ac_start_time = (time_t)mono_time.tv_sec;
1183 	ac->ac_flags |= AC_ACTIVE;
1184 	amr_outl(amr, AMR_QREG_IDB,
1185 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1186 	return (0);
1187 }
1188 
1189 int
1190 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1191 {
1192 
1193 	amr->amr_mbox->mb_poll = 0;
1194 	amr->amr_mbox->mb_ack = 0;
1195 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1196 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1197 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1198 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1199 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1200 		return (EAGAIN);
1201 
1202 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1203 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1204 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1205 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1206 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1208 		return (EAGAIN);
1209 	}
1210 
1211 	amr->amr_mbox->mb_segment = 0;
1212 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1213 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1214 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1215 
1216 	ac->ac_start_time = (time_t)mono_time.tv_sec;
1217 	ac->ac_flags |= AC_ACTIVE;
1218 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1219 	return (0);
1220 }
1221 
1222 /*
1223  * Claim any work that the controller has completed; acknowledge completion,
1224  * save details of the completion in (mbsave).  Must be called with
1225  * interrupts blocked.
1226  */
1227 int
1228 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1229 {
1230 
1231 	/* Work waiting for us? */
1232 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1233 		return (-1);
1234 
1235 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1236 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1237 
1238 	/* Save the mailbox, which contains a list of completed commands. */
1239 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1240 
1241 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1242 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1243 
1244 	/* Ack the interrupt and mailbox transfer. */
1245 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1246 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1247 
1248 	/*
1249 	 * This waits for the controller to notice that we've taken the
1250 	 * command from it.  It's very inefficient, and we shouldn't do it,
1251 	 * but if we remove this code, we stop completing commands under
1252 	 * load.
1253 	 *
1254 	 * Peter J says we shouldn't do this.  The documentation says we
1255 	 * should.  Who is right?
1256 	 */
1257 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1258 		DELAY(10);
1259 
1260 	return (0);
1261 }
1262 
1263 int
1264 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1265 {
1266 	u_int8_t istat;
1267 
1268 	/* Check for valid interrupt status. */
1269 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1270 		return (-1);
1271 
1272 	/* Ack the interrupt. */
1273 	amr_outb(amr, AMR_SREG_INTR, istat);
1274 
1275 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1276 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1277 
1278 	/* Save mailbox, which contains a list of completed commands. */
1279 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1280 
1281 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1282 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1283 
1284 	/* Ack mailbox transfer. */
1285 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1286 
1287 	return (0);
1288 }
1289 
1290 void
1291 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1292 {
1293 	int i;
1294 
1295 	printf("%s: ", amr->amr_dv.dv_xname);
1296 	for (i = 0; i < 4; i++)
1297 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1298 	printf("\n");
1299 }
1300