1 /* $NetBSD: amr.c,v 1.11 2003/05/15 18:04:08 fvdl Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999,2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp 66 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp 67 */ 68 69 /* 70 * Driver for AMI RAID controllers. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.11 2003/05/15 18:04:08 fvdl Exp $"); 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/device.h> 80 #include <sys/queue.h> 81 #include <sys/proc.h> 82 #include <sys/buf.h> 83 #include <sys/malloc.h> 84 #include <sys/kthread.h> 85 86 #include <uvm/uvm_extern.h> 87 88 #include <machine/endian.h> 89 #include <machine/bus.h> 90 91 #include <dev/pci/pcidevs.h> 92 #include <dev/pci/pcivar.h> 93 #include <dev/pci/amrreg.h> 94 #include <dev/pci/amrvar.h> 95 96 void amr_attach(struct device *, struct device *, void *); 97 void amr_ccb_dump(struct amr_softc *, struct amr_ccb *); 98 void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t, void *); 99 int amr_init(struct amr_softc *, const char *, 100 struct pci_attach_args *pa); 101 int amr_intr(void *); 102 int amr_match(struct device *, struct cfdata *, void *); 103 int amr_print(void *, const char *); 104 void amr_shutdown(void *); 105 int amr_submatch(struct device *, struct cfdata *, void *); 106 void amr_teardown(struct amr_softc *); 107 void amr_thread(void *); 108 void amr_thread_create(void *); 109 110 int amr_mbox_wait(struct amr_softc *); 111 int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox_resp *); 112 int amr_quartz_submit(struct amr_softc *, struct amr_ccb *); 113 int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *); 114 int amr_std_submit(struct amr_softc *, struct amr_ccb *); 115 116 static inline u_int8_t amr_inb(struct amr_softc *, int); 117 static inline u_int32_t amr_inl(struct amr_softc *, int); 118 static inline void amr_outb(struct amr_softc *, int, u_int8_t); 119 static inline void amr_outl(struct amr_softc *, int, u_int32_t); 120 121 CFATTACH_DECL(amr, sizeof(struct amr_softc), 122 amr_match, amr_attach, NULL, NULL); 123 124 #define AT_QUARTZ 0x01 /* `Quartz' chipset */ 125 #define AT_SIG 0x02 /* Check for signature */ 126 127 struct amr_pci_type { 128 u_short apt_vendor; 129 u_short apt_product; 130 u_short apt_flags; 131 } const amr_pci_type[] = { 132 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 }, 133 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 }, 134 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ }, 135 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG } 136 }; 137 138 struct amr_typestr { 139 const char *at_str; 140 int at_sig; 141 } const amr_typestr[] = { 142 { "Series 431", AMR_SIG_431 }, 143 { "Series 438", AMR_SIG_438 }, 144 { "Series 466", AMR_SIG_466 }, 145 { "Series 467", AMR_SIG_467 }, 146 { "Series 490", AMR_SIG_490 }, 147 { "Series 762", AMR_SIG_762 }, 148 { "HP NetRAID (T5)", AMR_SIG_T5 }, 149 { "HP NetRAID (T7)", AMR_SIG_T7 }, 150 }; 151 152 struct { 153 const char *ds_descr; 154 int ds_happy; 155 } const amr_dstate[] = { 156 { "offline", 0 }, 157 { "degraded", 1 }, 158 { "optimal", 1 }, 159 { "online", 1 }, 160 { "failed", 0 }, 161 { "rebuilding", 1 }, 162 { "hotspare", 0 }, 163 }; 164 165 void *amr_sdh; 166 int amr_max_segs; 167 int amr_max_xfer; 168 169 static inline u_int8_t 170 amr_inb(struct amr_softc *amr, int off) 171 { 172 173 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 174 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 175 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off)); 176 } 177 178 static inline u_int32_t 179 amr_inl(struct amr_softc *amr, int off) 180 { 181 182 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 183 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 184 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off)); 185 } 186 187 static inline void 188 amr_outb(struct amr_softc *amr, int off, u_int8_t val) 189 { 190 191 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val); 192 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1, 193 BUS_SPACE_BARRIER_WRITE); 194 } 195 196 static inline void 197 amr_outl(struct amr_softc *amr, int off, u_int32_t val) 198 { 199 200 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val); 201 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4, 202 BUS_SPACE_BARRIER_WRITE); 203 } 204 205 /* 206 * Match a supported device. 207 */ 208 int 209 amr_match(struct device *parent, struct cfdata *match, void *aux) 210 { 211 struct pci_attach_args *pa; 212 pcireg_t s; 213 int i; 214 215 pa = (struct pci_attach_args *)aux; 216 217 /* 218 * Don't match the device if it's operating in I2O mode. In this 219 * case it should be handled by the `iop' driver. 220 */ 221 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) 222 return (0); 223 224 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 225 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 226 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 227 break; 228 229 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0])) 230 return (0); 231 232 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0) 233 return (1); 234 235 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff; 236 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1); 237 } 238 239 /* 240 * Attach a supported device. 241 */ 242 void 243 amr_attach(struct device *parent, struct device *self, void *aux) 244 { 245 bus_space_tag_t memt, iot; 246 bus_space_handle_t memh, ioh; 247 struct pci_attach_args *pa; 248 struct amr_attach_args amra; 249 const struct amr_pci_type *apt; 250 struct amr_softc *amr; 251 pci_chipset_tag_t pc; 252 pci_intr_handle_t ih; 253 const char *intrstr; 254 pcireg_t reg; 255 int rseg, i, j, size, rv, memreg, ioreg; 256 bus_size_t memsize, iosize; 257 struct amr_ccb *ac; 258 259 aprint_naive(": RAID controller\n"); 260 261 amr = (struct amr_softc *)self; 262 pa = (struct pci_attach_args *)aux; 263 pc = pa->pa_pc; 264 265 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++) 266 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor && 267 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product) 268 break; 269 apt = amr_pci_type + i; 270 271 memreg = ioreg = 0; 272 for (i = 0x10; i <= 0x14; i += 4) { 273 reg = pci_conf_read(pc, pa->pa_tag, i); 274 switch (PCI_MAPREG_TYPE(reg)) { 275 case PCI_MAPREG_TYPE_MEM: 276 if ((memsize = PCI_MAPREG_MEM_SIZE(reg)) != 0) 277 memreg = i; 278 break; 279 case PCI_MAPREG_TYPE_IO: 280 if ((iosize = PCI_MAPREG_IO_SIZE(reg)) != 0) 281 ioreg = i; 282 break; 283 } 284 } 285 286 if (memreg != 0) 287 if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0, 288 &memt, &memh, NULL, NULL)) 289 memreg = 0; 290 if (ioreg != 0) 291 if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0, 292 &iot, &ioh, NULL, NULL)) 293 ioreg = 0; 294 295 if (memreg) { 296 amr->amr_iot = memt; 297 amr->amr_ioh = memh; 298 amr->amr_ios = memsize; 299 } else if (ioreg) { 300 amr->amr_iot = iot; 301 amr->amr_ioh = ioh; 302 amr->amr_ios = iosize; 303 } else { 304 aprint_error("can't map control registers\n"); 305 amr_teardown(amr); 306 return; 307 } 308 309 amr->amr_flags |= AMRF_PCI_REGS; 310 amr->amr_dmat = pa->pa_dmat; 311 amr->amr_pc = pa->pa_pc; 312 313 /* Enable the device. */ 314 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 315 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 316 reg | PCI_COMMAND_MASTER_ENABLE); 317 318 /* Map and establish the interrupt. */ 319 if (pci_intr_map(pa, &ih)) { 320 aprint_error("can't map interrupt\n"); 321 amr_teardown(amr); 322 return; 323 } 324 intrstr = pci_intr_string(pc, ih); 325 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr); 326 if (amr->amr_ih == NULL) { 327 aprint_error("can't establish interrupt"); 328 if (intrstr != NULL) 329 aprint_normal(" at %s", intrstr); 330 aprint_normal("\n"); 331 amr_teardown(amr); 332 return; 333 } 334 amr->amr_flags |= AMRF_PCI_INTR; 335 336 /* 337 * Allocate space for the mailbox and S/G lists. Some controllers 338 * don't like S/G lists to be located below 0x2000, so we allocate 339 * enough slop to enable us to compensate. 340 * 341 * The standard mailbox structure needs to be aligned on a 16-byte 342 * boundary. The 64-bit mailbox has one extra field, 4 bytes in 343 * size, which preceeds the standard mailbox. 344 */ 345 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000; 346 amr->amr_dmasize = size; 347 348 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL, 349 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 350 aprint_error("%s: unable to allocate buffer, rv = %d\n", 351 amr->amr_dv.dv_xname, rv); 352 amr_teardown(amr); 353 return; 354 } 355 amr->amr_flags |= AMRF_DMA_ALLOC; 356 357 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size, 358 (caddr_t *)&amr->amr_mbox, 359 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 360 aprint_error("%s: unable to map buffer, rv = %d\n", 361 amr->amr_dv.dv_xname, rv); 362 amr_teardown(amr); 363 return; 364 } 365 amr->amr_flags |= AMRF_DMA_MAP; 366 367 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0, 368 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) { 369 aprint_error("%s: unable to create buffer DMA map, rv = %d\n", 370 amr->amr_dv.dv_xname, rv); 371 amr_teardown(amr); 372 return; 373 } 374 amr->amr_flags |= AMRF_DMA_CREATE; 375 376 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap, 377 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) { 378 aprint_error("%s: unable to load buffer DMA map, rv = %d\n", 379 amr->amr_dv.dv_xname, rv); 380 amr_teardown(amr); 381 return; 382 } 383 amr->amr_flags |= AMRF_DMA_LOAD; 384 385 memset(amr->amr_mbox, 0, size); 386 387 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr; 388 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff; 389 amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox + 390 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr); 391 392 /* 393 * Allocate and initalise the command control blocks. 394 */ 395 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO); 396 amr->amr_ccbs = ac; 397 SLIST_INIT(&amr->amr_ccb_freelist); 398 TAILQ_INIT(&amr->amr_ccb_active); 399 amr->amr_flags |= AMRF_CCBS; 400 401 if (amr_max_xfer == 0) { 402 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS); 403 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE; 404 } 405 406 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) { 407 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer, 408 amr_max_segs, amr_max_xfer, 0, 409 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map); 410 if (rv != 0) 411 break; 412 413 ac->ac_ident = i; 414 amr_ccb_free(amr, ac); 415 } 416 if (i != AMR_MAX_CMDS) { 417 aprint_error("%s: memory exhausted\n", amr->amr_dv.dv_xname); 418 amr_teardown(amr); 419 return; 420 } 421 422 /* 423 * Take care of model-specific tasks. 424 */ 425 if ((apt->apt_flags & AT_QUARTZ) != 0) { 426 amr->amr_submit = amr_quartz_submit; 427 amr->amr_get_work = amr_quartz_get_work; 428 } else { 429 amr->amr_submit = amr_std_submit; 430 amr->amr_get_work = amr_std_get_work; 431 432 /* Notify the controller of the mailbox location. */ 433 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16); 434 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR); 435 436 /* Clear outstanding interrupts and enable interrupts. */ 437 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 438 amr_outb(amr, AMR_SREG_TOGL, 439 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE); 440 } 441 442 /* 443 * Retrieve parameters, and tell the world about us. 444 */ 445 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT); 446 amr->amr_flags |= AMRF_ENQBUF; 447 amr->amr_maxqueuecnt = i; 448 aprint_normal(": AMI RAID "); 449 if (amr_init(amr, intrstr, pa) != 0) { 450 amr_teardown(amr); 451 return; 452 } 453 454 /* 455 * Cap the maximum number of outstanding commands. AMI's Linux 456 * driver doesn't trust the controller's reported value, and lockups 457 * have been seen when we do. 458 */ 459 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS); 460 if (amr->amr_maxqueuecnt > i) 461 amr->amr_maxqueuecnt = i; 462 463 /* Set our `shutdownhook' before we start any device activity. */ 464 if (amr_sdh == NULL) 465 amr_sdh = shutdownhook_establish(amr_shutdown, NULL); 466 467 /* Attach sub-devices. */ 468 for (j = 0; j < amr->amr_numdrives; j++) { 469 if (amr->amr_drive[j].al_size == 0) 470 continue; 471 amra.amra_unit = j; 472 amr->amr_drive[j].al_dv = config_found_sm(&amr->amr_dv, &amra, 473 amr_print, amr_submatch); 474 } 475 476 SIMPLEQ_INIT(&amr->amr_ccb_queue); 477 kthread_create(amr_thread_create, amr); 478 } 479 480 /* 481 * Free up resources. 482 */ 483 void 484 amr_teardown(struct amr_softc *amr) 485 { 486 struct amr_ccb *ac; 487 int fl; 488 489 fl = amr->amr_flags; 490 491 if ((fl & AMRF_THREAD) != 0) { 492 amr->amr_flags |= AMRF_THREAD_EXIT; 493 wakeup(amr_thread); 494 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) 495 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0); 496 } 497 if ((fl & AMRF_CCBS) != 0) { 498 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) { 499 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map); 500 } 501 free(amr->amr_ccbs, M_DEVBUF); 502 } 503 if ((fl & AMRF_ENQBUF) != 0) 504 free(amr->amr_enqbuf, M_DEVBUF); 505 if ((fl & AMRF_DMA_LOAD) != 0) 506 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap); 507 if ((fl & AMRF_DMA_MAP) != 0) 508 bus_dmamem_unmap(amr->amr_dmat, (caddr_t)amr->amr_mbox, 509 amr->amr_dmasize); 510 if ((fl & AMRF_DMA_ALLOC) != 0) 511 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1); 512 if ((fl & AMRF_DMA_CREATE) != 0) 513 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap); 514 if ((fl & AMRF_PCI_INTR) != 0) 515 pci_intr_disestablish(amr->amr_pc, amr->amr_ih); 516 if ((fl & AMRF_PCI_REGS) != 0) 517 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios); 518 } 519 520 /* 521 * Print autoconfiguration message for a sub-device. 522 */ 523 int 524 amr_print(void *aux, const char *pnp) 525 { 526 struct amr_attach_args *amra; 527 528 amra = (struct amr_attach_args *)aux; 529 530 if (pnp != NULL) 531 aprint_normal("block device at %s", pnp); 532 aprint_normal(" unit %d", amra->amra_unit); 533 return (UNCONF); 534 } 535 536 /* 537 * Match a sub-device. 538 */ 539 int 540 amr_submatch(struct device *parent, struct cfdata *cf, void *aux) 541 { 542 struct amr_attach_args *amra; 543 544 amra = (struct amr_attach_args *)aux; 545 546 if (cf->amracf_unit != AMRCF_UNIT_DEFAULT && 547 cf->amracf_unit != amra->amra_unit) 548 return (0); 549 550 return (config_match(parent, cf, aux)); 551 } 552 553 /* 554 * Retrieve operational parameters and describe the controller. 555 */ 556 int 557 amr_init(struct amr_softc *amr, const char *intrstr, 558 struct pci_attach_args *pa) 559 { 560 struct amr_adapter_info *aa; 561 struct amr_prodinfo *ap; 562 struct amr_enquiry *ae; 563 struct amr_enquiry3 *aex; 564 const char *prodstr; 565 u_int i, sig, ishp; 566 char buf[64]; 567 568 /* 569 * Try to get 40LD product info, which tells us what the card is 570 * labelled as. 571 */ 572 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0, 573 amr->amr_enqbuf); 574 if (ap != NULL) { 575 aprint_normal("<%.80s>\n", ap->ap_product); 576 if (intrstr != NULL) 577 aprint_normal("%s: interrupting at %s\n", 578 amr->amr_dv.dv_xname, intrstr); 579 aprint_normal("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n", 580 amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios, 581 le16toh(ap->ap_memsize)); 582 583 amr->amr_maxqueuecnt = ap->ap_maxio; 584 585 /* 586 * Fetch and record state of logical drives. 587 */ 588 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3, 589 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf); 590 if (aex == NULL) { 591 aprint_error("%s ENQUIRY3 failed\n", 592 amr->amr_dv.dv_xname); 593 return (-1); 594 } 595 596 if (aex->ae_numldrives > AMR_MAX_UNITS) { 597 aprint_error( 598 "%s: adjust AMR_MAX_UNITS to %d (currently %d)" 599 "\n", amr->amr_dv.dv_xname, 600 ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS); 601 amr->amr_numdrives = AMR_MAX_UNITS; 602 } else 603 amr->amr_numdrives = aex->ae_numldrives; 604 605 for (i = 0; i < amr->amr_numdrives; i++) { 606 amr->amr_drive[i].al_size = 607 le32toh(aex->ae_drivesize[i]); 608 amr->amr_drive[i].al_state = aex->ae_drivestate[i]; 609 amr->amr_drive[i].al_properties = aex->ae_driveprop[i]; 610 } 611 612 return (0); 613 } 614 615 /* 616 * Try 8LD extended ENQUIRY to get the controller signature. Once 617 * found, search for a product description. 618 */ 619 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf); 620 if (ae != NULL) { 621 i = 0; 622 sig = le32toh(ae->ae_signature); 623 624 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 625 if (amr_typestr[i].at_sig == sig) 626 break; 627 i++; 628 } 629 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) { 630 sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig); 631 prodstr = buf; 632 } else 633 prodstr = amr_typestr[i].at_str; 634 } else { 635 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf); 636 if (ae == NULL) { 637 aprint_error("%s: unsupported controller\n", 638 amr->amr_dv.dv_xname); 639 return (-1); 640 } 641 642 switch (PCI_PRODUCT(pa->pa_id)) { 643 case PCI_PRODUCT_AMI_MEGARAID: 644 prodstr = "Series 428"; 645 break; 646 case PCI_PRODUCT_AMI_MEGARAID2: 647 prodstr = "Series 434"; 648 break; 649 default: 650 sprintf(buf, "unknown PCI dev (0x%04x)", 651 PCI_PRODUCT(pa->pa_id)); 652 prodstr = buf; 653 break; 654 } 655 } 656 657 /* 658 * HP NetRaid controllers have a special encoding of the firmware 659 * and BIOS versions. The AMI version seems to have it as strings 660 * whereas the HP version does it with a leading uppercase character 661 * and two binary numbers. 662 */ 663 aa = &ae->ae_adapter; 664 665 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' && 666 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' && 667 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' && 668 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') { 669 if (le32toh(ae->ae_signature) == AMR_SIG_438) { 670 /* The AMI 438 is a NetRaid 3si in HP-land. */ 671 prodstr = "HP NetRaid 3si"; 672 } 673 ishp = 1; 674 } else 675 ishp = 0; 676 677 aprint_normal("<%s>\n", prodstr); 678 if (intrstr != NULL) 679 aprint_normal("%s: interrupting at %s\n", amr->amr_dv.dv_xname, 680 intrstr); 681 682 if (ishp) 683 aprint_normal("%s: firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>" 684 ", %dMB RAM\n", amr->amr_dv.dv_xname, aa->aa_firmware[2], 685 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2], 686 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize); 687 else 688 aprint_normal("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n", 689 amr->amr_dv.dv_xname, aa->aa_firmware, aa->aa_bios, 690 aa->aa_memorysize); 691 692 amr->amr_maxqueuecnt = aa->aa_maxio; 693 694 /* 695 * Record state of logical drives. 696 */ 697 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) { 698 aprint_error("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n", 699 amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives, 700 AMR_MAX_UNITS); 701 amr->amr_numdrives = AMR_MAX_UNITS; 702 } else 703 amr->amr_numdrives = ae->ae_ldrv.al_numdrives; 704 705 for (i = 0; i < AMR_MAX_UNITS; i++) { 706 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]); 707 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i]; 708 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i]; 709 } 710 711 return (0); 712 } 713 714 /* 715 * Flush the internal cache on each configured controller. Called at 716 * shutdown time. 717 */ 718 void 719 amr_shutdown(void *cookie) 720 { 721 extern struct cfdriver amr_cd; 722 struct amr_softc *amr; 723 struct amr_ccb *ac; 724 int i, rv, s; 725 726 for (i = 0; i < amr_cd.cd_ndevs; i++) { 727 if ((amr = device_lookup(&amr_cd, i)) == NULL) 728 continue; 729 730 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) { 731 ac->ac_cmd.mb_command = AMR_CMD_FLUSH; 732 s = splbio(); 733 rv = amr_ccb_poll(amr, ac, 30000); 734 splx(s); 735 amr_ccb_free(amr, ac); 736 } 737 if (rv != 0) 738 printf("%s: unable to flush cache (%d)\n", 739 amr->amr_dv.dv_xname, rv); 740 } 741 } 742 743 /* 744 * Interrupt service routine. 745 */ 746 int 747 amr_intr(void *cookie) 748 { 749 struct amr_softc *amr; 750 struct amr_ccb *ac; 751 struct amr_mailbox_resp mbox; 752 u_int i, forus, idx; 753 754 amr = cookie; 755 forus = 0; 756 757 while ((*amr->amr_get_work)(amr, &mbox) == 0) { 758 /* Iterate over completed commands in this result. */ 759 for (i = 0; i < mbox.mb_nstatus; i++) { 760 idx = mbox.mb_completed[i] - 1; 761 ac = amr->amr_ccbs + idx; 762 763 if (idx >= amr->amr_maxqueuecnt) { 764 printf("%s: bad status (bogus ID: %u=%u)\n", 765 amr->amr_dv.dv_xname, i, idx); 766 continue; 767 } 768 769 if ((ac->ac_flags & AC_ACTIVE) == 0) { 770 printf("%s: bad status (not active; 0x04%x)\n", 771 amr->amr_dv.dv_xname, ac->ac_flags); 772 continue; 773 } 774 775 ac->ac_status = mbox.mb_status; 776 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) | 777 AC_COMPLETE; 778 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq); 779 780 if ((ac->ac_flags & AC_MOAN) != 0) 781 printf("%s: ccb %d completed\n", 782 amr->amr_dv.dv_xname, ac->ac_ident); 783 784 /* Pass notification to upper layers. */ 785 if (ac->ac_handler != NULL) 786 (*ac->ac_handler)(ac); 787 else 788 wakeup(ac); 789 } 790 forus = 1; 791 } 792 793 if (forus) 794 amr_ccb_enqueue(amr, NULL); 795 796 return (forus); 797 } 798 799 /* 800 * Create the watchdog thread. 801 */ 802 void 803 amr_thread_create(void *cookie) 804 { 805 struct amr_softc *amr; 806 int rv; 807 808 amr = cookie; 809 810 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 811 amr->amr_flags ^= AMRF_THREAD_EXIT; 812 wakeup(&amr->amr_flags); 813 return; 814 } 815 816 rv = kthread_create1(amr_thread, amr, &amr->amr_thread, "%s", 817 amr->amr_dv.dv_xname); 818 if (rv != 0) 819 aprint_error("%s: unable to create thread (%d)", 820 amr->amr_dv.dv_xname, rv); 821 else 822 amr->amr_flags |= AMRF_THREAD; 823 } 824 825 /* 826 * Watchdog thread. 827 */ 828 void 829 amr_thread(void *cookie) 830 { 831 struct amr_softc *amr; 832 struct amr_ccb *ac; 833 struct amr_logdrive *al; 834 struct amr_enquiry *ae; 835 time_t curtime; 836 int rv, i, s; 837 838 amr = cookie; 839 ae = amr->amr_enqbuf; 840 841 for (;;) { 842 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS); 843 844 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) { 845 amr->amr_flags ^= AMRF_THREAD_EXIT; 846 wakeup(&amr->amr_flags); 847 kthread_exit(0); 848 } 849 850 s = splbio(); 851 amr_intr(cookie); 852 curtime = (time_t)mono_time.tv_sec; 853 if ((ac = TAILQ_FIRST(&amr->amr_ccb_active)) != NULL) { 854 if (ac->ac_start_time + AMR_TIMEOUT > curtime) 855 break; 856 if ((ac->ac_flags & AC_MOAN) == 0) { 857 printf("%s: ccb %d timed out; mailbox:\n", 858 amr->amr_dv.dv_xname, ac->ac_ident); 859 amr_ccb_dump(amr, ac); 860 ac->ac_flags |= AC_MOAN; 861 } 862 } 863 splx(s); 864 865 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) { 866 printf("%s: ccb_alloc failed (%d)\n", 867 amr->amr_dv.dv_xname, rv); 868 continue; 869 } 870 871 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY; 872 873 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf, 874 AMR_ENQUIRY_BUFSIZE, 0); 875 if (rv != 0) { 876 printf("%s: ccb_map failed (%d)\n", 877 amr->amr_dv.dv_xname, rv); 878 amr_ccb_free(amr, ac); 879 continue; 880 } 881 882 rv = amr_ccb_wait(amr, ac); 883 amr_ccb_unmap(amr, ac); 884 if (rv != 0) { 885 printf("%s: enquiry failed (st=%d)\n", 886 amr->amr_dv.dv_xname, ac->ac_status); 887 continue; 888 } 889 amr_ccb_free(amr, ac); 890 891 al = amr->amr_drive; 892 for (i = 0; i < AMR_MAX_UNITS; i++, al++) { 893 if (al->al_dv == NULL) 894 continue; 895 if (al->al_state == ae->ae_ldrv.al_state[i]) 896 continue; 897 898 printf("%s: state changed: %s -> %s\n", 899 al->al_dv->dv_xname, 900 amr_drive_state(al->al_state, NULL), 901 amr_drive_state(ae->ae_ldrv.al_state[i], NULL)); 902 903 al->al_state = ae->ae_ldrv.al_state[i]; 904 } 905 } 906 } 907 908 /* 909 * Return a text description of a logical drive's current state. 910 */ 911 const char * 912 amr_drive_state(int state, int *happy) 913 { 914 const char *str; 915 916 state = AMR_DRV_CURSTATE(state); 917 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) { 918 if (happy) 919 *happy = 1; 920 str = "status unknown"; 921 } else { 922 if (happy) 923 *happy = amr_dstate[state].ds_happy; 924 str = amr_dstate[state].ds_descr; 925 } 926 927 return (str); 928 } 929 930 /* 931 * Run a generic enquiry-style command. 932 */ 933 void * 934 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub, 935 u_int8_t cmdqual, void *buf) 936 { 937 struct amr_ccb *ac; 938 u_int8_t *mb; 939 int rv; 940 941 if (amr_ccb_alloc(amr, &ac) != 0) 942 return (NULL); 943 944 /* Build the command proper. */ 945 mb = (u_int8_t *)&ac->ac_cmd; 946 mb[0] = cmd; 947 mb[2] = cmdsub; 948 mb[3] = cmdqual; 949 950 rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0); 951 if (rv == 0) { 952 rv = amr_ccb_poll(amr, ac, 2000); 953 amr_ccb_unmap(amr, ac); 954 } 955 amr_ccb_free(amr, ac); 956 957 return (rv ? NULL : buf); 958 } 959 960 /* 961 * Allocate and initialise a CCB. 962 */ 963 int 964 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp) 965 { 966 int s; 967 968 s = splbio(); 969 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) { 970 splx(s); 971 return (EAGAIN); 972 } 973 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist); 974 splx(s); 975 976 return (0); 977 } 978 979 /* 980 * Free a CCB. 981 */ 982 void 983 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac) 984 { 985 int s; 986 987 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd)); 988 ac->ac_cmd.mb_ident = ac->ac_ident + 1; 989 ac->ac_cmd.mb_busy = 1; 990 ac->ac_handler = NULL; 991 ac->ac_flags = 0; 992 993 s = splbio(); 994 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist); 995 splx(s); 996 } 997 998 /* 999 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1000 * the order that they were enqueued and try to submit their command blocks 1001 * to the controller for execution. 1002 */ 1003 void 1004 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac) 1005 { 1006 int s; 1007 1008 s = splbio(); 1009 1010 if (ac != NULL) 1011 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq); 1012 1013 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) { 1014 if ((*amr->amr_submit)(amr, ac) != 0) 1015 break; 1016 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq); 1017 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1018 } 1019 1020 splx(s); 1021 } 1022 1023 /* 1024 * Map the specified CCB's data buffer onto the bus, and fill the 1025 * scatter-gather list. 1026 */ 1027 int 1028 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size, 1029 int out) 1030 { 1031 struct amr_sgentry *sge; 1032 struct amr_mailbox_cmd *mb; 1033 int nsegs, i, rv, sgloff; 1034 bus_dmamap_t xfer; 1035 1036 xfer = ac->ac_xfer_map; 1037 1038 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL, 1039 BUS_DMA_NOWAIT); 1040 if (rv != 0) 1041 return (rv); 1042 1043 mb = &ac->ac_cmd; 1044 ac->ac_xfer_size = size; 1045 ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN); 1046 sgloff = AMR_SGL_SIZE * ac->ac_ident; 1047 1048 /* We don't need to use a scatter/gather list for just 1 segment. */ 1049 nsegs = xfer->dm_nsegs; 1050 if (nsegs == 1) { 1051 mb->mb_nsgelem = 0; 1052 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr); 1053 ac->ac_flags |= AC_NOSGL; 1054 } else { 1055 mb->mb_nsgelem = nsegs; 1056 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff); 1057 1058 sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff); 1059 for (i = 0; i < nsegs; i++, sge++) { 1060 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr); 1061 sge->sge_count = htole32(xfer->dm_segs[i].ds_len); 1062 } 1063 } 1064 1065 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, 1066 out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD); 1067 1068 if ((ac->ac_flags & AC_NOSGL) == 0) 1069 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff, 1070 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE); 1071 1072 return (0); 1073 } 1074 1075 /* 1076 * Unmap the specified CCB's data buffer. 1077 */ 1078 void 1079 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac) 1080 { 1081 1082 if ((ac->ac_flags & AC_NOSGL) == 0) 1083 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 1084 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE, 1085 BUS_DMASYNC_POSTWRITE); 1086 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size, 1087 (ac->ac_flags & AC_XFER_IN) != 0 ? 1088 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 1089 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map); 1090 } 1091 1092 /* 1093 * Submit a command to the controller and poll on completion. Return 1094 * non-zero on timeout or error. Must be called with interrupts blocked. 1095 */ 1096 int 1097 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo) 1098 { 1099 int rv; 1100 1101 if ((rv = (*amr->amr_submit)(amr, ac)) != 0) 1102 return (rv); 1103 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq); 1104 1105 for (timo *= 10; timo != 0; timo--) { 1106 amr_intr(amr); 1107 if ((ac->ac_flags & AC_COMPLETE) != 0) 1108 break; 1109 DELAY(100); 1110 } 1111 1112 return (timo == 0 || ac->ac_status != 0 ? EIO : 0); 1113 } 1114 1115 /* 1116 * Submit a command to the controller and sleep on completion. Return 1117 * non-zero on error. 1118 */ 1119 int 1120 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac) 1121 { 1122 int s; 1123 1124 s = splbio(); 1125 amr_ccb_enqueue(amr, ac); 1126 tsleep(ac, PRIBIO, "amrcmd", 0); 1127 splx(s); 1128 1129 return (ac->ac_status != 0 ? EIO : 0); 1130 } 1131 1132 /* 1133 * Wait for the mailbox to become available. 1134 */ 1135 int 1136 amr_mbox_wait(struct amr_softc *amr) 1137 { 1138 int timo; 1139 1140 for (timo = 10000; timo != 0; timo--) { 1141 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1142 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1143 if (amr->amr_mbox->mb_cmd.mb_busy == 0) 1144 break; 1145 DELAY(100); 1146 } 1147 1148 if (timo == 0) 1149 printf("%s: controller wedged\n", amr->amr_dv.dv_xname); 1150 1151 return (timo != 0 ? 0 : EAGAIN); 1152 } 1153 1154 /* 1155 * Tell the controller that the mailbox contains a valid command. Must be 1156 * called with interrupts blocked. 1157 */ 1158 int 1159 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac) 1160 { 1161 u_int32_t v; 1162 1163 amr->amr_mbox->mb_poll = 0; 1164 amr->amr_mbox->mb_ack = 0; 1165 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1166 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1167 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1168 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1169 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1170 return (EAGAIN); 1171 1172 v = amr_inl(amr, AMR_QREG_IDB); 1173 if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0) { 1174 amr->amr_mbox->mb_cmd.mb_busy = 0; 1175 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1176 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1177 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1178 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1179 return (EAGAIN); 1180 } 1181 1182 amr->amr_mbox->mb_segment = 0; 1183 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1184 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1185 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1186 1187 ac->ac_start_time = (time_t)mono_time.tv_sec; 1188 ac->ac_flags |= AC_ACTIVE; 1189 amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT); 1190 return (0); 1191 } 1192 1193 int 1194 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac) 1195 { 1196 1197 amr->amr_mbox->mb_poll = 0; 1198 amr->amr_mbox->mb_ack = 0; 1199 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1200 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1201 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1202 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1203 if (amr->amr_mbox->mb_cmd.mb_busy != 0) 1204 return (EAGAIN); 1205 1206 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) { 1207 amr->amr_mbox->mb_cmd.mb_busy = 0; 1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1209 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1210 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1211 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1212 return (EAGAIN); 1213 } 1214 1215 amr->amr_mbox->mb_segment = 0; 1216 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd)); 1217 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1218 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE); 1219 1220 ac->ac_start_time = (time_t)mono_time.tv_sec; 1221 ac->ac_flags |= AC_ACTIVE; 1222 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST); 1223 return (0); 1224 } 1225 1226 /* 1227 * Claim any work that the controller has completed; acknowledge completion, 1228 * save details of the completion in (mbsave). Must be called with 1229 * interrupts blocked. 1230 */ 1231 int 1232 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1233 { 1234 1235 /* Work waiting for us? */ 1236 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY) 1237 return (-1); 1238 1239 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1240 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1241 1242 /* Save the mailbox, which contains a list of completed commands. */ 1243 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1244 1245 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1246 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1247 1248 /* Ack the interrupt and mailbox transfer. */ 1249 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY); 1250 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK); 1251 1252 /* 1253 * This waits for the controller to notice that we've taken the 1254 * command from it. It's very inefficient, and we shouldn't do it, 1255 * but if we remove this code, we stop completing commands under 1256 * load. 1257 * 1258 * Peter J says we shouldn't do this. The documentation says we 1259 * should. Who is right? 1260 */ 1261 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0) 1262 ; 1263 1264 return (0); 1265 } 1266 1267 int 1268 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave) 1269 { 1270 u_int8_t istat; 1271 1272 /* Check for valid interrupt status. */ 1273 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0) 1274 return (-1); 1275 1276 /* Ack the interrupt. */ 1277 amr_outb(amr, AMR_SREG_INTR, istat); 1278 1279 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1280 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD); 1281 1282 /* Save mailbox, which contains a list of completed commands. */ 1283 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave)); 1284 1285 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0, 1286 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD); 1287 1288 /* Ack mailbox transfer. */ 1289 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR); 1290 1291 return (0); 1292 } 1293 1294 void 1295 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac) 1296 { 1297 int i; 1298 1299 printf("%s: ", amr->amr_dv.dv_xname); 1300 for (i = 0; i < 4; i++) 1301 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]); 1302 printf("\n"); 1303 } 1304