xref: /netbsd-src/sys/dev/pci/agp.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: agp.c,v 1.36 2005/12/11 12:22:48 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.36 2005/12/11 12:22:48 christos Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/agpvar.h>
86 #include <dev/pci/agpreg.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <machine/bus.h>
90 
91 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
92 
93 /* Helper functions for implementing chipset mini drivers. */
94 /* XXXfvdl get rid of this one. */
95 
96 extern struct cfdriver agp_cd;
97 
98 static int agp_info_user(struct agp_softc *, agp_info *);
99 static int agp_setup_user(struct agp_softc *, agp_setup *);
100 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
101 static int agp_deallocate_user(struct agp_softc *, int);
102 static int agp_bind_user(struct agp_softc *, agp_bind *);
103 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
104 static int agpdev_match(struct pci_attach_args *);
105 
106 #include "agp_ali.h"
107 #include "agp_amd.h"
108 #include "agp_i810.h"
109 #include "agp_intel.h"
110 #include "agp_sis.h"
111 #include "agp_via.h"
112 
113 const struct agp_product {
114 	uint32_t	ap_vendor;
115 	uint32_t	ap_product;
116 	int		(*ap_match)(const struct pci_attach_args *);
117 	int		(*ap_attach)(struct device *, struct device *, void *);
118 } agp_products[] = {
119 #if NAGP_ALI > 0
120 	{ PCI_VENDOR_ALI,	-1,
121 	  NULL,			agp_ali_attach },
122 #endif
123 
124 #if NAGP_AMD > 0
125 	{ PCI_VENDOR_AMD,	-1,
126 	  agp_amd_match,	agp_amd_attach },
127 #endif
128 
129 #if NAGP_I810 > 0
130 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
131 	  NULL,			agp_i810_attach },
132 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
133 	  NULL,			agp_i810_attach },
134 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
135 	  NULL,			agp_i810_attach },
136 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
137 	  NULL,			agp_i810_attach },
138 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
139 	  NULL,			agp_i810_attach },
140 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
141 	  NULL,			agp_i810_attach },
142 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
143 	  NULL,			agp_i810_attach },
144 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
145 	  NULL,			agp_i810_attach },
146 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
147 	  NULL,			agp_i810_attach },
148 #endif
149 
150 #if NAGP_INTEL > 0
151 	{ PCI_VENDOR_INTEL,	-1,
152 	  NULL,			agp_intel_attach },
153 #endif
154 
155 #if NAGP_SIS > 0
156 	{ PCI_VENDOR_SIS,	-1,
157 	  NULL,			agp_sis_attach },
158 #endif
159 
160 #if NAGP_VIA > 0
161 	{ PCI_VENDOR_VIATECH,	-1,
162 	  NULL,			agp_via_attach },
163 #endif
164 
165 	{ 0,			0,
166 	  NULL,			NULL },
167 };
168 
169 static const struct agp_product *
170 agp_lookup(const struct pci_attach_args *pa)
171 {
172 	const struct agp_product *ap;
173 
174 	/* First find the vendor. */
175 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
176 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
177 			break;
178 	}
179 
180 	if (ap->ap_attach == NULL)
181 		return (NULL);
182 
183 	/* Now find the product within the vendor's domain. */
184 	for (; ap->ap_attach != NULL; ap++) {
185 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
186 			/* Ran out of this vendor's section of the table. */
187 			return (NULL);
188 		}
189 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
190 			/* Exact match. */
191 			break;
192 		}
193 		if (ap->ap_product == (uint32_t) -1) {
194 			/* Wildcard match. */
195 			break;
196 		}
197 	}
198 
199 	if (ap->ap_attach == NULL)
200 		return (NULL);
201 
202 	/* Now let the product-specific driver filter the match. */
203 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
204 		return (NULL);
205 
206 	return (ap);
207 }
208 
209 static int
210 agpmatch(struct device *parent, struct cfdata *match, void *aux)
211 {
212 	struct agpbus_attach_args *apa = aux;
213 	struct pci_attach_args *pa = &apa->apa_pci_args;
214 
215 	if (agp_lookup(pa) == NULL)
216 		return (0);
217 
218 	return (1);
219 }
220 
221 static const int agp_max[][2] = {
222 	{0,	0},
223 	{32,	4},
224 	{64,	28},
225 	{128,	96},
226 	{256,	204},
227 	{512,	440},
228 	{1024,	942},
229 	{2048,	1920},
230 	{4096,	3932}
231 };
232 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
233 
234 static void
235 agpattach(struct device *parent, struct device *self, void *aux)
236 {
237 	struct agpbus_attach_args *apa = aux;
238 	struct pci_attach_args *pa = &apa->apa_pci_args;
239 	struct agp_softc *sc = (void *)self;
240 	const struct agp_product *ap;
241 	int memsize, i, ret;
242 
243 	ap = agp_lookup(pa);
244 	if (ap == NULL) {
245 		printf("\n");
246 		panic("agpattach: impossible");
247 	}
248 
249 	aprint_naive(": AGP controller\n");
250 
251 	sc->as_dmat = pa->pa_dmat;
252 	sc->as_pc = pa->pa_pc;
253 	sc->as_tag = pa->pa_tag;
254 	sc->as_id = pa->pa_id;
255 
256 	/*
257 	 * Work out an upper bound for agp memory allocation. This
258 	 * uses a heurisitc table from the Linux driver.
259 	 */
260 	memsize = ptoa(physmem) >> 20;
261 	for (i = 0; i < agp_max_size; i++) {
262 		if (memsize <= agp_max[i][0])
263 			break;
264 	}
265 	if (i == agp_max_size)
266 		i = agp_max_size - 1;
267 	sc->as_maxmem = agp_max[i][1] << 20U;
268 
269 	/*
270 	 * The lock is used to prevent re-entry to
271 	 * agp_generic_bind_memory() since that function can sleep.
272 	 */
273 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
274 
275 	TAILQ_INIT(&sc->as_memory);
276 
277 	ret = (*ap->ap_attach)(parent, self, pa);
278 	if (ret == 0)
279 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
280 		    (unsigned long)sc->as_apaddr,
281 		    (unsigned long)AGP_GET_APERTURE(sc));
282 	else
283 		sc->as_chipc = NULL;
284 }
285 
286 CFATTACH_DECL(agp, sizeof(struct agp_softc),
287     agpmatch, agpattach, NULL, NULL);
288 
289 int
290 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
291 {
292 	/*
293 	 * Find the aperture. Don't map it (yet), this would
294 	 * eat KVA.
295 	 */
296 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE,
297 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
298 	    &sc->as_apflags) != 0)
299 		return ENXIO;
300 
301 	sc->as_apt = pa->pa_memt;
302 
303 	return 0;
304 }
305 
306 struct agp_gatt *
307 agp_alloc_gatt(struct agp_softc *sc)
308 {
309 	u_int32_t apsize = AGP_GET_APERTURE(sc);
310 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
311 	struct agp_gatt *gatt;
312 	int dummyseg;
313 
314 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
315 	if (!gatt)
316 		return NULL;
317 	gatt->ag_entries = entries;
318 
319 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
320 	    0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
321 	    &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
322 		return NULL;
323 
324 	gatt->ag_size = entries * sizeof(u_int32_t);
325 	memset(gatt->ag_virtual, 0, gatt->ag_size);
326 	agp_flush_cache();
327 
328 	return gatt;
329 }
330 
331 void
332 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
333 {
334 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
335 	    (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
336 	free(gatt, M_AGP);
337 }
338 
339 
340 int
341 agp_generic_detach(struct agp_softc *sc)
342 {
343 	lockmgr(&sc->as_lock, LK_DRAIN, 0);
344 	agp_flush_cache();
345 	return 0;
346 }
347 
348 static int
349 agpdev_match(struct pci_attach_args *pa)
350 {
351 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
352 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
353 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
354 		    NULL, NULL))
355 		return 1;
356 
357 	return 0;
358 }
359 
360 int
361 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
362 {
363 	struct pci_attach_args pa;
364 	pcireg_t tstatus, mstatus;
365 	pcireg_t command;
366 	int rq, sba, fw, rate, capoff;
367 
368 	if (pci_find_device(&pa, agpdev_match) == 0 ||
369 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
370 	     &capoff, NULL) == 0) {
371 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
372 		return ENXIO;
373 	}
374 
375 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
376 	    sc->as_capoff + AGP_STATUS);
377 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
378 	    capoff + AGP_STATUS);
379 
380 	/* Set RQ to the min of mode, tstatus and mstatus */
381 	rq = AGP_MODE_GET_RQ(mode);
382 	if (AGP_MODE_GET_RQ(tstatus) < rq)
383 		rq = AGP_MODE_GET_RQ(tstatus);
384 	if (AGP_MODE_GET_RQ(mstatus) < rq)
385 		rq = AGP_MODE_GET_RQ(mstatus);
386 
387 	/* Set SBA if all three can deal with SBA */
388 	sba = (AGP_MODE_GET_SBA(tstatus)
389 	       & AGP_MODE_GET_SBA(mstatus)
390 	       & AGP_MODE_GET_SBA(mode));
391 
392 	/* Similar for FW */
393 	fw = (AGP_MODE_GET_FW(tstatus)
394 	       & AGP_MODE_GET_FW(mstatus)
395 	       & AGP_MODE_GET_FW(mode));
396 
397 	/* Figure out the max rate */
398 	rate = (AGP_MODE_GET_RATE(tstatus)
399 		& AGP_MODE_GET_RATE(mstatus)
400 		& AGP_MODE_GET_RATE(mode));
401 	if (rate & AGP_MODE_RATE_4x)
402 		rate = AGP_MODE_RATE_4x;
403 	else if (rate & AGP_MODE_RATE_2x)
404 		rate = AGP_MODE_RATE_2x;
405 	else
406 		rate = AGP_MODE_RATE_1x;
407 
408 	/* Construct the new mode word and tell the hardware */
409 	command = AGP_MODE_SET_RQ(0, rq);
410 	command = AGP_MODE_SET_SBA(command, sba);
411 	command = AGP_MODE_SET_FW(command, fw);
412 	command = AGP_MODE_SET_RATE(command, rate);
413 	command = AGP_MODE_SET_AGP(command, 1);
414 	pci_conf_write(sc->as_pc, sc->as_tag,
415 	    sc->as_capoff + AGP_COMMAND, command);
416 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
417 
418 	return 0;
419 }
420 
421 struct agp_memory *
422 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
423 {
424 	struct agp_memory *mem;
425 
426 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
427 		return 0;
428 
429 	if (sc->as_allocated + size > sc->as_maxmem)
430 		return 0;
431 
432 	if (type != 0) {
433 		printf("agp_generic_alloc_memory: unsupported type %d\n",
434 		       type);
435 		return 0;
436 	}
437 
438 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
439 	if (mem == NULL)
440 		return NULL;
441 
442 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
443 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
444 		free(mem, M_AGP);
445 		return NULL;
446 	}
447 
448 	mem->am_id = sc->as_nextid++;
449 	mem->am_size = size;
450 	mem->am_type = 0;
451 	mem->am_physical = 0;
452 	mem->am_offset = 0;
453 	mem->am_is_bound = 0;
454 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
455 	sc->as_allocated += size;
456 
457 	return mem;
458 }
459 
460 int
461 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
462 {
463 	if (mem->am_is_bound)
464 		return EBUSY;
465 
466 	sc->as_allocated -= mem->am_size;
467 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
468 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
469 	free(mem, M_AGP);
470 	return 0;
471 }
472 
473 int
474 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
475 			off_t offset)
476 {
477 	off_t i, k;
478 	bus_size_t done, j;
479 	int error;
480 	bus_dma_segment_t *segs, *seg;
481 	bus_addr_t pa;
482 	int contigpages, nseg;
483 
484 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
485 
486 	if (mem->am_is_bound) {
487 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
488 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
489 		return EINVAL;
490 	}
491 
492 	if (offset < 0
493 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
494 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
495 		printf("%s: binding memory at bad offset %#lx\n",
496 			      sc->as_dev.dv_xname, (unsigned long) offset);
497 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
498 		return EINVAL;
499 	}
500 
501 	/*
502 	 * XXXfvdl
503 	 * The memory here needs to be directly accessable from the
504 	 * AGP video card, so it should be allocated using bus_dma.
505 	 * However, it need not be contiguous, since individual pages
506 	 * are translated using the GATT.
507 	 *
508 	 * Using a large chunk of contiguous memory may get in the way
509 	 * of other subsystems that may need one, so we try to be friendly
510 	 * and ask for allocation in chunks of a minimum of 8 pages
511 	 * of contiguous memory on average, falling back to 4, 2 and 1
512 	 * if really needed. Larger chunks are preferred, since allocating
513 	 * a bus_dma_segment per page would be overkill.
514 	 */
515 
516 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
517 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
518 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
519 		if (segs == NULL) {
520 			lockmgr(&sc->as_lock, LK_RELEASE, 0);
521 			return ENOMEM;
522 		}
523 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
524 				     segs, nseg, &mem->am_nseg,
525 				     contigpages > 1 ?
526 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
527 			free(segs, M_AGP);
528 			continue;
529 		}
530 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
531 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
532 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
533 			free(segs, M_AGP);
534 			continue;
535 		}
536 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
537 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
538 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
539 			    mem->am_size);
540 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
541 			free(segs, M_AGP);
542 			continue;
543 		}
544 		mem->am_dmaseg = segs;
545 		break;
546 	}
547 
548 	if (contigpages == 0) {
549 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
550 		return ENOMEM;
551 	}
552 
553 
554 	/*
555 	 * Bind the individual pages and flush the chipset's
556 	 * TLB.
557 	 */
558 	done = 0;
559 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
560 		seg = &mem->am_dmamap->dm_segs[i];
561 		/*
562 		 * Install entries in the GATT, making sure that if
563 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
564 		 * aligned to PAGE_SIZE, we don't modify too many GATT
565 		 * entries.
566 		 */
567 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
568 		     j += AGP_PAGE_SIZE) {
569 			pa = seg->ds_addr + j;
570 			AGP_DPF("binding offset %#lx to pa %#lx\n",
571 				(unsigned long)(offset + done + j),
572 				(unsigned long)pa);
573 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
574 			if (error) {
575 				/*
576 				 * Bail out. Reverse all the mappings
577 				 * and unwire the pages.
578 				 */
579 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
580 					AGP_UNBIND_PAGE(sc, offset + k);
581 
582 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
583 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
584 						 mem->am_size);
585 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
586 						mem->am_nseg);
587 				free(mem->am_dmaseg, M_AGP);
588 				lockmgr(&sc->as_lock, LK_RELEASE, 0);
589 				return error;
590 			}
591 		}
592 		done += seg->ds_len;
593 	}
594 
595 	/*
596 	 * Flush the CPU cache since we are providing a new mapping
597 	 * for these pages.
598 	 */
599 	agp_flush_cache();
600 
601 	/*
602 	 * Make sure the chipset gets the new mappings.
603 	 */
604 	AGP_FLUSH_TLB(sc);
605 
606 	mem->am_offset = offset;
607 	mem->am_is_bound = 1;
608 
609 	lockmgr(&sc->as_lock, LK_RELEASE, 0);
610 
611 	return 0;
612 }
613 
614 int
615 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
616 {
617 	int i;
618 
619 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
620 
621 	if (!mem->am_is_bound) {
622 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
623 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
624 		return EINVAL;
625 	}
626 
627 
628 	/*
629 	 * Unbind the individual pages and flush the chipset's
630 	 * TLB. Unwire the pages so they can be swapped.
631 	 */
632 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
633 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
634 
635 	agp_flush_cache();
636 	AGP_FLUSH_TLB(sc);
637 
638 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
639 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
640 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
641 
642 	free(mem->am_dmaseg, M_AGP);
643 
644 	mem->am_offset = 0;
645 	mem->am_is_bound = 0;
646 
647 	lockmgr(&sc->as_lock, LK_RELEASE, 0);
648 
649 	return 0;
650 }
651 
652 /* Helper functions for implementing user/kernel api */
653 
654 static int
655 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
656 {
657 	if (sc->as_state != AGP_ACQUIRE_FREE)
658 		return EBUSY;
659 	sc->as_state = state;
660 
661 	return 0;
662 }
663 
664 static int
665 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
666 {
667 	struct agp_memory *mem;
668 
669 	if (sc->as_state == AGP_ACQUIRE_FREE)
670 		return 0;
671 
672 	if (sc->as_state != state)
673 		return EBUSY;
674 
675 	/*
676 	 * Clear out outstanding aperture mappings.
677 	 * (should not be necessary, done by caller)
678 	 */
679 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
680 		if (mem->am_is_bound) {
681 			printf("agp_release_helper: mem %d is bound\n",
682 			       mem->am_id);
683 			AGP_UNBIND_MEMORY(sc, mem);
684 		}
685 	}
686 
687 	sc->as_state = AGP_ACQUIRE_FREE;
688 	return 0;
689 }
690 
691 static struct agp_memory *
692 agp_find_memory(struct agp_softc *sc, int id)
693 {
694 	struct agp_memory *mem;
695 
696 	AGP_DPF("searching for memory block %d\n", id);
697 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
698 		AGP_DPF("considering memory block %d\n", mem->am_id);
699 		if (mem->am_id == id)
700 			return mem;
701 	}
702 	return 0;
703 }
704 
705 /* Implementation of the userland ioctl api */
706 
707 static int
708 agp_info_user(struct agp_softc *sc, agp_info *info)
709 {
710 	memset(info, 0, sizeof *info);
711 	info->bridge_id = sc->as_id;
712 	if (sc->as_capoff != 0)
713 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
714 					       sc->as_capoff + AGP_STATUS);
715 	else
716 		info->agp_mode = 0; /* i810 doesn't have real AGP */
717 	info->aper_base = sc->as_apaddr;
718 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
719 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
720 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
721 
722 	return 0;
723 }
724 
725 static int
726 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
727 {
728 	return AGP_ENABLE(sc, setup->agp_mode);
729 }
730 
731 static int
732 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
733 {
734 	struct agp_memory *mem;
735 
736 	mem = AGP_ALLOC_MEMORY(sc,
737 			       alloc->type,
738 			       alloc->pg_count << AGP_PAGE_SHIFT);
739 	if (mem) {
740 		alloc->key = mem->am_id;
741 		alloc->physical = mem->am_physical;
742 		return 0;
743 	} else {
744 		return ENOMEM;
745 	}
746 }
747 
748 static int
749 agp_deallocate_user(struct agp_softc *sc, int id)
750 {
751 	struct agp_memory *mem = agp_find_memory(sc, id);
752 
753 	if (mem) {
754 		AGP_FREE_MEMORY(sc, mem);
755 		return 0;
756 	} else {
757 		return ENOENT;
758 	}
759 }
760 
761 static int
762 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
763 {
764 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
765 
766 	if (!mem)
767 		return ENOENT;
768 
769 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
770 }
771 
772 static int
773 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
774 {
775 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
776 
777 	if (!mem)
778 		return ENOENT;
779 
780 	return AGP_UNBIND_MEMORY(sc, mem);
781 }
782 
783 static int
784 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
785 {
786 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
787 
788 	if (sc == NULL)
789 		return ENXIO;
790 
791 	if (sc->as_chipc == NULL)
792 		return ENXIO;
793 
794 	if (!sc->as_isopen)
795 		sc->as_isopen = 1;
796 	else
797 		return EBUSY;
798 
799 	return 0;
800 }
801 
802 static int
803 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
804 {
805 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
806 	struct agp_memory *mem;
807 
808 	/*
809 	 * Clear the GATT and force release on last close
810 	 */
811 	if (sc->as_state == AGP_ACQUIRE_USER) {
812 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
813 			if (mem->am_is_bound) {
814 				printf("agpclose: mem %d is bound\n",
815 				       mem->am_id);
816 				AGP_UNBIND_MEMORY(sc, mem);
817 			}
818 			/*
819 			 * XXX it is not documented, but if the protocol allows
820 			 * allocate->acquire->bind, it would be possible that
821 			 * memory ranges are allocated by the kernel here,
822 			 * which we shouldn't free. We'd have to keep track of
823 			 * the memory range's owner.
824 			 * The kernel API is unsed yet, so we get away with
825 			 * freeing all.
826 			 */
827 			AGP_FREE_MEMORY(sc, mem);
828 		}
829 		agp_release_helper(sc, AGP_ACQUIRE_USER);
830 	}
831 	sc->as_isopen = 0;
832 
833 	return 0;
834 }
835 
836 static int
837 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct lwp *l)
838 {
839 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
840 
841 	if (sc == NULL)
842 		return ENODEV;
843 
844 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
845 		return EPERM;
846 
847 	switch (cmd) {
848 	case AGPIOC_INFO:
849 		return agp_info_user(sc, (agp_info *) data);
850 
851 	case AGPIOC_ACQUIRE:
852 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
853 
854 	case AGPIOC_RELEASE:
855 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
856 
857 	case AGPIOC_SETUP:
858 		return agp_setup_user(sc, (agp_setup *)data);
859 
860 	case AGPIOC_ALLOCATE:
861 		return agp_allocate_user(sc, (agp_allocate *)data);
862 
863 	case AGPIOC_DEALLOCATE:
864 		return agp_deallocate_user(sc, *(int *) data);
865 
866 	case AGPIOC_BIND:
867 		return agp_bind_user(sc, (agp_bind *)data);
868 
869 	case AGPIOC_UNBIND:
870 		return agp_unbind_user(sc, (agp_unbind *)data);
871 
872 	}
873 
874 	return EINVAL;
875 }
876 
877 static paddr_t
878 agpmmap(dev_t dev, off_t offset, int prot)
879 {
880 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
881 
882 	if (offset > AGP_GET_APERTURE(sc))
883 		return -1;
884 
885 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
886 	    BUS_SPACE_MAP_LINEAR));
887 }
888 
889 const struct cdevsw agp_cdevsw = {
890 	agpopen, agpclose, noread, nowrite, agpioctl,
891 	    nostop, notty, nopoll, agpmmap, nokqfilter,
892 };
893 
894 /* Implementation of the kernel api */
895 
896 void *
897 agp_find_device(int unit)
898 {
899 	return device_lookup(&agp_cd, unit);
900 }
901 
902 enum agp_acquire_state
903 agp_state(void *devcookie)
904 {
905 	struct agp_softc *sc = devcookie;
906 	return sc->as_state;
907 }
908 
909 void
910 agp_get_info(void *devcookie, struct agp_info *info)
911 {
912 	struct agp_softc *sc = devcookie;
913 
914 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
915 	    sc->as_capoff + AGP_STATUS);
916 	info->ai_aperture_base = sc->as_apaddr;
917 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
918 	info->ai_memory_allowed = sc->as_maxmem;
919 	info->ai_memory_used = sc->as_allocated;
920 }
921 
922 int
923 agp_acquire(void *dev)
924 {
925 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
926 }
927 
928 int
929 agp_release(void *dev)
930 {
931 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
932 }
933 
934 int
935 agp_enable(void *dev, u_int32_t mode)
936 {
937 	struct agp_softc *sc = dev;
938 
939 	return AGP_ENABLE(sc, mode);
940 }
941 
942 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
943 {
944 	struct agp_softc *sc = dev;
945 
946 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
947 }
948 
949 void agp_free_memory(void *dev, void *handle)
950 {
951 	struct agp_softc *sc = dev;
952 	struct agp_memory *mem = (struct agp_memory *) handle;
953 	AGP_FREE_MEMORY(sc, mem);
954 }
955 
956 int agp_bind_memory(void *dev, void *handle, off_t offset)
957 {
958 	struct agp_softc *sc = dev;
959 	struct agp_memory *mem = (struct agp_memory *) handle;
960 
961 	return AGP_BIND_MEMORY(sc, mem, offset);
962 }
963 
964 int agp_unbind_memory(void *dev, void *handle)
965 {
966 	struct agp_softc *sc = dev;
967 	struct agp_memory *mem = (struct agp_memory *) handle;
968 
969 	return AGP_UNBIND_MEMORY(sc, mem);
970 }
971 
972 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
973 {
974 	struct agp_memory *mem = (struct agp_memory *) handle;
975 
976 	mi->ami_size = mem->am_size;
977 	mi->ami_physical = mem->am_physical;
978 	mi->ami_offset = mem->am_offset;
979 	mi->ami_is_bound = mem->am_is_bound;
980 }
981 
982 int
983 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
984 		 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
985 		 bus_dma_segment_t *seg, int nseg, int *rseg)
986 
987 {
988 	int error, level = 0;
989 
990 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
991 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
992 		goto out;
993 	level++;
994 
995 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
996 			BUS_DMA_NOWAIT | flags)) != 0)
997 		goto out;
998 	level++;
999 
1000 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1001 			BUS_DMA_NOWAIT, mapp)) != 0)
1002 		goto out;
1003 	level++;
1004 
1005 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1006 			BUS_DMA_NOWAIT)) != 0)
1007 		goto out;
1008 
1009 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1010 
1011 	return 0;
1012 out:
1013 	switch (level) {
1014 	case 3:
1015 		bus_dmamap_destroy(tag, *mapp);
1016 		/* FALLTHROUGH */
1017 	case 2:
1018 		bus_dmamem_unmap(tag, *vaddr, size);
1019 		/* FALLTHROUGH */
1020 	case 1:
1021 		bus_dmamem_free(tag, seg, *rseg);
1022 		break;
1023 	default:
1024 		break;
1025 	}
1026 
1027 	return error;
1028 }
1029 
1030 void
1031 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1032 		caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1033 {
1034 
1035 	bus_dmamap_unload(tag, map);
1036 	bus_dmamap_destroy(tag, map);
1037 	bus_dmamem_unmap(tag, vaddr, size);
1038 	bus_dmamem_free(tag, seg, nseg);
1039 }
1040