1 /* $NetBSD: agp.c,v 1.36 2005/12/11 12:22:48 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.36 2005/12/11 12:22:48 christos Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 81 #include <uvm/uvm_extern.h> 82 83 #include <dev/pci/pcireg.h> 84 #include <dev/pci/pcivar.h> 85 #include <dev/pci/agpvar.h> 86 #include <dev/pci/agpreg.h> 87 #include <dev/pci/pcidevs.h> 88 89 #include <machine/bus.h> 90 91 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 92 93 /* Helper functions for implementing chipset mini drivers. */ 94 /* XXXfvdl get rid of this one. */ 95 96 extern struct cfdriver agp_cd; 97 98 static int agp_info_user(struct agp_softc *, agp_info *); 99 static int agp_setup_user(struct agp_softc *, agp_setup *); 100 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 101 static int agp_deallocate_user(struct agp_softc *, int); 102 static int agp_bind_user(struct agp_softc *, agp_bind *); 103 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 104 static int agpdev_match(struct pci_attach_args *); 105 106 #include "agp_ali.h" 107 #include "agp_amd.h" 108 #include "agp_i810.h" 109 #include "agp_intel.h" 110 #include "agp_sis.h" 111 #include "agp_via.h" 112 113 const struct agp_product { 114 uint32_t ap_vendor; 115 uint32_t ap_product; 116 int (*ap_match)(const struct pci_attach_args *); 117 int (*ap_attach)(struct device *, struct device *, void *); 118 } agp_products[] = { 119 #if NAGP_ALI > 0 120 { PCI_VENDOR_ALI, -1, 121 NULL, agp_ali_attach }, 122 #endif 123 124 #if NAGP_AMD > 0 125 { PCI_VENDOR_AMD, -1, 126 agp_amd_match, agp_amd_attach }, 127 #endif 128 129 #if NAGP_I810 > 0 130 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 131 NULL, agp_i810_attach }, 132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 133 NULL, agp_i810_attach }, 134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 135 NULL, agp_i810_attach }, 136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 137 NULL, agp_i810_attach }, 138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 139 NULL, agp_i810_attach }, 140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 141 NULL, agp_i810_attach }, 142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 143 NULL, agp_i810_attach }, 144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 145 NULL, agp_i810_attach }, 146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 147 NULL, agp_i810_attach }, 148 #endif 149 150 #if NAGP_INTEL > 0 151 { PCI_VENDOR_INTEL, -1, 152 NULL, agp_intel_attach }, 153 #endif 154 155 #if NAGP_SIS > 0 156 { PCI_VENDOR_SIS, -1, 157 NULL, agp_sis_attach }, 158 #endif 159 160 #if NAGP_VIA > 0 161 { PCI_VENDOR_VIATECH, -1, 162 NULL, agp_via_attach }, 163 #endif 164 165 { 0, 0, 166 NULL, NULL }, 167 }; 168 169 static const struct agp_product * 170 agp_lookup(const struct pci_attach_args *pa) 171 { 172 const struct agp_product *ap; 173 174 /* First find the vendor. */ 175 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 176 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 177 break; 178 } 179 180 if (ap->ap_attach == NULL) 181 return (NULL); 182 183 /* Now find the product within the vendor's domain. */ 184 for (; ap->ap_attach != NULL; ap++) { 185 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 186 /* Ran out of this vendor's section of the table. */ 187 return (NULL); 188 } 189 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 190 /* Exact match. */ 191 break; 192 } 193 if (ap->ap_product == (uint32_t) -1) { 194 /* Wildcard match. */ 195 break; 196 } 197 } 198 199 if (ap->ap_attach == NULL) 200 return (NULL); 201 202 /* Now let the product-specific driver filter the match. */ 203 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 204 return (NULL); 205 206 return (ap); 207 } 208 209 static int 210 agpmatch(struct device *parent, struct cfdata *match, void *aux) 211 { 212 struct agpbus_attach_args *apa = aux; 213 struct pci_attach_args *pa = &apa->apa_pci_args; 214 215 if (agp_lookup(pa) == NULL) 216 return (0); 217 218 return (1); 219 } 220 221 static const int agp_max[][2] = { 222 {0, 0}, 223 {32, 4}, 224 {64, 28}, 225 {128, 96}, 226 {256, 204}, 227 {512, 440}, 228 {1024, 942}, 229 {2048, 1920}, 230 {4096, 3932} 231 }; 232 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 233 234 static void 235 agpattach(struct device *parent, struct device *self, void *aux) 236 { 237 struct agpbus_attach_args *apa = aux; 238 struct pci_attach_args *pa = &apa->apa_pci_args; 239 struct agp_softc *sc = (void *)self; 240 const struct agp_product *ap; 241 int memsize, i, ret; 242 243 ap = agp_lookup(pa); 244 if (ap == NULL) { 245 printf("\n"); 246 panic("agpattach: impossible"); 247 } 248 249 aprint_naive(": AGP controller\n"); 250 251 sc->as_dmat = pa->pa_dmat; 252 sc->as_pc = pa->pa_pc; 253 sc->as_tag = pa->pa_tag; 254 sc->as_id = pa->pa_id; 255 256 /* 257 * Work out an upper bound for agp memory allocation. This 258 * uses a heurisitc table from the Linux driver. 259 */ 260 memsize = ptoa(physmem) >> 20; 261 for (i = 0; i < agp_max_size; i++) { 262 if (memsize <= agp_max[i][0]) 263 break; 264 } 265 if (i == agp_max_size) 266 i = agp_max_size - 1; 267 sc->as_maxmem = agp_max[i][1] << 20U; 268 269 /* 270 * The lock is used to prevent re-entry to 271 * agp_generic_bind_memory() since that function can sleep. 272 */ 273 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); 274 275 TAILQ_INIT(&sc->as_memory); 276 277 ret = (*ap->ap_attach)(parent, self, pa); 278 if (ret == 0) 279 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 280 (unsigned long)sc->as_apaddr, 281 (unsigned long)AGP_GET_APERTURE(sc)); 282 else 283 sc->as_chipc = NULL; 284 } 285 286 CFATTACH_DECL(agp, sizeof(struct agp_softc), 287 agpmatch, agpattach, NULL, NULL); 288 289 int 290 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc) 291 { 292 /* 293 * Find the aperture. Don't map it (yet), this would 294 * eat KVA. 295 */ 296 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE, 297 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 298 &sc->as_apflags) != 0) 299 return ENXIO; 300 301 sc->as_apt = pa->pa_memt; 302 303 return 0; 304 } 305 306 struct agp_gatt * 307 agp_alloc_gatt(struct agp_softc *sc) 308 { 309 u_int32_t apsize = AGP_GET_APERTURE(sc); 310 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 311 struct agp_gatt *gatt; 312 int dummyseg; 313 314 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 315 if (!gatt) 316 return NULL; 317 gatt->ag_entries = entries; 318 319 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 320 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual, 321 &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0) 322 return NULL; 323 324 gatt->ag_size = entries * sizeof(u_int32_t); 325 memset(gatt->ag_virtual, 0, gatt->ag_size); 326 agp_flush_cache(); 327 328 return gatt; 329 } 330 331 void 332 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 333 { 334 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 335 (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 336 free(gatt, M_AGP); 337 } 338 339 340 int 341 agp_generic_detach(struct agp_softc *sc) 342 { 343 lockmgr(&sc->as_lock, LK_DRAIN, 0); 344 agp_flush_cache(); 345 return 0; 346 } 347 348 static int 349 agpdev_match(struct pci_attach_args *pa) 350 { 351 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 352 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 353 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 354 NULL, NULL)) 355 return 1; 356 357 return 0; 358 } 359 360 int 361 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 362 { 363 struct pci_attach_args pa; 364 pcireg_t tstatus, mstatus; 365 pcireg_t command; 366 int rq, sba, fw, rate, capoff; 367 368 if (pci_find_device(&pa, agpdev_match) == 0 || 369 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 370 &capoff, NULL) == 0) { 371 printf("%s: can't find display\n", sc->as_dev.dv_xname); 372 return ENXIO; 373 } 374 375 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 376 sc->as_capoff + AGP_STATUS); 377 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 378 capoff + AGP_STATUS); 379 380 /* Set RQ to the min of mode, tstatus and mstatus */ 381 rq = AGP_MODE_GET_RQ(mode); 382 if (AGP_MODE_GET_RQ(tstatus) < rq) 383 rq = AGP_MODE_GET_RQ(tstatus); 384 if (AGP_MODE_GET_RQ(mstatus) < rq) 385 rq = AGP_MODE_GET_RQ(mstatus); 386 387 /* Set SBA if all three can deal with SBA */ 388 sba = (AGP_MODE_GET_SBA(tstatus) 389 & AGP_MODE_GET_SBA(mstatus) 390 & AGP_MODE_GET_SBA(mode)); 391 392 /* Similar for FW */ 393 fw = (AGP_MODE_GET_FW(tstatus) 394 & AGP_MODE_GET_FW(mstatus) 395 & AGP_MODE_GET_FW(mode)); 396 397 /* Figure out the max rate */ 398 rate = (AGP_MODE_GET_RATE(tstatus) 399 & AGP_MODE_GET_RATE(mstatus) 400 & AGP_MODE_GET_RATE(mode)); 401 if (rate & AGP_MODE_RATE_4x) 402 rate = AGP_MODE_RATE_4x; 403 else if (rate & AGP_MODE_RATE_2x) 404 rate = AGP_MODE_RATE_2x; 405 else 406 rate = AGP_MODE_RATE_1x; 407 408 /* Construct the new mode word and tell the hardware */ 409 command = AGP_MODE_SET_RQ(0, rq); 410 command = AGP_MODE_SET_SBA(command, sba); 411 command = AGP_MODE_SET_FW(command, fw); 412 command = AGP_MODE_SET_RATE(command, rate); 413 command = AGP_MODE_SET_AGP(command, 1); 414 pci_conf_write(sc->as_pc, sc->as_tag, 415 sc->as_capoff + AGP_COMMAND, command); 416 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 417 418 return 0; 419 } 420 421 struct agp_memory * 422 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 423 { 424 struct agp_memory *mem; 425 426 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 427 return 0; 428 429 if (sc->as_allocated + size > sc->as_maxmem) 430 return 0; 431 432 if (type != 0) { 433 printf("agp_generic_alloc_memory: unsupported type %d\n", 434 type); 435 return 0; 436 } 437 438 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 439 if (mem == NULL) 440 return NULL; 441 442 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 443 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 444 free(mem, M_AGP); 445 return NULL; 446 } 447 448 mem->am_id = sc->as_nextid++; 449 mem->am_size = size; 450 mem->am_type = 0; 451 mem->am_physical = 0; 452 mem->am_offset = 0; 453 mem->am_is_bound = 0; 454 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 455 sc->as_allocated += size; 456 457 return mem; 458 } 459 460 int 461 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 462 { 463 if (mem->am_is_bound) 464 return EBUSY; 465 466 sc->as_allocated -= mem->am_size; 467 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 468 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 469 free(mem, M_AGP); 470 return 0; 471 } 472 473 int 474 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 475 off_t offset) 476 { 477 off_t i, k; 478 bus_size_t done, j; 479 int error; 480 bus_dma_segment_t *segs, *seg; 481 bus_addr_t pa; 482 int contigpages, nseg; 483 484 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); 485 486 if (mem->am_is_bound) { 487 printf("%s: memory already bound\n", sc->as_dev.dv_xname); 488 lockmgr(&sc->as_lock, LK_RELEASE, 0); 489 return EINVAL; 490 } 491 492 if (offset < 0 493 || (offset & (AGP_PAGE_SIZE - 1)) != 0 494 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 495 printf("%s: binding memory at bad offset %#lx\n", 496 sc->as_dev.dv_xname, (unsigned long) offset); 497 lockmgr(&sc->as_lock, LK_RELEASE, 0); 498 return EINVAL; 499 } 500 501 /* 502 * XXXfvdl 503 * The memory here needs to be directly accessable from the 504 * AGP video card, so it should be allocated using bus_dma. 505 * However, it need not be contiguous, since individual pages 506 * are translated using the GATT. 507 * 508 * Using a large chunk of contiguous memory may get in the way 509 * of other subsystems that may need one, so we try to be friendly 510 * and ask for allocation in chunks of a minimum of 8 pages 511 * of contiguous memory on average, falling back to 4, 2 and 1 512 * if really needed. Larger chunks are preferred, since allocating 513 * a bus_dma_segment per page would be overkill. 514 */ 515 516 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 517 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 518 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 519 if (segs == NULL) { 520 lockmgr(&sc->as_lock, LK_RELEASE, 0); 521 return ENOMEM; 522 } 523 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 524 segs, nseg, &mem->am_nseg, 525 contigpages > 1 ? 526 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 527 free(segs, M_AGP); 528 continue; 529 } 530 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 531 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 532 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 533 free(segs, M_AGP); 534 continue; 535 } 536 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 537 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 538 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 539 mem->am_size); 540 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 541 free(segs, M_AGP); 542 continue; 543 } 544 mem->am_dmaseg = segs; 545 break; 546 } 547 548 if (contigpages == 0) { 549 lockmgr(&sc->as_lock, LK_RELEASE, 0); 550 return ENOMEM; 551 } 552 553 554 /* 555 * Bind the individual pages and flush the chipset's 556 * TLB. 557 */ 558 done = 0; 559 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 560 seg = &mem->am_dmamap->dm_segs[i]; 561 /* 562 * Install entries in the GATT, making sure that if 563 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 564 * aligned to PAGE_SIZE, we don't modify too many GATT 565 * entries. 566 */ 567 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 568 j += AGP_PAGE_SIZE) { 569 pa = seg->ds_addr + j; 570 AGP_DPF("binding offset %#lx to pa %#lx\n", 571 (unsigned long)(offset + done + j), 572 (unsigned long)pa); 573 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 574 if (error) { 575 /* 576 * Bail out. Reverse all the mappings 577 * and unwire the pages. 578 */ 579 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 580 AGP_UNBIND_PAGE(sc, offset + k); 581 582 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 583 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 584 mem->am_size); 585 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 586 mem->am_nseg); 587 free(mem->am_dmaseg, M_AGP); 588 lockmgr(&sc->as_lock, LK_RELEASE, 0); 589 return error; 590 } 591 } 592 done += seg->ds_len; 593 } 594 595 /* 596 * Flush the CPU cache since we are providing a new mapping 597 * for these pages. 598 */ 599 agp_flush_cache(); 600 601 /* 602 * Make sure the chipset gets the new mappings. 603 */ 604 AGP_FLUSH_TLB(sc); 605 606 mem->am_offset = offset; 607 mem->am_is_bound = 1; 608 609 lockmgr(&sc->as_lock, LK_RELEASE, 0); 610 611 return 0; 612 } 613 614 int 615 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 616 { 617 int i; 618 619 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); 620 621 if (!mem->am_is_bound) { 622 printf("%s: memory is not bound\n", sc->as_dev.dv_xname); 623 lockmgr(&sc->as_lock, LK_RELEASE, 0); 624 return EINVAL; 625 } 626 627 628 /* 629 * Unbind the individual pages and flush the chipset's 630 * TLB. Unwire the pages so they can be swapped. 631 */ 632 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 633 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 634 635 agp_flush_cache(); 636 AGP_FLUSH_TLB(sc); 637 638 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 639 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 640 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 641 642 free(mem->am_dmaseg, M_AGP); 643 644 mem->am_offset = 0; 645 mem->am_is_bound = 0; 646 647 lockmgr(&sc->as_lock, LK_RELEASE, 0); 648 649 return 0; 650 } 651 652 /* Helper functions for implementing user/kernel api */ 653 654 static int 655 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 656 { 657 if (sc->as_state != AGP_ACQUIRE_FREE) 658 return EBUSY; 659 sc->as_state = state; 660 661 return 0; 662 } 663 664 static int 665 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 666 { 667 struct agp_memory *mem; 668 669 if (sc->as_state == AGP_ACQUIRE_FREE) 670 return 0; 671 672 if (sc->as_state != state) 673 return EBUSY; 674 675 /* 676 * Clear out outstanding aperture mappings. 677 * (should not be necessary, done by caller) 678 */ 679 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 680 if (mem->am_is_bound) { 681 printf("agp_release_helper: mem %d is bound\n", 682 mem->am_id); 683 AGP_UNBIND_MEMORY(sc, mem); 684 } 685 } 686 687 sc->as_state = AGP_ACQUIRE_FREE; 688 return 0; 689 } 690 691 static struct agp_memory * 692 agp_find_memory(struct agp_softc *sc, int id) 693 { 694 struct agp_memory *mem; 695 696 AGP_DPF("searching for memory block %d\n", id); 697 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 698 AGP_DPF("considering memory block %d\n", mem->am_id); 699 if (mem->am_id == id) 700 return mem; 701 } 702 return 0; 703 } 704 705 /* Implementation of the userland ioctl api */ 706 707 static int 708 agp_info_user(struct agp_softc *sc, agp_info *info) 709 { 710 memset(info, 0, sizeof *info); 711 info->bridge_id = sc->as_id; 712 if (sc->as_capoff != 0) 713 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 714 sc->as_capoff + AGP_STATUS); 715 else 716 info->agp_mode = 0; /* i810 doesn't have real AGP */ 717 info->aper_base = sc->as_apaddr; 718 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 719 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 720 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 721 722 return 0; 723 } 724 725 static int 726 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 727 { 728 return AGP_ENABLE(sc, setup->agp_mode); 729 } 730 731 static int 732 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 733 { 734 struct agp_memory *mem; 735 736 mem = AGP_ALLOC_MEMORY(sc, 737 alloc->type, 738 alloc->pg_count << AGP_PAGE_SHIFT); 739 if (mem) { 740 alloc->key = mem->am_id; 741 alloc->physical = mem->am_physical; 742 return 0; 743 } else { 744 return ENOMEM; 745 } 746 } 747 748 static int 749 agp_deallocate_user(struct agp_softc *sc, int id) 750 { 751 struct agp_memory *mem = agp_find_memory(sc, id); 752 753 if (mem) { 754 AGP_FREE_MEMORY(sc, mem); 755 return 0; 756 } else { 757 return ENOENT; 758 } 759 } 760 761 static int 762 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 763 { 764 struct agp_memory *mem = agp_find_memory(sc, bind->key); 765 766 if (!mem) 767 return ENOENT; 768 769 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 770 } 771 772 static int 773 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 774 { 775 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 776 777 if (!mem) 778 return ENOENT; 779 780 return AGP_UNBIND_MEMORY(sc, mem); 781 } 782 783 static int 784 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l) 785 { 786 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 787 788 if (sc == NULL) 789 return ENXIO; 790 791 if (sc->as_chipc == NULL) 792 return ENXIO; 793 794 if (!sc->as_isopen) 795 sc->as_isopen = 1; 796 else 797 return EBUSY; 798 799 return 0; 800 } 801 802 static int 803 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l) 804 { 805 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 806 struct agp_memory *mem; 807 808 /* 809 * Clear the GATT and force release on last close 810 */ 811 if (sc->as_state == AGP_ACQUIRE_USER) { 812 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 813 if (mem->am_is_bound) { 814 printf("agpclose: mem %d is bound\n", 815 mem->am_id); 816 AGP_UNBIND_MEMORY(sc, mem); 817 } 818 /* 819 * XXX it is not documented, but if the protocol allows 820 * allocate->acquire->bind, it would be possible that 821 * memory ranges are allocated by the kernel here, 822 * which we shouldn't free. We'd have to keep track of 823 * the memory range's owner. 824 * The kernel API is unsed yet, so we get away with 825 * freeing all. 826 */ 827 AGP_FREE_MEMORY(sc, mem); 828 } 829 agp_release_helper(sc, AGP_ACQUIRE_USER); 830 } 831 sc->as_isopen = 0; 832 833 return 0; 834 } 835 836 static int 837 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct lwp *l) 838 { 839 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 840 841 if (sc == NULL) 842 return ENODEV; 843 844 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 845 return EPERM; 846 847 switch (cmd) { 848 case AGPIOC_INFO: 849 return agp_info_user(sc, (agp_info *) data); 850 851 case AGPIOC_ACQUIRE: 852 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 853 854 case AGPIOC_RELEASE: 855 return agp_release_helper(sc, AGP_ACQUIRE_USER); 856 857 case AGPIOC_SETUP: 858 return agp_setup_user(sc, (agp_setup *)data); 859 860 case AGPIOC_ALLOCATE: 861 return agp_allocate_user(sc, (agp_allocate *)data); 862 863 case AGPIOC_DEALLOCATE: 864 return agp_deallocate_user(sc, *(int *) data); 865 866 case AGPIOC_BIND: 867 return agp_bind_user(sc, (agp_bind *)data); 868 869 case AGPIOC_UNBIND: 870 return agp_unbind_user(sc, (agp_unbind *)data); 871 872 } 873 874 return EINVAL; 875 } 876 877 static paddr_t 878 agpmmap(dev_t dev, off_t offset, int prot) 879 { 880 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 881 882 if (offset > AGP_GET_APERTURE(sc)) 883 return -1; 884 885 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 886 BUS_SPACE_MAP_LINEAR)); 887 } 888 889 const struct cdevsw agp_cdevsw = { 890 agpopen, agpclose, noread, nowrite, agpioctl, 891 nostop, notty, nopoll, agpmmap, nokqfilter, 892 }; 893 894 /* Implementation of the kernel api */ 895 896 void * 897 agp_find_device(int unit) 898 { 899 return device_lookup(&agp_cd, unit); 900 } 901 902 enum agp_acquire_state 903 agp_state(void *devcookie) 904 { 905 struct agp_softc *sc = devcookie; 906 return sc->as_state; 907 } 908 909 void 910 agp_get_info(void *devcookie, struct agp_info *info) 911 { 912 struct agp_softc *sc = devcookie; 913 914 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 915 sc->as_capoff + AGP_STATUS); 916 info->ai_aperture_base = sc->as_apaddr; 917 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 918 info->ai_memory_allowed = sc->as_maxmem; 919 info->ai_memory_used = sc->as_allocated; 920 } 921 922 int 923 agp_acquire(void *dev) 924 { 925 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 926 } 927 928 int 929 agp_release(void *dev) 930 { 931 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 932 } 933 934 int 935 agp_enable(void *dev, u_int32_t mode) 936 { 937 struct agp_softc *sc = dev; 938 939 return AGP_ENABLE(sc, mode); 940 } 941 942 void *agp_alloc_memory(void *dev, int type, vsize_t bytes) 943 { 944 struct agp_softc *sc = dev; 945 946 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 947 } 948 949 void agp_free_memory(void *dev, void *handle) 950 { 951 struct agp_softc *sc = dev; 952 struct agp_memory *mem = (struct agp_memory *) handle; 953 AGP_FREE_MEMORY(sc, mem); 954 } 955 956 int agp_bind_memory(void *dev, void *handle, off_t offset) 957 { 958 struct agp_softc *sc = dev; 959 struct agp_memory *mem = (struct agp_memory *) handle; 960 961 return AGP_BIND_MEMORY(sc, mem, offset); 962 } 963 964 int agp_unbind_memory(void *dev, void *handle) 965 { 966 struct agp_softc *sc = dev; 967 struct agp_memory *mem = (struct agp_memory *) handle; 968 969 return AGP_UNBIND_MEMORY(sc, mem); 970 } 971 972 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 973 { 974 struct agp_memory *mem = (struct agp_memory *) handle; 975 976 mi->ami_size = mem->am_size; 977 mi->ami_physical = mem->am_physical; 978 mi->ami_offset = mem->am_offset; 979 mi->ami_is_bound = mem->am_is_bound; 980 } 981 982 int 983 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 984 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr, 985 bus_dma_segment_t *seg, int nseg, int *rseg) 986 987 { 988 int error, level = 0; 989 990 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 991 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 992 goto out; 993 level++; 994 995 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 996 BUS_DMA_NOWAIT | flags)) != 0) 997 goto out; 998 level++; 999 1000 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1001 BUS_DMA_NOWAIT, mapp)) != 0) 1002 goto out; 1003 level++; 1004 1005 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1006 BUS_DMA_NOWAIT)) != 0) 1007 goto out; 1008 1009 *baddr = (*mapp)->dm_segs[0].ds_addr; 1010 1011 return 0; 1012 out: 1013 switch (level) { 1014 case 3: 1015 bus_dmamap_destroy(tag, *mapp); 1016 /* FALLTHROUGH */ 1017 case 2: 1018 bus_dmamem_unmap(tag, *vaddr, size); 1019 /* FALLTHROUGH */ 1020 case 1: 1021 bus_dmamem_free(tag, seg, *rseg); 1022 break; 1023 default: 1024 break; 1025 } 1026 1027 return error; 1028 } 1029 1030 void 1031 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1032 caddr_t vaddr, bus_dma_segment_t *seg, int nseg) 1033 { 1034 1035 bus_dmamap_unload(tag, map); 1036 bus_dmamap_destroy(tag, map); 1037 bus_dmamem_unmap(tag, vaddr, size); 1038 bus_dmamem_free(tag, seg, nseg); 1039 } 1040