1 /* $NetBSD: agp.c,v 1.59 2008/06/09 06:49:54 freza Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.59 2008/06/09 06:49:54 freza Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 static bool agp_resume(device_t PMF_FN_PROTO); 107 108 #include "agp_ali.h" 109 #include "agp_amd.h" 110 #include "agp_i810.h" 111 #include "agp_intel.h" 112 #include "agp_sis.h" 113 #include "agp_via.h" 114 #include "agp_amd64.h" 115 116 const struct agp_product { 117 uint32_t ap_vendor; 118 uint32_t ap_product; 119 int (*ap_match)(const struct pci_attach_args *); 120 int (*ap_attach)(device_t, device_t, void *); 121 } agp_products[] = { 122 #if NAGP_AMD64 > 0 123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689, 124 agp_amd64_match, agp_amd64_attach }, 125 #endif 126 127 #if NAGP_ALI > 0 128 { PCI_VENDOR_ALI, -1, 129 NULL, agp_ali_attach }, 130 #endif 131 132 #if NAGP_AMD64 > 0 133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 134 agp_amd64_match, agp_amd64_attach }, 135 #endif 136 137 #if NAGP_AMD > 0 138 { PCI_VENDOR_AMD, -1, 139 agp_amd_match, agp_amd_attach }, 140 #endif 141 142 #if NAGP_I810 > 0 143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 144 NULL, agp_i810_attach }, 145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 146 NULL, agp_i810_attach }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 148 NULL, agp_i810_attach }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 150 NULL, agp_i810_attach }, 151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 152 NULL, agp_i810_attach }, 153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 154 NULL, agp_i810_attach }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 156 NULL, agp_i810_attach }, 157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 158 NULL, agp_i810_attach }, 159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 160 NULL, agp_i810_attach }, 161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 162 NULL, agp_i810_attach }, 163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 164 NULL, agp_i810_attach }, 165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 166 NULL, agp_i810_attach }, 167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 168 NULL, agp_i810_attach }, 169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 170 NULL, agp_i810_attach }, 171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 172 NULL, agp_i810_attach }, 173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 174 NULL, agp_i810_attach }, 175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 176 NULL, agp_i810_attach }, 177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 178 NULL, agp_i810_attach }, 179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 180 NULL, agp_i810_attach }, 181 #endif 182 183 #if NAGP_INTEL > 0 184 { PCI_VENDOR_INTEL, -1, 185 NULL, agp_intel_attach }, 186 #endif 187 188 #if NAGP_AMD64 > 0 189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 190 agp_amd64_match, agp_amd64_attach }, 191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 192 agp_amd64_match, agp_amd64_attach }, 193 #endif 194 195 #if NAGP_AMD64 > 0 196 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 197 agp_amd64_match, agp_amd64_attach }, 198 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 199 agp_amd64_match, agp_amd64_attach }, 200 #endif 201 202 #if NAGP_SIS > 0 203 { PCI_VENDOR_SIS, -1, 204 NULL, agp_sis_attach }, 205 #endif 206 207 #if NAGP_AMD64 > 0 208 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 209 agp_amd64_match, agp_amd64_attach }, 210 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 211 agp_amd64_match, agp_amd64_attach }, 212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 213 agp_amd64_match, agp_amd64_attach }, 214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 215 agp_amd64_match, agp_amd64_attach }, 216 #endif 217 218 #if NAGP_VIA > 0 219 { PCI_VENDOR_VIATECH, -1, 220 NULL, agp_via_attach }, 221 #endif 222 223 { 0, 0, 224 NULL, NULL }, 225 }; 226 227 static const struct agp_product * 228 agp_lookup(const struct pci_attach_args *pa) 229 { 230 const struct agp_product *ap; 231 232 /* First find the vendor. */ 233 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 234 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 235 break; 236 } 237 238 if (ap->ap_attach == NULL) 239 return (NULL); 240 241 /* Now find the product within the vendor's domain. */ 242 for (; ap->ap_attach != NULL; ap++) { 243 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 244 /* Ran out of this vendor's section of the table. */ 245 return (NULL); 246 } 247 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 248 /* Exact match. */ 249 break; 250 } 251 if (ap->ap_product == (uint32_t) -1) { 252 /* Wildcard match. */ 253 break; 254 } 255 } 256 257 if (ap->ap_attach == NULL) 258 return (NULL); 259 260 /* Now let the product-specific driver filter the match. */ 261 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 262 return (NULL); 263 264 return (ap); 265 } 266 267 static int 268 agpmatch(device_t parent, cfdata_t match, void *aux) 269 { 270 struct agpbus_attach_args *apa = aux; 271 struct pci_attach_args *pa = &apa->apa_pci_args; 272 273 if (agp_lookup(pa) == NULL) 274 return (0); 275 276 return (1); 277 } 278 279 static const int agp_max[][2] = { 280 {0, 0}, 281 {32, 4}, 282 {64, 28}, 283 {128, 96}, 284 {256, 204}, 285 {512, 440}, 286 {1024, 942}, 287 {2048, 1920}, 288 {4096, 3932} 289 }; 290 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 291 292 static void 293 agpattach(device_t parent, device_t self, void *aux) 294 { 295 struct agpbus_attach_args *apa = aux; 296 struct pci_attach_args *pa = &apa->apa_pci_args; 297 struct agp_softc *sc = device_private(self); 298 const struct agp_product *ap; 299 int memsize, i, ret; 300 301 ap = agp_lookup(pa); 302 KASSERT(ap != NULL); 303 304 aprint_naive(": AGP controller\n"); 305 306 sc->as_dev = self; 307 sc->as_dmat = pa->pa_dmat; 308 sc->as_pc = pa->pa_pc; 309 sc->as_tag = pa->pa_tag; 310 sc->as_id = pa->pa_id; 311 312 /* 313 * Work out an upper bound for agp memory allocation. This 314 * uses a heuristic table from the Linux driver. 315 */ 316 memsize = ptoa(physmem) >> 20; 317 for (i = 0; i < agp_max_size; i++) { 318 if (memsize <= agp_max[i][0]) 319 break; 320 } 321 if (i == agp_max_size) 322 i = agp_max_size - 1; 323 sc->as_maxmem = agp_max[i][1] << 20U; 324 325 /* 326 * The mutex is used to prevent re-entry to 327 * agp_generic_bind_memory() since that function can sleep. 328 */ 329 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 330 331 TAILQ_INIT(&sc->as_memory); 332 333 ret = (*ap->ap_attach)(parent, self, pa); 334 if (ret == 0) 335 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 336 (unsigned long)sc->as_apaddr, 337 (unsigned long)AGP_GET_APERTURE(sc)); 338 else 339 sc->as_chipc = NULL; 340 341 if (!device_pmf_is_registered(self)) { 342 if (!pmf_device_register(self, NULL, agp_resume)) 343 aprint_error_dev(self, "couldn't establish power " 344 "handler\n"); 345 } 346 } 347 348 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc), 349 agpmatch, agpattach, NULL, NULL); 350 351 int 352 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 353 { 354 /* 355 * Find the aperture. Don't map it (yet), this would 356 * eat KVA. 357 */ 358 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 359 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 360 &sc->as_apflags) != 0) 361 return ENXIO; 362 363 sc->as_apt = pa->pa_memt; 364 365 return 0; 366 } 367 368 struct agp_gatt * 369 agp_alloc_gatt(struct agp_softc *sc) 370 { 371 u_int32_t apsize = AGP_GET_APERTURE(sc); 372 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 373 struct agp_gatt *gatt; 374 void *virtual; 375 int dummyseg; 376 377 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 378 if (!gatt) 379 return NULL; 380 gatt->ag_entries = entries; 381 382 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 383 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 384 &gatt->ag_dmaseg, 1, &dummyseg) != 0) 385 return NULL; 386 gatt->ag_virtual = (uint32_t *)virtual; 387 388 gatt->ag_size = entries * sizeof(u_int32_t); 389 memset(gatt->ag_virtual, 0, gatt->ag_size); 390 agp_flush_cache(); 391 392 return gatt; 393 } 394 395 void 396 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 397 { 398 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 399 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 400 free(gatt, M_AGP); 401 } 402 403 404 int 405 agp_generic_detach(struct agp_softc *sc) 406 { 407 mutex_destroy(&sc->as_mtx); 408 agp_flush_cache(); 409 return 0; 410 } 411 412 static int 413 agpdev_match(struct pci_attach_args *pa) 414 { 415 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 416 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 417 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 418 NULL, NULL)) 419 return 1; 420 421 return 0; 422 } 423 424 int 425 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 426 { 427 struct pci_attach_args pa; 428 pcireg_t tstatus, mstatus; 429 pcireg_t command; 430 int rq, sba, fw, rate, capoff; 431 432 if (pci_find_device(&pa, agpdev_match) == 0 || 433 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 434 &capoff, NULL) == 0) { 435 aprint_error_dev(sc->as_dev, "can't find display\n"); 436 return ENXIO; 437 } 438 439 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 440 sc->as_capoff + AGP_STATUS); 441 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 442 capoff + AGP_STATUS); 443 444 /* Set RQ to the min of mode, tstatus and mstatus */ 445 rq = AGP_MODE_GET_RQ(mode); 446 if (AGP_MODE_GET_RQ(tstatus) < rq) 447 rq = AGP_MODE_GET_RQ(tstatus); 448 if (AGP_MODE_GET_RQ(mstatus) < rq) 449 rq = AGP_MODE_GET_RQ(mstatus); 450 451 /* Set SBA if all three can deal with SBA */ 452 sba = (AGP_MODE_GET_SBA(tstatus) 453 & AGP_MODE_GET_SBA(mstatus) 454 & AGP_MODE_GET_SBA(mode)); 455 456 /* Similar for FW */ 457 fw = (AGP_MODE_GET_FW(tstatus) 458 & AGP_MODE_GET_FW(mstatus) 459 & AGP_MODE_GET_FW(mode)); 460 461 /* Figure out the max rate */ 462 rate = (AGP_MODE_GET_RATE(tstatus) 463 & AGP_MODE_GET_RATE(mstatus) 464 & AGP_MODE_GET_RATE(mode)); 465 if (rate & AGP_MODE_RATE_4x) 466 rate = AGP_MODE_RATE_4x; 467 else if (rate & AGP_MODE_RATE_2x) 468 rate = AGP_MODE_RATE_2x; 469 else 470 rate = AGP_MODE_RATE_1x; 471 472 /* Construct the new mode word and tell the hardware */ 473 command = AGP_MODE_SET_RQ(0, rq); 474 command = AGP_MODE_SET_SBA(command, sba); 475 command = AGP_MODE_SET_FW(command, fw); 476 command = AGP_MODE_SET_RATE(command, rate); 477 command = AGP_MODE_SET_AGP(command, 1); 478 pci_conf_write(sc->as_pc, sc->as_tag, 479 sc->as_capoff + AGP_COMMAND, command); 480 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 481 482 return 0; 483 } 484 485 struct agp_memory * 486 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 487 { 488 struct agp_memory *mem; 489 490 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 491 return 0; 492 493 if (sc->as_allocated + size > sc->as_maxmem) 494 return 0; 495 496 if (type != 0) { 497 printf("agp_generic_alloc_memory: unsupported type %d\n", 498 type); 499 return 0; 500 } 501 502 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 503 if (mem == NULL) 504 return NULL; 505 506 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 507 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 508 free(mem, M_AGP); 509 return NULL; 510 } 511 512 mem->am_id = sc->as_nextid++; 513 mem->am_size = size; 514 mem->am_type = 0; 515 mem->am_physical = 0; 516 mem->am_offset = 0; 517 mem->am_is_bound = 0; 518 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 519 sc->as_allocated += size; 520 521 return mem; 522 } 523 524 int 525 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 526 { 527 if (mem->am_is_bound) 528 return EBUSY; 529 530 sc->as_allocated -= mem->am_size; 531 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 532 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 533 free(mem, M_AGP); 534 return 0; 535 } 536 537 int 538 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 539 off_t offset) 540 { 541 off_t i, k; 542 bus_size_t done, j; 543 int error; 544 bus_dma_segment_t *segs, *seg; 545 bus_addr_t pa; 546 int contigpages, nseg; 547 548 mutex_enter(&sc->as_mtx); 549 550 if (mem->am_is_bound) { 551 aprint_error_dev(sc->as_dev, "memory already bound\n"); 552 mutex_exit(&sc->as_mtx); 553 return EINVAL; 554 } 555 556 if (offset < 0 557 || (offset & (AGP_PAGE_SIZE - 1)) != 0 558 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 559 aprint_error_dev(sc->as_dev, 560 "binding memory at bad offset %#lx\n", 561 (unsigned long) offset); 562 mutex_exit(&sc->as_mtx); 563 return EINVAL; 564 } 565 566 /* 567 * XXXfvdl 568 * The memory here needs to be directly accessable from the 569 * AGP video card, so it should be allocated using bus_dma. 570 * However, it need not be contiguous, since individual pages 571 * are translated using the GATT. 572 * 573 * Using a large chunk of contiguous memory may get in the way 574 * of other subsystems that may need one, so we try to be friendly 575 * and ask for allocation in chunks of a minimum of 8 pages 576 * of contiguous memory on average, falling back to 4, 2 and 1 577 * if really needed. Larger chunks are preferred, since allocating 578 * a bus_dma_segment per page would be overkill. 579 */ 580 581 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 582 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 583 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 584 if (segs == NULL) { 585 mutex_exit(&sc->as_mtx); 586 return ENOMEM; 587 } 588 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 589 segs, nseg, &mem->am_nseg, 590 contigpages > 1 ? 591 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 592 free(segs, M_AGP); 593 continue; 594 } 595 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 596 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 597 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 598 free(segs, M_AGP); 599 continue; 600 } 601 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 602 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 603 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 604 mem->am_size); 605 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 606 free(segs, M_AGP); 607 continue; 608 } 609 mem->am_dmaseg = segs; 610 break; 611 } 612 613 if (contigpages == 0) { 614 mutex_exit(&sc->as_mtx); 615 return ENOMEM; 616 } 617 618 619 /* 620 * Bind the individual pages and flush the chipset's 621 * TLB. 622 */ 623 done = 0; 624 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 625 seg = &mem->am_dmamap->dm_segs[i]; 626 /* 627 * Install entries in the GATT, making sure that if 628 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 629 * aligned to PAGE_SIZE, we don't modify too many GATT 630 * entries. 631 */ 632 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 633 j += AGP_PAGE_SIZE) { 634 pa = seg->ds_addr + j; 635 AGP_DPF(("binding offset %#lx to pa %#lx\n", 636 (unsigned long)(offset + done + j), 637 (unsigned long)pa)); 638 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 639 if (error) { 640 /* 641 * Bail out. Reverse all the mappings 642 * and unwire the pages. 643 */ 644 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 645 AGP_UNBIND_PAGE(sc, offset + k); 646 647 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 648 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 649 mem->am_size); 650 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 651 mem->am_nseg); 652 free(mem->am_dmaseg, M_AGP); 653 mutex_exit(&sc->as_mtx); 654 return error; 655 } 656 } 657 done += seg->ds_len; 658 } 659 660 /* 661 * Flush the CPU cache since we are providing a new mapping 662 * for these pages. 663 */ 664 agp_flush_cache(); 665 666 /* 667 * Make sure the chipset gets the new mappings. 668 */ 669 AGP_FLUSH_TLB(sc); 670 671 mem->am_offset = offset; 672 mem->am_is_bound = 1; 673 674 mutex_exit(&sc->as_mtx); 675 676 return 0; 677 } 678 679 int 680 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 681 { 682 int i; 683 684 mutex_enter(&sc->as_mtx); 685 686 if (!mem->am_is_bound) { 687 aprint_error_dev(sc->as_dev, "memory is not bound\n"); 688 mutex_exit(&sc->as_mtx); 689 return EINVAL; 690 } 691 692 693 /* 694 * Unbind the individual pages and flush the chipset's 695 * TLB. Unwire the pages so they can be swapped. 696 */ 697 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 698 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 699 700 agp_flush_cache(); 701 AGP_FLUSH_TLB(sc); 702 703 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 704 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 705 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 706 707 free(mem->am_dmaseg, M_AGP); 708 709 mem->am_offset = 0; 710 mem->am_is_bound = 0; 711 712 mutex_exit(&sc->as_mtx); 713 714 return 0; 715 } 716 717 /* Helper functions for implementing user/kernel api */ 718 719 static int 720 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 721 { 722 if (sc->as_state != AGP_ACQUIRE_FREE) 723 return EBUSY; 724 sc->as_state = state; 725 726 return 0; 727 } 728 729 static int 730 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 731 { 732 733 if (sc->as_state == AGP_ACQUIRE_FREE) 734 return 0; 735 736 if (sc->as_state != state) 737 return EBUSY; 738 739 sc->as_state = AGP_ACQUIRE_FREE; 740 return 0; 741 } 742 743 static struct agp_memory * 744 agp_find_memory(struct agp_softc *sc, int id) 745 { 746 struct agp_memory *mem; 747 748 AGP_DPF(("searching for memory block %d\n", id)); 749 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 750 AGP_DPF(("considering memory block %d\n", mem->am_id)); 751 if (mem->am_id == id) 752 return mem; 753 } 754 return 0; 755 } 756 757 /* Implementation of the userland ioctl api */ 758 759 static int 760 agp_info_user(struct agp_softc *sc, agp_info *info) 761 { 762 memset(info, 0, sizeof *info); 763 info->bridge_id = sc->as_id; 764 if (sc->as_capoff != 0) 765 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 766 sc->as_capoff + AGP_STATUS); 767 else 768 info->agp_mode = 0; /* i810 doesn't have real AGP */ 769 info->aper_base = sc->as_apaddr; 770 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 771 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 772 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 773 774 return 0; 775 } 776 777 static int 778 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 779 { 780 return AGP_ENABLE(sc, setup->agp_mode); 781 } 782 783 static int 784 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 785 { 786 struct agp_memory *mem; 787 788 mem = AGP_ALLOC_MEMORY(sc, 789 alloc->type, 790 alloc->pg_count << AGP_PAGE_SHIFT); 791 if (mem) { 792 alloc->key = mem->am_id; 793 alloc->physical = mem->am_physical; 794 return 0; 795 } else { 796 return ENOMEM; 797 } 798 } 799 800 static int 801 agp_deallocate_user(struct agp_softc *sc, int id) 802 { 803 struct agp_memory *mem = agp_find_memory(sc, id); 804 805 if (mem) { 806 AGP_FREE_MEMORY(sc, mem); 807 return 0; 808 } else { 809 return ENOENT; 810 } 811 } 812 813 static int 814 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 815 { 816 struct agp_memory *mem = agp_find_memory(sc, bind->key); 817 818 if (!mem) 819 return ENOENT; 820 821 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 822 } 823 824 static int 825 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 826 { 827 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 828 829 if (!mem) 830 return ENOENT; 831 832 return AGP_UNBIND_MEMORY(sc, mem); 833 } 834 835 static int 836 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l) 837 { 838 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 839 840 if (sc == NULL) 841 return ENXIO; 842 843 if (sc->as_chipc == NULL) 844 return ENXIO; 845 846 if (!sc->as_isopen) 847 sc->as_isopen = 1; 848 else 849 return EBUSY; 850 851 return 0; 852 } 853 854 static int 855 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l) 856 { 857 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 858 struct agp_memory *mem; 859 860 if (sc == NULL) 861 return ENODEV; 862 863 /* 864 * Clear the GATT and force release on last close 865 */ 866 if (sc->as_state == AGP_ACQUIRE_USER) { 867 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 868 if (mem->am_is_bound) { 869 printf("agpclose: mem %d is bound\n", 870 mem->am_id); 871 AGP_UNBIND_MEMORY(sc, mem); 872 } 873 /* 874 * XXX it is not documented, but if the protocol allows 875 * allocate->acquire->bind, it would be possible that 876 * memory ranges are allocated by the kernel here, 877 * which we shouldn't free. We'd have to keep track of 878 * the memory range's owner. 879 * The kernel API is unsed yet, so we get away with 880 * freeing all. 881 */ 882 AGP_FREE_MEMORY(sc, mem); 883 } 884 agp_release_helper(sc, AGP_ACQUIRE_USER); 885 } 886 sc->as_isopen = 0; 887 888 return 0; 889 } 890 891 static int 892 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 893 { 894 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 895 896 if (sc == NULL) 897 return ENODEV; 898 899 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 900 return EPERM; 901 902 switch (cmd) { 903 case AGPIOC_INFO: 904 return agp_info_user(sc, (agp_info *) data); 905 906 case AGPIOC_ACQUIRE: 907 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 908 909 case AGPIOC_RELEASE: 910 return agp_release_helper(sc, AGP_ACQUIRE_USER); 911 912 case AGPIOC_SETUP: 913 return agp_setup_user(sc, (agp_setup *)data); 914 915 case AGPIOC_ALLOCATE: 916 return agp_allocate_user(sc, (agp_allocate *)data); 917 918 case AGPIOC_DEALLOCATE: 919 return agp_deallocate_user(sc, *(int *) data); 920 921 case AGPIOC_BIND: 922 return agp_bind_user(sc, (agp_bind *)data); 923 924 case AGPIOC_UNBIND: 925 return agp_unbind_user(sc, (agp_unbind *)data); 926 927 } 928 929 return EINVAL; 930 } 931 932 static paddr_t 933 agpmmap(dev_t dev, off_t offset, int prot) 934 { 935 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 936 937 if (sc == NULL) 938 return ENODEV; 939 940 if (offset > AGP_GET_APERTURE(sc)) 941 return -1; 942 943 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 944 BUS_SPACE_MAP_LINEAR)); 945 } 946 947 const struct cdevsw agp_cdevsw = { 948 agpopen, agpclose, noread, nowrite, agpioctl, 949 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 950 }; 951 952 /* Implementation of the kernel api */ 953 954 void * 955 agp_find_device(int unit) 956 { 957 return device_lookup_private(&agp_cd, unit); 958 } 959 960 enum agp_acquire_state 961 agp_state(void *devcookie) 962 { 963 struct agp_softc *sc = devcookie; 964 965 return sc->as_state; 966 } 967 968 void 969 agp_get_info(void *devcookie, struct agp_info *info) 970 { 971 struct agp_softc *sc = devcookie; 972 973 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 974 sc->as_capoff + AGP_STATUS); 975 info->ai_aperture_base = sc->as_apaddr; 976 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 977 info->ai_memory_allowed = sc->as_maxmem; 978 info->ai_memory_used = sc->as_allocated; 979 } 980 981 int 982 agp_acquire(void *dev) 983 { 984 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 985 } 986 987 int 988 agp_release(void *dev) 989 { 990 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 991 } 992 993 int 994 agp_enable(void *dev, u_int32_t mode) 995 { 996 struct agp_softc *sc = dev; 997 998 return AGP_ENABLE(sc, mode); 999 } 1000 1001 void * 1002 agp_alloc_memory(void *dev, int type, vsize_t bytes) 1003 { 1004 struct agp_softc *sc = dev; 1005 1006 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 1007 } 1008 1009 void 1010 agp_free_memory(void *dev, void *handle) 1011 { 1012 struct agp_softc *sc = dev; 1013 struct agp_memory *mem = handle; 1014 1015 AGP_FREE_MEMORY(sc, mem); 1016 } 1017 1018 int 1019 agp_bind_memory(void *dev, void *handle, off_t offset) 1020 { 1021 struct agp_softc *sc = dev; 1022 struct agp_memory *mem = handle; 1023 1024 return AGP_BIND_MEMORY(sc, mem, offset); 1025 } 1026 1027 int 1028 agp_unbind_memory(void *dev, void *handle) 1029 { 1030 struct agp_softc *sc = dev; 1031 struct agp_memory *mem = handle; 1032 1033 return AGP_UNBIND_MEMORY(sc, mem); 1034 } 1035 1036 void 1037 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 1038 { 1039 struct agp_memory *mem = handle; 1040 1041 mi->ami_size = mem->am_size; 1042 mi->ami_physical = mem->am_physical; 1043 mi->ami_offset = mem->am_offset; 1044 mi->ami_is_bound = mem->am_is_bound; 1045 } 1046 1047 int 1048 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1049 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1050 bus_dma_segment_t *seg, int nseg, int *rseg) 1051 1052 { 1053 int error, level = 0; 1054 1055 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1056 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1057 goto out; 1058 level++; 1059 1060 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1061 BUS_DMA_NOWAIT | flags)) != 0) 1062 goto out; 1063 level++; 1064 1065 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1066 BUS_DMA_NOWAIT, mapp)) != 0) 1067 goto out; 1068 level++; 1069 1070 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1071 BUS_DMA_NOWAIT)) != 0) 1072 goto out; 1073 1074 *baddr = (*mapp)->dm_segs[0].ds_addr; 1075 1076 return 0; 1077 out: 1078 switch (level) { 1079 case 3: 1080 bus_dmamap_destroy(tag, *mapp); 1081 /* FALLTHROUGH */ 1082 case 2: 1083 bus_dmamem_unmap(tag, *vaddr, size); 1084 /* FALLTHROUGH */ 1085 case 1: 1086 bus_dmamem_free(tag, seg, *rseg); 1087 break; 1088 default: 1089 break; 1090 } 1091 1092 return error; 1093 } 1094 1095 void 1096 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1097 void *vaddr, bus_dma_segment_t *seg, int nseg) 1098 { 1099 bus_dmamap_unload(tag, map); 1100 bus_dmamap_destroy(tag, map); 1101 bus_dmamem_unmap(tag, vaddr, size); 1102 bus_dmamem_free(tag, seg, nseg); 1103 } 1104 1105 static bool 1106 agp_resume(device_t dv PMF_FN_ARGS) 1107 { 1108 agp_flush_cache(); 1109 1110 return true; 1111 } 1112