xref: /netbsd-src/sys/dev/pci/agp.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: agp.c,v 1.76 2010/11/13 13:52:04 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.76 2010/11/13 13:52:04 uebayasi Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87 
88 #include <sys/bus.h>
89 
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94 
95 extern struct cfdriver agp_cd;
96 
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agpdev_match(struct pci_attach_args *);
104 static bool agp_resume(device_t, const pmf_qual_t *);
105 
106 #include "agp_ali.h"
107 #include "agp_amd.h"
108 #include "agp_i810.h"
109 #include "agp_intel.h"
110 #include "agp_sis.h"
111 #include "agp_via.h"
112 #include "agp_amd64.h"
113 
114 const struct agp_product {
115 	uint32_t	ap_vendor;
116 	uint32_t	ap_product;
117 	int		(*ap_match)(const struct pci_attach_args *);
118 	int		(*ap_attach)(device_t, device_t, void *);
119 } agp_products[] = {
120 #if NAGP_AMD64 > 0
121 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
122 	  agp_amd64_match,	agp_amd64_attach },
123 #endif
124 
125 #if NAGP_ALI > 0
126 	{ PCI_VENDOR_ALI,	-1,
127 	  NULL,			agp_ali_attach },
128 #endif
129 
130 #if NAGP_AMD64 > 0
131 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
132 	  agp_amd64_match,	agp_amd64_attach },
133 #endif
134 
135 #if NAGP_AMD > 0
136 	{ PCI_VENDOR_AMD,	-1,
137 	  agp_amd_match,	agp_amd_attach },
138 #endif
139 
140 #if NAGP_I810 > 0
141 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
142 	  NULL,			agp_i810_attach },
143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
144 	  NULL,			agp_i810_attach },
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
186 	  NULL, 		agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
188 	  NULL, 		agp_i810_attach },
189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
190 	  NULL, 		agp_i810_attach },
191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
192 	  NULL, 		agp_i810_attach },
193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
194 	  NULL, 		agp_i810_attach },
195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
196 	  NULL, 		agp_i810_attach },
197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
198 	  NULL, 		agp_i810_attach },
199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
200 	  NULL, 		agp_i810_attach },
201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
202 	  NULL, 		agp_i810_attach },
203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
204 	  NULL, 		agp_i810_attach },
205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
206 	  NULL, 		agp_i810_attach },
207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
208 	  NULL, 		agp_i810_attach },
209 #endif
210 
211 #if NAGP_INTEL > 0
212 	{ PCI_VENDOR_INTEL,	-1,
213 	  NULL,			agp_intel_attach },
214 #endif
215 
216 #if NAGP_AMD64 > 0
217 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
218 	  agp_amd64_match,	agp_amd64_attach },
219 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
220 	  agp_amd64_match,	agp_amd64_attach },
221 #endif
222 
223 #if NAGP_AMD64 > 0
224 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
225 	  agp_amd64_match,	agp_amd64_attach },
226 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
227 	  agp_amd64_match,	agp_amd64_attach },
228 #endif
229 
230 #if NAGP_SIS > 0
231 	{ PCI_VENDOR_SIS,	-1,
232 	  NULL,			agp_sis_attach },
233 #endif
234 
235 #if NAGP_AMD64 > 0
236 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
237 	  agp_amd64_match,	agp_amd64_attach },
238 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
239 	  agp_amd64_match,	agp_amd64_attach },
240 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
241 	  agp_amd64_match,	agp_amd64_attach },
242 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
243 	  agp_amd64_match,	agp_amd64_attach },
244 #endif
245 
246 #if NAGP_VIA > 0
247 	{ PCI_VENDOR_VIATECH,	-1,
248 	  NULL,			agp_via_attach },
249 #endif
250 
251 	{ 0,			0,
252 	  NULL,			NULL },
253 };
254 
255 static const struct agp_product *
256 agp_lookup(const struct pci_attach_args *pa)
257 {
258 	const struct agp_product *ap;
259 
260 	/* First find the vendor. */
261 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
262 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
263 			break;
264 	}
265 
266 	if (ap->ap_attach == NULL)
267 		return (NULL);
268 
269 	/* Now find the product within the vendor's domain. */
270 	for (; ap->ap_attach != NULL; ap++) {
271 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
272 			/* Ran out of this vendor's section of the table. */
273 			return (NULL);
274 		}
275 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
276 			/* Exact match. */
277 			break;
278 		}
279 		if (ap->ap_product == (uint32_t) -1) {
280 			/* Wildcard match. */
281 			break;
282 		}
283 	}
284 
285 	if (ap->ap_attach == NULL)
286 		return (NULL);
287 
288 	/* Now let the product-specific driver filter the match. */
289 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
290 		return (NULL);
291 
292 	return (ap);
293 }
294 
295 static int
296 agpmatch(device_t parent, cfdata_t match, void *aux)
297 {
298 	struct agpbus_attach_args *apa = aux;
299 	struct pci_attach_args *pa = &apa->apa_pci_args;
300 
301 	if (agp_lookup(pa) == NULL)
302 		return (0);
303 
304 	return (1);
305 }
306 
307 static const int agp_max[][2] = {
308 	{0,	0},
309 	{32,	4},
310 	{64,	28},
311 	{128,	96},
312 	{256,	204},
313 	{512,	440},
314 	{1024,	942},
315 	{2048,	1920},
316 	{4096,	3932}
317 };
318 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
319 
320 static void
321 agpattach(device_t parent, device_t self, void *aux)
322 {
323 	struct agpbus_attach_args *apa = aux;
324 	struct pci_attach_args *pa = &apa->apa_pci_args;
325 	struct agp_softc *sc = device_private(self);
326 	const struct agp_product *ap;
327 	int memsize, i, ret;
328 
329 	ap = agp_lookup(pa);
330 	KASSERT(ap != NULL);
331 
332 	aprint_naive(": AGP controller\n");
333 
334 	sc->as_dev = self;
335 	sc->as_dmat = pa->pa_dmat;
336 	sc->as_pc = pa->pa_pc;
337 	sc->as_tag = pa->pa_tag;
338 	sc->as_id = pa->pa_id;
339 
340 	/*
341 	 * Work out an upper bound for agp memory allocation. This
342 	 * uses a heuristic table from the Linux driver.
343 	 */
344 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
345 	for (i = 0; i < agp_max_size; i++) {
346 		if (memsize <= agp_max[i][0])
347 			break;
348 	}
349 	if (i == agp_max_size)
350 		i = agp_max_size - 1;
351 	sc->as_maxmem = agp_max[i][1] << 20U;
352 
353 	/*
354 	 * The mutex is used to prevent re-entry to
355 	 * agp_generic_bind_memory() since that function can sleep.
356 	 */
357 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
358 
359 	TAILQ_INIT(&sc->as_memory);
360 
361 	ret = (*ap->ap_attach)(parent, self, pa);
362 	if (ret == 0)
363 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
364 		    (unsigned long)sc->as_apaddr,
365 		    (unsigned long)AGP_GET_APERTURE(sc));
366 	else
367 		sc->as_chipc = NULL;
368 
369 	if (!device_pmf_is_registered(self)) {
370 		if (!pmf_device_register(self, NULL, agp_resume))
371 			aprint_error_dev(self, "couldn't establish power "
372 			    "handler\n");
373 	}
374 }
375 
376 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
377     agpmatch, agpattach, NULL, NULL);
378 
379 int
380 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
381 {
382 	/*
383 	 * Find the aperture. Don't map it (yet), this would
384 	 * eat KVA.
385 	 */
386 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
387 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
388 	    &sc->as_apflags) != 0)
389 		return ENXIO;
390 
391 	sc->as_apt = pa->pa_memt;
392 
393 	return 0;
394 }
395 
396 struct agp_gatt *
397 agp_alloc_gatt(struct agp_softc *sc)
398 {
399 	u_int32_t apsize = AGP_GET_APERTURE(sc);
400 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
401 	struct agp_gatt *gatt;
402 	void *virtual;
403 	int dummyseg;
404 
405 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
406 	if (!gatt)
407 		return NULL;
408 	gatt->ag_entries = entries;
409 
410 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
411 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
412 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
413 		free(gatt, M_AGP);
414 		return NULL;
415 	}
416 	gatt->ag_virtual = (uint32_t *)virtual;
417 
418 	gatt->ag_size = entries * sizeof(u_int32_t);
419 	memset(gatt->ag_virtual, 0, gatt->ag_size);
420 	agp_flush_cache();
421 
422 	return gatt;
423 }
424 
425 void
426 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
427 {
428 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
429 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
430 	free(gatt, M_AGP);
431 }
432 
433 
434 int
435 agp_generic_detach(struct agp_softc *sc)
436 {
437 	mutex_destroy(&sc->as_mtx);
438 	agp_flush_cache();
439 	return 0;
440 }
441 
442 static int
443 agpdev_match(struct pci_attach_args *pa)
444 {
445 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
446 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
447 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
448 		    NULL, NULL))
449 		return 1;
450 
451 	return 0;
452 }
453 
454 int
455 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
456 {
457 	struct pci_attach_args pa;
458 	pcireg_t tstatus, mstatus;
459 	pcireg_t command;
460 	int rq, sba, fw, rate, capoff;
461 
462 	if (pci_find_device(&pa, agpdev_match) == 0 ||
463 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
464 	     &capoff, NULL) == 0) {
465 		aprint_error_dev(sc->as_dev, "can't find display\n");
466 		return ENXIO;
467 	}
468 
469 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
470 	    sc->as_capoff + AGP_STATUS);
471 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
472 	    capoff + AGP_STATUS);
473 
474 	/* Set RQ to the min of mode, tstatus and mstatus */
475 	rq = AGP_MODE_GET_RQ(mode);
476 	if (AGP_MODE_GET_RQ(tstatus) < rq)
477 		rq = AGP_MODE_GET_RQ(tstatus);
478 	if (AGP_MODE_GET_RQ(mstatus) < rq)
479 		rq = AGP_MODE_GET_RQ(mstatus);
480 
481 	/* Set SBA if all three can deal with SBA */
482 	sba = (AGP_MODE_GET_SBA(tstatus)
483 	       & AGP_MODE_GET_SBA(mstatus)
484 	       & AGP_MODE_GET_SBA(mode));
485 
486 	/* Similar for FW */
487 	fw = (AGP_MODE_GET_FW(tstatus)
488 	       & AGP_MODE_GET_FW(mstatus)
489 	       & AGP_MODE_GET_FW(mode));
490 
491 	/* Figure out the max rate */
492 	rate = (AGP_MODE_GET_RATE(tstatus)
493 		& AGP_MODE_GET_RATE(mstatus)
494 		& AGP_MODE_GET_RATE(mode));
495 	if (rate & AGP_MODE_RATE_4x)
496 		rate = AGP_MODE_RATE_4x;
497 	else if (rate & AGP_MODE_RATE_2x)
498 		rate = AGP_MODE_RATE_2x;
499 	else
500 		rate = AGP_MODE_RATE_1x;
501 
502 	/* Construct the new mode word and tell the hardware */
503 	command = AGP_MODE_SET_RQ(0, rq);
504 	command = AGP_MODE_SET_SBA(command, sba);
505 	command = AGP_MODE_SET_FW(command, fw);
506 	command = AGP_MODE_SET_RATE(command, rate);
507 	command = AGP_MODE_SET_AGP(command, 1);
508 	pci_conf_write(sc->as_pc, sc->as_tag,
509 	    sc->as_capoff + AGP_COMMAND, command);
510 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
511 
512 	return 0;
513 }
514 
515 struct agp_memory *
516 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
517 {
518 	struct agp_memory *mem;
519 
520 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
521 		return 0;
522 
523 	if (sc->as_allocated + size > sc->as_maxmem)
524 		return 0;
525 
526 	if (type != 0) {
527 		printf("agp_generic_alloc_memory: unsupported type %d\n",
528 		       type);
529 		return 0;
530 	}
531 
532 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
533 	if (mem == NULL)
534 		return NULL;
535 
536 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
537 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
538 		free(mem, M_AGP);
539 		return NULL;
540 	}
541 
542 	mem->am_id = sc->as_nextid++;
543 	mem->am_size = size;
544 	mem->am_type = 0;
545 	mem->am_physical = 0;
546 	mem->am_offset = 0;
547 	mem->am_is_bound = 0;
548 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
549 	sc->as_allocated += size;
550 
551 	return mem;
552 }
553 
554 int
555 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
556 {
557 	if (mem->am_is_bound)
558 		return EBUSY;
559 
560 	sc->as_allocated -= mem->am_size;
561 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
562 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
563 	free(mem, M_AGP);
564 	return 0;
565 }
566 
567 int
568 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
569 			off_t offset)
570 {
571 	off_t i, k;
572 	bus_size_t done, j;
573 	int error;
574 	bus_dma_segment_t *segs, *seg;
575 	bus_addr_t pa;
576 	int contigpages, nseg;
577 
578 	mutex_enter(&sc->as_mtx);
579 
580 	if (mem->am_is_bound) {
581 		aprint_error_dev(sc->as_dev, "memory already bound\n");
582 		mutex_exit(&sc->as_mtx);
583 		return EINVAL;
584 	}
585 
586 	if (offset < 0
587 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
588 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
589 		aprint_error_dev(sc->as_dev,
590 			      "binding memory at bad offset %#lx\n",
591 			      (unsigned long) offset);
592 		mutex_exit(&sc->as_mtx);
593 		return EINVAL;
594 	}
595 
596 	/*
597 	 * XXXfvdl
598 	 * The memory here needs to be directly accessable from the
599 	 * AGP video card, so it should be allocated using bus_dma.
600 	 * However, it need not be contiguous, since individual pages
601 	 * are translated using the GATT.
602 	 *
603 	 * Using a large chunk of contiguous memory may get in the way
604 	 * of other subsystems that may need one, so we try to be friendly
605 	 * and ask for allocation in chunks of a minimum of 8 pages
606 	 * of contiguous memory on average, falling back to 4, 2 and 1
607 	 * if really needed. Larger chunks are preferred, since allocating
608 	 * a bus_dma_segment per page would be overkill.
609 	 */
610 
611 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
612 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
613 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
614 		if (segs == NULL) {
615 			mutex_exit(&sc->as_mtx);
616 			return ENOMEM;
617 		}
618 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
619 				     segs, nseg, &mem->am_nseg,
620 				     contigpages > 1 ?
621 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
622 			free(segs, M_AGP);
623 			continue;
624 		}
625 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
626 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
627 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
628 			free(segs, M_AGP);
629 			continue;
630 		}
631 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
632 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
633 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
634 			    mem->am_size);
635 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
636 			free(segs, M_AGP);
637 			continue;
638 		}
639 		mem->am_dmaseg = segs;
640 		break;
641 	}
642 
643 	if (contigpages == 0) {
644 		mutex_exit(&sc->as_mtx);
645 		return ENOMEM;
646 	}
647 
648 
649 	/*
650 	 * Bind the individual pages and flush the chipset's
651 	 * TLB.
652 	 */
653 	done = 0;
654 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
655 		seg = &mem->am_dmamap->dm_segs[i];
656 		/*
657 		 * Install entries in the GATT, making sure that if
658 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
659 		 * aligned to PAGE_SIZE, we don't modify too many GATT
660 		 * entries.
661 		 */
662 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
663 		     j += AGP_PAGE_SIZE) {
664 			pa = seg->ds_addr + j;
665 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
666 				(unsigned long)(offset + done + j),
667 				(unsigned long)pa));
668 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
669 			if (error) {
670 				/*
671 				 * Bail out. Reverse all the mappings
672 				 * and unwire the pages.
673 				 */
674 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
675 					AGP_UNBIND_PAGE(sc, offset + k);
676 
677 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
678 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
679 						 mem->am_size);
680 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
681 						mem->am_nseg);
682 				free(mem->am_dmaseg, M_AGP);
683 				mutex_exit(&sc->as_mtx);
684 				return error;
685 			}
686 		}
687 		done += seg->ds_len;
688 	}
689 
690 	/*
691 	 * Flush the CPU cache since we are providing a new mapping
692 	 * for these pages.
693 	 */
694 	agp_flush_cache();
695 
696 	/*
697 	 * Make sure the chipset gets the new mappings.
698 	 */
699 	AGP_FLUSH_TLB(sc);
700 
701 	mem->am_offset = offset;
702 	mem->am_is_bound = 1;
703 
704 	mutex_exit(&sc->as_mtx);
705 
706 	return 0;
707 }
708 
709 int
710 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
711 {
712 	int i;
713 
714 	mutex_enter(&sc->as_mtx);
715 
716 	if (!mem->am_is_bound) {
717 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
718 		mutex_exit(&sc->as_mtx);
719 		return EINVAL;
720 	}
721 
722 
723 	/*
724 	 * Unbind the individual pages and flush the chipset's
725 	 * TLB. Unwire the pages so they can be swapped.
726 	 */
727 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
728 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
729 
730 	agp_flush_cache();
731 	AGP_FLUSH_TLB(sc);
732 
733 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
734 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
735 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
736 
737 	free(mem->am_dmaseg, M_AGP);
738 
739 	mem->am_offset = 0;
740 	mem->am_is_bound = 0;
741 
742 	mutex_exit(&sc->as_mtx);
743 
744 	return 0;
745 }
746 
747 /* Helper functions for implementing user/kernel api */
748 
749 static int
750 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
751 {
752 	if (sc->as_state != AGP_ACQUIRE_FREE)
753 		return EBUSY;
754 	sc->as_state = state;
755 
756 	return 0;
757 }
758 
759 static int
760 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
761 {
762 
763 	if (sc->as_state == AGP_ACQUIRE_FREE)
764 		return 0;
765 
766 	if (sc->as_state != state)
767 		return EBUSY;
768 
769 	sc->as_state = AGP_ACQUIRE_FREE;
770 	return 0;
771 }
772 
773 static struct agp_memory *
774 agp_find_memory(struct agp_softc *sc, int id)
775 {
776 	struct agp_memory *mem;
777 
778 	AGP_DPF(("searching for memory block %d\n", id));
779 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
780 		AGP_DPF(("considering memory block %d\n", mem->am_id));
781 		if (mem->am_id == id)
782 			return mem;
783 	}
784 	return 0;
785 }
786 
787 /* Implementation of the userland ioctl api */
788 
789 static int
790 agp_info_user(struct agp_softc *sc, agp_info *info)
791 {
792 	memset(info, 0, sizeof *info);
793 	info->bridge_id = sc->as_id;
794 	if (sc->as_capoff != 0)
795 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
796 					       sc->as_capoff + AGP_STATUS);
797 	else
798 		info->agp_mode = 0; /* i810 doesn't have real AGP */
799 	info->aper_base = sc->as_apaddr;
800 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
801 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
802 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
803 
804 	return 0;
805 }
806 
807 static int
808 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
809 {
810 	return AGP_ENABLE(sc, setup->agp_mode);
811 }
812 
813 static int
814 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
815 {
816 	struct agp_memory *mem;
817 
818 	mem = AGP_ALLOC_MEMORY(sc,
819 			       alloc->type,
820 			       alloc->pg_count << AGP_PAGE_SHIFT);
821 	if (mem) {
822 		alloc->key = mem->am_id;
823 		alloc->physical = mem->am_physical;
824 		return 0;
825 	} else {
826 		return ENOMEM;
827 	}
828 }
829 
830 static int
831 agp_deallocate_user(struct agp_softc *sc, int id)
832 {
833 	struct agp_memory *mem = agp_find_memory(sc, id);
834 
835 	if (mem) {
836 		AGP_FREE_MEMORY(sc, mem);
837 		return 0;
838 	} else {
839 		return ENOENT;
840 	}
841 }
842 
843 static int
844 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
845 {
846 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
847 
848 	if (!mem)
849 		return ENOENT;
850 
851 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
852 }
853 
854 static int
855 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
856 {
857 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
858 
859 	if (!mem)
860 		return ENOENT;
861 
862 	return AGP_UNBIND_MEMORY(sc, mem);
863 }
864 
865 static int
866 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
867 {
868 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
869 
870 	if (sc == NULL)
871 		return ENXIO;
872 
873 	if (sc->as_chipc == NULL)
874 		return ENXIO;
875 
876 	if (!sc->as_isopen)
877 		sc->as_isopen = 1;
878 	else
879 		return EBUSY;
880 
881 	return 0;
882 }
883 
884 static int
885 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
886 {
887 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
888 	struct agp_memory *mem;
889 
890 	if (sc == NULL)
891 		return ENODEV;
892 
893 	/*
894 	 * Clear the GATT and force release on last close
895 	 */
896 	if (sc->as_state == AGP_ACQUIRE_USER) {
897 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
898 			if (mem->am_is_bound) {
899 				printf("agpclose: mem %d is bound\n",
900 				       mem->am_id);
901 				AGP_UNBIND_MEMORY(sc, mem);
902 			}
903 			/*
904 			 * XXX it is not documented, but if the protocol allows
905 			 * allocate->acquire->bind, it would be possible that
906 			 * memory ranges are allocated by the kernel here,
907 			 * which we shouldn't free. We'd have to keep track of
908 			 * the memory range's owner.
909 			 * The kernel API is unsed yet, so we get away with
910 			 * freeing all.
911 			 */
912 			AGP_FREE_MEMORY(sc, mem);
913 		}
914 		agp_release_helper(sc, AGP_ACQUIRE_USER);
915 	}
916 	sc->as_isopen = 0;
917 
918 	return 0;
919 }
920 
921 static int
922 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
923 {
924 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
925 
926 	if (sc == NULL)
927 		return ENODEV;
928 
929 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
930 		return EPERM;
931 
932 	switch (cmd) {
933 	case AGPIOC_INFO:
934 		return agp_info_user(sc, (agp_info *) data);
935 
936 	case AGPIOC_ACQUIRE:
937 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
938 
939 	case AGPIOC_RELEASE:
940 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
941 
942 	case AGPIOC_SETUP:
943 		return agp_setup_user(sc, (agp_setup *)data);
944 
945 #ifdef __x86_64__
946 {
947 	/*
948 	 * Handle paddr_t change from 32 bit for non PAE kernels
949 	 * to 64 bit.
950 	 */
951 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
952 
953 	typedef struct _agp_oallocate {
954 		int key;		/* tag of allocation            */
955 		size_t pg_count;	/* number of pages              */
956 		uint32_t type;		/* 0 == normal, other devspec   */
957 		u_long physical;	/* device specific (some devices
958 					 * need a phys address of the
959 					 * actual page behind the gatt
960 					 * table)                        */
961 	} agp_oallocate;
962 
963 	case AGPIOC_OALLOCATE: {
964 		int ret;
965 		agp_allocate aga;
966 		agp_oallocate *oaga = data;
967 
968 		aga.type = oaga->type;
969 		aga.pg_count = oaga->pg_count;
970 
971 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
972 			oaga->key = aga.key;
973 			oaga->physical = (u_long)aga.physical;
974 		}
975 
976 		return ret;
977 	}
978 }
979 #endif
980 	case AGPIOC_ALLOCATE:
981 		return agp_allocate_user(sc, (agp_allocate *)data);
982 
983 	case AGPIOC_DEALLOCATE:
984 		return agp_deallocate_user(sc, *(int *) data);
985 
986 	case AGPIOC_BIND:
987 		return agp_bind_user(sc, (agp_bind *)data);
988 
989 	case AGPIOC_UNBIND:
990 		return agp_unbind_user(sc, (agp_unbind *)data);
991 
992 	}
993 
994 	return EINVAL;
995 }
996 
997 static paddr_t
998 agpmmap(dev_t dev, off_t offset, int prot)
999 {
1000 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1001 
1002 	if (sc == NULL)
1003 		return ENODEV;
1004 
1005 	if (offset > AGP_GET_APERTURE(sc))
1006 		return -1;
1007 
1008 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1009 	    BUS_SPACE_MAP_LINEAR));
1010 }
1011 
1012 const struct cdevsw agp_cdevsw = {
1013 	agpopen, agpclose, noread, nowrite, agpioctl,
1014 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
1015 };
1016 
1017 /* Implementation of the kernel api */
1018 
1019 void *
1020 agp_find_device(int unit)
1021 {
1022 	return device_lookup_private(&agp_cd, unit);
1023 }
1024 
1025 enum agp_acquire_state
1026 agp_state(void *devcookie)
1027 {
1028 	struct agp_softc *sc = devcookie;
1029 
1030 	return sc->as_state;
1031 }
1032 
1033 void
1034 agp_get_info(void *devcookie, struct agp_info *info)
1035 {
1036 	struct agp_softc *sc = devcookie;
1037 
1038 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1039 	    sc->as_capoff + AGP_STATUS);
1040 	info->ai_aperture_base = sc->as_apaddr;
1041 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
1042 	info->ai_memory_allowed = sc->as_maxmem;
1043 	info->ai_memory_used = sc->as_allocated;
1044 }
1045 
1046 int
1047 agp_acquire(void *dev)
1048 {
1049 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1050 }
1051 
1052 int
1053 agp_release(void *dev)
1054 {
1055 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1056 }
1057 
1058 int
1059 agp_enable(void *dev, u_int32_t mode)
1060 {
1061 	struct agp_softc *sc = dev;
1062 
1063 	return AGP_ENABLE(sc, mode);
1064 }
1065 
1066 void *
1067 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1068 {
1069 	struct agp_softc *sc = dev;
1070 
1071 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1072 }
1073 
1074 void
1075 agp_free_memory(void *dev, void *handle)
1076 {
1077 	struct agp_softc *sc = dev;
1078 	struct agp_memory *mem = handle;
1079 
1080 	AGP_FREE_MEMORY(sc, mem);
1081 }
1082 
1083 int
1084 agp_bind_memory(void *dev, void *handle, off_t offset)
1085 {
1086 	struct agp_softc *sc = dev;
1087 	struct agp_memory *mem = handle;
1088 
1089 	return AGP_BIND_MEMORY(sc, mem, offset);
1090 }
1091 
1092 int
1093 agp_unbind_memory(void *dev, void *handle)
1094 {
1095 	struct agp_softc *sc = dev;
1096 	struct agp_memory *mem = handle;
1097 
1098 	return AGP_UNBIND_MEMORY(sc, mem);
1099 }
1100 
1101 void
1102 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1103 {
1104 	struct agp_memory *mem = handle;
1105 
1106 	mi->ami_size = mem->am_size;
1107 	mi->ami_physical = mem->am_physical;
1108 	mi->ami_offset = mem->am_offset;
1109 	mi->ami_is_bound = mem->am_is_bound;
1110 }
1111 
1112 int
1113 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1114 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1115 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1116 
1117 {
1118 	int error, level = 0;
1119 
1120 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1121 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1122 		goto out;
1123 	level++;
1124 
1125 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1126 			BUS_DMA_NOWAIT | flags)) != 0)
1127 		goto out;
1128 	level++;
1129 
1130 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1131 			BUS_DMA_NOWAIT, mapp)) != 0)
1132 		goto out;
1133 	level++;
1134 
1135 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1136 			BUS_DMA_NOWAIT)) != 0)
1137 		goto out;
1138 
1139 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1140 
1141 	return 0;
1142 out:
1143 	switch (level) {
1144 	case 3:
1145 		bus_dmamap_destroy(tag, *mapp);
1146 		/* FALLTHROUGH */
1147 	case 2:
1148 		bus_dmamem_unmap(tag, *vaddr, size);
1149 		/* FALLTHROUGH */
1150 	case 1:
1151 		bus_dmamem_free(tag, seg, *rseg);
1152 		break;
1153 	default:
1154 		break;
1155 	}
1156 
1157 	return error;
1158 }
1159 
1160 void
1161 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1162 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1163 {
1164 	bus_dmamap_unload(tag, map);
1165 	bus_dmamap_destroy(tag, map);
1166 	bus_dmamem_unmap(tag, vaddr, size);
1167 	bus_dmamem_free(tag, seg, nseg);
1168 }
1169 
1170 static bool
1171 agp_resume(device_t dv, const pmf_qual_t *qual)
1172 {
1173 	agp_flush_cache();
1174 
1175 	return true;
1176 }
1177