xref: /netbsd-src/sys/dev/pci/agp.c (revision b8c616269f5ebf18ab2e35cb8099d683130a177c)
1 /*	$NetBSD: agp.c,v 1.25 2003/02/01 06:23:38 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.25 2003/02/01 06:23:38 thorpej Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/agpvar.h>
86 #include <dev/pci/agpreg.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <machine/bus.h>
90 
91 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
92 
93 /* Helper functions for implementing chipset mini drivers. */
94 /* XXXfvdl get rid of this one. */
95 
96 extern struct cfdriver agp_cd;
97 
98 dev_type_open(agpopen);
99 dev_type_close(agpclose);
100 dev_type_ioctl(agpioctl);
101 dev_type_mmap(agpmmap);
102 
103 const struct cdevsw agp_cdevsw = {
104 	agpopen, agpclose, noread, nowrite, agpioctl,
105 	nostop, notty, nopoll, agpmmap, nokqfilter,
106 };
107 
108 int agpmatch(struct device *, struct cfdata *, void *);
109 void agpattach(struct device *, struct device *, void *);
110 
111 CFATTACH_DECL(agp, sizeof(struct agp_softc),
112     agpmatch, agpattach, NULL, NULL);
113 
114 static int agp_info_user(struct agp_softc *, agp_info *);
115 static int agp_setup_user(struct agp_softc *, agp_setup *);
116 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
117 static int agp_deallocate_user(struct agp_softc *, int);
118 static int agp_bind_user(struct agp_softc *, agp_bind *);
119 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
120 static int agpdev_match(struct pci_attach_args *);
121 
122 #include "agp_ali.h"
123 #include "agp_amd.h"
124 #include "agp_i810.h"
125 #include "agp_intel.h"
126 #include "agp_sis.h"
127 #include "agp_via.h"
128 
129 const struct agp_product {
130 	uint32_t	ap_vendor;
131 	uint32_t	ap_product;
132 	int		(*ap_match)(const struct pci_attach_args *);
133 	int		(*ap_attach)(struct device *, struct device *, void *);
134 } agp_products[] = {
135 #if NAGP_ALI > 0
136 	{ PCI_VENDOR_ALI,	-1,
137 	  NULL,			agp_ali_attach },
138 #endif
139 
140 #if NAGP_AMD > 0
141 	{ PCI_VENDOR_AMD,	-1,
142 	  agp_amd_match,	agp_amd_attach },
143 #endif
144 
145 #if NAGP_I810 > 0
146 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
147 	  NULL,			agp_i810_attach },
148 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
149 	  NULL,			agp_i810_attach },
150 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
151 	  NULL,			agp_i810_attach },
152 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
153 	  NULL,			agp_i810_attach },
154 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
155 	  NULL,			agp_i810_attach },
156 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
157 	  NULL,			agp_i810_attach },
158 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
159 	  NULL,			agp_i810_attach },
160 #endif
161 
162 #if NAGP_INTEL > 0
163 	{ PCI_VENDOR_INTEL,	-1,
164 	  NULL,			agp_intel_attach },
165 #endif
166 
167 #if NAGP_SIS > 0
168 	{ PCI_VENDOR_SIS,	-1,
169 	  NULL,			agp_sis_attach },
170 #endif
171 
172 #if NAGP_VIA > 0
173 	{ PCI_VENDOR_VIATECH,	-1,
174 	  NULL,			agp_via_attach },
175 #endif
176 
177 	{ 0,			0,
178 	  NULL,			NULL },
179 };
180 
181 static const struct agp_product *
182 agp_lookup(const struct pci_attach_args *pa)
183 {
184 	const struct agp_product *ap;
185 
186 	/* First find the vendor. */
187 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
188 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
189 			break;
190 	}
191 
192 	if (ap->ap_attach == NULL)
193 		return (NULL);
194 
195 	/* Now find the product within the vendor's domain. */
196 	for (; ap->ap_attach != NULL; ap++) {
197 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
198 			/* Ran out of this vendor's section of the table. */
199 			return (NULL);
200 		}
201 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
202 			/* Exact match. */
203 			break;
204 		}
205 		if (ap->ap_product == (uint32_t) -1) {
206 			/* Wildcard match. */
207 			break;
208 		}
209 	}
210 
211 	if (ap->ap_attach == NULL)
212 		return (NULL);
213 
214 	/* Now let the product-specific driver filter the match. */
215 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
216 		return (NULL);
217 
218 	return (ap);
219 }
220 
221 int
222 agpmatch(struct device *parent, struct cfdata *match, void *aux)
223 {
224 	struct agpbus_attach_args *apa = aux;
225 	struct pci_attach_args *pa = &apa->apa_pci_args;
226 
227 	if (strcmp(apa->apa_busname, "agp") != 0)
228 		return (0);
229 
230 	if (agp_lookup(pa) == NULL)
231 		return (0);
232 
233 	return (1);
234 }
235 
236 static int agp_max[][2] = {
237 	{0,	0},
238 	{32,	4},
239 	{64,	28},
240 	{128,	96},
241 	{256,	204},
242 	{512,	440},
243 	{1024,	942},
244 	{2048,	1920},
245 	{4096,	3932}
246 };
247 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
248 
249 void
250 agpattach(struct device *parent, struct device *self, void *aux)
251 {
252 	struct agpbus_attach_args *apa = aux;
253 	struct pci_attach_args *pa = &apa->apa_pci_args;
254 	struct agp_softc *sc = (void *)self;
255 	const struct agp_product *ap;
256 	int memsize, i, ret;
257 
258 	ap = agp_lookup(pa);
259 	if (ap == NULL) {
260 		printf("\n");
261 		panic("agpattach: impossible");
262 	}
263 
264 	aprint_naive(": AGP controller\n");
265 
266 	sc->as_dmat = pa->pa_dmat;
267 	sc->as_pc = pa->pa_pc;
268 	sc->as_tag = pa->pa_tag;
269 	sc->as_id = pa->pa_id;
270 
271 	/*
272 	 * Work out an upper bound for agp memory allocation. This
273 	 * uses a heurisitc table from the Linux driver.
274 	 */
275 	memsize = ptoa(physmem) >> 20;
276 	for (i = 0; i < agp_max_size; i++) {
277 		if (memsize <= agp_max[i][0])
278 			break;
279 	}
280 	if (i == agp_max_size)
281 		i = agp_max_size - 1;
282 	sc->as_maxmem = agp_max[i][1] << 20U;
283 
284 	/*
285 	 * The lock is used to prevent re-entry to
286 	 * agp_generic_bind_memory() since that function can sleep.
287 	 */
288 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
289 
290 	TAILQ_INIT(&sc->as_memory);
291 
292 	ret = (*ap->ap_attach)(parent, self, pa);
293 	if (ret == 0)
294 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
295 		    (unsigned long)sc->as_apaddr,
296 		    (unsigned long)AGP_GET_APERTURE(sc));
297 	else
298 		sc->as_chipc = NULL;
299 }
300 int
301 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc)
302 {
303 	/*
304 	 * Find the aperture. Don't map it (yet), this would
305 	 * eat KVA.
306 	 */
307 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE,
308 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
309 	    &sc->as_apflags) != 0)
310 		return ENXIO;
311 
312 	sc->as_apt = pa->pa_memt;
313 
314 	return 0;
315 }
316 
317 struct agp_gatt *
318 agp_alloc_gatt(struct agp_softc *sc)
319 {
320 	u_int32_t apsize = AGP_GET_APERTURE(sc);
321 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
322 	struct agp_gatt *gatt;
323 	int dummyseg;
324 
325 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
326 	if (!gatt)
327 		return NULL;
328 	gatt->ag_entries = entries;
329 
330 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
331 	    0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual,
332 	    &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0)
333 		return NULL;
334 
335 	gatt->ag_size = entries * sizeof(u_int32_t);
336 	memset(gatt->ag_virtual, 0, gatt->ag_size);
337 	agp_flush_cache();
338 
339 	return gatt;
340 }
341 
342 void
343 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
344 {
345 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
346 	    (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
347 	free(gatt, M_AGP);
348 }
349 
350 
351 int
352 agp_generic_detach(struct agp_softc *sc)
353 {
354 	lockmgr(&sc->as_lock, LK_DRAIN, 0);
355 	agp_flush_cache();
356 	return 0;
357 }
358 
359 static int
360 agpdev_match(struct pci_attach_args *pa)
361 {
362 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
363 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
364 		return 1;
365 
366 	return 0;
367 }
368 
369 int
370 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
371 {
372 	struct pci_attach_args pa;
373 	pcireg_t tstatus, mstatus;
374 	pcireg_t command;
375 	int rq, sba, fw, rate, capoff;
376 
377 	if (pci_find_device(&pa, agpdev_match) == 0 ||
378 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
379 	     &capoff, NULL) == 0) {
380 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
381 		return ENXIO;
382 	}
383 
384 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
385 	    sc->as_capoff + AGP_STATUS);
386 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
387 	    capoff + AGP_STATUS);
388 
389 	/* Set RQ to the min of mode, tstatus and mstatus */
390 	rq = AGP_MODE_GET_RQ(mode);
391 	if (AGP_MODE_GET_RQ(tstatus) < rq)
392 		rq = AGP_MODE_GET_RQ(tstatus);
393 	if (AGP_MODE_GET_RQ(mstatus) < rq)
394 		rq = AGP_MODE_GET_RQ(mstatus);
395 
396 	/* Set SBA if all three can deal with SBA */
397 	sba = (AGP_MODE_GET_SBA(tstatus)
398 	       & AGP_MODE_GET_SBA(mstatus)
399 	       & AGP_MODE_GET_SBA(mode));
400 
401 	/* Similar for FW */
402 	fw = (AGP_MODE_GET_FW(tstatus)
403 	       & AGP_MODE_GET_FW(mstatus)
404 	       & AGP_MODE_GET_FW(mode));
405 
406 	/* Figure out the max rate */
407 	rate = (AGP_MODE_GET_RATE(tstatus)
408 		& AGP_MODE_GET_RATE(mstatus)
409 		& AGP_MODE_GET_RATE(mode));
410 	if (rate & AGP_MODE_RATE_4x)
411 		rate = AGP_MODE_RATE_4x;
412 	else if (rate & AGP_MODE_RATE_2x)
413 		rate = AGP_MODE_RATE_2x;
414 	else
415 		rate = AGP_MODE_RATE_1x;
416 
417 	/* Construct the new mode word and tell the hardware */
418 	command = AGP_MODE_SET_RQ(0, rq);
419 	command = AGP_MODE_SET_SBA(command, sba);
420 	command = AGP_MODE_SET_FW(command, fw);
421 	command = AGP_MODE_SET_RATE(command, rate);
422 	command = AGP_MODE_SET_AGP(command, 1);
423 	pci_conf_write(sc->as_pc, sc->as_tag,
424 	    sc->as_capoff + AGP_COMMAND, command);
425 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
426 
427 	return 0;
428 }
429 
430 struct agp_memory *
431 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
432 {
433 	struct agp_memory *mem;
434 
435 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
436 		return 0;
437 
438 	if (sc->as_allocated + size > sc->as_maxmem)
439 		return 0;
440 
441 	if (type != 0) {
442 		printf("agp_generic_alloc_memory: unsupported type %d\n",
443 		       type);
444 		return 0;
445 	}
446 
447 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
448 	if (mem == NULL)
449 		return NULL;
450 
451 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
452 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
453 		free(mem, M_AGP);
454 		return NULL;
455 	}
456 
457 	mem->am_id = sc->as_nextid++;
458 	mem->am_size = size;
459 	mem->am_type = 0;
460 	mem->am_physical = 0;
461 	mem->am_offset = 0;
462 	mem->am_is_bound = 0;
463 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
464 	sc->as_allocated += size;
465 
466 	return mem;
467 }
468 
469 int
470 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
471 {
472 	if (mem->am_is_bound)
473 		return EBUSY;
474 
475 	sc->as_allocated -= mem->am_size;
476 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
477 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
478 	free(mem, M_AGP);
479 	return 0;
480 }
481 
482 int
483 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
484 			off_t offset)
485 {
486 	off_t i, k;
487 	bus_size_t done, j;
488 	int error;
489 	bus_dma_segment_t *segs, *seg;
490 	bus_addr_t pa;
491 	int contigpages, nseg;
492 
493 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
494 
495 	if (mem->am_is_bound) {
496 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
497 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
498 		return EINVAL;
499 	}
500 
501 	if (offset < 0
502 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
503 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
504 		printf("%s: binding memory at bad offset %#lx\n",
505 			      sc->as_dev.dv_xname, (unsigned long) offset);
506 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
507 		return EINVAL;
508 	}
509 
510 	/*
511 	 * XXXfvdl
512 	 * The memory here needs to be directly accessable from the
513 	 * AGP video card, so it should be allocated using bus_dma.
514 	 * However, it need not be contiguous, since individual pages
515 	 * are translated using the GATT.
516 	 *
517 	 * Using a large chunk of contiguous memory may get in the way
518 	 * of other subsystems that may need one, so we try to be friendly
519 	 * and ask for allocation in chunks of a minimum of 8 pages
520 	 * of contiguous memory on average, falling back to 4, 2 and 1
521 	 * if really needed. Larger chunks are preferred, since allocating
522 	 * a bus_dma_segment per page would be overkill.
523 	 */
524 
525 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
526 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
527 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
528 		if (segs == NULL) {
529 			lockmgr(&sc->as_lock, LK_RELEASE, 0);
530 			return ENOMEM;
531 		}
532 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
533 				     segs, nseg, &mem->am_nseg,
534 				     contigpages > 1 ?
535 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
536 			free(segs, M_AGP);
537 			continue;
538 		}
539 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
540 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
541 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
542 			free(segs, M_AGP);
543 			continue;
544 		}
545 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
546 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
547 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
548 			    mem->am_size);
549 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
550 			free(segs, M_AGP);
551 			continue;
552 		}
553 		mem->am_dmaseg = segs;
554 		break;
555 	}
556 
557 	if (contigpages == 0) {
558 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
559 		return ENOMEM;
560 	}
561 
562 
563 	/*
564 	 * Bind the individual pages and flush the chipset's
565 	 * TLB.
566 	 */
567 	done = 0;
568 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
569 		seg = &mem->am_dmamap->dm_segs[i];
570 		/*
571 		 * Install entries in the GATT, making sure that if
572 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
573 		 * aligned to PAGE_SIZE, we don't modify too many GATT
574 		 * entries.
575 		 */
576 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
577 		     j += AGP_PAGE_SIZE) {
578 			pa = seg->ds_addr + j;
579 			AGP_DPF("binding offset %#lx to pa %#lx\n",
580 				(unsigned long)(offset + done + j),
581 				(unsigned long)pa);
582 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
583 			if (error) {
584 				/*
585 				 * Bail out. Reverse all the mappings
586 				 * and unwire the pages.
587 				 */
588 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
589 					AGP_UNBIND_PAGE(sc, offset + k);
590 
591 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
592 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
593 						 mem->am_size);
594 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
595 						mem->am_nseg);
596 				free(mem->am_dmaseg, M_AGP);
597 				lockmgr(&sc->as_lock, LK_RELEASE, 0);
598 				return error;
599 			}
600 		}
601 		done += seg->ds_len;
602 	}
603 
604 	/*
605 	 * Flush the cpu cache since we are providing a new mapping
606 	 * for these pages.
607 	 */
608 	agp_flush_cache();
609 
610 	/*
611 	 * Make sure the chipset gets the new mappings.
612 	 */
613 	AGP_FLUSH_TLB(sc);
614 
615 	mem->am_offset = offset;
616 	mem->am_is_bound = 1;
617 
618 	lockmgr(&sc->as_lock, LK_RELEASE, 0);
619 
620 	return 0;
621 }
622 
623 int
624 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
625 {
626 	int i;
627 
628 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0);
629 
630 	if (!mem->am_is_bound) {
631 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
632 		lockmgr(&sc->as_lock, LK_RELEASE, 0);
633 		return EINVAL;
634 	}
635 
636 
637 	/*
638 	 * Unbind the individual pages and flush the chipset's
639 	 * TLB. Unwire the pages so they can be swapped.
640 	 */
641 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
642 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
643 
644 	agp_flush_cache();
645 	AGP_FLUSH_TLB(sc);
646 
647 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
648 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
649 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
650 
651 	free(mem->am_dmaseg, M_AGP);
652 
653 	mem->am_offset = 0;
654 	mem->am_is_bound = 0;
655 
656 	lockmgr(&sc->as_lock, LK_RELEASE, 0);
657 
658 	return 0;
659 }
660 
661 /* Helper functions for implementing user/kernel api */
662 
663 static int
664 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
665 {
666 	if (sc->as_state != AGP_ACQUIRE_FREE)
667 		return EBUSY;
668 	sc->as_state = state;
669 
670 	return 0;
671 }
672 
673 static int
674 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
675 {
676 	struct agp_memory *mem;
677 
678 	if (sc->as_state == AGP_ACQUIRE_FREE)
679 		return 0;
680 
681 	if (sc->as_state != state)
682 		return EBUSY;
683 
684 	/*
685 	 * Clear out outstanding aperture mappings.
686 	 * (should not be necessary, done by caller)
687 	 */
688 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
689 		if (mem->am_is_bound) {
690 			printf("agp_release_helper: mem %d is bound\n",
691 			       mem->am_id);
692 			AGP_UNBIND_MEMORY(sc, mem);
693 		}
694 	}
695 
696 	sc->as_state = AGP_ACQUIRE_FREE;
697 	return 0;
698 }
699 
700 static struct agp_memory *
701 agp_find_memory(struct agp_softc *sc, int id)
702 {
703 	struct agp_memory *mem;
704 
705 	AGP_DPF("searching for memory block %d\n", id);
706 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
707 		AGP_DPF("considering memory block %d\n", mem->am_id);
708 		if (mem->am_id == id)
709 			return mem;
710 	}
711 	return 0;
712 }
713 
714 /* Implementation of the userland ioctl api */
715 
716 static int
717 agp_info_user(struct agp_softc *sc, agp_info *info)
718 {
719 	memset(info, 0, sizeof *info);
720 	info->bridge_id = sc->as_id;
721 	if (sc->as_capoff != 0)
722 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
723 					       sc->as_capoff + AGP_STATUS);
724 	else
725 		info->agp_mode = 0; /* i810 doesn't have real AGP */
726 	info->aper_base = sc->as_apaddr;
727 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
728 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
729 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
730 
731 	return 0;
732 }
733 
734 static int
735 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
736 {
737 	return AGP_ENABLE(sc, setup->agp_mode);
738 }
739 
740 static int
741 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
742 {
743 	struct agp_memory *mem;
744 
745 	mem = AGP_ALLOC_MEMORY(sc,
746 			       alloc->type,
747 			       alloc->pg_count << AGP_PAGE_SHIFT);
748 	if (mem) {
749 		alloc->key = mem->am_id;
750 		alloc->physical = mem->am_physical;
751 		return 0;
752 	} else {
753 		return ENOMEM;
754 	}
755 }
756 
757 static int
758 agp_deallocate_user(struct agp_softc *sc, int id)
759 {
760 	struct agp_memory *mem = agp_find_memory(sc, id);
761 
762 	if (mem) {
763 		AGP_FREE_MEMORY(sc, mem);
764 		return 0;
765 	} else {
766 		return ENOENT;
767 	}
768 }
769 
770 static int
771 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
772 {
773 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
774 
775 	if (!mem)
776 		return ENOENT;
777 
778 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
779 }
780 
781 static int
782 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
783 {
784 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
785 
786 	if (!mem)
787 		return ENOENT;
788 
789 	return AGP_UNBIND_MEMORY(sc, mem);
790 }
791 
792 int
793 agpopen(dev_t dev, int oflags, int devtype, struct proc *p)
794 {
795 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
796 
797 	if (sc == NULL)
798 		return ENXIO;
799 
800 	if (sc->as_chipc == NULL)
801 		return ENXIO;
802 
803 	if (!sc->as_isopen)
804 		sc->as_isopen = 1;
805 	else
806 		return EBUSY;
807 
808 	return 0;
809 }
810 
811 int
812 agpclose(dev_t dev, int fflag, int devtype, struct proc *p)
813 {
814 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
815 	struct agp_memory *mem;
816 
817 	/*
818 	 * Clear the GATT and force release on last close
819 	 */
820 	if (sc->as_state == AGP_ACQUIRE_USER) {
821 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
822 			if (mem->am_is_bound) {
823 				printf("agpclose: mem %d is bound\n",
824 				       mem->am_id);
825 				AGP_UNBIND_MEMORY(sc, mem);
826 			}
827 			/*
828 			 * XXX it is not documented, but if the protocol allows
829 			 * allocate->acquire->bind, it would be possible that
830 			 * memory ranges are allocated by the kernel here,
831 			 * which we shouldn't free. We'd have to keep track of
832 			 * the memory range's owner.
833 			 * The kernel API is unsed yet, so we get away with
834 			 * freeing all.
835 			 */
836 			AGP_FREE_MEMORY(sc, mem);
837 		}
838 		agp_release_helper(sc, AGP_ACQUIRE_USER);
839 	}
840 	sc->as_isopen = 0;
841 
842 	return 0;
843 }
844 
845 int
846 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
847 {
848 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
849 
850 	if (sc == NULL)
851 		return ENODEV;
852 
853 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
854 		return EPERM;
855 
856 	switch (cmd) {
857 	case AGPIOC_INFO:
858 		return agp_info_user(sc, (agp_info *) data);
859 
860 	case AGPIOC_ACQUIRE:
861 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
862 
863 	case AGPIOC_RELEASE:
864 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
865 
866 	case AGPIOC_SETUP:
867 		return agp_setup_user(sc, (agp_setup *)data);
868 
869 	case AGPIOC_ALLOCATE:
870 		return agp_allocate_user(sc, (agp_allocate *)data);
871 
872 	case AGPIOC_DEALLOCATE:
873 		return agp_deallocate_user(sc, *(int *) data);
874 
875 	case AGPIOC_BIND:
876 		return agp_bind_user(sc, (agp_bind *)data);
877 
878 	case AGPIOC_UNBIND:
879 		return agp_unbind_user(sc, (agp_unbind *)data);
880 
881 	}
882 
883 	return EINVAL;
884 }
885 
886 paddr_t
887 agpmmap(dev_t dev, off_t offset, int prot)
888 {
889 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
890 
891 	if (offset > AGP_GET_APERTURE(sc))
892 		return -1;
893 
894 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
895 	    BUS_SPACE_MAP_LINEAR));
896 }
897 
898 /* Implementation of the kernel api */
899 
900 void *
901 agp_find_device(int unit)
902 {
903 	return device_lookup(&agp_cd, unit);
904 }
905 
906 enum agp_acquire_state
907 agp_state(void *devcookie)
908 {
909 	struct agp_softc *sc = devcookie;
910 	return sc->as_state;
911 }
912 
913 void
914 agp_get_info(void *devcookie, struct agp_info *info)
915 {
916 	struct agp_softc *sc = devcookie;
917 
918 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
919 	    sc->as_capoff + AGP_STATUS);
920 	info->ai_aperture_base = sc->as_apaddr;
921 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
922 	info->ai_memory_allowed = sc->as_maxmem;
923 	info->ai_memory_used = sc->as_allocated;
924 }
925 
926 int
927 agp_acquire(void *dev)
928 {
929 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
930 }
931 
932 int
933 agp_release(void *dev)
934 {
935 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
936 }
937 
938 int
939 agp_enable(void *dev, u_int32_t mode)
940 {
941 	struct agp_softc *sc = dev;
942 
943 	return AGP_ENABLE(sc, mode);
944 }
945 
946 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
947 {
948 	struct agp_softc *sc = dev;
949 
950 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
951 }
952 
953 void agp_free_memory(void *dev, void *handle)
954 {
955 	struct agp_softc *sc = dev;
956 	struct agp_memory *mem = (struct agp_memory *) handle;
957 	AGP_FREE_MEMORY(sc, mem);
958 }
959 
960 int agp_bind_memory(void *dev, void *handle, off_t offset)
961 {
962 	struct agp_softc *sc = dev;
963 	struct agp_memory *mem = (struct agp_memory *) handle;
964 
965 	return AGP_BIND_MEMORY(sc, mem, offset);
966 }
967 
968 int agp_unbind_memory(void *dev, void *handle)
969 {
970 	struct agp_softc *sc = dev;
971 	struct agp_memory *mem = (struct agp_memory *) handle;
972 
973 	return AGP_UNBIND_MEMORY(sc, mem);
974 }
975 
976 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
977 {
978 	struct agp_memory *mem = (struct agp_memory *) handle;
979 
980 	mi->ami_size = mem->am_size;
981 	mi->ami_physical = mem->am_physical;
982 	mi->ami_offset = mem->am_offset;
983 	mi->ami_is_bound = mem->am_is_bound;
984 }
985 
986 int
987 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
988 		 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr,
989 		 bus_dma_segment_t *seg, int nseg, int *rseg)
990 
991 {
992 	int error, level = 0;
993 
994 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
995 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
996 		goto out;
997 	level++;
998 
999 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1000 			BUS_DMA_NOWAIT | flags)) != 0)
1001 		goto out;
1002 	level++;
1003 
1004 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1005 			BUS_DMA_NOWAIT, mapp)) != 0)
1006 		goto out;
1007 	level++;
1008 
1009 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1010 			BUS_DMA_NOWAIT)) != 0)
1011 		goto out;
1012 
1013 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1014 
1015 	return 0;
1016 out:
1017 	switch (level) {
1018 	case 3:
1019 		bus_dmamap_destroy(tag, *mapp);
1020 		/* FALLTHROUGH */
1021 	case 2:
1022 		bus_dmamem_unmap(tag, *vaddr, size);
1023 		/* FALLTHROUGH */
1024 	case 1:
1025 		bus_dmamem_free(tag, seg, *rseg);
1026 		break;
1027 	default:
1028 		break;
1029 	}
1030 
1031 	return error;
1032 }
1033 
1034 void
1035 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1036 		caddr_t vaddr, bus_dma_segment_t *seg, int nseg)
1037 {
1038 
1039 	bus_dmamap_unload(tag, map);
1040 	bus_dmamap_destroy(tag, map);
1041 	bus_dmamem_unmap(tag, vaddr, size);
1042 	bus_dmamem_free(tag, seg, nseg);
1043 }
1044