xref: /netbsd-src/sys/dev/pci/agp.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.69 2010/06/16 03:35:01 riz Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <uvm/uvm_extern.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89 
90 #include <sys/bus.h>
91 
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96 
97 extern struct cfdriver agp_cd;
98 
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t, const pmf_qual_t *);
107 
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115 
116 const struct agp_product {
117 	uint32_t	ap_vendor;
118 	uint32_t	ap_product;
119 	int		(*ap_match)(const struct pci_attach_args *);
120 	int		(*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
124 	  agp_amd64_match,	agp_amd64_attach },
125 #endif
126 
127 #if NAGP_ALI > 0
128 	{ PCI_VENDOR_ALI,	-1,
129 	  NULL,			agp_ali_attach },
130 #endif
131 
132 #if NAGP_AMD64 > 0
133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
134 	  agp_amd64_match,	agp_amd64_attach },
135 #endif
136 
137 #if NAGP_AMD > 0
138 	{ PCI_VENDOR_AMD,	-1,
139 	  agp_amd_match,	agp_amd_attach },
140 #endif
141 
142 #if NAGP_I810 > 0
143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
144 	  NULL,			agp_i810_attach },
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
186 	  NULL,			agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
188 	  NULL, 		agp_i810_attach },
189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
190 	  NULL, 		agp_i810_attach },
191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
192 	  NULL, 		agp_i810_attach },
193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
194 	  NULL, 		agp_i810_attach },
195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
196 	  NULL, 		agp_i810_attach },
197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
198 	  NULL, 		agp_i810_attach },
199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
200 	  NULL, 		agp_i810_attach },
201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
202 	  NULL, 		agp_i810_attach },
203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
204 	  NULL, 		agp_i810_attach },
205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
206 	  NULL, 		agp_i810_attach },
207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
208 	  NULL, 		agp_i810_attach },
209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
210 	  NULL, 		agp_i810_attach },
211 #endif
212 
213 #if NAGP_INTEL > 0
214 	{ PCI_VENDOR_INTEL,	-1,
215 	  NULL,			agp_intel_attach },
216 #endif
217 
218 #if NAGP_AMD64 > 0
219 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
220 	  agp_amd64_match,	agp_amd64_attach },
221 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
222 	  agp_amd64_match,	agp_amd64_attach },
223 #endif
224 
225 #if NAGP_AMD64 > 0
226 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
227 	  agp_amd64_match,	agp_amd64_attach },
228 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
229 	  agp_amd64_match,	agp_amd64_attach },
230 #endif
231 
232 #if NAGP_SIS > 0
233 	{ PCI_VENDOR_SIS,	-1,
234 	  NULL,			agp_sis_attach },
235 #endif
236 
237 #if NAGP_AMD64 > 0
238 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
239 	  agp_amd64_match,	agp_amd64_attach },
240 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
241 	  agp_amd64_match,	agp_amd64_attach },
242 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
243 	  agp_amd64_match,	agp_amd64_attach },
244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
245 	  agp_amd64_match,	agp_amd64_attach },
246 #endif
247 
248 #if NAGP_VIA > 0
249 	{ PCI_VENDOR_VIATECH,	-1,
250 	  NULL,			agp_via_attach },
251 #endif
252 
253 	{ 0,			0,
254 	  NULL,			NULL },
255 };
256 
257 static const struct agp_product *
258 agp_lookup(const struct pci_attach_args *pa)
259 {
260 	const struct agp_product *ap;
261 
262 	/* First find the vendor. */
263 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
264 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
265 			break;
266 	}
267 
268 	if (ap->ap_attach == NULL)
269 		return (NULL);
270 
271 	/* Now find the product within the vendor's domain. */
272 	for (; ap->ap_attach != NULL; ap++) {
273 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
274 			/* Ran out of this vendor's section of the table. */
275 			return (NULL);
276 		}
277 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
278 			/* Exact match. */
279 			break;
280 		}
281 		if (ap->ap_product == (uint32_t) -1) {
282 			/* Wildcard match. */
283 			break;
284 		}
285 	}
286 
287 	if (ap->ap_attach == NULL)
288 		return (NULL);
289 
290 	/* Now let the product-specific driver filter the match. */
291 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
292 		return (NULL);
293 
294 	return (ap);
295 }
296 
297 static int
298 agpmatch(device_t parent, cfdata_t match, void *aux)
299 {
300 	struct agpbus_attach_args *apa = aux;
301 	struct pci_attach_args *pa = &apa->apa_pci_args;
302 
303 	if (agp_lookup(pa) == NULL)
304 		return (0);
305 
306 	return (1);
307 }
308 
309 static const int agp_max[][2] = {
310 	{0,	0},
311 	{32,	4},
312 	{64,	28},
313 	{128,	96},
314 	{256,	204},
315 	{512,	440},
316 	{1024,	942},
317 	{2048,	1920},
318 	{4096,	3932}
319 };
320 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
321 
322 static void
323 agpattach(device_t parent, device_t self, void *aux)
324 {
325 	struct agpbus_attach_args *apa = aux;
326 	struct pci_attach_args *pa = &apa->apa_pci_args;
327 	struct agp_softc *sc = device_private(self);
328 	const struct agp_product *ap;
329 	int memsize, i, ret;
330 
331 	ap = agp_lookup(pa);
332 	KASSERT(ap != NULL);
333 
334 	aprint_naive(": AGP controller\n");
335 
336 	sc->as_dev = self;
337 	sc->as_dmat = pa->pa_dmat;
338 	sc->as_pc = pa->pa_pc;
339 	sc->as_tag = pa->pa_tag;
340 	sc->as_id = pa->pa_id;
341 
342 	/*
343 	 * Work out an upper bound for agp memory allocation. This
344 	 * uses a heuristic table from the Linux driver.
345 	 */
346 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
347 	for (i = 0; i < agp_max_size; i++) {
348 		if (memsize <= agp_max[i][0])
349 			break;
350 	}
351 	if (i == agp_max_size)
352 		i = agp_max_size - 1;
353 	sc->as_maxmem = agp_max[i][1] << 20U;
354 
355 	/*
356 	 * The mutex is used to prevent re-entry to
357 	 * agp_generic_bind_memory() since that function can sleep.
358 	 */
359 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
360 
361 	TAILQ_INIT(&sc->as_memory);
362 
363 	ret = (*ap->ap_attach)(parent, self, pa);
364 	if (ret == 0)
365 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
366 		    (unsigned long)sc->as_apaddr,
367 		    (unsigned long)AGP_GET_APERTURE(sc));
368 	else
369 		sc->as_chipc = NULL;
370 
371 	if (!device_pmf_is_registered(self)) {
372 		if (!pmf_device_register(self, NULL, agp_resume))
373 			aprint_error_dev(self, "couldn't establish power "
374 			    "handler\n");
375 	}
376 }
377 
378 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
379     agpmatch, agpattach, NULL, NULL);
380 
381 int
382 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
383 {
384 	/*
385 	 * Find the aperture. Don't map it (yet), this would
386 	 * eat KVA.
387 	 */
388 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
389 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
390 	    &sc->as_apflags) != 0)
391 		return ENXIO;
392 
393 	sc->as_apt = pa->pa_memt;
394 
395 	return 0;
396 }
397 
398 struct agp_gatt *
399 agp_alloc_gatt(struct agp_softc *sc)
400 {
401 	u_int32_t apsize = AGP_GET_APERTURE(sc);
402 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
403 	struct agp_gatt *gatt;
404 	void *virtual;
405 	int dummyseg;
406 
407 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
408 	if (!gatt)
409 		return NULL;
410 	gatt->ag_entries = entries;
411 
412 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
413 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
414 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
415 		free(gatt, M_AGP);
416 		return NULL;
417 	}
418 	gatt->ag_virtual = (uint32_t *)virtual;
419 
420 	gatt->ag_size = entries * sizeof(u_int32_t);
421 	memset(gatt->ag_virtual, 0, gatt->ag_size);
422 	agp_flush_cache();
423 
424 	return gatt;
425 }
426 
427 void
428 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
429 {
430 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
431 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
432 	free(gatt, M_AGP);
433 }
434 
435 
436 int
437 agp_generic_detach(struct agp_softc *sc)
438 {
439 	mutex_destroy(&sc->as_mtx);
440 	agp_flush_cache();
441 	return 0;
442 }
443 
444 static int
445 agpdev_match(struct pci_attach_args *pa)
446 {
447 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
448 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
449 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
450 		    NULL, NULL))
451 		return 1;
452 
453 	return 0;
454 }
455 
456 int
457 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
458 {
459 	struct pci_attach_args pa;
460 	pcireg_t tstatus, mstatus;
461 	pcireg_t command;
462 	int rq, sba, fw, rate, capoff;
463 
464 	if (pci_find_device(&pa, agpdev_match) == 0 ||
465 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
466 	     &capoff, NULL) == 0) {
467 		aprint_error_dev(sc->as_dev, "can't find display\n");
468 		return ENXIO;
469 	}
470 
471 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
472 	    sc->as_capoff + AGP_STATUS);
473 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
474 	    capoff + AGP_STATUS);
475 
476 	/* Set RQ to the min of mode, tstatus and mstatus */
477 	rq = AGP_MODE_GET_RQ(mode);
478 	if (AGP_MODE_GET_RQ(tstatus) < rq)
479 		rq = AGP_MODE_GET_RQ(tstatus);
480 	if (AGP_MODE_GET_RQ(mstatus) < rq)
481 		rq = AGP_MODE_GET_RQ(mstatus);
482 
483 	/* Set SBA if all three can deal with SBA */
484 	sba = (AGP_MODE_GET_SBA(tstatus)
485 	       & AGP_MODE_GET_SBA(mstatus)
486 	       & AGP_MODE_GET_SBA(mode));
487 
488 	/* Similar for FW */
489 	fw = (AGP_MODE_GET_FW(tstatus)
490 	       & AGP_MODE_GET_FW(mstatus)
491 	       & AGP_MODE_GET_FW(mode));
492 
493 	/* Figure out the max rate */
494 	rate = (AGP_MODE_GET_RATE(tstatus)
495 		& AGP_MODE_GET_RATE(mstatus)
496 		& AGP_MODE_GET_RATE(mode));
497 	if (rate & AGP_MODE_RATE_4x)
498 		rate = AGP_MODE_RATE_4x;
499 	else if (rate & AGP_MODE_RATE_2x)
500 		rate = AGP_MODE_RATE_2x;
501 	else
502 		rate = AGP_MODE_RATE_1x;
503 
504 	/* Construct the new mode word and tell the hardware */
505 	command = AGP_MODE_SET_RQ(0, rq);
506 	command = AGP_MODE_SET_SBA(command, sba);
507 	command = AGP_MODE_SET_FW(command, fw);
508 	command = AGP_MODE_SET_RATE(command, rate);
509 	command = AGP_MODE_SET_AGP(command, 1);
510 	pci_conf_write(sc->as_pc, sc->as_tag,
511 	    sc->as_capoff + AGP_COMMAND, command);
512 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
513 
514 	return 0;
515 }
516 
517 struct agp_memory *
518 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
519 {
520 	struct agp_memory *mem;
521 
522 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
523 		return 0;
524 
525 	if (sc->as_allocated + size > sc->as_maxmem)
526 		return 0;
527 
528 	if (type != 0) {
529 		printf("agp_generic_alloc_memory: unsupported type %d\n",
530 		       type);
531 		return 0;
532 	}
533 
534 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
535 	if (mem == NULL)
536 		return NULL;
537 
538 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
539 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
540 		free(mem, M_AGP);
541 		return NULL;
542 	}
543 
544 	mem->am_id = sc->as_nextid++;
545 	mem->am_size = size;
546 	mem->am_type = 0;
547 	mem->am_physical = 0;
548 	mem->am_offset = 0;
549 	mem->am_is_bound = 0;
550 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
551 	sc->as_allocated += size;
552 
553 	return mem;
554 }
555 
556 int
557 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
558 {
559 	if (mem->am_is_bound)
560 		return EBUSY;
561 
562 	sc->as_allocated -= mem->am_size;
563 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
564 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
565 	free(mem, M_AGP);
566 	return 0;
567 }
568 
569 int
570 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
571 			off_t offset)
572 {
573 	off_t i, k;
574 	bus_size_t done, j;
575 	int error;
576 	bus_dma_segment_t *segs, *seg;
577 	bus_addr_t pa;
578 	int contigpages, nseg;
579 
580 	mutex_enter(&sc->as_mtx);
581 
582 	if (mem->am_is_bound) {
583 		aprint_error_dev(sc->as_dev, "memory already bound\n");
584 		mutex_exit(&sc->as_mtx);
585 		return EINVAL;
586 	}
587 
588 	if (offset < 0
589 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
590 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
591 		aprint_error_dev(sc->as_dev,
592 			      "binding memory at bad offset %#lx\n",
593 			      (unsigned long) offset);
594 		mutex_exit(&sc->as_mtx);
595 		return EINVAL;
596 	}
597 
598 	/*
599 	 * XXXfvdl
600 	 * The memory here needs to be directly accessable from the
601 	 * AGP video card, so it should be allocated using bus_dma.
602 	 * However, it need not be contiguous, since individual pages
603 	 * are translated using the GATT.
604 	 *
605 	 * Using a large chunk of contiguous memory may get in the way
606 	 * of other subsystems that may need one, so we try to be friendly
607 	 * and ask for allocation in chunks of a minimum of 8 pages
608 	 * of contiguous memory on average, falling back to 4, 2 and 1
609 	 * if really needed. Larger chunks are preferred, since allocating
610 	 * a bus_dma_segment per page would be overkill.
611 	 */
612 
613 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
614 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
615 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
616 		if (segs == NULL) {
617 			mutex_exit(&sc->as_mtx);
618 			return ENOMEM;
619 		}
620 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
621 				     segs, nseg, &mem->am_nseg,
622 				     contigpages > 1 ?
623 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
624 			free(segs, M_AGP);
625 			continue;
626 		}
627 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
628 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
629 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
630 			free(segs, M_AGP);
631 			continue;
632 		}
633 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
634 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
635 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
636 			    mem->am_size);
637 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
638 			free(segs, M_AGP);
639 			continue;
640 		}
641 		mem->am_dmaseg = segs;
642 		break;
643 	}
644 
645 	if (contigpages == 0) {
646 		mutex_exit(&sc->as_mtx);
647 		return ENOMEM;
648 	}
649 
650 
651 	/*
652 	 * Bind the individual pages and flush the chipset's
653 	 * TLB.
654 	 */
655 	done = 0;
656 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
657 		seg = &mem->am_dmamap->dm_segs[i];
658 		/*
659 		 * Install entries in the GATT, making sure that if
660 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
661 		 * aligned to PAGE_SIZE, we don't modify too many GATT
662 		 * entries.
663 		 */
664 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
665 		     j += AGP_PAGE_SIZE) {
666 			pa = seg->ds_addr + j;
667 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
668 				(unsigned long)(offset + done + j),
669 				(unsigned long)pa));
670 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
671 			if (error) {
672 				/*
673 				 * Bail out. Reverse all the mappings
674 				 * and unwire the pages.
675 				 */
676 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
677 					AGP_UNBIND_PAGE(sc, offset + k);
678 
679 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
680 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
681 						 mem->am_size);
682 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
683 						mem->am_nseg);
684 				free(mem->am_dmaseg, M_AGP);
685 				mutex_exit(&sc->as_mtx);
686 				return error;
687 			}
688 		}
689 		done += seg->ds_len;
690 	}
691 
692 	/*
693 	 * Flush the CPU cache since we are providing a new mapping
694 	 * for these pages.
695 	 */
696 	agp_flush_cache();
697 
698 	/*
699 	 * Make sure the chipset gets the new mappings.
700 	 */
701 	AGP_FLUSH_TLB(sc);
702 
703 	mem->am_offset = offset;
704 	mem->am_is_bound = 1;
705 
706 	mutex_exit(&sc->as_mtx);
707 
708 	return 0;
709 }
710 
711 int
712 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
713 {
714 	int i;
715 
716 	mutex_enter(&sc->as_mtx);
717 
718 	if (!mem->am_is_bound) {
719 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
720 		mutex_exit(&sc->as_mtx);
721 		return EINVAL;
722 	}
723 
724 
725 	/*
726 	 * Unbind the individual pages and flush the chipset's
727 	 * TLB. Unwire the pages so they can be swapped.
728 	 */
729 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
730 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
731 
732 	agp_flush_cache();
733 	AGP_FLUSH_TLB(sc);
734 
735 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
736 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
737 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
738 
739 	free(mem->am_dmaseg, M_AGP);
740 
741 	mem->am_offset = 0;
742 	mem->am_is_bound = 0;
743 
744 	mutex_exit(&sc->as_mtx);
745 
746 	return 0;
747 }
748 
749 /* Helper functions for implementing user/kernel api */
750 
751 static int
752 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
753 {
754 	if (sc->as_state != AGP_ACQUIRE_FREE)
755 		return EBUSY;
756 	sc->as_state = state;
757 
758 	return 0;
759 }
760 
761 static int
762 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
763 {
764 
765 	if (sc->as_state == AGP_ACQUIRE_FREE)
766 		return 0;
767 
768 	if (sc->as_state != state)
769 		return EBUSY;
770 
771 	sc->as_state = AGP_ACQUIRE_FREE;
772 	return 0;
773 }
774 
775 static struct agp_memory *
776 agp_find_memory(struct agp_softc *sc, int id)
777 {
778 	struct agp_memory *mem;
779 
780 	AGP_DPF(("searching for memory block %d\n", id));
781 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
782 		AGP_DPF(("considering memory block %d\n", mem->am_id));
783 		if (mem->am_id == id)
784 			return mem;
785 	}
786 	return 0;
787 }
788 
789 /* Implementation of the userland ioctl api */
790 
791 static int
792 agp_info_user(struct agp_softc *sc, agp_info *info)
793 {
794 	memset(info, 0, sizeof *info);
795 	info->bridge_id = sc->as_id;
796 	if (sc->as_capoff != 0)
797 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
798 					       sc->as_capoff + AGP_STATUS);
799 	else
800 		info->agp_mode = 0; /* i810 doesn't have real AGP */
801 	info->aper_base = sc->as_apaddr;
802 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
803 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
804 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
805 
806 	return 0;
807 }
808 
809 static int
810 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
811 {
812 	return AGP_ENABLE(sc, setup->agp_mode);
813 }
814 
815 static int
816 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
817 {
818 	struct agp_memory *mem;
819 
820 	mem = AGP_ALLOC_MEMORY(sc,
821 			       alloc->type,
822 			       alloc->pg_count << AGP_PAGE_SHIFT);
823 	if (mem) {
824 		alloc->key = mem->am_id;
825 		alloc->physical = mem->am_physical;
826 		return 0;
827 	} else {
828 		return ENOMEM;
829 	}
830 }
831 
832 static int
833 agp_deallocate_user(struct agp_softc *sc, int id)
834 {
835 	struct agp_memory *mem = agp_find_memory(sc, id);
836 
837 	if (mem) {
838 		AGP_FREE_MEMORY(sc, mem);
839 		return 0;
840 	} else {
841 		return ENOENT;
842 	}
843 }
844 
845 static int
846 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
847 {
848 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
849 
850 	if (!mem)
851 		return ENOENT;
852 
853 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
854 }
855 
856 static int
857 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
858 {
859 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
860 
861 	if (!mem)
862 		return ENOENT;
863 
864 	return AGP_UNBIND_MEMORY(sc, mem);
865 }
866 
867 static int
868 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
869 {
870 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
871 
872 	if (sc == NULL)
873 		return ENXIO;
874 
875 	if (sc->as_chipc == NULL)
876 		return ENXIO;
877 
878 	if (!sc->as_isopen)
879 		sc->as_isopen = 1;
880 	else
881 		return EBUSY;
882 
883 	return 0;
884 }
885 
886 static int
887 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
888 {
889 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
890 	struct agp_memory *mem;
891 
892 	if (sc == NULL)
893 		return ENODEV;
894 
895 	/*
896 	 * Clear the GATT and force release on last close
897 	 */
898 	if (sc->as_state == AGP_ACQUIRE_USER) {
899 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
900 			if (mem->am_is_bound) {
901 				printf("agpclose: mem %d is bound\n",
902 				       mem->am_id);
903 				AGP_UNBIND_MEMORY(sc, mem);
904 			}
905 			/*
906 			 * XXX it is not documented, but if the protocol allows
907 			 * allocate->acquire->bind, it would be possible that
908 			 * memory ranges are allocated by the kernel here,
909 			 * which we shouldn't free. We'd have to keep track of
910 			 * the memory range's owner.
911 			 * The kernel API is unsed yet, so we get away with
912 			 * freeing all.
913 			 */
914 			AGP_FREE_MEMORY(sc, mem);
915 		}
916 		agp_release_helper(sc, AGP_ACQUIRE_USER);
917 	}
918 	sc->as_isopen = 0;
919 
920 	return 0;
921 }
922 
923 static int
924 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
925 {
926 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
927 
928 	if (sc == NULL)
929 		return ENODEV;
930 
931 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
932 		return EPERM;
933 
934 	switch (cmd) {
935 	case AGPIOC_INFO:
936 		return agp_info_user(sc, (agp_info *) data);
937 
938 	case AGPIOC_ACQUIRE:
939 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
940 
941 	case AGPIOC_RELEASE:
942 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
943 
944 	case AGPIOC_SETUP:
945 		return agp_setup_user(sc, (agp_setup *)data);
946 
947 	case AGPIOC_ALLOCATE:
948 		return agp_allocate_user(sc, (agp_allocate *)data);
949 
950 	case AGPIOC_DEALLOCATE:
951 		return agp_deallocate_user(sc, *(int *) data);
952 
953 	case AGPIOC_BIND:
954 		return agp_bind_user(sc, (agp_bind *)data);
955 
956 	case AGPIOC_UNBIND:
957 		return agp_unbind_user(sc, (agp_unbind *)data);
958 
959 	}
960 
961 	return EINVAL;
962 }
963 
964 static paddr_t
965 agpmmap(dev_t dev, off_t offset, int prot)
966 {
967 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
968 
969 	if (sc == NULL)
970 		return ENODEV;
971 
972 	if (offset > AGP_GET_APERTURE(sc))
973 		return -1;
974 
975 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
976 	    BUS_SPACE_MAP_LINEAR));
977 }
978 
979 const struct cdevsw agp_cdevsw = {
980 	agpopen, agpclose, noread, nowrite, agpioctl,
981 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
982 };
983 
984 /* Implementation of the kernel api */
985 
986 void *
987 agp_find_device(int unit)
988 {
989 	return device_lookup_private(&agp_cd, unit);
990 }
991 
992 enum agp_acquire_state
993 agp_state(void *devcookie)
994 {
995 	struct agp_softc *sc = devcookie;
996 
997 	return sc->as_state;
998 }
999 
1000 void
1001 agp_get_info(void *devcookie, struct agp_info *info)
1002 {
1003 	struct agp_softc *sc = devcookie;
1004 
1005 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1006 	    sc->as_capoff + AGP_STATUS);
1007 	info->ai_aperture_base = sc->as_apaddr;
1008 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
1009 	info->ai_memory_allowed = sc->as_maxmem;
1010 	info->ai_memory_used = sc->as_allocated;
1011 }
1012 
1013 int
1014 agp_acquire(void *dev)
1015 {
1016 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1017 }
1018 
1019 int
1020 agp_release(void *dev)
1021 {
1022 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1023 }
1024 
1025 int
1026 agp_enable(void *dev, u_int32_t mode)
1027 {
1028 	struct agp_softc *sc = dev;
1029 
1030 	return AGP_ENABLE(sc, mode);
1031 }
1032 
1033 void *
1034 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1035 {
1036 	struct agp_softc *sc = dev;
1037 
1038 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1039 }
1040 
1041 void
1042 agp_free_memory(void *dev, void *handle)
1043 {
1044 	struct agp_softc *sc = dev;
1045 	struct agp_memory *mem = handle;
1046 
1047 	AGP_FREE_MEMORY(sc, mem);
1048 }
1049 
1050 int
1051 agp_bind_memory(void *dev, void *handle, off_t offset)
1052 {
1053 	struct agp_softc *sc = dev;
1054 	struct agp_memory *mem = handle;
1055 
1056 	return AGP_BIND_MEMORY(sc, mem, offset);
1057 }
1058 
1059 int
1060 agp_unbind_memory(void *dev, void *handle)
1061 {
1062 	struct agp_softc *sc = dev;
1063 	struct agp_memory *mem = handle;
1064 
1065 	return AGP_UNBIND_MEMORY(sc, mem);
1066 }
1067 
1068 void
1069 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1070 {
1071 	struct agp_memory *mem = handle;
1072 
1073 	mi->ami_size = mem->am_size;
1074 	mi->ami_physical = mem->am_physical;
1075 	mi->ami_offset = mem->am_offset;
1076 	mi->ami_is_bound = mem->am_is_bound;
1077 }
1078 
1079 int
1080 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1081 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1082 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1083 
1084 {
1085 	int error, level = 0;
1086 
1087 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1088 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1089 		goto out;
1090 	level++;
1091 
1092 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1093 			BUS_DMA_NOWAIT | flags)) != 0)
1094 		goto out;
1095 	level++;
1096 
1097 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1098 			BUS_DMA_NOWAIT, mapp)) != 0)
1099 		goto out;
1100 	level++;
1101 
1102 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1103 			BUS_DMA_NOWAIT)) != 0)
1104 		goto out;
1105 
1106 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1107 
1108 	return 0;
1109 out:
1110 	switch (level) {
1111 	case 3:
1112 		bus_dmamap_destroy(tag, *mapp);
1113 		/* FALLTHROUGH */
1114 	case 2:
1115 		bus_dmamem_unmap(tag, *vaddr, size);
1116 		/* FALLTHROUGH */
1117 	case 1:
1118 		bus_dmamem_free(tag, seg, *rseg);
1119 		break;
1120 	default:
1121 		break;
1122 	}
1123 
1124 	return error;
1125 }
1126 
1127 void
1128 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1129 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1130 {
1131 	bus_dmamap_unload(tag, map);
1132 	bus_dmamap_destroy(tag, map);
1133 	bus_dmamem_unmap(tag, vaddr, size);
1134 	bus_dmamem_free(tag, seg, nseg);
1135 }
1136 
1137 static bool
1138 agp_resume(device_t dv, const pmf_qual_t *qual)
1139 {
1140 	agp_flush_cache();
1141 
1142 	return true;
1143 }
1144