1 /* $NetBSD: agp.c,v 1.83 2014/07/25 08:10:38 dholland Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.83 2014/07/25 08:10:38 dholland Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 #include <dev/pci/agpvar.h> 85 #include <dev/pci/agpreg.h> 86 #include <dev/pci/pcidevs.h> 87 88 #include <sys/bus.h> 89 90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 91 92 /* Helper functions for implementing chipset mini drivers. */ 93 /* XXXfvdl get rid of this one. */ 94 95 extern struct cfdriver agp_cd; 96 97 static int agp_info_user(struct agp_softc *, agp_info *); 98 static int agp_setup_user(struct agp_softc *, agp_setup *); 99 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 100 static int agp_deallocate_user(struct agp_softc *, int); 101 static int agp_bind_user(struct agp_softc *, agp_bind *); 102 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 103 static int agp_generic_enable_v2(struct agp_softc *, 104 const struct pci_attach_args *, int, u_int32_t); 105 static int agp_generic_enable_v3(struct agp_softc *, 106 const struct pci_attach_args *, int, u_int32_t); 107 static int agpdev_match(const struct pci_attach_args *); 108 static bool agp_resume(device_t, const pmf_qual_t *); 109 110 #include "agp_ali.h" 111 #include "agp_amd.h" 112 #include "agp_i810.h" 113 #include "agp_intel.h" 114 #include "agp_sis.h" 115 #include "agp_via.h" 116 #include "agp_amd64.h" 117 118 const struct agp_product { 119 uint32_t ap_vendor; 120 uint32_t ap_product; 121 int (*ap_match)(const struct pci_attach_args *); 122 int (*ap_attach)(device_t, device_t, void *); 123 } agp_products[] = { 124 #if NAGP_AMD64 > 0 125 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689, 126 agp_amd64_match, agp_amd64_attach }, 127 #endif 128 129 #if NAGP_ALI > 0 130 { PCI_VENDOR_ALI, -1, 131 NULL, agp_ali_attach }, 132 #endif 133 134 #if NAGP_AMD64 > 0 135 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 136 agp_amd64_match, agp_amd64_attach }, 137 #endif 138 139 #if NAGP_AMD > 0 140 { PCI_VENDOR_AMD, -1, 141 agp_amd_match, agp_amd_attach }, 142 #endif 143 144 #if NAGP_I810 > 0 145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 146 NULL, agp_i810_attach }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 148 NULL, agp_i810_attach }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 150 NULL, agp_i810_attach }, 151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 152 NULL, agp_i810_attach }, 153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 154 NULL, agp_i810_attach }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 156 NULL, agp_i810_attach }, 157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 158 NULL, agp_i810_attach }, 159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 160 NULL, agp_i810_attach }, 161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 162 NULL, agp_i810_attach }, 163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 164 NULL, agp_i810_attach }, 165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 166 NULL, agp_i810_attach }, 167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 168 NULL, agp_i810_attach }, 169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 170 NULL, agp_i810_attach }, 171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB, 172 NULL, agp_i810_attach }, 173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 174 NULL, agp_i810_attach }, 175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 176 NULL, agp_i810_attach }, 177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 178 NULL, agp_i810_attach }, 179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 180 NULL, agp_i810_attach }, 181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 182 NULL, agp_i810_attach }, 183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 184 NULL, agp_i810_attach }, 185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB, 186 NULL, agp_i810_attach }, 187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB, 188 NULL, agp_i810_attach }, 189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB, 190 NULL, agp_i810_attach }, 191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB, 192 NULL, agp_i810_attach }, 193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB, 194 NULL, agp_i810_attach }, 195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB, 196 NULL, agp_i810_attach }, 197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB, 198 NULL, agp_i810_attach }, 199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB, 200 NULL, agp_i810_attach }, 201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB, 202 NULL, agp_i810_attach }, 203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB, 204 NULL, agp_i810_attach }, 205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB, 206 NULL, agp_i810_attach }, 207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB, 208 NULL, agp_i810_attach }, 209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB, 210 NULL, agp_i810_attach }, 211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB, 212 NULL, agp_i810_attach }, 213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB, 214 NULL, agp_i810_attach }, 215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB, 216 NULL, agp_i810_attach }, 217 #endif 218 219 #if NAGP_INTEL > 0 220 { PCI_VENDOR_INTEL, -1, 221 NULL, agp_intel_attach }, 222 #endif 223 224 #if NAGP_AMD64 > 0 225 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 226 agp_amd64_match, agp_amd64_attach }, 227 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 228 agp_amd64_match, agp_amd64_attach }, 229 #endif 230 231 #if NAGP_AMD64 > 0 232 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 233 agp_amd64_match, agp_amd64_attach }, 234 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 235 agp_amd64_match, agp_amd64_attach }, 236 #endif 237 238 #if NAGP_SIS > 0 239 { PCI_VENDOR_SIS, -1, 240 NULL, agp_sis_attach }, 241 #endif 242 243 #if NAGP_AMD64 > 0 244 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 245 agp_amd64_match, agp_amd64_attach }, 246 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 247 agp_amd64_match, agp_amd64_attach }, 248 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 249 agp_amd64_match, agp_amd64_attach }, 250 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 251 agp_amd64_match, agp_amd64_attach }, 252 #endif 253 254 #if NAGP_VIA > 0 255 { PCI_VENDOR_VIATECH, -1, 256 NULL, agp_via_attach }, 257 #endif 258 259 { 0, 0, 260 NULL, NULL }, 261 }; 262 263 static const struct agp_product * 264 agp_lookup(const struct pci_attach_args *pa) 265 { 266 const struct agp_product *ap; 267 268 /* First find the vendor. */ 269 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 270 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 271 break; 272 } 273 274 if (ap->ap_attach == NULL) 275 return (NULL); 276 277 /* Now find the product within the vendor's domain. */ 278 for (; ap->ap_attach != NULL; ap++) { 279 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 280 /* Ran out of this vendor's section of the table. */ 281 return (NULL); 282 } 283 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 284 /* Exact match. */ 285 break; 286 } 287 if (ap->ap_product == (uint32_t) -1) { 288 /* Wildcard match. */ 289 break; 290 } 291 } 292 293 if (ap->ap_attach == NULL) 294 return (NULL); 295 296 /* Now let the product-specific driver filter the match. */ 297 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 298 return (NULL); 299 300 return (ap); 301 } 302 303 static int 304 agpmatch(device_t parent, cfdata_t match, void *aux) 305 { 306 struct agpbus_attach_args *apa = aux; 307 struct pci_attach_args *pa = &apa->apa_pci_args; 308 309 if (agp_lookup(pa) == NULL) 310 return (0); 311 312 return (1); 313 } 314 315 static const int agp_max[][2] = { 316 {0, 0}, 317 {32, 4}, 318 {64, 28}, 319 {128, 96}, 320 {256, 204}, 321 {512, 440}, 322 {1024, 942}, 323 {2048, 1920}, 324 {4096, 3932} 325 }; 326 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 327 328 static void 329 agpattach(device_t parent, device_t self, void *aux) 330 { 331 struct agpbus_attach_args *apa = aux; 332 struct pci_attach_args *pa = &apa->apa_pci_args; 333 struct agp_softc *sc = device_private(self); 334 const struct agp_product *ap; 335 int memsize, i, ret; 336 337 ap = agp_lookup(pa); 338 KASSERT(ap != NULL); 339 340 aprint_naive(": AGP controller\n"); 341 342 sc->as_dev = self; 343 sc->as_dmat = pa->pa_dmat; 344 sc->as_pc = pa->pa_pc; 345 sc->as_tag = pa->pa_tag; 346 sc->as_id = pa->pa_id; 347 348 /* 349 * Work out an upper bound for agp memory allocation. This 350 * uses a heuristic table from the Linux driver. 351 */ 352 memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */ 353 for (i = 0; i < agp_max_size; i++) { 354 if (memsize <= agp_max[i][0]) 355 break; 356 } 357 if (i == agp_max_size) 358 i = agp_max_size - 1; 359 sc->as_maxmem = agp_max[i][1] << 20U; 360 361 /* 362 * The mutex is used to prevent re-entry to 363 * agp_generic_bind_memory() since that function can sleep. 364 */ 365 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 366 367 TAILQ_INIT(&sc->as_memory); 368 369 ret = (*ap->ap_attach)(parent, self, pa); 370 if (ret == 0) 371 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 372 (unsigned long)sc->as_apaddr, 373 (unsigned long)AGP_GET_APERTURE(sc)); 374 else 375 sc->as_chipc = NULL; 376 377 if (!pmf_device_register(self, NULL, agp_resume)) 378 aprint_error_dev(self, "couldn't establish power handler\n"); 379 } 380 381 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc), 382 agpmatch, agpattach, NULL, NULL); 383 384 int 385 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 386 { 387 /* 388 * Find the aperture. Don't map it (yet), this would 389 * eat KVA. 390 */ 391 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 392 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 393 &sc->as_apflags) != 0) 394 return ENXIO; 395 396 sc->as_apt = pa->pa_memt; 397 398 return 0; 399 } 400 401 struct agp_gatt * 402 agp_alloc_gatt(struct agp_softc *sc) 403 { 404 u_int32_t apsize = AGP_GET_APERTURE(sc); 405 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 406 struct agp_gatt *gatt; 407 void *virtual; 408 int dummyseg; 409 410 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 411 if (!gatt) 412 return NULL; 413 gatt->ag_entries = entries; 414 415 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 416 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 417 &gatt->ag_dmaseg, 1, &dummyseg) != 0) { 418 free(gatt, M_AGP); 419 return NULL; 420 } 421 gatt->ag_virtual = (uint32_t *)virtual; 422 423 gatt->ag_size = entries * sizeof(u_int32_t); 424 memset(gatt->ag_virtual, 0, gatt->ag_size); 425 agp_flush_cache(); 426 427 return gatt; 428 } 429 430 void 431 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 432 { 433 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 434 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 435 free(gatt, M_AGP); 436 } 437 438 439 int 440 agp_generic_detach(struct agp_softc *sc) 441 { 442 mutex_destroy(&sc->as_mtx); 443 agp_flush_cache(); 444 return 0; 445 } 446 447 static int 448 agpdev_match(const struct pci_attach_args *pa) 449 { 450 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 451 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 452 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 453 NULL, NULL)) 454 return 1; 455 456 return 0; 457 } 458 459 int 460 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 461 { 462 struct pci_attach_args pa; 463 pcireg_t tstatus, mstatus; 464 int capoff; 465 466 if (pci_find_device(&pa, agpdev_match) == 0 || 467 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 468 &capoff, NULL) == 0) { 469 aprint_error_dev(sc->as_dev, "can't find display\n"); 470 return ENXIO; 471 } 472 473 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 474 sc->as_capoff + AGP_STATUS); 475 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 476 capoff + AGP_STATUS); 477 478 if (AGP_MODE_GET_MODE_3(mode) && 479 AGP_MODE_GET_MODE_3(tstatus) && 480 AGP_MODE_GET_MODE_3(mstatus)) 481 return agp_generic_enable_v3(sc, &pa, capoff, mode); 482 else 483 return agp_generic_enable_v2(sc, &pa, capoff, mode); 484 } 485 486 static int 487 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa, 488 int capoff, u_int32_t mode) 489 { 490 pcireg_t tstatus, mstatus; 491 pcireg_t command; 492 int rq, sba, fw, rate; 493 494 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 495 sc->as_capoff + AGP_STATUS); 496 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag, 497 capoff + AGP_STATUS); 498 499 /* Set RQ to the min of mode, tstatus and mstatus */ 500 rq = AGP_MODE_GET_RQ(mode); 501 if (AGP_MODE_GET_RQ(tstatus) < rq) 502 rq = AGP_MODE_GET_RQ(tstatus); 503 if (AGP_MODE_GET_RQ(mstatus) < rq) 504 rq = AGP_MODE_GET_RQ(mstatus); 505 506 /* Set SBA if all three can deal with SBA */ 507 sba = (AGP_MODE_GET_SBA(tstatus) 508 & AGP_MODE_GET_SBA(mstatus) 509 & AGP_MODE_GET_SBA(mode)); 510 511 /* Similar for FW */ 512 fw = (AGP_MODE_GET_FW(tstatus) 513 & AGP_MODE_GET_FW(mstatus) 514 & AGP_MODE_GET_FW(mode)); 515 516 /* Figure out the max rate */ 517 rate = (AGP_MODE_GET_RATE(tstatus) 518 & AGP_MODE_GET_RATE(mstatus) 519 & AGP_MODE_GET_RATE(mode)); 520 if (rate & AGP_MODE_V2_RATE_4x) 521 rate = AGP_MODE_V2_RATE_4x; 522 else if (rate & AGP_MODE_V2_RATE_2x) 523 rate = AGP_MODE_V2_RATE_2x; 524 else 525 rate = AGP_MODE_V2_RATE_1x; 526 527 /* Construct the new mode word and tell the hardware */ 528 command = AGP_MODE_SET_RQ(0, rq); 529 command = AGP_MODE_SET_SBA(command, sba); 530 command = AGP_MODE_SET_FW(command, fw); 531 command = AGP_MODE_SET_RATE(command, rate); 532 command = AGP_MODE_SET_AGP(command, 1); 533 pci_conf_write(sc->as_pc, sc->as_tag, 534 sc->as_capoff + AGP_COMMAND, command); 535 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command); 536 537 return 0; 538 } 539 540 static int 541 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa, 542 int capoff, u_int32_t mode) 543 { 544 pcireg_t tstatus, mstatus; 545 pcireg_t command; 546 int rq, sba, fw, rate, arqsz, cal; 547 548 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 549 sc->as_capoff + AGP_STATUS); 550 mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag, 551 capoff + AGP_STATUS); 552 553 /* Set RQ to the min of mode, tstatus and mstatus */ 554 rq = AGP_MODE_GET_RQ(mode); 555 if (AGP_MODE_GET_RQ(tstatus) < rq) 556 rq = AGP_MODE_GET_RQ(tstatus); 557 if (AGP_MODE_GET_RQ(mstatus) < rq) 558 rq = AGP_MODE_GET_RQ(mstatus); 559 560 /* 561 * ARQSZ - Set the value to the maximum one. 562 * Don't allow the mode register to override values. 563 */ 564 arqsz = AGP_MODE_GET_ARQSZ(mode); 565 if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz) 566 arqsz = AGP_MODE_GET_ARQSZ(tstatus); 567 if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz) 568 arqsz = AGP_MODE_GET_ARQSZ(mstatus); 569 570 /* Calibration cycle - don't allow override by mode register */ 571 cal = AGP_MODE_GET_CAL(tstatus); 572 if (AGP_MODE_GET_CAL(mstatus) < cal) 573 cal = AGP_MODE_GET_CAL(mstatus); 574 575 /* SBA must be supported for AGP v3. */ 576 sba = 1; 577 578 /* Set FW if all three support it. */ 579 fw = (AGP_MODE_GET_FW(tstatus) 580 & AGP_MODE_GET_FW(mstatus) 581 & AGP_MODE_GET_FW(mode)); 582 583 /* Figure out the max rate */ 584 rate = (AGP_MODE_GET_RATE(tstatus) 585 & AGP_MODE_GET_RATE(mstatus) 586 & AGP_MODE_GET_RATE(mode)); 587 if (rate & AGP_MODE_V3_RATE_8x) 588 rate = AGP_MODE_V3_RATE_8x; 589 else 590 rate = AGP_MODE_V3_RATE_4x; 591 592 /* Construct the new mode word and tell the hardware */ 593 command = AGP_MODE_SET_RQ(0, rq); 594 command = AGP_MODE_SET_ARQSZ(command, arqsz); 595 command = AGP_MODE_SET_CAL(command, cal); 596 command = AGP_MODE_SET_SBA(command, sba); 597 command = AGP_MODE_SET_FW(command, fw); 598 command = AGP_MODE_SET_RATE(command, rate); 599 command = AGP_MODE_SET_AGP(command, 1); 600 pci_conf_write(sc->as_pc, sc->as_tag, 601 sc->as_capoff + AGP_COMMAND, command); 602 pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command); 603 604 return 0; 605 } 606 607 struct agp_memory * 608 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 609 { 610 struct agp_memory *mem; 611 612 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 613 return 0; 614 615 if (sc->as_allocated + size > sc->as_maxmem) 616 return 0; 617 618 if (type != 0) { 619 printf("agp_generic_alloc_memory: unsupported type %d\n", 620 type); 621 return 0; 622 } 623 624 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 625 if (mem == NULL) 626 return NULL; 627 628 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 629 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 630 free(mem, M_AGP); 631 return NULL; 632 } 633 634 mem->am_id = sc->as_nextid++; 635 mem->am_size = size; 636 mem->am_type = 0; 637 mem->am_physical = 0; 638 mem->am_offset = 0; 639 mem->am_is_bound = 0; 640 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 641 sc->as_allocated += size; 642 643 return mem; 644 } 645 646 int 647 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 648 { 649 if (mem->am_is_bound) 650 return EBUSY; 651 652 sc->as_allocated -= mem->am_size; 653 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 654 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 655 free(mem, M_AGP); 656 return 0; 657 } 658 659 int 660 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 661 off_t offset) 662 { 663 664 return agp_generic_bind_memory_bounded(sc, mem, offset, 665 0, AGP_GET_APERTURE(sc)); 666 } 667 668 int 669 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem, 670 off_t offset, off_t start, off_t end) 671 { 672 off_t i, k; 673 bus_size_t done, j; 674 int error; 675 bus_dma_segment_t *segs, *seg; 676 bus_addr_t pa; 677 int contigpages, nseg; 678 679 mutex_enter(&sc->as_mtx); 680 681 if (mem->am_is_bound) { 682 aprint_error_dev(sc->as_dev, "memory already bound\n"); 683 mutex_exit(&sc->as_mtx); 684 return EINVAL; 685 } 686 687 if (offset < start 688 || (offset & (AGP_PAGE_SIZE - 1)) != 0 689 || offset > end 690 || mem->am_size > (end - offset)) { 691 aprint_error_dev(sc->as_dev, 692 "binding memory at bad offset %#lx\n", 693 (unsigned long) offset); 694 mutex_exit(&sc->as_mtx); 695 return EINVAL; 696 } 697 698 /* 699 * XXXfvdl 700 * The memory here needs to be directly accessable from the 701 * AGP video card, so it should be allocated using bus_dma. 702 * However, it need not be contiguous, since individual pages 703 * are translated using the GATT. 704 * 705 * Using a large chunk of contiguous memory may get in the way 706 * of other subsystems that may need one, so we try to be friendly 707 * and ask for allocation in chunks of a minimum of 8 pages 708 * of contiguous memory on average, falling back to 4, 2 and 1 709 * if really needed. Larger chunks are preferred, since allocating 710 * a bus_dma_segment per page would be overkill. 711 */ 712 713 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 714 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 715 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 716 if (segs == NULL) { 717 mutex_exit(&sc->as_mtx); 718 return ENOMEM; 719 } 720 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 721 segs, nseg, &mem->am_nseg, 722 contigpages > 1 ? 723 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 724 free(segs, M_AGP); 725 continue; 726 } 727 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 728 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 729 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 730 free(segs, M_AGP); 731 continue; 732 } 733 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 734 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 735 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 736 mem->am_size); 737 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 738 free(segs, M_AGP); 739 continue; 740 } 741 mem->am_dmaseg = segs; 742 break; 743 } 744 745 if (contigpages == 0) { 746 mutex_exit(&sc->as_mtx); 747 return ENOMEM; 748 } 749 750 751 /* 752 * Bind the individual pages and flush the chipset's 753 * TLB. 754 */ 755 done = 0; 756 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 757 seg = &mem->am_dmamap->dm_segs[i]; 758 /* 759 * Install entries in the GATT, making sure that if 760 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 761 * aligned to PAGE_SIZE, we don't modify too many GATT 762 * entries. 763 */ 764 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 765 j += AGP_PAGE_SIZE) { 766 pa = seg->ds_addr + j; 767 AGP_DPF(("binding offset %#lx to pa %#lx\n", 768 (unsigned long)(offset + done + j), 769 (unsigned long)pa)); 770 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 771 if (error) { 772 /* 773 * Bail out. Reverse all the mappings 774 * and unwire the pages. 775 */ 776 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 777 AGP_UNBIND_PAGE(sc, offset + k); 778 779 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 780 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 781 mem->am_size); 782 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 783 mem->am_nseg); 784 free(mem->am_dmaseg, M_AGP); 785 mutex_exit(&sc->as_mtx); 786 return error; 787 } 788 } 789 done += seg->ds_len; 790 } 791 792 /* 793 * Flush the CPU cache since we are providing a new mapping 794 * for these pages. 795 */ 796 agp_flush_cache(); 797 798 /* 799 * Make sure the chipset gets the new mappings. 800 */ 801 AGP_FLUSH_TLB(sc); 802 803 mem->am_offset = offset; 804 mem->am_is_bound = 1; 805 806 mutex_exit(&sc->as_mtx); 807 808 return 0; 809 } 810 811 int 812 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 813 { 814 int i; 815 816 mutex_enter(&sc->as_mtx); 817 818 if (!mem->am_is_bound) { 819 aprint_error_dev(sc->as_dev, "memory is not bound\n"); 820 mutex_exit(&sc->as_mtx); 821 return EINVAL; 822 } 823 824 825 /* 826 * Unbind the individual pages and flush the chipset's 827 * TLB. Unwire the pages so they can be swapped. 828 */ 829 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 830 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 831 832 agp_flush_cache(); 833 AGP_FLUSH_TLB(sc); 834 835 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 836 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 837 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 838 839 free(mem->am_dmaseg, M_AGP); 840 841 mem->am_offset = 0; 842 mem->am_is_bound = 0; 843 844 mutex_exit(&sc->as_mtx); 845 846 return 0; 847 } 848 849 /* Helper functions for implementing user/kernel api */ 850 851 static int 852 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 853 { 854 if (sc->as_state != AGP_ACQUIRE_FREE) 855 return EBUSY; 856 sc->as_state = state; 857 858 return 0; 859 } 860 861 static int 862 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 863 { 864 865 if (sc->as_state == AGP_ACQUIRE_FREE) 866 return 0; 867 868 if (sc->as_state != state) 869 return EBUSY; 870 871 sc->as_state = AGP_ACQUIRE_FREE; 872 return 0; 873 } 874 875 static struct agp_memory * 876 agp_find_memory(struct agp_softc *sc, int id) 877 { 878 struct agp_memory *mem; 879 880 AGP_DPF(("searching for memory block %d\n", id)); 881 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 882 AGP_DPF(("considering memory block %d\n", mem->am_id)); 883 if (mem->am_id == id) 884 return mem; 885 } 886 return 0; 887 } 888 889 /* Implementation of the userland ioctl api */ 890 891 static int 892 agp_info_user(struct agp_softc *sc, agp_info *info) 893 { 894 memset(info, 0, sizeof *info); 895 info->bridge_id = sc->as_id; 896 if (sc->as_capoff != 0) 897 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 898 sc->as_capoff + AGP_STATUS); 899 else 900 info->agp_mode = 0; /* i810 doesn't have real AGP */ 901 info->aper_base = sc->as_apaddr; 902 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 903 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 904 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 905 906 return 0; 907 } 908 909 static int 910 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 911 { 912 return AGP_ENABLE(sc, setup->agp_mode); 913 } 914 915 static int 916 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 917 { 918 struct agp_memory *mem; 919 920 mem = AGP_ALLOC_MEMORY(sc, 921 alloc->type, 922 alloc->pg_count << AGP_PAGE_SHIFT); 923 if (mem) { 924 alloc->key = mem->am_id; 925 alloc->physical = mem->am_physical; 926 return 0; 927 } else { 928 return ENOMEM; 929 } 930 } 931 932 static int 933 agp_deallocate_user(struct agp_softc *sc, int id) 934 { 935 struct agp_memory *mem = agp_find_memory(sc, id); 936 937 if (mem) { 938 AGP_FREE_MEMORY(sc, mem); 939 return 0; 940 } else { 941 return ENOENT; 942 } 943 } 944 945 static int 946 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 947 { 948 struct agp_memory *mem = agp_find_memory(sc, bind->key); 949 950 if (!mem) 951 return ENOENT; 952 953 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 954 } 955 956 static int 957 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 958 { 959 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 960 961 if (!mem) 962 return ENOENT; 963 964 return AGP_UNBIND_MEMORY(sc, mem); 965 } 966 967 static int 968 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l) 969 { 970 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 971 972 if (sc == NULL) 973 return ENXIO; 974 975 if (sc->as_chipc == NULL) 976 return ENXIO; 977 978 if (!sc->as_isopen) 979 sc->as_isopen = 1; 980 else 981 return EBUSY; 982 983 return 0; 984 } 985 986 static int 987 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l) 988 { 989 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 990 struct agp_memory *mem; 991 992 if (sc == NULL) 993 return ENODEV; 994 995 /* 996 * Clear the GATT and force release on last close 997 */ 998 if (sc->as_state == AGP_ACQUIRE_USER) { 999 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 1000 if (mem->am_is_bound) { 1001 printf("agpclose: mem %d is bound\n", 1002 mem->am_id); 1003 AGP_UNBIND_MEMORY(sc, mem); 1004 } 1005 /* 1006 * XXX it is not documented, but if the protocol allows 1007 * allocate->acquire->bind, it would be possible that 1008 * memory ranges are allocated by the kernel here, 1009 * which we shouldn't free. We'd have to keep track of 1010 * the memory range's owner. 1011 * The kernel API is unsed yet, so we get away with 1012 * freeing all. 1013 */ 1014 AGP_FREE_MEMORY(sc, mem); 1015 } 1016 agp_release_helper(sc, AGP_ACQUIRE_USER); 1017 } 1018 sc->as_isopen = 0; 1019 1020 return 0; 1021 } 1022 1023 static int 1024 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 1025 { 1026 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 1027 1028 if (sc == NULL) 1029 return ENODEV; 1030 1031 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 1032 return EPERM; 1033 1034 switch (cmd) { 1035 case AGPIOC_INFO: 1036 return agp_info_user(sc, (agp_info *) data); 1037 1038 case AGPIOC_ACQUIRE: 1039 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 1040 1041 case AGPIOC_RELEASE: 1042 return agp_release_helper(sc, AGP_ACQUIRE_USER); 1043 1044 case AGPIOC_SETUP: 1045 return agp_setup_user(sc, (agp_setup *)data); 1046 1047 #ifdef __x86_64__ 1048 { 1049 /* 1050 * Handle paddr_t change from 32 bit for non PAE kernels 1051 * to 64 bit. 1052 */ 1053 #define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate) 1054 1055 typedef struct _agp_oallocate { 1056 int key; /* tag of allocation */ 1057 size_t pg_count; /* number of pages */ 1058 uint32_t type; /* 0 == normal, other devspec */ 1059 u_long physical; /* device specific (some devices 1060 * need a phys address of the 1061 * actual page behind the gatt 1062 * table) */ 1063 } agp_oallocate; 1064 1065 case AGPIOC_OALLOCATE: { 1066 int ret; 1067 agp_allocate aga; 1068 agp_oallocate *oaga = data; 1069 1070 aga.type = oaga->type; 1071 aga.pg_count = oaga->pg_count; 1072 1073 if ((ret = agp_allocate_user(sc, &aga)) == 0) { 1074 oaga->key = aga.key; 1075 oaga->physical = (u_long)aga.physical; 1076 } 1077 1078 return ret; 1079 } 1080 } 1081 #endif 1082 case AGPIOC_ALLOCATE: 1083 return agp_allocate_user(sc, (agp_allocate *)data); 1084 1085 case AGPIOC_DEALLOCATE: 1086 return agp_deallocate_user(sc, *(int *) data); 1087 1088 case AGPIOC_BIND: 1089 return agp_bind_user(sc, (agp_bind *)data); 1090 1091 case AGPIOC_UNBIND: 1092 return agp_unbind_user(sc, (agp_unbind *)data); 1093 1094 } 1095 1096 return EINVAL; 1097 } 1098 1099 static paddr_t 1100 agpmmap(dev_t dev, off_t offset, int prot) 1101 { 1102 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 1103 1104 if (sc == NULL) 1105 return ENODEV; 1106 1107 if (offset > AGP_GET_APERTURE(sc)) 1108 return -1; 1109 1110 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 1111 BUS_SPACE_MAP_LINEAR)); 1112 } 1113 1114 const struct cdevsw agp_cdevsw = { 1115 .d_open = agpopen, 1116 .d_close = agpclose, 1117 .d_read = noread, 1118 .d_write = nowrite, 1119 .d_ioctl = agpioctl, 1120 .d_stop = nostop, 1121 .d_tty = notty, 1122 .d_poll = nopoll, 1123 .d_mmap = agpmmap, 1124 .d_kqfilter = nokqfilter, 1125 .d_discard = nodiscard, 1126 .d_flag = D_OTHER 1127 }; 1128 1129 /* Implementation of the kernel api */ 1130 1131 void * 1132 agp_find_device(int unit) 1133 { 1134 return device_lookup_private(&agp_cd, unit); 1135 } 1136 1137 enum agp_acquire_state 1138 agp_state(void *devcookie) 1139 { 1140 struct agp_softc *sc = devcookie; 1141 1142 return sc->as_state; 1143 } 1144 1145 void 1146 agp_get_info(void *devcookie, struct agp_info *info) 1147 { 1148 struct agp_softc *sc = devcookie; 1149 1150 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 1151 sc->as_capoff + AGP_STATUS); 1152 info->ai_aperture_base = sc->as_apaddr; 1153 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 1154 info->ai_memory_allowed = sc->as_maxmem; 1155 info->ai_memory_used = sc->as_allocated; 1156 } 1157 1158 int 1159 agp_acquire(void *dev) 1160 { 1161 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 1162 } 1163 1164 int 1165 agp_release(void *dev) 1166 { 1167 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 1168 } 1169 1170 int 1171 agp_enable(void *dev, u_int32_t mode) 1172 { 1173 struct agp_softc *sc = dev; 1174 1175 return AGP_ENABLE(sc, mode); 1176 } 1177 1178 void * 1179 agp_alloc_memory(void *dev, int type, vsize_t bytes) 1180 { 1181 struct agp_softc *sc = dev; 1182 1183 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 1184 } 1185 1186 void 1187 agp_free_memory(void *dev, void *handle) 1188 { 1189 struct agp_softc *sc = dev; 1190 struct agp_memory *mem = handle; 1191 1192 AGP_FREE_MEMORY(sc, mem); 1193 } 1194 1195 int 1196 agp_bind_memory(void *dev, void *handle, off_t offset) 1197 { 1198 struct agp_softc *sc = dev; 1199 struct agp_memory *mem = handle; 1200 1201 return AGP_BIND_MEMORY(sc, mem, offset); 1202 } 1203 1204 int 1205 agp_unbind_memory(void *dev, void *handle) 1206 { 1207 struct agp_softc *sc = dev; 1208 struct agp_memory *mem = handle; 1209 1210 return AGP_UNBIND_MEMORY(sc, mem); 1211 } 1212 1213 void 1214 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 1215 { 1216 struct agp_memory *mem = handle; 1217 1218 mi->ami_size = mem->am_size; 1219 mi->ami_physical = mem->am_physical; 1220 mi->ami_offset = mem->am_offset; 1221 mi->ami_is_bound = mem->am_is_bound; 1222 } 1223 1224 int 1225 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1226 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1227 bus_dma_segment_t *seg, int nseg, int *rseg) 1228 1229 { 1230 int error, level = 0; 1231 1232 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1233 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1234 goto out; 1235 level++; 1236 1237 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1238 BUS_DMA_NOWAIT | flags)) != 0) 1239 goto out; 1240 level++; 1241 1242 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1243 BUS_DMA_NOWAIT, mapp)) != 0) 1244 goto out; 1245 level++; 1246 1247 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1248 BUS_DMA_NOWAIT)) != 0) 1249 goto out; 1250 1251 *baddr = (*mapp)->dm_segs[0].ds_addr; 1252 1253 return 0; 1254 out: 1255 switch (level) { 1256 case 3: 1257 bus_dmamap_destroy(tag, *mapp); 1258 /* FALLTHROUGH */ 1259 case 2: 1260 bus_dmamem_unmap(tag, *vaddr, size); 1261 /* FALLTHROUGH */ 1262 case 1: 1263 bus_dmamem_free(tag, seg, *rseg); 1264 break; 1265 default: 1266 break; 1267 } 1268 1269 return error; 1270 } 1271 1272 void 1273 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1274 void *vaddr, bus_dma_segment_t *seg, int nseg) 1275 { 1276 bus_dmamap_unload(tag, map); 1277 bus_dmamap_destroy(tag, map); 1278 bus_dmamem_unmap(tag, vaddr, size); 1279 bus_dmamem_free(tag, seg, nseg); 1280 } 1281 1282 static bool 1283 agp_resume(device_t dv, const pmf_qual_t *qual) 1284 { 1285 agp_flush_cache(); 1286 1287 return true; 1288 } 1289