xref: /netbsd-src/sys/dev/pci/agp.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: agp.c,v 1.54 2007/12/09 20:28:05 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54 2007/12/09 20:28:05 jmcneill Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <uvm/uvm_extern.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89 
90 #include <sys/bus.h>
91 
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96 
97 extern struct cfdriver agp_cd;
98 
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t);
107 
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115 
116 const struct agp_product {
117 	uint32_t	ap_vendor;
118 	uint32_t	ap_product;
119 	int		(*ap_match)(const struct pci_attach_args *);
120 	int		(*ap_attach)(struct device *, struct device *, void *);
121 } agp_products[] = {
122 #if NAGP_ALI > 0
123 	{ PCI_VENDOR_ALI,	-1,
124 	  NULL,			agp_ali_attach },
125 #endif
126 
127 #if NAGP_AMD64 > 0
128 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
129 	  agp_amd64_match,	agp_amd64_attach },
130 #endif
131 
132 #if NAGP_AMD > 0
133 	{ PCI_VENDOR_AMD,	-1,
134 	  agp_amd_match,	agp_amd_attach },
135 #endif
136 
137 #if NAGP_I810 > 0
138 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
139 	  NULL,			agp_i810_attach },
140 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
141 	  NULL,			agp_i810_attach },
142 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
143 	  NULL,			agp_i810_attach },
144 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
145 	  NULL,			agp_i810_attach },
146 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
147 	  NULL,			agp_i810_attach },
148 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
149 	  NULL,			agp_i810_attach },
150 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
151 	  NULL,			agp_i810_attach },
152 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
153 	  NULL,			agp_i810_attach },
154 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
155 	  NULL,			agp_i810_attach },
156 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
157 	  NULL,			agp_i810_attach },
158 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
159 	  NULL,			agp_i810_attach },
160 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
161 	  NULL,			agp_i810_attach },
162 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
163 	  NULL,			agp_i810_attach },
164 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
165 	  NULL,			agp_i810_attach },
166 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
167 	  NULL,			agp_i810_attach },
168 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
169 	  NULL,			agp_i810_attach },
170 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
171 	  NULL,			agp_i810_attach },
172 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
173 	  NULL,			agp_i810_attach },
174 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
175 	  NULL,			agp_i810_attach },
176 #endif
177 
178 #if NAGP_INTEL > 0
179 	{ PCI_VENDOR_INTEL,	-1,
180 	  NULL,			agp_intel_attach },
181 #endif
182 
183 #if NAGP_AMD64 > 0
184 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
185 	  agp_amd64_match,	agp_amd64_attach },
186 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
187 	  agp_amd64_match,	agp_amd64_attach },
188 #endif
189 
190 #if NAGP_AMD64 > 0
191 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
192 	  agp_amd64_match,	agp_amd64_attach },
193 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
194 	  agp_amd64_match,	agp_amd64_attach },
195 #endif
196 
197 #if NAGP_SIS > 0
198 	{ PCI_VENDOR_SIS,	-1,
199 	  NULL,			agp_sis_attach },
200 #endif
201 
202 #if NAGP_AMD64 > 0
203 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
204 	  agp_amd64_match,	agp_amd64_attach },
205 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
206 	  agp_amd64_match,	agp_amd64_attach },
207 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
208 	  agp_amd64_match,	agp_amd64_attach },
209 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
210 	  agp_amd64_match,	agp_amd64_attach },
211 #endif
212 
213 #if NAGP_VIA > 0
214 	{ PCI_VENDOR_VIATECH,	-1,
215 	  NULL,			agp_via_attach },
216 #endif
217 
218 	{ 0,			0,
219 	  NULL,			NULL },
220 };
221 
222 static const struct agp_product *
223 agp_lookup(const struct pci_attach_args *pa)
224 {
225 	const struct agp_product *ap;
226 
227 	/* First find the vendor. */
228 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
229 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
230 			break;
231 	}
232 
233 	if (ap->ap_attach == NULL)
234 		return (NULL);
235 
236 	/* Now find the product within the vendor's domain. */
237 	for (; ap->ap_attach != NULL; ap++) {
238 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
239 			/* Ran out of this vendor's section of the table. */
240 			return (NULL);
241 		}
242 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
243 			/* Exact match. */
244 			break;
245 		}
246 		if (ap->ap_product == (uint32_t) -1) {
247 			/* Wildcard match. */
248 			break;
249 		}
250 	}
251 
252 	if (ap->ap_attach == NULL)
253 		return (NULL);
254 
255 	/* Now let the product-specific driver filter the match. */
256 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
257 		return (NULL);
258 
259 	return (ap);
260 }
261 
262 static int
263 agpmatch(struct device *parent, struct cfdata *match,
264     void *aux)
265 {
266 	struct agpbus_attach_args *apa = aux;
267 	struct pci_attach_args *pa = &apa->apa_pci_args;
268 
269 	if (agp_lookup(pa) == NULL)
270 		return (0);
271 
272 	return (1);
273 }
274 
275 static const int agp_max[][2] = {
276 	{0,	0},
277 	{32,	4},
278 	{64,	28},
279 	{128,	96},
280 	{256,	204},
281 	{512,	440},
282 	{1024,	942},
283 	{2048,	1920},
284 	{4096,	3932}
285 };
286 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
287 
288 static void
289 agpattach(struct device *parent, struct device *self, void *aux)
290 {
291 	struct agpbus_attach_args *apa = aux;
292 	struct pci_attach_args *pa = &apa->apa_pci_args;
293 	struct agp_softc *sc = (void *)self;
294 	const struct agp_product *ap;
295 	int memsize, i, ret;
296 
297 	ap = agp_lookup(pa);
298 	if (ap == NULL) {
299 		printf("\n");
300 		panic("agpattach: impossible");
301 	}
302 
303 	aprint_naive(": AGP controller\n");
304 
305 	sc->as_dmat = pa->pa_dmat;
306 	sc->as_pc = pa->pa_pc;
307 	sc->as_tag = pa->pa_tag;
308 	sc->as_id = pa->pa_id;
309 
310 	/*
311 	 * Work out an upper bound for agp memory allocation. This
312 	 * uses a heurisitc table from the Linux driver.
313 	 */
314 	memsize = ptoa(physmem) >> 20;
315 	for (i = 0; i < agp_max_size; i++) {
316 		if (memsize <= agp_max[i][0])
317 			break;
318 	}
319 	if (i == agp_max_size)
320 		i = agp_max_size - 1;
321 	sc->as_maxmem = agp_max[i][1] << 20U;
322 
323 	/*
324 	 * The mutex is used to prevent re-entry to
325 	 * agp_generic_bind_memory() since that function can sleep.
326 	 */
327 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
328 
329 	TAILQ_INIT(&sc->as_memory);
330 
331 	ret = (*ap->ap_attach)(parent, self, pa);
332 	if (ret == 0)
333 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
334 		    (unsigned long)sc->as_apaddr,
335 		    (unsigned long)AGP_GET_APERTURE(sc));
336 	else
337 		sc->as_chipc = NULL;
338 
339 	if (!device_pmf_is_registered(self)) {
340 		if (!pmf_device_register(self, NULL, agp_resume))
341 			aprint_error_dev(self, "couldn't establish power handler\n");
342 	}
343 }
344 
345 CFATTACH_DECL(agp, sizeof(struct agp_softc),
346     agpmatch, agpattach, NULL, NULL);
347 
348 int
349 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
350 {
351 	/*
352 	 * Find the aperture. Don't map it (yet), this would
353 	 * eat KVA.
354 	 */
355 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
356 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
357 	    &sc->as_apflags) != 0)
358 		return ENXIO;
359 
360 	sc->as_apt = pa->pa_memt;
361 
362 	return 0;
363 }
364 
365 struct agp_gatt *
366 agp_alloc_gatt(struct agp_softc *sc)
367 {
368 	u_int32_t apsize = AGP_GET_APERTURE(sc);
369 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
370 	struct agp_gatt *gatt;
371 	void *virtual;
372 	int dummyseg;
373 
374 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
375 	if (!gatt)
376 		return NULL;
377 	gatt->ag_entries = entries;
378 
379 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
380 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
381 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
382 		return NULL;
383 	gatt->ag_virtual = (uint32_t *)virtual;
384 
385 	gatt->ag_size = entries * sizeof(u_int32_t);
386 	memset(gatt->ag_virtual, 0, gatt->ag_size);
387 	agp_flush_cache();
388 
389 	return gatt;
390 }
391 
392 void
393 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
394 {
395 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
396 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
397 	free(gatt, M_AGP);
398 }
399 
400 
401 int
402 agp_generic_detach(struct agp_softc *sc)
403 {
404 	mutex_destroy(&sc->as_mtx);
405 	agp_flush_cache();
406 	return 0;
407 }
408 
409 static int
410 agpdev_match(struct pci_attach_args *pa)
411 {
412 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
413 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
414 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
415 		    NULL, NULL))
416 		return 1;
417 
418 	return 0;
419 }
420 
421 int
422 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
423 {
424 	struct pci_attach_args pa;
425 	pcireg_t tstatus, mstatus;
426 	pcireg_t command;
427 	int rq, sba, fw, rate, capoff;
428 
429 	if (pci_find_device(&pa, agpdev_match) == 0 ||
430 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
431 	     &capoff, NULL) == 0) {
432 		printf("%s: can't find display\n", sc->as_dev.dv_xname);
433 		return ENXIO;
434 	}
435 
436 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
437 	    sc->as_capoff + AGP_STATUS);
438 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
439 	    capoff + AGP_STATUS);
440 
441 	/* Set RQ to the min of mode, tstatus and mstatus */
442 	rq = AGP_MODE_GET_RQ(mode);
443 	if (AGP_MODE_GET_RQ(tstatus) < rq)
444 		rq = AGP_MODE_GET_RQ(tstatus);
445 	if (AGP_MODE_GET_RQ(mstatus) < rq)
446 		rq = AGP_MODE_GET_RQ(mstatus);
447 
448 	/* Set SBA if all three can deal with SBA */
449 	sba = (AGP_MODE_GET_SBA(tstatus)
450 	       & AGP_MODE_GET_SBA(mstatus)
451 	       & AGP_MODE_GET_SBA(mode));
452 
453 	/* Similar for FW */
454 	fw = (AGP_MODE_GET_FW(tstatus)
455 	       & AGP_MODE_GET_FW(mstatus)
456 	       & AGP_MODE_GET_FW(mode));
457 
458 	/* Figure out the max rate */
459 	rate = (AGP_MODE_GET_RATE(tstatus)
460 		& AGP_MODE_GET_RATE(mstatus)
461 		& AGP_MODE_GET_RATE(mode));
462 	if (rate & AGP_MODE_RATE_4x)
463 		rate = AGP_MODE_RATE_4x;
464 	else if (rate & AGP_MODE_RATE_2x)
465 		rate = AGP_MODE_RATE_2x;
466 	else
467 		rate = AGP_MODE_RATE_1x;
468 
469 	/* Construct the new mode word and tell the hardware */
470 	command = AGP_MODE_SET_RQ(0, rq);
471 	command = AGP_MODE_SET_SBA(command, sba);
472 	command = AGP_MODE_SET_FW(command, fw);
473 	command = AGP_MODE_SET_RATE(command, rate);
474 	command = AGP_MODE_SET_AGP(command, 1);
475 	pci_conf_write(sc->as_pc, sc->as_tag,
476 	    sc->as_capoff + AGP_COMMAND, command);
477 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
478 
479 	return 0;
480 }
481 
482 struct agp_memory *
483 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
484 {
485 	struct agp_memory *mem;
486 
487 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
488 		return 0;
489 
490 	if (sc->as_allocated + size > sc->as_maxmem)
491 		return 0;
492 
493 	if (type != 0) {
494 		printf("agp_generic_alloc_memory: unsupported type %d\n",
495 		       type);
496 		return 0;
497 	}
498 
499 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
500 	if (mem == NULL)
501 		return NULL;
502 
503 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
504 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
505 		free(mem, M_AGP);
506 		return NULL;
507 	}
508 
509 	mem->am_id = sc->as_nextid++;
510 	mem->am_size = size;
511 	mem->am_type = 0;
512 	mem->am_physical = 0;
513 	mem->am_offset = 0;
514 	mem->am_is_bound = 0;
515 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
516 	sc->as_allocated += size;
517 
518 	return mem;
519 }
520 
521 int
522 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
523 {
524 	if (mem->am_is_bound)
525 		return EBUSY;
526 
527 	sc->as_allocated -= mem->am_size;
528 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
529 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
530 	free(mem, M_AGP);
531 	return 0;
532 }
533 
534 int
535 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
536 			off_t offset)
537 {
538 	off_t i, k;
539 	bus_size_t done, j;
540 	int error;
541 	bus_dma_segment_t *segs, *seg;
542 	bus_addr_t pa;
543 	int contigpages, nseg;
544 
545 	mutex_enter(&sc->as_mtx);
546 
547 	if (mem->am_is_bound) {
548 		printf("%s: memory already bound\n", sc->as_dev.dv_xname);
549 		mutex_exit(&sc->as_mtx);
550 		return EINVAL;
551 	}
552 
553 	if (offset < 0
554 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
555 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
556 		printf("%s: binding memory at bad offset %#lx\n",
557 			      sc->as_dev.dv_xname, (unsigned long) offset);
558 		mutex_exit(&sc->as_mtx);
559 		return EINVAL;
560 	}
561 
562 	/*
563 	 * XXXfvdl
564 	 * The memory here needs to be directly accessable from the
565 	 * AGP video card, so it should be allocated using bus_dma.
566 	 * However, it need not be contiguous, since individual pages
567 	 * are translated using the GATT.
568 	 *
569 	 * Using a large chunk of contiguous memory may get in the way
570 	 * of other subsystems that may need one, so we try to be friendly
571 	 * and ask for allocation in chunks of a minimum of 8 pages
572 	 * of contiguous memory on average, falling back to 4, 2 and 1
573 	 * if really needed. Larger chunks are preferred, since allocating
574 	 * a bus_dma_segment per page would be overkill.
575 	 */
576 
577 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
578 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
579 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
580 		if (segs == NULL) {
581 			mutex_exit(&sc->as_mtx);
582 			return ENOMEM;
583 		}
584 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
585 				     segs, nseg, &mem->am_nseg,
586 				     contigpages > 1 ?
587 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
588 			free(segs, M_AGP);
589 			continue;
590 		}
591 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
592 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
593 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
594 			free(segs, M_AGP);
595 			continue;
596 		}
597 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
598 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
599 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
600 			    mem->am_size);
601 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
602 			free(segs, M_AGP);
603 			continue;
604 		}
605 		mem->am_dmaseg = segs;
606 		break;
607 	}
608 
609 	if (contigpages == 0) {
610 		mutex_exit(&sc->as_mtx);
611 		return ENOMEM;
612 	}
613 
614 
615 	/*
616 	 * Bind the individual pages and flush the chipset's
617 	 * TLB.
618 	 */
619 	done = 0;
620 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
621 		seg = &mem->am_dmamap->dm_segs[i];
622 		/*
623 		 * Install entries in the GATT, making sure that if
624 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
625 		 * aligned to PAGE_SIZE, we don't modify too many GATT
626 		 * entries.
627 		 */
628 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
629 		     j += AGP_PAGE_SIZE) {
630 			pa = seg->ds_addr + j;
631 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
632 				(unsigned long)(offset + done + j),
633 				(unsigned long)pa));
634 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
635 			if (error) {
636 				/*
637 				 * Bail out. Reverse all the mappings
638 				 * and unwire the pages.
639 				 */
640 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
641 					AGP_UNBIND_PAGE(sc, offset + k);
642 
643 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
644 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
645 						 mem->am_size);
646 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
647 						mem->am_nseg);
648 				free(mem->am_dmaseg, M_AGP);
649 				mutex_exit(&sc->as_mtx);
650 				return error;
651 			}
652 		}
653 		done += seg->ds_len;
654 	}
655 
656 	/*
657 	 * Flush the CPU cache since we are providing a new mapping
658 	 * for these pages.
659 	 */
660 	agp_flush_cache();
661 
662 	/*
663 	 * Make sure the chipset gets the new mappings.
664 	 */
665 	AGP_FLUSH_TLB(sc);
666 
667 	mem->am_offset = offset;
668 	mem->am_is_bound = 1;
669 
670 	mutex_exit(&sc->as_mtx);
671 
672 	return 0;
673 }
674 
675 int
676 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
677 {
678 	int i;
679 
680 	mutex_enter(&sc->as_mtx);
681 
682 	if (!mem->am_is_bound) {
683 		printf("%s: memory is not bound\n", sc->as_dev.dv_xname);
684 		mutex_exit(&sc->as_mtx);
685 		return EINVAL;
686 	}
687 
688 
689 	/*
690 	 * Unbind the individual pages and flush the chipset's
691 	 * TLB. Unwire the pages so they can be swapped.
692 	 */
693 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
694 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
695 
696 	agp_flush_cache();
697 	AGP_FLUSH_TLB(sc);
698 
699 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
700 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
701 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
702 
703 	free(mem->am_dmaseg, M_AGP);
704 
705 	mem->am_offset = 0;
706 	mem->am_is_bound = 0;
707 
708 	mutex_exit(&sc->as_mtx);
709 
710 	return 0;
711 }
712 
713 /* Helper functions for implementing user/kernel api */
714 
715 static int
716 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
717 {
718 	if (sc->as_state != AGP_ACQUIRE_FREE)
719 		return EBUSY;
720 	sc->as_state = state;
721 
722 	return 0;
723 }
724 
725 static int
726 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
727 {
728 
729 	if (sc->as_state == AGP_ACQUIRE_FREE)
730 		return 0;
731 
732 	if (sc->as_state != state)
733 		return EBUSY;
734 
735 	sc->as_state = AGP_ACQUIRE_FREE;
736 	return 0;
737 }
738 
739 static struct agp_memory *
740 agp_find_memory(struct agp_softc *sc, int id)
741 {
742 	struct agp_memory *mem;
743 
744 	AGP_DPF(("searching for memory block %d\n", id));
745 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
746 		AGP_DPF(("considering memory block %d\n", mem->am_id));
747 		if (mem->am_id == id)
748 			return mem;
749 	}
750 	return 0;
751 }
752 
753 /* Implementation of the userland ioctl api */
754 
755 static int
756 agp_info_user(struct agp_softc *sc, agp_info *info)
757 {
758 	memset(info, 0, sizeof *info);
759 	info->bridge_id = sc->as_id;
760 	if (sc->as_capoff != 0)
761 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
762 					       sc->as_capoff + AGP_STATUS);
763 	else
764 		info->agp_mode = 0; /* i810 doesn't have real AGP */
765 	info->aper_base = sc->as_apaddr;
766 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
767 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
768 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
769 
770 	return 0;
771 }
772 
773 static int
774 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
775 {
776 	return AGP_ENABLE(sc, setup->agp_mode);
777 }
778 
779 static int
780 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
781 {
782 	struct agp_memory *mem;
783 
784 	mem = AGP_ALLOC_MEMORY(sc,
785 			       alloc->type,
786 			       alloc->pg_count << AGP_PAGE_SHIFT);
787 	if (mem) {
788 		alloc->key = mem->am_id;
789 		alloc->physical = mem->am_physical;
790 		return 0;
791 	} else {
792 		return ENOMEM;
793 	}
794 }
795 
796 static int
797 agp_deallocate_user(struct agp_softc *sc, int id)
798 {
799 	struct agp_memory *mem = agp_find_memory(sc, id);
800 
801 	if (mem) {
802 		AGP_FREE_MEMORY(sc, mem);
803 		return 0;
804 	} else {
805 		return ENOENT;
806 	}
807 }
808 
809 static int
810 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
811 {
812 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
813 
814 	if (!mem)
815 		return ENOENT;
816 
817 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
818 }
819 
820 static int
821 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
822 {
823 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
824 
825 	if (!mem)
826 		return ENOENT;
827 
828 	return AGP_UNBIND_MEMORY(sc, mem);
829 }
830 
831 static int
832 agpopen(dev_t dev, int oflags, int devtype,
833     struct lwp *l)
834 {
835 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
836 
837 	if (sc == NULL)
838 		return ENXIO;
839 
840 	if (sc->as_chipc == NULL)
841 		return ENXIO;
842 
843 	if (!sc->as_isopen)
844 		sc->as_isopen = 1;
845 	else
846 		return EBUSY;
847 
848 	return 0;
849 }
850 
851 static int
852 agpclose(dev_t dev, int fflag, int devtype,
853     struct lwp *l)
854 {
855 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
856 	struct agp_memory *mem;
857 
858 	/*
859 	 * Clear the GATT and force release on last close
860 	 */
861 	if (sc->as_state == AGP_ACQUIRE_USER) {
862 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
863 			if (mem->am_is_bound) {
864 				printf("agpclose: mem %d is bound\n",
865 				       mem->am_id);
866 				AGP_UNBIND_MEMORY(sc, mem);
867 			}
868 			/*
869 			 * XXX it is not documented, but if the protocol allows
870 			 * allocate->acquire->bind, it would be possible that
871 			 * memory ranges are allocated by the kernel here,
872 			 * which we shouldn't free. We'd have to keep track of
873 			 * the memory range's owner.
874 			 * The kernel API is unsed yet, so we get away with
875 			 * freeing all.
876 			 */
877 			AGP_FREE_MEMORY(sc, mem);
878 		}
879 		agp_release_helper(sc, AGP_ACQUIRE_USER);
880 	}
881 	sc->as_isopen = 0;
882 
883 	return 0;
884 }
885 
886 static int
887 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
888 {
889 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
890 
891 	if (sc == NULL)
892 		return ENODEV;
893 
894 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
895 		return EPERM;
896 
897 	switch (cmd) {
898 	case AGPIOC_INFO:
899 		return agp_info_user(sc, (agp_info *) data);
900 
901 	case AGPIOC_ACQUIRE:
902 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
903 
904 	case AGPIOC_RELEASE:
905 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
906 
907 	case AGPIOC_SETUP:
908 		return agp_setup_user(sc, (agp_setup *)data);
909 
910 	case AGPIOC_ALLOCATE:
911 		return agp_allocate_user(sc, (agp_allocate *)data);
912 
913 	case AGPIOC_DEALLOCATE:
914 		return agp_deallocate_user(sc, *(int *) data);
915 
916 	case AGPIOC_BIND:
917 		return agp_bind_user(sc, (agp_bind *)data);
918 
919 	case AGPIOC_UNBIND:
920 		return agp_unbind_user(sc, (agp_unbind *)data);
921 
922 	}
923 
924 	return EINVAL;
925 }
926 
927 static paddr_t
928 agpmmap(dev_t dev, off_t offset, int prot)
929 {
930 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
931 
932 	if (offset > AGP_GET_APERTURE(sc))
933 		return -1;
934 
935 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
936 	    BUS_SPACE_MAP_LINEAR));
937 }
938 
939 const struct cdevsw agp_cdevsw = {
940 	agpopen, agpclose, noread, nowrite, agpioctl,
941 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
942 };
943 
944 /* Implementation of the kernel api */
945 
946 void *
947 agp_find_device(int unit)
948 {
949 	return device_lookup(&agp_cd, unit);
950 }
951 
952 enum agp_acquire_state
953 agp_state(void *devcookie)
954 {
955 	struct agp_softc *sc = devcookie;
956 	return sc->as_state;
957 }
958 
959 void
960 agp_get_info(void *devcookie, struct agp_info *info)
961 {
962 	struct agp_softc *sc = devcookie;
963 
964 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
965 	    sc->as_capoff + AGP_STATUS);
966 	info->ai_aperture_base = sc->as_apaddr;
967 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
968 	info->ai_memory_allowed = sc->as_maxmem;
969 	info->ai_memory_used = sc->as_allocated;
970 }
971 
972 int
973 agp_acquire(void *dev)
974 {
975 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
976 }
977 
978 int
979 agp_release(void *dev)
980 {
981 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
982 }
983 
984 int
985 agp_enable(void *dev, u_int32_t mode)
986 {
987 	struct agp_softc *sc = dev;
988 
989 	return AGP_ENABLE(sc, mode);
990 }
991 
992 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
993 {
994 	struct agp_softc *sc = dev;
995 
996 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
997 }
998 
999 void agp_free_memory(void *dev, void *handle)
1000 {
1001 	struct agp_softc *sc = dev;
1002 	struct agp_memory *mem = (struct agp_memory *) handle;
1003 	AGP_FREE_MEMORY(sc, mem);
1004 }
1005 
1006 int agp_bind_memory(void *dev, void *handle, off_t offset)
1007 {
1008 	struct agp_softc *sc = dev;
1009 	struct agp_memory *mem = (struct agp_memory *) handle;
1010 
1011 	return AGP_BIND_MEMORY(sc, mem, offset);
1012 }
1013 
1014 int agp_unbind_memory(void *dev, void *handle)
1015 {
1016 	struct agp_softc *sc = dev;
1017 	struct agp_memory *mem = (struct agp_memory *) handle;
1018 
1019 	return AGP_UNBIND_MEMORY(sc, mem);
1020 }
1021 
1022 void agp_memory_info(void *dev, void *handle,
1023     struct agp_memory_info *mi)
1024 {
1025 	struct agp_memory *mem = (struct agp_memory *) handle;
1026 
1027 	mi->ami_size = mem->am_size;
1028 	mi->ami_physical = mem->am_physical;
1029 	mi->ami_offset = mem->am_offset;
1030 	mi->ami_is_bound = mem->am_is_bound;
1031 }
1032 
1033 int
1034 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1035 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1036 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1037 
1038 {
1039 	int error, level = 0;
1040 
1041 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1042 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1043 		goto out;
1044 	level++;
1045 
1046 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1047 			BUS_DMA_NOWAIT | flags)) != 0)
1048 		goto out;
1049 	level++;
1050 
1051 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1052 			BUS_DMA_NOWAIT, mapp)) != 0)
1053 		goto out;
1054 	level++;
1055 
1056 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1057 			BUS_DMA_NOWAIT)) != 0)
1058 		goto out;
1059 
1060 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1061 
1062 	return 0;
1063 out:
1064 	switch (level) {
1065 	case 3:
1066 		bus_dmamap_destroy(tag, *mapp);
1067 		/* FALLTHROUGH */
1068 	case 2:
1069 		bus_dmamem_unmap(tag, *vaddr, size);
1070 		/* FALLTHROUGH */
1071 	case 1:
1072 		bus_dmamem_free(tag, seg, *rseg);
1073 		break;
1074 	default:
1075 		break;
1076 	}
1077 
1078 	return error;
1079 }
1080 
1081 void
1082 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1083 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1084 {
1085 
1086 	bus_dmamap_unload(tag, map);
1087 	bus_dmamap_destroy(tag, map);
1088 	bus_dmamem_unmap(tag, vaddr, size);
1089 	bus_dmamem_free(tag, seg, nseg);
1090 }
1091 
1092 static bool
1093 agp_resume(device_t dv)
1094 {
1095 	agp_flush_cache();
1096 
1097 	return true;
1098 }
1099