1 /* $NetBSD: agp.c,v 1.54 2007/12/09 20:28:05 jmcneill Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.54 2007/12/09 20:28:05 jmcneill Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 static bool agp_resume(device_t); 107 108 #include "agp_ali.h" 109 #include "agp_amd.h" 110 #include "agp_i810.h" 111 #include "agp_intel.h" 112 #include "agp_sis.h" 113 #include "agp_via.h" 114 #include "agp_amd64.h" 115 116 const struct agp_product { 117 uint32_t ap_vendor; 118 uint32_t ap_product; 119 int (*ap_match)(const struct pci_attach_args *); 120 int (*ap_attach)(struct device *, struct device *, void *); 121 } agp_products[] = { 122 #if NAGP_ALI > 0 123 { PCI_VENDOR_ALI, -1, 124 NULL, agp_ali_attach }, 125 #endif 126 127 #if NAGP_AMD64 > 0 128 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 129 agp_amd64_match, agp_amd64_attach }, 130 #endif 131 132 #if NAGP_AMD > 0 133 { PCI_VENDOR_AMD, -1, 134 agp_amd_match, agp_amd_attach }, 135 #endif 136 137 #if NAGP_I810 > 0 138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 139 NULL, agp_i810_attach }, 140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 141 NULL, agp_i810_attach }, 142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 143 NULL, agp_i810_attach }, 144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 145 NULL, agp_i810_attach }, 146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 147 NULL, agp_i810_attach }, 148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 149 NULL, agp_i810_attach }, 150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 151 NULL, agp_i810_attach }, 152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 153 NULL, agp_i810_attach }, 154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 155 NULL, agp_i810_attach }, 156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 157 NULL, agp_i810_attach }, 158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 159 NULL, agp_i810_attach }, 160 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 161 NULL, agp_i810_attach }, 162 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 163 NULL, agp_i810_attach }, 164 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 165 NULL, agp_i810_attach }, 166 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 167 NULL, agp_i810_attach }, 168 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 169 NULL, agp_i810_attach }, 170 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 171 NULL, agp_i810_attach }, 172 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 173 NULL, agp_i810_attach }, 174 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 175 NULL, agp_i810_attach }, 176 #endif 177 178 #if NAGP_INTEL > 0 179 { PCI_VENDOR_INTEL, -1, 180 NULL, agp_intel_attach }, 181 #endif 182 183 #if NAGP_AMD64 > 0 184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 185 agp_amd64_match, agp_amd64_attach }, 186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 187 agp_amd64_match, agp_amd64_attach }, 188 #endif 189 190 #if NAGP_AMD64 > 0 191 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 192 agp_amd64_match, agp_amd64_attach }, 193 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 194 agp_amd64_match, agp_amd64_attach }, 195 #endif 196 197 #if NAGP_SIS > 0 198 { PCI_VENDOR_SIS, -1, 199 NULL, agp_sis_attach }, 200 #endif 201 202 #if NAGP_AMD64 > 0 203 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 204 agp_amd64_match, agp_amd64_attach }, 205 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 206 agp_amd64_match, agp_amd64_attach }, 207 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 208 agp_amd64_match, agp_amd64_attach }, 209 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 210 agp_amd64_match, agp_amd64_attach }, 211 #endif 212 213 #if NAGP_VIA > 0 214 { PCI_VENDOR_VIATECH, -1, 215 NULL, agp_via_attach }, 216 #endif 217 218 { 0, 0, 219 NULL, NULL }, 220 }; 221 222 static const struct agp_product * 223 agp_lookup(const struct pci_attach_args *pa) 224 { 225 const struct agp_product *ap; 226 227 /* First find the vendor. */ 228 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 229 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 230 break; 231 } 232 233 if (ap->ap_attach == NULL) 234 return (NULL); 235 236 /* Now find the product within the vendor's domain. */ 237 for (; ap->ap_attach != NULL; ap++) { 238 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 239 /* Ran out of this vendor's section of the table. */ 240 return (NULL); 241 } 242 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 243 /* Exact match. */ 244 break; 245 } 246 if (ap->ap_product == (uint32_t) -1) { 247 /* Wildcard match. */ 248 break; 249 } 250 } 251 252 if (ap->ap_attach == NULL) 253 return (NULL); 254 255 /* Now let the product-specific driver filter the match. */ 256 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 257 return (NULL); 258 259 return (ap); 260 } 261 262 static int 263 agpmatch(struct device *parent, struct cfdata *match, 264 void *aux) 265 { 266 struct agpbus_attach_args *apa = aux; 267 struct pci_attach_args *pa = &apa->apa_pci_args; 268 269 if (agp_lookup(pa) == NULL) 270 return (0); 271 272 return (1); 273 } 274 275 static const int agp_max[][2] = { 276 {0, 0}, 277 {32, 4}, 278 {64, 28}, 279 {128, 96}, 280 {256, 204}, 281 {512, 440}, 282 {1024, 942}, 283 {2048, 1920}, 284 {4096, 3932} 285 }; 286 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 287 288 static void 289 agpattach(struct device *parent, struct device *self, void *aux) 290 { 291 struct agpbus_attach_args *apa = aux; 292 struct pci_attach_args *pa = &apa->apa_pci_args; 293 struct agp_softc *sc = (void *)self; 294 const struct agp_product *ap; 295 int memsize, i, ret; 296 297 ap = agp_lookup(pa); 298 if (ap == NULL) { 299 printf("\n"); 300 panic("agpattach: impossible"); 301 } 302 303 aprint_naive(": AGP controller\n"); 304 305 sc->as_dmat = pa->pa_dmat; 306 sc->as_pc = pa->pa_pc; 307 sc->as_tag = pa->pa_tag; 308 sc->as_id = pa->pa_id; 309 310 /* 311 * Work out an upper bound for agp memory allocation. This 312 * uses a heurisitc table from the Linux driver. 313 */ 314 memsize = ptoa(physmem) >> 20; 315 for (i = 0; i < agp_max_size; i++) { 316 if (memsize <= agp_max[i][0]) 317 break; 318 } 319 if (i == agp_max_size) 320 i = agp_max_size - 1; 321 sc->as_maxmem = agp_max[i][1] << 20U; 322 323 /* 324 * The mutex is used to prevent re-entry to 325 * agp_generic_bind_memory() since that function can sleep. 326 */ 327 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 328 329 TAILQ_INIT(&sc->as_memory); 330 331 ret = (*ap->ap_attach)(parent, self, pa); 332 if (ret == 0) 333 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 334 (unsigned long)sc->as_apaddr, 335 (unsigned long)AGP_GET_APERTURE(sc)); 336 else 337 sc->as_chipc = NULL; 338 339 if (!device_pmf_is_registered(self)) { 340 if (!pmf_device_register(self, NULL, agp_resume)) 341 aprint_error_dev(self, "couldn't establish power handler\n"); 342 } 343 } 344 345 CFATTACH_DECL(agp, sizeof(struct agp_softc), 346 agpmatch, agpattach, NULL, NULL); 347 348 int 349 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 350 { 351 /* 352 * Find the aperture. Don't map it (yet), this would 353 * eat KVA. 354 */ 355 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 356 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 357 &sc->as_apflags) != 0) 358 return ENXIO; 359 360 sc->as_apt = pa->pa_memt; 361 362 return 0; 363 } 364 365 struct agp_gatt * 366 agp_alloc_gatt(struct agp_softc *sc) 367 { 368 u_int32_t apsize = AGP_GET_APERTURE(sc); 369 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 370 struct agp_gatt *gatt; 371 void *virtual; 372 int dummyseg; 373 374 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 375 if (!gatt) 376 return NULL; 377 gatt->ag_entries = entries; 378 379 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 380 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 381 &gatt->ag_dmaseg, 1, &dummyseg) != 0) 382 return NULL; 383 gatt->ag_virtual = (uint32_t *)virtual; 384 385 gatt->ag_size = entries * sizeof(u_int32_t); 386 memset(gatt->ag_virtual, 0, gatt->ag_size); 387 agp_flush_cache(); 388 389 return gatt; 390 } 391 392 void 393 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 394 { 395 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 396 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 397 free(gatt, M_AGP); 398 } 399 400 401 int 402 agp_generic_detach(struct agp_softc *sc) 403 { 404 mutex_destroy(&sc->as_mtx); 405 agp_flush_cache(); 406 return 0; 407 } 408 409 static int 410 agpdev_match(struct pci_attach_args *pa) 411 { 412 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 413 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 414 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 415 NULL, NULL)) 416 return 1; 417 418 return 0; 419 } 420 421 int 422 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 423 { 424 struct pci_attach_args pa; 425 pcireg_t tstatus, mstatus; 426 pcireg_t command; 427 int rq, sba, fw, rate, capoff; 428 429 if (pci_find_device(&pa, agpdev_match) == 0 || 430 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 431 &capoff, NULL) == 0) { 432 printf("%s: can't find display\n", sc->as_dev.dv_xname); 433 return ENXIO; 434 } 435 436 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 437 sc->as_capoff + AGP_STATUS); 438 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 439 capoff + AGP_STATUS); 440 441 /* Set RQ to the min of mode, tstatus and mstatus */ 442 rq = AGP_MODE_GET_RQ(mode); 443 if (AGP_MODE_GET_RQ(tstatus) < rq) 444 rq = AGP_MODE_GET_RQ(tstatus); 445 if (AGP_MODE_GET_RQ(mstatus) < rq) 446 rq = AGP_MODE_GET_RQ(mstatus); 447 448 /* Set SBA if all three can deal with SBA */ 449 sba = (AGP_MODE_GET_SBA(tstatus) 450 & AGP_MODE_GET_SBA(mstatus) 451 & AGP_MODE_GET_SBA(mode)); 452 453 /* Similar for FW */ 454 fw = (AGP_MODE_GET_FW(tstatus) 455 & AGP_MODE_GET_FW(mstatus) 456 & AGP_MODE_GET_FW(mode)); 457 458 /* Figure out the max rate */ 459 rate = (AGP_MODE_GET_RATE(tstatus) 460 & AGP_MODE_GET_RATE(mstatus) 461 & AGP_MODE_GET_RATE(mode)); 462 if (rate & AGP_MODE_RATE_4x) 463 rate = AGP_MODE_RATE_4x; 464 else if (rate & AGP_MODE_RATE_2x) 465 rate = AGP_MODE_RATE_2x; 466 else 467 rate = AGP_MODE_RATE_1x; 468 469 /* Construct the new mode word and tell the hardware */ 470 command = AGP_MODE_SET_RQ(0, rq); 471 command = AGP_MODE_SET_SBA(command, sba); 472 command = AGP_MODE_SET_FW(command, fw); 473 command = AGP_MODE_SET_RATE(command, rate); 474 command = AGP_MODE_SET_AGP(command, 1); 475 pci_conf_write(sc->as_pc, sc->as_tag, 476 sc->as_capoff + AGP_COMMAND, command); 477 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 478 479 return 0; 480 } 481 482 struct agp_memory * 483 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 484 { 485 struct agp_memory *mem; 486 487 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 488 return 0; 489 490 if (sc->as_allocated + size > sc->as_maxmem) 491 return 0; 492 493 if (type != 0) { 494 printf("agp_generic_alloc_memory: unsupported type %d\n", 495 type); 496 return 0; 497 } 498 499 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 500 if (mem == NULL) 501 return NULL; 502 503 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 504 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 505 free(mem, M_AGP); 506 return NULL; 507 } 508 509 mem->am_id = sc->as_nextid++; 510 mem->am_size = size; 511 mem->am_type = 0; 512 mem->am_physical = 0; 513 mem->am_offset = 0; 514 mem->am_is_bound = 0; 515 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 516 sc->as_allocated += size; 517 518 return mem; 519 } 520 521 int 522 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 523 { 524 if (mem->am_is_bound) 525 return EBUSY; 526 527 sc->as_allocated -= mem->am_size; 528 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 529 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 530 free(mem, M_AGP); 531 return 0; 532 } 533 534 int 535 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 536 off_t offset) 537 { 538 off_t i, k; 539 bus_size_t done, j; 540 int error; 541 bus_dma_segment_t *segs, *seg; 542 bus_addr_t pa; 543 int contigpages, nseg; 544 545 mutex_enter(&sc->as_mtx); 546 547 if (mem->am_is_bound) { 548 printf("%s: memory already bound\n", sc->as_dev.dv_xname); 549 mutex_exit(&sc->as_mtx); 550 return EINVAL; 551 } 552 553 if (offset < 0 554 || (offset & (AGP_PAGE_SIZE - 1)) != 0 555 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 556 printf("%s: binding memory at bad offset %#lx\n", 557 sc->as_dev.dv_xname, (unsigned long) offset); 558 mutex_exit(&sc->as_mtx); 559 return EINVAL; 560 } 561 562 /* 563 * XXXfvdl 564 * The memory here needs to be directly accessable from the 565 * AGP video card, so it should be allocated using bus_dma. 566 * However, it need not be contiguous, since individual pages 567 * are translated using the GATT. 568 * 569 * Using a large chunk of contiguous memory may get in the way 570 * of other subsystems that may need one, so we try to be friendly 571 * and ask for allocation in chunks of a minimum of 8 pages 572 * of contiguous memory on average, falling back to 4, 2 and 1 573 * if really needed. Larger chunks are preferred, since allocating 574 * a bus_dma_segment per page would be overkill. 575 */ 576 577 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 578 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 579 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 580 if (segs == NULL) { 581 mutex_exit(&sc->as_mtx); 582 return ENOMEM; 583 } 584 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 585 segs, nseg, &mem->am_nseg, 586 contigpages > 1 ? 587 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 588 free(segs, M_AGP); 589 continue; 590 } 591 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 592 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 593 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 594 free(segs, M_AGP); 595 continue; 596 } 597 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 598 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 599 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 600 mem->am_size); 601 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 602 free(segs, M_AGP); 603 continue; 604 } 605 mem->am_dmaseg = segs; 606 break; 607 } 608 609 if (contigpages == 0) { 610 mutex_exit(&sc->as_mtx); 611 return ENOMEM; 612 } 613 614 615 /* 616 * Bind the individual pages and flush the chipset's 617 * TLB. 618 */ 619 done = 0; 620 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 621 seg = &mem->am_dmamap->dm_segs[i]; 622 /* 623 * Install entries in the GATT, making sure that if 624 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 625 * aligned to PAGE_SIZE, we don't modify too many GATT 626 * entries. 627 */ 628 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 629 j += AGP_PAGE_SIZE) { 630 pa = seg->ds_addr + j; 631 AGP_DPF(("binding offset %#lx to pa %#lx\n", 632 (unsigned long)(offset + done + j), 633 (unsigned long)pa)); 634 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 635 if (error) { 636 /* 637 * Bail out. Reverse all the mappings 638 * and unwire the pages. 639 */ 640 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 641 AGP_UNBIND_PAGE(sc, offset + k); 642 643 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 644 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 645 mem->am_size); 646 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 647 mem->am_nseg); 648 free(mem->am_dmaseg, M_AGP); 649 mutex_exit(&sc->as_mtx); 650 return error; 651 } 652 } 653 done += seg->ds_len; 654 } 655 656 /* 657 * Flush the CPU cache since we are providing a new mapping 658 * for these pages. 659 */ 660 agp_flush_cache(); 661 662 /* 663 * Make sure the chipset gets the new mappings. 664 */ 665 AGP_FLUSH_TLB(sc); 666 667 mem->am_offset = offset; 668 mem->am_is_bound = 1; 669 670 mutex_exit(&sc->as_mtx); 671 672 return 0; 673 } 674 675 int 676 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 677 { 678 int i; 679 680 mutex_enter(&sc->as_mtx); 681 682 if (!mem->am_is_bound) { 683 printf("%s: memory is not bound\n", sc->as_dev.dv_xname); 684 mutex_exit(&sc->as_mtx); 685 return EINVAL; 686 } 687 688 689 /* 690 * Unbind the individual pages and flush the chipset's 691 * TLB. Unwire the pages so they can be swapped. 692 */ 693 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 694 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 695 696 agp_flush_cache(); 697 AGP_FLUSH_TLB(sc); 698 699 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 700 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 701 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 702 703 free(mem->am_dmaseg, M_AGP); 704 705 mem->am_offset = 0; 706 mem->am_is_bound = 0; 707 708 mutex_exit(&sc->as_mtx); 709 710 return 0; 711 } 712 713 /* Helper functions for implementing user/kernel api */ 714 715 static int 716 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 717 { 718 if (sc->as_state != AGP_ACQUIRE_FREE) 719 return EBUSY; 720 sc->as_state = state; 721 722 return 0; 723 } 724 725 static int 726 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 727 { 728 729 if (sc->as_state == AGP_ACQUIRE_FREE) 730 return 0; 731 732 if (sc->as_state != state) 733 return EBUSY; 734 735 sc->as_state = AGP_ACQUIRE_FREE; 736 return 0; 737 } 738 739 static struct agp_memory * 740 agp_find_memory(struct agp_softc *sc, int id) 741 { 742 struct agp_memory *mem; 743 744 AGP_DPF(("searching for memory block %d\n", id)); 745 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 746 AGP_DPF(("considering memory block %d\n", mem->am_id)); 747 if (mem->am_id == id) 748 return mem; 749 } 750 return 0; 751 } 752 753 /* Implementation of the userland ioctl api */ 754 755 static int 756 agp_info_user(struct agp_softc *sc, agp_info *info) 757 { 758 memset(info, 0, sizeof *info); 759 info->bridge_id = sc->as_id; 760 if (sc->as_capoff != 0) 761 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 762 sc->as_capoff + AGP_STATUS); 763 else 764 info->agp_mode = 0; /* i810 doesn't have real AGP */ 765 info->aper_base = sc->as_apaddr; 766 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 767 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 768 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 769 770 return 0; 771 } 772 773 static int 774 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 775 { 776 return AGP_ENABLE(sc, setup->agp_mode); 777 } 778 779 static int 780 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 781 { 782 struct agp_memory *mem; 783 784 mem = AGP_ALLOC_MEMORY(sc, 785 alloc->type, 786 alloc->pg_count << AGP_PAGE_SHIFT); 787 if (mem) { 788 alloc->key = mem->am_id; 789 alloc->physical = mem->am_physical; 790 return 0; 791 } else { 792 return ENOMEM; 793 } 794 } 795 796 static int 797 agp_deallocate_user(struct agp_softc *sc, int id) 798 { 799 struct agp_memory *mem = agp_find_memory(sc, id); 800 801 if (mem) { 802 AGP_FREE_MEMORY(sc, mem); 803 return 0; 804 } else { 805 return ENOENT; 806 } 807 } 808 809 static int 810 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 811 { 812 struct agp_memory *mem = agp_find_memory(sc, bind->key); 813 814 if (!mem) 815 return ENOENT; 816 817 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 818 } 819 820 static int 821 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 822 { 823 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 824 825 if (!mem) 826 return ENOENT; 827 828 return AGP_UNBIND_MEMORY(sc, mem); 829 } 830 831 static int 832 agpopen(dev_t dev, int oflags, int devtype, 833 struct lwp *l) 834 { 835 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 836 837 if (sc == NULL) 838 return ENXIO; 839 840 if (sc->as_chipc == NULL) 841 return ENXIO; 842 843 if (!sc->as_isopen) 844 sc->as_isopen = 1; 845 else 846 return EBUSY; 847 848 return 0; 849 } 850 851 static int 852 agpclose(dev_t dev, int fflag, int devtype, 853 struct lwp *l) 854 { 855 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 856 struct agp_memory *mem; 857 858 /* 859 * Clear the GATT and force release on last close 860 */ 861 if (sc->as_state == AGP_ACQUIRE_USER) { 862 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 863 if (mem->am_is_bound) { 864 printf("agpclose: mem %d is bound\n", 865 mem->am_id); 866 AGP_UNBIND_MEMORY(sc, mem); 867 } 868 /* 869 * XXX it is not documented, but if the protocol allows 870 * allocate->acquire->bind, it would be possible that 871 * memory ranges are allocated by the kernel here, 872 * which we shouldn't free. We'd have to keep track of 873 * the memory range's owner. 874 * The kernel API is unsed yet, so we get away with 875 * freeing all. 876 */ 877 AGP_FREE_MEMORY(sc, mem); 878 } 879 agp_release_helper(sc, AGP_ACQUIRE_USER); 880 } 881 sc->as_isopen = 0; 882 883 return 0; 884 } 885 886 static int 887 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 888 { 889 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 890 891 if (sc == NULL) 892 return ENODEV; 893 894 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 895 return EPERM; 896 897 switch (cmd) { 898 case AGPIOC_INFO: 899 return agp_info_user(sc, (agp_info *) data); 900 901 case AGPIOC_ACQUIRE: 902 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 903 904 case AGPIOC_RELEASE: 905 return agp_release_helper(sc, AGP_ACQUIRE_USER); 906 907 case AGPIOC_SETUP: 908 return agp_setup_user(sc, (agp_setup *)data); 909 910 case AGPIOC_ALLOCATE: 911 return agp_allocate_user(sc, (agp_allocate *)data); 912 913 case AGPIOC_DEALLOCATE: 914 return agp_deallocate_user(sc, *(int *) data); 915 916 case AGPIOC_BIND: 917 return agp_bind_user(sc, (agp_bind *)data); 918 919 case AGPIOC_UNBIND: 920 return agp_unbind_user(sc, (agp_unbind *)data); 921 922 } 923 924 return EINVAL; 925 } 926 927 static paddr_t 928 agpmmap(dev_t dev, off_t offset, int prot) 929 { 930 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 931 932 if (offset > AGP_GET_APERTURE(sc)) 933 return -1; 934 935 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 936 BUS_SPACE_MAP_LINEAR)); 937 } 938 939 const struct cdevsw agp_cdevsw = { 940 agpopen, agpclose, noread, nowrite, agpioctl, 941 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 942 }; 943 944 /* Implementation of the kernel api */ 945 946 void * 947 agp_find_device(int unit) 948 { 949 return device_lookup(&agp_cd, unit); 950 } 951 952 enum agp_acquire_state 953 agp_state(void *devcookie) 954 { 955 struct agp_softc *sc = devcookie; 956 return sc->as_state; 957 } 958 959 void 960 agp_get_info(void *devcookie, struct agp_info *info) 961 { 962 struct agp_softc *sc = devcookie; 963 964 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 965 sc->as_capoff + AGP_STATUS); 966 info->ai_aperture_base = sc->as_apaddr; 967 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 968 info->ai_memory_allowed = sc->as_maxmem; 969 info->ai_memory_used = sc->as_allocated; 970 } 971 972 int 973 agp_acquire(void *dev) 974 { 975 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 976 } 977 978 int 979 agp_release(void *dev) 980 { 981 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 982 } 983 984 int 985 agp_enable(void *dev, u_int32_t mode) 986 { 987 struct agp_softc *sc = dev; 988 989 return AGP_ENABLE(sc, mode); 990 } 991 992 void *agp_alloc_memory(void *dev, int type, vsize_t bytes) 993 { 994 struct agp_softc *sc = dev; 995 996 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 997 } 998 999 void agp_free_memory(void *dev, void *handle) 1000 { 1001 struct agp_softc *sc = dev; 1002 struct agp_memory *mem = (struct agp_memory *) handle; 1003 AGP_FREE_MEMORY(sc, mem); 1004 } 1005 1006 int agp_bind_memory(void *dev, void *handle, off_t offset) 1007 { 1008 struct agp_softc *sc = dev; 1009 struct agp_memory *mem = (struct agp_memory *) handle; 1010 1011 return AGP_BIND_MEMORY(sc, mem, offset); 1012 } 1013 1014 int agp_unbind_memory(void *dev, void *handle) 1015 { 1016 struct agp_softc *sc = dev; 1017 struct agp_memory *mem = (struct agp_memory *) handle; 1018 1019 return AGP_UNBIND_MEMORY(sc, mem); 1020 } 1021 1022 void agp_memory_info(void *dev, void *handle, 1023 struct agp_memory_info *mi) 1024 { 1025 struct agp_memory *mem = (struct agp_memory *) handle; 1026 1027 mi->ami_size = mem->am_size; 1028 mi->ami_physical = mem->am_physical; 1029 mi->ami_offset = mem->am_offset; 1030 mi->ami_is_bound = mem->am_is_bound; 1031 } 1032 1033 int 1034 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1035 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1036 bus_dma_segment_t *seg, int nseg, int *rseg) 1037 1038 { 1039 int error, level = 0; 1040 1041 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1042 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1043 goto out; 1044 level++; 1045 1046 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1047 BUS_DMA_NOWAIT | flags)) != 0) 1048 goto out; 1049 level++; 1050 1051 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1052 BUS_DMA_NOWAIT, mapp)) != 0) 1053 goto out; 1054 level++; 1055 1056 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1057 BUS_DMA_NOWAIT)) != 0) 1058 goto out; 1059 1060 *baddr = (*mapp)->dm_segs[0].ds_addr; 1061 1062 return 0; 1063 out: 1064 switch (level) { 1065 case 3: 1066 bus_dmamap_destroy(tag, *mapp); 1067 /* FALLTHROUGH */ 1068 case 2: 1069 bus_dmamem_unmap(tag, *vaddr, size); 1070 /* FALLTHROUGH */ 1071 case 1: 1072 bus_dmamem_free(tag, seg, *rseg); 1073 break; 1074 default: 1075 break; 1076 } 1077 1078 return error; 1079 } 1080 1081 void 1082 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1083 void *vaddr, bus_dma_segment_t *seg, int nseg) 1084 { 1085 1086 bus_dmamap_unload(tag, map); 1087 bus_dmamap_destroy(tag, map); 1088 bus_dmamem_unmap(tag, vaddr, size); 1089 bus_dmamem_free(tag, seg, nseg); 1090 } 1091 1092 static bool 1093 agp_resume(device_t dv) 1094 { 1095 agp_flush_cache(); 1096 1097 return true; 1098 } 1099