xref: /netbsd-src/sys/dev/pci/agp.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <uvm/uvm_extern.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89 
90 #include <sys/bus.h>
91 
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96 
97 extern struct cfdriver agp_cd;
98 
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115 
116 const struct agp_product {
117 	uint32_t	ap_vendor;
118 	uint32_t	ap_product;
119 	int		(*ap_match)(const struct pci_attach_args *);
120 	int		(*ap_attach)(struct device *, struct device *, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
124 	  agp_amd64_match,	agp_amd64_attach },
125 #endif
126 
127 #if NAGP_ALI > 0
128 	{ PCI_VENDOR_ALI,	-1,
129 	  NULL,			agp_ali_attach },
130 #endif
131 
132 #if NAGP_AMD64 > 0
133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
134 	  agp_amd64_match,	agp_amd64_attach },
135 #endif
136 
137 #if NAGP_AMD > 0
138 	{ PCI_VENDOR_AMD,	-1,
139 	  agp_amd_match,	agp_amd_attach },
140 #endif
141 
142 #if NAGP_I810 > 0
143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
144 	  NULL,			agp_i810_attach },
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
180 	  NULL,			agp_i810_attach },
181 #endif
182 
183 #if NAGP_INTEL > 0
184 	{ PCI_VENDOR_INTEL,	-1,
185 	  NULL,			agp_intel_attach },
186 #endif
187 
188 #if NAGP_AMD64 > 0
189 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
190 	  agp_amd64_match,	agp_amd64_attach },
191 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
192 	  agp_amd64_match,	agp_amd64_attach },
193 #endif
194 
195 #if NAGP_AMD64 > 0
196 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
197 	  agp_amd64_match,	agp_amd64_attach },
198 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
199 	  agp_amd64_match,	agp_amd64_attach },
200 #endif
201 
202 #if NAGP_SIS > 0
203 	{ PCI_VENDOR_SIS,	-1,
204 	  NULL,			agp_sis_attach },
205 #endif
206 
207 #if NAGP_AMD64 > 0
208 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
209 	  agp_amd64_match,	agp_amd64_attach },
210 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
211 	  agp_amd64_match,	agp_amd64_attach },
212 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
213 	  agp_amd64_match,	agp_amd64_attach },
214 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
215 	  agp_amd64_match,	agp_amd64_attach },
216 #endif
217 
218 #if NAGP_VIA > 0
219 	{ PCI_VENDOR_VIATECH,	-1,
220 	  NULL,			agp_via_attach },
221 #endif
222 
223 	{ 0,			0,
224 	  NULL,			NULL },
225 };
226 
227 static const struct agp_product *
228 agp_lookup(const struct pci_attach_args *pa)
229 {
230 	const struct agp_product *ap;
231 
232 	/* First find the vendor. */
233 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
234 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
235 			break;
236 	}
237 
238 	if (ap->ap_attach == NULL)
239 		return (NULL);
240 
241 	/* Now find the product within the vendor's domain. */
242 	for (; ap->ap_attach != NULL; ap++) {
243 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
244 			/* Ran out of this vendor's section of the table. */
245 			return (NULL);
246 		}
247 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
248 			/* Exact match. */
249 			break;
250 		}
251 		if (ap->ap_product == (uint32_t) -1) {
252 			/* Wildcard match. */
253 			break;
254 		}
255 	}
256 
257 	if (ap->ap_attach == NULL)
258 		return (NULL);
259 
260 	/* Now let the product-specific driver filter the match. */
261 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
262 		return (NULL);
263 
264 	return (ap);
265 }
266 
267 static int
268 agpmatch(struct device *parent, struct cfdata *match,
269     void *aux)
270 {
271 	struct agpbus_attach_args *apa = aux;
272 	struct pci_attach_args *pa = &apa->apa_pci_args;
273 
274 	if (agp_lookup(pa) == NULL)
275 		return (0);
276 
277 	return (1);
278 }
279 
280 static const int agp_max[][2] = {
281 	{0,	0},
282 	{32,	4},
283 	{64,	28},
284 	{128,	96},
285 	{256,	204},
286 	{512,	440},
287 	{1024,	942},
288 	{2048,	1920},
289 	{4096,	3932}
290 };
291 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
292 
293 static void
294 agpattach(struct device *parent, struct device *self, void *aux)
295 {
296 	struct agpbus_attach_args *apa = aux;
297 	struct pci_attach_args *pa = &apa->apa_pci_args;
298 	struct agp_softc *sc = (void *)self;
299 	const struct agp_product *ap;
300 	int memsize, i, ret;
301 
302 	ap = agp_lookup(pa);
303 	if (ap == NULL) {
304 		printf("\n");
305 		panic("agpattach: impossible");
306 	}
307 
308 	aprint_naive(": AGP controller\n");
309 
310 	sc->as_dmat = pa->pa_dmat;
311 	sc->as_pc = pa->pa_pc;
312 	sc->as_tag = pa->pa_tag;
313 	sc->as_id = pa->pa_id;
314 
315 	/*
316 	 * Work out an upper bound for agp memory allocation. This
317 	 * uses a heurisitc table from the Linux driver.
318 	 */
319 	memsize = ptoa(physmem) >> 20;
320 	for (i = 0; i < agp_max_size; i++) {
321 		if (memsize <= agp_max[i][0])
322 			break;
323 	}
324 	if (i == agp_max_size)
325 		i = agp_max_size - 1;
326 	sc->as_maxmem = agp_max[i][1] << 20U;
327 
328 	/*
329 	 * The mutex is used to prevent re-entry to
330 	 * agp_generic_bind_memory() since that function can sleep.
331 	 */
332 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
333 
334 	TAILQ_INIT(&sc->as_memory);
335 
336 	ret = (*ap->ap_attach)(parent, self, pa);
337 	if (ret == 0)
338 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
339 		    (unsigned long)sc->as_apaddr,
340 		    (unsigned long)AGP_GET_APERTURE(sc));
341 	else
342 		sc->as_chipc = NULL;
343 
344 	if (!device_pmf_is_registered(self)) {
345 		if (!pmf_device_register(self, NULL, agp_resume))
346 			aprint_error_dev(self, "couldn't establish power handler\n");
347 	}
348 }
349 
350 CFATTACH_DECL(agp, sizeof(struct agp_softc),
351     agpmatch, agpattach, NULL, NULL);
352 
353 int
354 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
355 {
356 	/*
357 	 * Find the aperture. Don't map it (yet), this would
358 	 * eat KVA.
359 	 */
360 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
361 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
362 	    &sc->as_apflags) != 0)
363 		return ENXIO;
364 
365 	sc->as_apt = pa->pa_memt;
366 
367 	return 0;
368 }
369 
370 struct agp_gatt *
371 agp_alloc_gatt(struct agp_softc *sc)
372 {
373 	u_int32_t apsize = AGP_GET_APERTURE(sc);
374 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
375 	struct agp_gatt *gatt;
376 	void *virtual;
377 	int dummyseg;
378 
379 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
380 	if (!gatt)
381 		return NULL;
382 	gatt->ag_entries = entries;
383 
384 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
385 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
386 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0)
387 		return NULL;
388 	gatt->ag_virtual = (uint32_t *)virtual;
389 
390 	gatt->ag_size = entries * sizeof(u_int32_t);
391 	memset(gatt->ag_virtual, 0, gatt->ag_size);
392 	agp_flush_cache();
393 
394 	return gatt;
395 }
396 
397 void
398 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
399 {
400 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
401 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
402 	free(gatt, M_AGP);
403 }
404 
405 
406 int
407 agp_generic_detach(struct agp_softc *sc)
408 {
409 	mutex_destroy(&sc->as_mtx);
410 	agp_flush_cache();
411 	return 0;
412 }
413 
414 static int
415 agpdev_match(struct pci_attach_args *pa)
416 {
417 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
418 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
419 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
420 		    NULL, NULL))
421 		return 1;
422 
423 	return 0;
424 }
425 
426 int
427 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
428 {
429 	struct pci_attach_args pa;
430 	pcireg_t tstatus, mstatus;
431 	pcireg_t command;
432 	int rq, sba, fw, rate, capoff;
433 
434 	if (pci_find_device(&pa, agpdev_match) == 0 ||
435 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
436 	     &capoff, NULL) == 0) {
437 		aprint_error_dev(&sc->as_dev, "can't find display\n");
438 		return ENXIO;
439 	}
440 
441 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
442 	    sc->as_capoff + AGP_STATUS);
443 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
444 	    capoff + AGP_STATUS);
445 
446 	/* Set RQ to the min of mode, tstatus and mstatus */
447 	rq = AGP_MODE_GET_RQ(mode);
448 	if (AGP_MODE_GET_RQ(tstatus) < rq)
449 		rq = AGP_MODE_GET_RQ(tstatus);
450 	if (AGP_MODE_GET_RQ(mstatus) < rq)
451 		rq = AGP_MODE_GET_RQ(mstatus);
452 
453 	/* Set SBA if all three can deal with SBA */
454 	sba = (AGP_MODE_GET_SBA(tstatus)
455 	       & AGP_MODE_GET_SBA(mstatus)
456 	       & AGP_MODE_GET_SBA(mode));
457 
458 	/* Similar for FW */
459 	fw = (AGP_MODE_GET_FW(tstatus)
460 	       & AGP_MODE_GET_FW(mstatus)
461 	       & AGP_MODE_GET_FW(mode));
462 
463 	/* Figure out the max rate */
464 	rate = (AGP_MODE_GET_RATE(tstatus)
465 		& AGP_MODE_GET_RATE(mstatus)
466 		& AGP_MODE_GET_RATE(mode));
467 	if (rate & AGP_MODE_RATE_4x)
468 		rate = AGP_MODE_RATE_4x;
469 	else if (rate & AGP_MODE_RATE_2x)
470 		rate = AGP_MODE_RATE_2x;
471 	else
472 		rate = AGP_MODE_RATE_1x;
473 
474 	/* Construct the new mode word and tell the hardware */
475 	command = AGP_MODE_SET_RQ(0, rq);
476 	command = AGP_MODE_SET_SBA(command, sba);
477 	command = AGP_MODE_SET_FW(command, fw);
478 	command = AGP_MODE_SET_RATE(command, rate);
479 	command = AGP_MODE_SET_AGP(command, 1);
480 	pci_conf_write(sc->as_pc, sc->as_tag,
481 	    sc->as_capoff + AGP_COMMAND, command);
482 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
483 
484 	return 0;
485 }
486 
487 struct agp_memory *
488 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
489 {
490 	struct agp_memory *mem;
491 
492 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
493 		return 0;
494 
495 	if (sc->as_allocated + size > sc->as_maxmem)
496 		return 0;
497 
498 	if (type != 0) {
499 		printf("agp_generic_alloc_memory: unsupported type %d\n",
500 		       type);
501 		return 0;
502 	}
503 
504 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
505 	if (mem == NULL)
506 		return NULL;
507 
508 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
509 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
510 		free(mem, M_AGP);
511 		return NULL;
512 	}
513 
514 	mem->am_id = sc->as_nextid++;
515 	mem->am_size = size;
516 	mem->am_type = 0;
517 	mem->am_physical = 0;
518 	mem->am_offset = 0;
519 	mem->am_is_bound = 0;
520 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
521 	sc->as_allocated += size;
522 
523 	return mem;
524 }
525 
526 int
527 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
528 {
529 	if (mem->am_is_bound)
530 		return EBUSY;
531 
532 	sc->as_allocated -= mem->am_size;
533 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
534 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
535 	free(mem, M_AGP);
536 	return 0;
537 }
538 
539 int
540 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
541 			off_t offset)
542 {
543 	off_t i, k;
544 	bus_size_t done, j;
545 	int error;
546 	bus_dma_segment_t *segs, *seg;
547 	bus_addr_t pa;
548 	int contigpages, nseg;
549 
550 	mutex_enter(&sc->as_mtx);
551 
552 	if (mem->am_is_bound) {
553 		aprint_error_dev(&sc->as_dev, "memory already bound\n");
554 		mutex_exit(&sc->as_mtx);
555 		return EINVAL;
556 	}
557 
558 	if (offset < 0
559 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
560 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
561 		aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n",
562 			      (unsigned long) offset);
563 		mutex_exit(&sc->as_mtx);
564 		return EINVAL;
565 	}
566 
567 	/*
568 	 * XXXfvdl
569 	 * The memory here needs to be directly accessable from the
570 	 * AGP video card, so it should be allocated using bus_dma.
571 	 * However, it need not be contiguous, since individual pages
572 	 * are translated using the GATT.
573 	 *
574 	 * Using a large chunk of contiguous memory may get in the way
575 	 * of other subsystems that may need one, so we try to be friendly
576 	 * and ask for allocation in chunks of a minimum of 8 pages
577 	 * of contiguous memory on average, falling back to 4, 2 and 1
578 	 * if really needed. Larger chunks are preferred, since allocating
579 	 * a bus_dma_segment per page would be overkill.
580 	 */
581 
582 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
583 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
584 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
585 		if (segs == NULL) {
586 			mutex_exit(&sc->as_mtx);
587 			return ENOMEM;
588 		}
589 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
590 				     segs, nseg, &mem->am_nseg,
591 				     contigpages > 1 ?
592 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
593 			free(segs, M_AGP);
594 			continue;
595 		}
596 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
597 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
598 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
599 			free(segs, M_AGP);
600 			continue;
601 		}
602 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
603 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
604 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
605 			    mem->am_size);
606 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
607 			free(segs, M_AGP);
608 			continue;
609 		}
610 		mem->am_dmaseg = segs;
611 		break;
612 	}
613 
614 	if (contigpages == 0) {
615 		mutex_exit(&sc->as_mtx);
616 		return ENOMEM;
617 	}
618 
619 
620 	/*
621 	 * Bind the individual pages and flush the chipset's
622 	 * TLB.
623 	 */
624 	done = 0;
625 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
626 		seg = &mem->am_dmamap->dm_segs[i];
627 		/*
628 		 * Install entries in the GATT, making sure that if
629 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
630 		 * aligned to PAGE_SIZE, we don't modify too many GATT
631 		 * entries.
632 		 */
633 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
634 		     j += AGP_PAGE_SIZE) {
635 			pa = seg->ds_addr + j;
636 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
637 				(unsigned long)(offset + done + j),
638 				(unsigned long)pa));
639 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
640 			if (error) {
641 				/*
642 				 * Bail out. Reverse all the mappings
643 				 * and unwire the pages.
644 				 */
645 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
646 					AGP_UNBIND_PAGE(sc, offset + k);
647 
648 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
649 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
650 						 mem->am_size);
651 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
652 						mem->am_nseg);
653 				free(mem->am_dmaseg, M_AGP);
654 				mutex_exit(&sc->as_mtx);
655 				return error;
656 			}
657 		}
658 		done += seg->ds_len;
659 	}
660 
661 	/*
662 	 * Flush the CPU cache since we are providing a new mapping
663 	 * for these pages.
664 	 */
665 	agp_flush_cache();
666 
667 	/*
668 	 * Make sure the chipset gets the new mappings.
669 	 */
670 	AGP_FLUSH_TLB(sc);
671 
672 	mem->am_offset = offset;
673 	mem->am_is_bound = 1;
674 
675 	mutex_exit(&sc->as_mtx);
676 
677 	return 0;
678 }
679 
680 int
681 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
682 {
683 	int i;
684 
685 	mutex_enter(&sc->as_mtx);
686 
687 	if (!mem->am_is_bound) {
688 		aprint_error_dev(&sc->as_dev, "memory is not bound\n");
689 		mutex_exit(&sc->as_mtx);
690 		return EINVAL;
691 	}
692 
693 
694 	/*
695 	 * Unbind the individual pages and flush the chipset's
696 	 * TLB. Unwire the pages so they can be swapped.
697 	 */
698 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
699 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
700 
701 	agp_flush_cache();
702 	AGP_FLUSH_TLB(sc);
703 
704 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
705 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
706 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
707 
708 	free(mem->am_dmaseg, M_AGP);
709 
710 	mem->am_offset = 0;
711 	mem->am_is_bound = 0;
712 
713 	mutex_exit(&sc->as_mtx);
714 
715 	return 0;
716 }
717 
718 /* Helper functions for implementing user/kernel api */
719 
720 static int
721 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
722 {
723 	if (sc->as_state != AGP_ACQUIRE_FREE)
724 		return EBUSY;
725 	sc->as_state = state;
726 
727 	return 0;
728 }
729 
730 static int
731 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
732 {
733 
734 	if (sc->as_state == AGP_ACQUIRE_FREE)
735 		return 0;
736 
737 	if (sc->as_state != state)
738 		return EBUSY;
739 
740 	sc->as_state = AGP_ACQUIRE_FREE;
741 	return 0;
742 }
743 
744 static struct agp_memory *
745 agp_find_memory(struct agp_softc *sc, int id)
746 {
747 	struct agp_memory *mem;
748 
749 	AGP_DPF(("searching for memory block %d\n", id));
750 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
751 		AGP_DPF(("considering memory block %d\n", mem->am_id));
752 		if (mem->am_id == id)
753 			return mem;
754 	}
755 	return 0;
756 }
757 
758 /* Implementation of the userland ioctl api */
759 
760 static int
761 agp_info_user(struct agp_softc *sc, agp_info *info)
762 {
763 	memset(info, 0, sizeof *info);
764 	info->bridge_id = sc->as_id;
765 	if (sc->as_capoff != 0)
766 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
767 					       sc->as_capoff + AGP_STATUS);
768 	else
769 		info->agp_mode = 0; /* i810 doesn't have real AGP */
770 	info->aper_base = sc->as_apaddr;
771 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
772 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
773 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
774 
775 	return 0;
776 }
777 
778 static int
779 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
780 {
781 	return AGP_ENABLE(sc, setup->agp_mode);
782 }
783 
784 static int
785 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
786 {
787 	struct agp_memory *mem;
788 
789 	mem = AGP_ALLOC_MEMORY(sc,
790 			       alloc->type,
791 			       alloc->pg_count << AGP_PAGE_SHIFT);
792 	if (mem) {
793 		alloc->key = mem->am_id;
794 		alloc->physical = mem->am_physical;
795 		return 0;
796 	} else {
797 		return ENOMEM;
798 	}
799 }
800 
801 static int
802 agp_deallocate_user(struct agp_softc *sc, int id)
803 {
804 	struct agp_memory *mem = agp_find_memory(sc, id);
805 
806 	if (mem) {
807 		AGP_FREE_MEMORY(sc, mem);
808 		return 0;
809 	} else {
810 		return ENOENT;
811 	}
812 }
813 
814 static int
815 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
816 {
817 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
818 
819 	if (!mem)
820 		return ENOENT;
821 
822 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
823 }
824 
825 static int
826 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
827 {
828 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
829 
830 	if (!mem)
831 		return ENOENT;
832 
833 	return AGP_UNBIND_MEMORY(sc, mem);
834 }
835 
836 static int
837 agpopen(dev_t dev, int oflags, int devtype,
838     struct lwp *l)
839 {
840 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
841 
842 	if (sc == NULL)
843 		return ENXIO;
844 
845 	if (sc->as_chipc == NULL)
846 		return ENXIO;
847 
848 	if (!sc->as_isopen)
849 		sc->as_isopen = 1;
850 	else
851 		return EBUSY;
852 
853 	return 0;
854 }
855 
856 static int
857 agpclose(dev_t dev, int fflag, int devtype,
858     struct lwp *l)
859 {
860 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
861 	struct agp_memory *mem;
862 
863 	/*
864 	 * Clear the GATT and force release on last close
865 	 */
866 	if (sc->as_state == AGP_ACQUIRE_USER) {
867 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
868 			if (mem->am_is_bound) {
869 				printf("agpclose: mem %d is bound\n",
870 				       mem->am_id);
871 				AGP_UNBIND_MEMORY(sc, mem);
872 			}
873 			/*
874 			 * XXX it is not documented, but if the protocol allows
875 			 * allocate->acquire->bind, it would be possible that
876 			 * memory ranges are allocated by the kernel here,
877 			 * which we shouldn't free. We'd have to keep track of
878 			 * the memory range's owner.
879 			 * The kernel API is unsed yet, so we get away with
880 			 * freeing all.
881 			 */
882 			AGP_FREE_MEMORY(sc, mem);
883 		}
884 		agp_release_helper(sc, AGP_ACQUIRE_USER);
885 	}
886 	sc->as_isopen = 0;
887 
888 	return 0;
889 }
890 
891 static int
892 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
893 {
894 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
895 
896 	if (sc == NULL)
897 		return ENODEV;
898 
899 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
900 		return EPERM;
901 
902 	switch (cmd) {
903 	case AGPIOC_INFO:
904 		return agp_info_user(sc, (agp_info *) data);
905 
906 	case AGPIOC_ACQUIRE:
907 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
908 
909 	case AGPIOC_RELEASE:
910 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
911 
912 	case AGPIOC_SETUP:
913 		return agp_setup_user(sc, (agp_setup *)data);
914 
915 	case AGPIOC_ALLOCATE:
916 		return agp_allocate_user(sc, (agp_allocate *)data);
917 
918 	case AGPIOC_DEALLOCATE:
919 		return agp_deallocate_user(sc, *(int *) data);
920 
921 	case AGPIOC_BIND:
922 		return agp_bind_user(sc, (agp_bind *)data);
923 
924 	case AGPIOC_UNBIND:
925 		return agp_unbind_user(sc, (agp_unbind *)data);
926 
927 	}
928 
929 	return EINVAL;
930 }
931 
932 static paddr_t
933 agpmmap(dev_t dev, off_t offset, int prot)
934 {
935 	struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev));
936 
937 	if (offset > AGP_GET_APERTURE(sc))
938 		return -1;
939 
940 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
941 	    BUS_SPACE_MAP_LINEAR));
942 }
943 
944 const struct cdevsw agp_cdevsw = {
945 	agpopen, agpclose, noread, nowrite, agpioctl,
946 	    nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
947 };
948 
949 /* Implementation of the kernel api */
950 
951 void *
952 agp_find_device(int unit)
953 {
954 	return device_lookup(&agp_cd, unit);
955 }
956 
957 enum agp_acquire_state
958 agp_state(void *devcookie)
959 {
960 	struct agp_softc *sc = devcookie;
961 	return sc->as_state;
962 }
963 
964 void
965 agp_get_info(void *devcookie, struct agp_info *info)
966 {
967 	struct agp_softc *sc = devcookie;
968 
969 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
970 	    sc->as_capoff + AGP_STATUS);
971 	info->ai_aperture_base = sc->as_apaddr;
972 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
973 	info->ai_memory_allowed = sc->as_maxmem;
974 	info->ai_memory_used = sc->as_allocated;
975 }
976 
977 int
978 agp_acquire(void *dev)
979 {
980 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
981 }
982 
983 int
984 agp_release(void *dev)
985 {
986 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
987 }
988 
989 int
990 agp_enable(void *dev, u_int32_t mode)
991 {
992 	struct agp_softc *sc = dev;
993 
994 	return AGP_ENABLE(sc, mode);
995 }
996 
997 void *agp_alloc_memory(void *dev, int type, vsize_t bytes)
998 {
999 	struct agp_softc *sc = dev;
1000 
1001 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1002 }
1003 
1004 void agp_free_memory(void *dev, void *handle)
1005 {
1006 	struct agp_softc *sc = dev;
1007 	struct agp_memory *mem = (struct agp_memory *) handle;
1008 	AGP_FREE_MEMORY(sc, mem);
1009 }
1010 
1011 int agp_bind_memory(void *dev, void *handle, off_t offset)
1012 {
1013 	struct agp_softc *sc = dev;
1014 	struct agp_memory *mem = (struct agp_memory *) handle;
1015 
1016 	return AGP_BIND_MEMORY(sc, mem, offset);
1017 }
1018 
1019 int agp_unbind_memory(void *dev, void *handle)
1020 {
1021 	struct agp_softc *sc = dev;
1022 	struct agp_memory *mem = (struct agp_memory *) handle;
1023 
1024 	return AGP_UNBIND_MEMORY(sc, mem);
1025 }
1026 
1027 void agp_memory_info(void *dev, void *handle,
1028     struct agp_memory_info *mi)
1029 {
1030 	struct agp_memory *mem = (struct agp_memory *) handle;
1031 
1032 	mi->ami_size = mem->am_size;
1033 	mi->ami_physical = mem->am_physical;
1034 	mi->ami_offset = mem->am_offset;
1035 	mi->ami_is_bound = mem->am_is_bound;
1036 }
1037 
1038 int
1039 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1040 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1041 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1042 
1043 {
1044 	int error, level = 0;
1045 
1046 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1047 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1048 		goto out;
1049 	level++;
1050 
1051 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1052 			BUS_DMA_NOWAIT | flags)) != 0)
1053 		goto out;
1054 	level++;
1055 
1056 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1057 			BUS_DMA_NOWAIT, mapp)) != 0)
1058 		goto out;
1059 	level++;
1060 
1061 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1062 			BUS_DMA_NOWAIT)) != 0)
1063 		goto out;
1064 
1065 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1066 
1067 	return 0;
1068 out:
1069 	switch (level) {
1070 	case 3:
1071 		bus_dmamap_destroy(tag, *mapp);
1072 		/* FALLTHROUGH */
1073 	case 2:
1074 		bus_dmamem_unmap(tag, *vaddr, size);
1075 		/* FALLTHROUGH */
1076 	case 1:
1077 		bus_dmamem_free(tag, seg, *rseg);
1078 		break;
1079 	default:
1080 		break;
1081 	}
1082 
1083 	return error;
1084 }
1085 
1086 void
1087 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1088 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1089 {
1090 
1091 	bus_dmamap_unload(tag, map);
1092 	bus_dmamap_destroy(tag, map);
1093 	bus_dmamem_unmap(tag, vaddr, size);
1094 	bus_dmamem_free(tag, seg, nseg);
1095 }
1096 
1097 static bool
1098 agp_resume(device_t dv PMF_FN_ARGS)
1099 {
1100 	agp_flush_cache();
1101 
1102 	return true;
1103 }
1104