1 /* $NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.57 2008/04/19 09:26:56 njoly Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 static bool agp_resume(device_t PMF_FN_PROTO); 107 108 #include "agp_ali.h" 109 #include "agp_amd.h" 110 #include "agp_i810.h" 111 #include "agp_intel.h" 112 #include "agp_sis.h" 113 #include "agp_via.h" 114 #include "agp_amd64.h" 115 116 const struct agp_product { 117 uint32_t ap_vendor; 118 uint32_t ap_product; 119 int (*ap_match)(const struct pci_attach_args *); 120 int (*ap_attach)(struct device *, struct device *, void *); 121 } agp_products[] = { 122 #if NAGP_AMD64 > 0 123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689, 124 agp_amd64_match, agp_amd64_attach }, 125 #endif 126 127 #if NAGP_ALI > 0 128 { PCI_VENDOR_ALI, -1, 129 NULL, agp_ali_attach }, 130 #endif 131 132 #if NAGP_AMD64 > 0 133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 134 agp_amd64_match, agp_amd64_attach }, 135 #endif 136 137 #if NAGP_AMD > 0 138 { PCI_VENDOR_AMD, -1, 139 agp_amd_match, agp_amd_attach }, 140 #endif 141 142 #if NAGP_I810 > 0 143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 144 NULL, agp_i810_attach }, 145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 146 NULL, agp_i810_attach }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 148 NULL, agp_i810_attach }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 150 NULL, agp_i810_attach }, 151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 152 NULL, agp_i810_attach }, 153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 154 NULL, agp_i810_attach }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 156 NULL, agp_i810_attach }, 157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 158 NULL, agp_i810_attach }, 159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 160 NULL, agp_i810_attach }, 161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 162 NULL, agp_i810_attach }, 163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 164 NULL, agp_i810_attach }, 165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 166 NULL, agp_i810_attach }, 167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 168 NULL, agp_i810_attach }, 169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 170 NULL, agp_i810_attach }, 171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 172 NULL, agp_i810_attach }, 173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 174 NULL, agp_i810_attach }, 175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 176 NULL, agp_i810_attach }, 177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 178 NULL, agp_i810_attach }, 179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 180 NULL, agp_i810_attach }, 181 #endif 182 183 #if NAGP_INTEL > 0 184 { PCI_VENDOR_INTEL, -1, 185 NULL, agp_intel_attach }, 186 #endif 187 188 #if NAGP_AMD64 > 0 189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 190 agp_amd64_match, agp_amd64_attach }, 191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 192 agp_amd64_match, agp_amd64_attach }, 193 #endif 194 195 #if NAGP_AMD64 > 0 196 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 197 agp_amd64_match, agp_amd64_attach }, 198 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 199 agp_amd64_match, agp_amd64_attach }, 200 #endif 201 202 #if NAGP_SIS > 0 203 { PCI_VENDOR_SIS, -1, 204 NULL, agp_sis_attach }, 205 #endif 206 207 #if NAGP_AMD64 > 0 208 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 209 agp_amd64_match, agp_amd64_attach }, 210 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 211 agp_amd64_match, agp_amd64_attach }, 212 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 213 agp_amd64_match, agp_amd64_attach }, 214 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 215 agp_amd64_match, agp_amd64_attach }, 216 #endif 217 218 #if NAGP_VIA > 0 219 { PCI_VENDOR_VIATECH, -1, 220 NULL, agp_via_attach }, 221 #endif 222 223 { 0, 0, 224 NULL, NULL }, 225 }; 226 227 static const struct agp_product * 228 agp_lookup(const struct pci_attach_args *pa) 229 { 230 const struct agp_product *ap; 231 232 /* First find the vendor. */ 233 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 234 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 235 break; 236 } 237 238 if (ap->ap_attach == NULL) 239 return (NULL); 240 241 /* Now find the product within the vendor's domain. */ 242 for (; ap->ap_attach != NULL; ap++) { 243 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 244 /* Ran out of this vendor's section of the table. */ 245 return (NULL); 246 } 247 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 248 /* Exact match. */ 249 break; 250 } 251 if (ap->ap_product == (uint32_t) -1) { 252 /* Wildcard match. */ 253 break; 254 } 255 } 256 257 if (ap->ap_attach == NULL) 258 return (NULL); 259 260 /* Now let the product-specific driver filter the match. */ 261 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 262 return (NULL); 263 264 return (ap); 265 } 266 267 static int 268 agpmatch(struct device *parent, struct cfdata *match, 269 void *aux) 270 { 271 struct agpbus_attach_args *apa = aux; 272 struct pci_attach_args *pa = &apa->apa_pci_args; 273 274 if (agp_lookup(pa) == NULL) 275 return (0); 276 277 return (1); 278 } 279 280 static const int agp_max[][2] = { 281 {0, 0}, 282 {32, 4}, 283 {64, 28}, 284 {128, 96}, 285 {256, 204}, 286 {512, 440}, 287 {1024, 942}, 288 {2048, 1920}, 289 {4096, 3932} 290 }; 291 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 292 293 static void 294 agpattach(struct device *parent, struct device *self, void *aux) 295 { 296 struct agpbus_attach_args *apa = aux; 297 struct pci_attach_args *pa = &apa->apa_pci_args; 298 struct agp_softc *sc = (void *)self; 299 const struct agp_product *ap; 300 int memsize, i, ret; 301 302 ap = agp_lookup(pa); 303 if (ap == NULL) { 304 printf("\n"); 305 panic("agpattach: impossible"); 306 } 307 308 aprint_naive(": AGP controller\n"); 309 310 sc->as_dmat = pa->pa_dmat; 311 sc->as_pc = pa->pa_pc; 312 sc->as_tag = pa->pa_tag; 313 sc->as_id = pa->pa_id; 314 315 /* 316 * Work out an upper bound for agp memory allocation. This 317 * uses a heurisitc table from the Linux driver. 318 */ 319 memsize = ptoa(physmem) >> 20; 320 for (i = 0; i < agp_max_size; i++) { 321 if (memsize <= agp_max[i][0]) 322 break; 323 } 324 if (i == agp_max_size) 325 i = agp_max_size - 1; 326 sc->as_maxmem = agp_max[i][1] << 20U; 327 328 /* 329 * The mutex is used to prevent re-entry to 330 * agp_generic_bind_memory() since that function can sleep. 331 */ 332 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&sc->as_memory); 335 336 ret = (*ap->ap_attach)(parent, self, pa); 337 if (ret == 0) 338 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 339 (unsigned long)sc->as_apaddr, 340 (unsigned long)AGP_GET_APERTURE(sc)); 341 else 342 sc->as_chipc = NULL; 343 344 if (!device_pmf_is_registered(self)) { 345 if (!pmf_device_register(self, NULL, agp_resume)) 346 aprint_error_dev(self, "couldn't establish power handler\n"); 347 } 348 } 349 350 CFATTACH_DECL(agp, sizeof(struct agp_softc), 351 agpmatch, agpattach, NULL, NULL); 352 353 int 354 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 355 { 356 /* 357 * Find the aperture. Don't map it (yet), this would 358 * eat KVA. 359 */ 360 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 361 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 362 &sc->as_apflags) != 0) 363 return ENXIO; 364 365 sc->as_apt = pa->pa_memt; 366 367 return 0; 368 } 369 370 struct agp_gatt * 371 agp_alloc_gatt(struct agp_softc *sc) 372 { 373 u_int32_t apsize = AGP_GET_APERTURE(sc); 374 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 375 struct agp_gatt *gatt; 376 void *virtual; 377 int dummyseg; 378 379 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 380 if (!gatt) 381 return NULL; 382 gatt->ag_entries = entries; 383 384 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 385 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 386 &gatt->ag_dmaseg, 1, &dummyseg) != 0) 387 return NULL; 388 gatt->ag_virtual = (uint32_t *)virtual; 389 390 gatt->ag_size = entries * sizeof(u_int32_t); 391 memset(gatt->ag_virtual, 0, gatt->ag_size); 392 agp_flush_cache(); 393 394 return gatt; 395 } 396 397 void 398 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 399 { 400 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 401 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 402 free(gatt, M_AGP); 403 } 404 405 406 int 407 agp_generic_detach(struct agp_softc *sc) 408 { 409 mutex_destroy(&sc->as_mtx); 410 agp_flush_cache(); 411 return 0; 412 } 413 414 static int 415 agpdev_match(struct pci_attach_args *pa) 416 { 417 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 418 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 419 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 420 NULL, NULL)) 421 return 1; 422 423 return 0; 424 } 425 426 int 427 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 428 { 429 struct pci_attach_args pa; 430 pcireg_t tstatus, mstatus; 431 pcireg_t command; 432 int rq, sba, fw, rate, capoff; 433 434 if (pci_find_device(&pa, agpdev_match) == 0 || 435 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 436 &capoff, NULL) == 0) { 437 aprint_error_dev(&sc->as_dev, "can't find display\n"); 438 return ENXIO; 439 } 440 441 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 442 sc->as_capoff + AGP_STATUS); 443 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 444 capoff + AGP_STATUS); 445 446 /* Set RQ to the min of mode, tstatus and mstatus */ 447 rq = AGP_MODE_GET_RQ(mode); 448 if (AGP_MODE_GET_RQ(tstatus) < rq) 449 rq = AGP_MODE_GET_RQ(tstatus); 450 if (AGP_MODE_GET_RQ(mstatus) < rq) 451 rq = AGP_MODE_GET_RQ(mstatus); 452 453 /* Set SBA if all three can deal with SBA */ 454 sba = (AGP_MODE_GET_SBA(tstatus) 455 & AGP_MODE_GET_SBA(mstatus) 456 & AGP_MODE_GET_SBA(mode)); 457 458 /* Similar for FW */ 459 fw = (AGP_MODE_GET_FW(tstatus) 460 & AGP_MODE_GET_FW(mstatus) 461 & AGP_MODE_GET_FW(mode)); 462 463 /* Figure out the max rate */ 464 rate = (AGP_MODE_GET_RATE(tstatus) 465 & AGP_MODE_GET_RATE(mstatus) 466 & AGP_MODE_GET_RATE(mode)); 467 if (rate & AGP_MODE_RATE_4x) 468 rate = AGP_MODE_RATE_4x; 469 else if (rate & AGP_MODE_RATE_2x) 470 rate = AGP_MODE_RATE_2x; 471 else 472 rate = AGP_MODE_RATE_1x; 473 474 /* Construct the new mode word and tell the hardware */ 475 command = AGP_MODE_SET_RQ(0, rq); 476 command = AGP_MODE_SET_SBA(command, sba); 477 command = AGP_MODE_SET_FW(command, fw); 478 command = AGP_MODE_SET_RATE(command, rate); 479 command = AGP_MODE_SET_AGP(command, 1); 480 pci_conf_write(sc->as_pc, sc->as_tag, 481 sc->as_capoff + AGP_COMMAND, command); 482 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 483 484 return 0; 485 } 486 487 struct agp_memory * 488 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 489 { 490 struct agp_memory *mem; 491 492 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 493 return 0; 494 495 if (sc->as_allocated + size > sc->as_maxmem) 496 return 0; 497 498 if (type != 0) { 499 printf("agp_generic_alloc_memory: unsupported type %d\n", 500 type); 501 return 0; 502 } 503 504 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 505 if (mem == NULL) 506 return NULL; 507 508 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 509 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 510 free(mem, M_AGP); 511 return NULL; 512 } 513 514 mem->am_id = sc->as_nextid++; 515 mem->am_size = size; 516 mem->am_type = 0; 517 mem->am_physical = 0; 518 mem->am_offset = 0; 519 mem->am_is_bound = 0; 520 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 521 sc->as_allocated += size; 522 523 return mem; 524 } 525 526 int 527 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 528 { 529 if (mem->am_is_bound) 530 return EBUSY; 531 532 sc->as_allocated -= mem->am_size; 533 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 534 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 535 free(mem, M_AGP); 536 return 0; 537 } 538 539 int 540 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 541 off_t offset) 542 { 543 off_t i, k; 544 bus_size_t done, j; 545 int error; 546 bus_dma_segment_t *segs, *seg; 547 bus_addr_t pa; 548 int contigpages, nseg; 549 550 mutex_enter(&sc->as_mtx); 551 552 if (mem->am_is_bound) { 553 aprint_error_dev(&sc->as_dev, "memory already bound\n"); 554 mutex_exit(&sc->as_mtx); 555 return EINVAL; 556 } 557 558 if (offset < 0 559 || (offset & (AGP_PAGE_SIZE - 1)) != 0 560 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 561 aprint_error_dev(&sc->as_dev, "binding memory at bad offset %#lx\n", 562 (unsigned long) offset); 563 mutex_exit(&sc->as_mtx); 564 return EINVAL; 565 } 566 567 /* 568 * XXXfvdl 569 * The memory here needs to be directly accessable from the 570 * AGP video card, so it should be allocated using bus_dma. 571 * However, it need not be contiguous, since individual pages 572 * are translated using the GATT. 573 * 574 * Using a large chunk of contiguous memory may get in the way 575 * of other subsystems that may need one, so we try to be friendly 576 * and ask for allocation in chunks of a minimum of 8 pages 577 * of contiguous memory on average, falling back to 4, 2 and 1 578 * if really needed. Larger chunks are preferred, since allocating 579 * a bus_dma_segment per page would be overkill. 580 */ 581 582 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 583 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 584 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 585 if (segs == NULL) { 586 mutex_exit(&sc->as_mtx); 587 return ENOMEM; 588 } 589 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 590 segs, nseg, &mem->am_nseg, 591 contigpages > 1 ? 592 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 593 free(segs, M_AGP); 594 continue; 595 } 596 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 597 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 598 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 599 free(segs, M_AGP); 600 continue; 601 } 602 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 603 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 604 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 605 mem->am_size); 606 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 607 free(segs, M_AGP); 608 continue; 609 } 610 mem->am_dmaseg = segs; 611 break; 612 } 613 614 if (contigpages == 0) { 615 mutex_exit(&sc->as_mtx); 616 return ENOMEM; 617 } 618 619 620 /* 621 * Bind the individual pages and flush the chipset's 622 * TLB. 623 */ 624 done = 0; 625 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 626 seg = &mem->am_dmamap->dm_segs[i]; 627 /* 628 * Install entries in the GATT, making sure that if 629 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 630 * aligned to PAGE_SIZE, we don't modify too many GATT 631 * entries. 632 */ 633 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 634 j += AGP_PAGE_SIZE) { 635 pa = seg->ds_addr + j; 636 AGP_DPF(("binding offset %#lx to pa %#lx\n", 637 (unsigned long)(offset + done + j), 638 (unsigned long)pa)); 639 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 640 if (error) { 641 /* 642 * Bail out. Reverse all the mappings 643 * and unwire the pages. 644 */ 645 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 646 AGP_UNBIND_PAGE(sc, offset + k); 647 648 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 649 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 650 mem->am_size); 651 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 652 mem->am_nseg); 653 free(mem->am_dmaseg, M_AGP); 654 mutex_exit(&sc->as_mtx); 655 return error; 656 } 657 } 658 done += seg->ds_len; 659 } 660 661 /* 662 * Flush the CPU cache since we are providing a new mapping 663 * for these pages. 664 */ 665 agp_flush_cache(); 666 667 /* 668 * Make sure the chipset gets the new mappings. 669 */ 670 AGP_FLUSH_TLB(sc); 671 672 mem->am_offset = offset; 673 mem->am_is_bound = 1; 674 675 mutex_exit(&sc->as_mtx); 676 677 return 0; 678 } 679 680 int 681 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 682 { 683 int i; 684 685 mutex_enter(&sc->as_mtx); 686 687 if (!mem->am_is_bound) { 688 aprint_error_dev(&sc->as_dev, "memory is not bound\n"); 689 mutex_exit(&sc->as_mtx); 690 return EINVAL; 691 } 692 693 694 /* 695 * Unbind the individual pages and flush the chipset's 696 * TLB. Unwire the pages so they can be swapped. 697 */ 698 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 699 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 700 701 agp_flush_cache(); 702 AGP_FLUSH_TLB(sc); 703 704 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 705 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 706 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 707 708 free(mem->am_dmaseg, M_AGP); 709 710 mem->am_offset = 0; 711 mem->am_is_bound = 0; 712 713 mutex_exit(&sc->as_mtx); 714 715 return 0; 716 } 717 718 /* Helper functions for implementing user/kernel api */ 719 720 static int 721 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 722 { 723 if (sc->as_state != AGP_ACQUIRE_FREE) 724 return EBUSY; 725 sc->as_state = state; 726 727 return 0; 728 } 729 730 static int 731 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 732 { 733 734 if (sc->as_state == AGP_ACQUIRE_FREE) 735 return 0; 736 737 if (sc->as_state != state) 738 return EBUSY; 739 740 sc->as_state = AGP_ACQUIRE_FREE; 741 return 0; 742 } 743 744 static struct agp_memory * 745 agp_find_memory(struct agp_softc *sc, int id) 746 { 747 struct agp_memory *mem; 748 749 AGP_DPF(("searching for memory block %d\n", id)); 750 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 751 AGP_DPF(("considering memory block %d\n", mem->am_id)); 752 if (mem->am_id == id) 753 return mem; 754 } 755 return 0; 756 } 757 758 /* Implementation of the userland ioctl api */ 759 760 static int 761 agp_info_user(struct agp_softc *sc, agp_info *info) 762 { 763 memset(info, 0, sizeof *info); 764 info->bridge_id = sc->as_id; 765 if (sc->as_capoff != 0) 766 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 767 sc->as_capoff + AGP_STATUS); 768 else 769 info->agp_mode = 0; /* i810 doesn't have real AGP */ 770 info->aper_base = sc->as_apaddr; 771 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 772 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 773 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 774 775 return 0; 776 } 777 778 static int 779 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 780 { 781 return AGP_ENABLE(sc, setup->agp_mode); 782 } 783 784 static int 785 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 786 { 787 struct agp_memory *mem; 788 789 mem = AGP_ALLOC_MEMORY(sc, 790 alloc->type, 791 alloc->pg_count << AGP_PAGE_SHIFT); 792 if (mem) { 793 alloc->key = mem->am_id; 794 alloc->physical = mem->am_physical; 795 return 0; 796 } else { 797 return ENOMEM; 798 } 799 } 800 801 static int 802 agp_deallocate_user(struct agp_softc *sc, int id) 803 { 804 struct agp_memory *mem = agp_find_memory(sc, id); 805 806 if (mem) { 807 AGP_FREE_MEMORY(sc, mem); 808 return 0; 809 } else { 810 return ENOENT; 811 } 812 } 813 814 static int 815 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 816 { 817 struct agp_memory *mem = agp_find_memory(sc, bind->key); 818 819 if (!mem) 820 return ENOENT; 821 822 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 823 } 824 825 static int 826 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 827 { 828 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 829 830 if (!mem) 831 return ENOENT; 832 833 return AGP_UNBIND_MEMORY(sc, mem); 834 } 835 836 static int 837 agpopen(dev_t dev, int oflags, int devtype, 838 struct lwp *l) 839 { 840 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 841 842 if (sc == NULL) 843 return ENXIO; 844 845 if (sc->as_chipc == NULL) 846 return ENXIO; 847 848 if (!sc->as_isopen) 849 sc->as_isopen = 1; 850 else 851 return EBUSY; 852 853 return 0; 854 } 855 856 static int 857 agpclose(dev_t dev, int fflag, int devtype, 858 struct lwp *l) 859 { 860 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 861 struct agp_memory *mem; 862 863 /* 864 * Clear the GATT and force release on last close 865 */ 866 if (sc->as_state == AGP_ACQUIRE_USER) { 867 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 868 if (mem->am_is_bound) { 869 printf("agpclose: mem %d is bound\n", 870 mem->am_id); 871 AGP_UNBIND_MEMORY(sc, mem); 872 } 873 /* 874 * XXX it is not documented, but if the protocol allows 875 * allocate->acquire->bind, it would be possible that 876 * memory ranges are allocated by the kernel here, 877 * which we shouldn't free. We'd have to keep track of 878 * the memory range's owner. 879 * The kernel API is unsed yet, so we get away with 880 * freeing all. 881 */ 882 AGP_FREE_MEMORY(sc, mem); 883 } 884 agp_release_helper(sc, AGP_ACQUIRE_USER); 885 } 886 sc->as_isopen = 0; 887 888 return 0; 889 } 890 891 static int 892 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 893 { 894 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 895 896 if (sc == NULL) 897 return ENODEV; 898 899 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 900 return EPERM; 901 902 switch (cmd) { 903 case AGPIOC_INFO: 904 return agp_info_user(sc, (agp_info *) data); 905 906 case AGPIOC_ACQUIRE: 907 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 908 909 case AGPIOC_RELEASE: 910 return agp_release_helper(sc, AGP_ACQUIRE_USER); 911 912 case AGPIOC_SETUP: 913 return agp_setup_user(sc, (agp_setup *)data); 914 915 case AGPIOC_ALLOCATE: 916 return agp_allocate_user(sc, (agp_allocate *)data); 917 918 case AGPIOC_DEALLOCATE: 919 return agp_deallocate_user(sc, *(int *) data); 920 921 case AGPIOC_BIND: 922 return agp_bind_user(sc, (agp_bind *)data); 923 924 case AGPIOC_UNBIND: 925 return agp_unbind_user(sc, (agp_unbind *)data); 926 927 } 928 929 return EINVAL; 930 } 931 932 static paddr_t 933 agpmmap(dev_t dev, off_t offset, int prot) 934 { 935 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 936 937 if (offset > AGP_GET_APERTURE(sc)) 938 return -1; 939 940 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 941 BUS_SPACE_MAP_LINEAR)); 942 } 943 944 const struct cdevsw agp_cdevsw = { 945 agpopen, agpclose, noread, nowrite, agpioctl, 946 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 947 }; 948 949 /* Implementation of the kernel api */ 950 951 void * 952 agp_find_device(int unit) 953 { 954 return device_lookup(&agp_cd, unit); 955 } 956 957 enum agp_acquire_state 958 agp_state(void *devcookie) 959 { 960 struct agp_softc *sc = devcookie; 961 return sc->as_state; 962 } 963 964 void 965 agp_get_info(void *devcookie, struct agp_info *info) 966 { 967 struct agp_softc *sc = devcookie; 968 969 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 970 sc->as_capoff + AGP_STATUS); 971 info->ai_aperture_base = sc->as_apaddr; 972 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 973 info->ai_memory_allowed = sc->as_maxmem; 974 info->ai_memory_used = sc->as_allocated; 975 } 976 977 int 978 agp_acquire(void *dev) 979 { 980 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 981 } 982 983 int 984 agp_release(void *dev) 985 { 986 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 987 } 988 989 int 990 agp_enable(void *dev, u_int32_t mode) 991 { 992 struct agp_softc *sc = dev; 993 994 return AGP_ENABLE(sc, mode); 995 } 996 997 void *agp_alloc_memory(void *dev, int type, vsize_t bytes) 998 { 999 struct agp_softc *sc = dev; 1000 1001 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 1002 } 1003 1004 void agp_free_memory(void *dev, void *handle) 1005 { 1006 struct agp_softc *sc = dev; 1007 struct agp_memory *mem = (struct agp_memory *) handle; 1008 AGP_FREE_MEMORY(sc, mem); 1009 } 1010 1011 int agp_bind_memory(void *dev, void *handle, off_t offset) 1012 { 1013 struct agp_softc *sc = dev; 1014 struct agp_memory *mem = (struct agp_memory *) handle; 1015 1016 return AGP_BIND_MEMORY(sc, mem, offset); 1017 } 1018 1019 int agp_unbind_memory(void *dev, void *handle) 1020 { 1021 struct agp_softc *sc = dev; 1022 struct agp_memory *mem = (struct agp_memory *) handle; 1023 1024 return AGP_UNBIND_MEMORY(sc, mem); 1025 } 1026 1027 void agp_memory_info(void *dev, void *handle, 1028 struct agp_memory_info *mi) 1029 { 1030 struct agp_memory *mem = (struct agp_memory *) handle; 1031 1032 mi->ami_size = mem->am_size; 1033 mi->ami_physical = mem->am_physical; 1034 mi->ami_offset = mem->am_offset; 1035 mi->ami_is_bound = mem->am_is_bound; 1036 } 1037 1038 int 1039 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1040 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1041 bus_dma_segment_t *seg, int nseg, int *rseg) 1042 1043 { 1044 int error, level = 0; 1045 1046 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1047 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1048 goto out; 1049 level++; 1050 1051 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1052 BUS_DMA_NOWAIT | flags)) != 0) 1053 goto out; 1054 level++; 1055 1056 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1057 BUS_DMA_NOWAIT, mapp)) != 0) 1058 goto out; 1059 level++; 1060 1061 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1062 BUS_DMA_NOWAIT)) != 0) 1063 goto out; 1064 1065 *baddr = (*mapp)->dm_segs[0].ds_addr; 1066 1067 return 0; 1068 out: 1069 switch (level) { 1070 case 3: 1071 bus_dmamap_destroy(tag, *mapp); 1072 /* FALLTHROUGH */ 1073 case 2: 1074 bus_dmamem_unmap(tag, *vaddr, size); 1075 /* FALLTHROUGH */ 1076 case 1: 1077 bus_dmamem_free(tag, seg, *rseg); 1078 break; 1079 default: 1080 break; 1081 } 1082 1083 return error; 1084 } 1085 1086 void 1087 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1088 void *vaddr, bus_dma_segment_t *seg, int nseg) 1089 { 1090 1091 bus_dmamap_unload(tag, map); 1092 bus_dmamap_destroy(tag, map); 1093 bus_dmamem_unmap(tag, vaddr, size); 1094 bus_dmamem_free(tag, seg, nseg); 1095 } 1096 1097 static bool 1098 agp_resume(device_t dv PMF_FN_ARGS) 1099 { 1100 agp_flush_cache(); 1101 1102 return true; 1103 } 1104