1 /* $NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.50 2007/10/30 12:22:53 jnemeth Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 107 #include "agp_ali.h" 108 #include "agp_amd.h" 109 #include "agp_i810.h" 110 #include "agp_intel.h" 111 #include "agp_sis.h" 112 #include "agp_via.h" 113 #include "agp_amd64.h" 114 115 const struct agp_product { 116 uint32_t ap_vendor; 117 uint32_t ap_product; 118 int (*ap_match)(const struct pci_attach_args *); 119 int (*ap_attach)(struct device *, struct device *, void *); 120 } agp_products[] = { 121 #if NAGP_ALI > 0 122 { PCI_VENDOR_ALI, -1, 123 NULL, agp_ali_attach }, 124 #endif 125 126 #if NAGP_AMD > 0 127 { PCI_VENDOR_AMD, -1, 128 agp_amd_match, agp_amd_attach }, 129 #endif 130 131 #if NAGP_I810 > 0 132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 133 NULL, agp_i810_attach }, 134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 135 NULL, agp_i810_attach }, 136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 137 NULL, agp_i810_attach }, 138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 139 NULL, agp_i810_attach }, 140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 141 NULL, agp_i810_attach }, 142 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 143 NULL, agp_i810_attach }, 144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 145 NULL, agp_i810_attach }, 146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 147 NULL, agp_i810_attach }, 148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 149 NULL, agp_i810_attach }, 150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 151 NULL, agp_i810_attach }, 152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 153 NULL, agp_i810_attach }, 154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 155 NULL, agp_i810_attach }, 156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 157 NULL, agp_i810_attach }, 158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 159 NULL, agp_i810_attach }, 160 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 161 NULL, agp_i810_attach }, 162 #endif 163 164 #if NAGP_INTEL > 0 165 { PCI_VENDOR_INTEL, -1, 166 NULL, agp_intel_attach }, 167 #endif 168 169 #if NAGP_SIS > 0 170 { PCI_VENDOR_SIS, -1, 171 NULL, agp_sis_attach }, 172 #endif 173 174 #if NAGP_VIA > 0 175 { PCI_VENDOR_VIATECH, -1, 176 NULL, agp_via_attach }, 177 #endif 178 179 #if NAGP_AMD64 > 0 180 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 181 agp_amd64_match, agp_amd64_attach }, 182 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 183 agp_amd64_match, agp_amd64_attach }, 184 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 185 agp_amd64_match, agp_amd64_attach }, 186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 187 agp_amd64_match, agp_amd64_attach }, 188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 189 agp_amd64_match, agp_amd64_attach }, 190 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 191 agp_amd64_match, agp_amd64_attach }, 192 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 193 agp_amd64_match, agp_amd64_attach }, 194 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 195 agp_amd64_match, agp_amd64_attach }, 196 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 197 agp_amd64_match, agp_amd64_attach }, 198 #endif 199 200 { 0, 0, 201 NULL, NULL }, 202 }; 203 204 static const struct agp_product * 205 agp_lookup(const struct pci_attach_args *pa) 206 { 207 const struct agp_product *ap; 208 209 /* First find the vendor. */ 210 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 211 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 212 break; 213 } 214 215 if (ap->ap_attach == NULL) 216 return (NULL); 217 218 /* Now find the product within the vendor's domain. */ 219 for (; ap->ap_attach != NULL; ap++) { 220 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 221 /* Ran out of this vendor's section of the table. */ 222 return (NULL); 223 } 224 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 225 /* Exact match. */ 226 break; 227 } 228 if (ap->ap_product == (uint32_t) -1) { 229 /* Wildcard match. */ 230 break; 231 } 232 } 233 234 if (ap->ap_attach == NULL) 235 return (NULL); 236 237 /* Now let the product-specific driver filter the match. */ 238 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 239 return (NULL); 240 241 return (ap); 242 } 243 244 static int 245 agpmatch(struct device *parent, struct cfdata *match, 246 void *aux) 247 { 248 struct agpbus_attach_args *apa = aux; 249 struct pci_attach_args *pa = &apa->apa_pci_args; 250 251 if (agp_lookup(pa) == NULL) 252 return (0); 253 254 return (1); 255 } 256 257 static const int agp_max[][2] = { 258 {0, 0}, 259 {32, 4}, 260 {64, 28}, 261 {128, 96}, 262 {256, 204}, 263 {512, 440}, 264 {1024, 942}, 265 {2048, 1920}, 266 {4096, 3932} 267 }; 268 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 269 270 static void 271 agpattach(struct device *parent, struct device *self, void *aux) 272 { 273 struct agpbus_attach_args *apa = aux; 274 struct pci_attach_args *pa = &apa->apa_pci_args; 275 struct agp_softc *sc = (void *)self; 276 const struct agp_product *ap; 277 int memsize, i, ret; 278 279 ap = agp_lookup(pa); 280 if (ap == NULL) { 281 printf("\n"); 282 panic("agpattach: impossible"); 283 } 284 285 aprint_naive(": AGP controller\n"); 286 287 sc->as_dmat = pa->pa_dmat; 288 sc->as_pc = pa->pa_pc; 289 sc->as_tag = pa->pa_tag; 290 sc->as_id = pa->pa_id; 291 292 /* 293 * Work out an upper bound for agp memory allocation. This 294 * uses a heurisitc table from the Linux driver. 295 */ 296 memsize = ptoa(physmem) >> 20; 297 for (i = 0; i < agp_max_size; i++) { 298 if (memsize <= agp_max[i][0]) 299 break; 300 } 301 if (i == agp_max_size) 302 i = agp_max_size - 1; 303 sc->as_maxmem = agp_max[i][1] << 20U; 304 305 /* 306 * The mutex is used to prevent re-entry to 307 * agp_generic_bind_memory() since that function can sleep. 308 */ 309 mutex_init(&sc->as_mtx, MUTEX_DRIVER, IPL_NONE); 310 311 TAILQ_INIT(&sc->as_memory); 312 313 ret = (*ap->ap_attach)(parent, self, pa); 314 if (ret == 0) 315 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 316 (unsigned long)sc->as_apaddr, 317 (unsigned long)AGP_GET_APERTURE(sc)); 318 else 319 sc->as_chipc = NULL; 320 } 321 322 CFATTACH_DECL(agp, sizeof(struct agp_softc), 323 agpmatch, agpattach, NULL, NULL); 324 325 int 326 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 327 { 328 /* 329 * Find the aperture. Don't map it (yet), this would 330 * eat KVA. 331 */ 332 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 333 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 334 &sc->as_apflags) != 0) 335 return ENXIO; 336 337 sc->as_apt = pa->pa_memt; 338 339 return 0; 340 } 341 342 struct agp_gatt * 343 agp_alloc_gatt(struct agp_softc *sc) 344 { 345 u_int32_t apsize = AGP_GET_APERTURE(sc); 346 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 347 struct agp_gatt *gatt; 348 void *virtual; 349 int dummyseg; 350 351 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 352 if (!gatt) 353 return NULL; 354 gatt->ag_entries = entries; 355 356 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 357 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 358 &gatt->ag_dmaseg, 1, &dummyseg) != 0) 359 return NULL; 360 gatt->ag_virtual = (uint32_t *)virtual; 361 362 gatt->ag_size = entries * sizeof(u_int32_t); 363 memset(gatt->ag_virtual, 0, gatt->ag_size); 364 agp_flush_cache(); 365 366 return gatt; 367 } 368 369 void 370 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 371 { 372 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 373 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 374 free(gatt, M_AGP); 375 } 376 377 378 int 379 agp_generic_detach(struct agp_softc *sc) 380 { 381 mutex_destroy(&sc->as_mtx); 382 agp_flush_cache(); 383 return 0; 384 } 385 386 static int 387 agpdev_match(struct pci_attach_args *pa) 388 { 389 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 390 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 391 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 392 NULL, NULL)) 393 return 1; 394 395 return 0; 396 } 397 398 int 399 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 400 { 401 struct pci_attach_args pa; 402 pcireg_t tstatus, mstatus; 403 pcireg_t command; 404 int rq, sba, fw, rate, capoff; 405 406 if (pci_find_device(&pa, agpdev_match) == 0 || 407 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 408 &capoff, NULL) == 0) { 409 printf("%s: can't find display\n", sc->as_dev.dv_xname); 410 return ENXIO; 411 } 412 413 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 414 sc->as_capoff + AGP_STATUS); 415 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 416 capoff + AGP_STATUS); 417 418 /* Set RQ to the min of mode, tstatus and mstatus */ 419 rq = AGP_MODE_GET_RQ(mode); 420 if (AGP_MODE_GET_RQ(tstatus) < rq) 421 rq = AGP_MODE_GET_RQ(tstatus); 422 if (AGP_MODE_GET_RQ(mstatus) < rq) 423 rq = AGP_MODE_GET_RQ(mstatus); 424 425 /* Set SBA if all three can deal with SBA */ 426 sba = (AGP_MODE_GET_SBA(tstatus) 427 & AGP_MODE_GET_SBA(mstatus) 428 & AGP_MODE_GET_SBA(mode)); 429 430 /* Similar for FW */ 431 fw = (AGP_MODE_GET_FW(tstatus) 432 & AGP_MODE_GET_FW(mstatus) 433 & AGP_MODE_GET_FW(mode)); 434 435 /* Figure out the max rate */ 436 rate = (AGP_MODE_GET_RATE(tstatus) 437 & AGP_MODE_GET_RATE(mstatus) 438 & AGP_MODE_GET_RATE(mode)); 439 if (rate & AGP_MODE_RATE_4x) 440 rate = AGP_MODE_RATE_4x; 441 else if (rate & AGP_MODE_RATE_2x) 442 rate = AGP_MODE_RATE_2x; 443 else 444 rate = AGP_MODE_RATE_1x; 445 446 /* Construct the new mode word and tell the hardware */ 447 command = AGP_MODE_SET_RQ(0, rq); 448 command = AGP_MODE_SET_SBA(command, sba); 449 command = AGP_MODE_SET_FW(command, fw); 450 command = AGP_MODE_SET_RATE(command, rate); 451 command = AGP_MODE_SET_AGP(command, 1); 452 pci_conf_write(sc->as_pc, sc->as_tag, 453 sc->as_capoff + AGP_COMMAND, command); 454 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 455 456 return 0; 457 } 458 459 struct agp_memory * 460 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 461 { 462 struct agp_memory *mem; 463 464 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 465 return 0; 466 467 if (sc->as_allocated + size > sc->as_maxmem) 468 return 0; 469 470 if (type != 0) { 471 printf("agp_generic_alloc_memory: unsupported type %d\n", 472 type); 473 return 0; 474 } 475 476 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 477 if (mem == NULL) 478 return NULL; 479 480 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 481 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 482 free(mem, M_AGP); 483 return NULL; 484 } 485 486 mem->am_id = sc->as_nextid++; 487 mem->am_size = size; 488 mem->am_type = 0; 489 mem->am_physical = 0; 490 mem->am_offset = 0; 491 mem->am_is_bound = 0; 492 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 493 sc->as_allocated += size; 494 495 return mem; 496 } 497 498 int 499 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 500 { 501 if (mem->am_is_bound) 502 return EBUSY; 503 504 sc->as_allocated -= mem->am_size; 505 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 506 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 507 free(mem, M_AGP); 508 return 0; 509 } 510 511 int 512 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 513 off_t offset) 514 { 515 off_t i, k; 516 bus_size_t done, j; 517 int error; 518 bus_dma_segment_t *segs, *seg; 519 bus_addr_t pa; 520 int contigpages, nseg; 521 522 mutex_enter(&sc->as_mtx); 523 524 if (mem->am_is_bound) { 525 printf("%s: memory already bound\n", sc->as_dev.dv_xname); 526 mutex_exit(&sc->as_mtx); 527 return EINVAL; 528 } 529 530 if (offset < 0 531 || (offset & (AGP_PAGE_SIZE - 1)) != 0 532 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 533 printf("%s: binding memory at bad offset %#lx\n", 534 sc->as_dev.dv_xname, (unsigned long) offset); 535 mutex_exit(&sc->as_mtx); 536 return EINVAL; 537 } 538 539 /* 540 * XXXfvdl 541 * The memory here needs to be directly accessable from the 542 * AGP video card, so it should be allocated using bus_dma. 543 * However, it need not be contiguous, since individual pages 544 * are translated using the GATT. 545 * 546 * Using a large chunk of contiguous memory may get in the way 547 * of other subsystems that may need one, so we try to be friendly 548 * and ask for allocation in chunks of a minimum of 8 pages 549 * of contiguous memory on average, falling back to 4, 2 and 1 550 * if really needed. Larger chunks are preferred, since allocating 551 * a bus_dma_segment per page would be overkill. 552 */ 553 554 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 555 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 556 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 557 if (segs == NULL) { 558 mutex_exit(&sc->as_mtx); 559 return ENOMEM; 560 } 561 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 562 segs, nseg, &mem->am_nseg, 563 contigpages > 1 ? 564 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 565 free(segs, M_AGP); 566 continue; 567 } 568 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 569 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 570 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 571 free(segs, M_AGP); 572 continue; 573 } 574 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 575 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 576 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 577 mem->am_size); 578 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 579 free(segs, M_AGP); 580 continue; 581 } 582 mem->am_dmaseg = segs; 583 break; 584 } 585 586 if (contigpages == 0) { 587 mutex_exit(&sc->as_mtx); 588 return ENOMEM; 589 } 590 591 592 /* 593 * Bind the individual pages and flush the chipset's 594 * TLB. 595 */ 596 done = 0; 597 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 598 seg = &mem->am_dmamap->dm_segs[i]; 599 /* 600 * Install entries in the GATT, making sure that if 601 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 602 * aligned to PAGE_SIZE, we don't modify too many GATT 603 * entries. 604 */ 605 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 606 j += AGP_PAGE_SIZE) { 607 pa = seg->ds_addr + j; 608 AGP_DPF(("binding offset %#lx to pa %#lx\n", 609 (unsigned long)(offset + done + j), 610 (unsigned long)pa)); 611 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 612 if (error) { 613 /* 614 * Bail out. Reverse all the mappings 615 * and unwire the pages. 616 */ 617 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 618 AGP_UNBIND_PAGE(sc, offset + k); 619 620 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 621 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 622 mem->am_size); 623 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 624 mem->am_nseg); 625 free(mem->am_dmaseg, M_AGP); 626 mutex_exit(&sc->as_mtx); 627 return error; 628 } 629 } 630 done += seg->ds_len; 631 } 632 633 /* 634 * Flush the CPU cache since we are providing a new mapping 635 * for these pages. 636 */ 637 agp_flush_cache(); 638 639 /* 640 * Make sure the chipset gets the new mappings. 641 */ 642 AGP_FLUSH_TLB(sc); 643 644 mem->am_offset = offset; 645 mem->am_is_bound = 1; 646 647 mutex_exit(&sc->as_mtx); 648 649 return 0; 650 } 651 652 int 653 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 654 { 655 int i; 656 657 mutex_enter(&sc->as_mtx); 658 659 if (!mem->am_is_bound) { 660 printf("%s: memory is not bound\n", sc->as_dev.dv_xname); 661 mutex_exit(&sc->as_mtx); 662 return EINVAL; 663 } 664 665 666 /* 667 * Unbind the individual pages and flush the chipset's 668 * TLB. Unwire the pages so they can be swapped. 669 */ 670 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 671 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 672 673 agp_flush_cache(); 674 AGP_FLUSH_TLB(sc); 675 676 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 677 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 678 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 679 680 free(mem->am_dmaseg, M_AGP); 681 682 mem->am_offset = 0; 683 mem->am_is_bound = 0; 684 685 mutex_exit(&sc->as_mtx); 686 687 return 0; 688 } 689 690 /* Helper functions for implementing user/kernel api */ 691 692 static int 693 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 694 { 695 if (sc->as_state != AGP_ACQUIRE_FREE) 696 return EBUSY; 697 sc->as_state = state; 698 699 return 0; 700 } 701 702 static int 703 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 704 { 705 706 if (sc->as_state == AGP_ACQUIRE_FREE) 707 return 0; 708 709 if (sc->as_state != state) 710 return EBUSY; 711 712 sc->as_state = AGP_ACQUIRE_FREE; 713 return 0; 714 } 715 716 static struct agp_memory * 717 agp_find_memory(struct agp_softc *sc, int id) 718 { 719 struct agp_memory *mem; 720 721 AGP_DPF(("searching for memory block %d\n", id)); 722 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 723 AGP_DPF(("considering memory block %d\n", mem->am_id)); 724 if (mem->am_id == id) 725 return mem; 726 } 727 return 0; 728 } 729 730 /* Implementation of the userland ioctl api */ 731 732 static int 733 agp_info_user(struct agp_softc *sc, agp_info *info) 734 { 735 memset(info, 0, sizeof *info); 736 info->bridge_id = sc->as_id; 737 if (sc->as_capoff != 0) 738 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 739 sc->as_capoff + AGP_STATUS); 740 else 741 info->agp_mode = 0; /* i810 doesn't have real AGP */ 742 info->aper_base = sc->as_apaddr; 743 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 744 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 745 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 746 747 return 0; 748 } 749 750 static int 751 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 752 { 753 return AGP_ENABLE(sc, setup->agp_mode); 754 } 755 756 static int 757 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 758 { 759 struct agp_memory *mem; 760 761 mem = AGP_ALLOC_MEMORY(sc, 762 alloc->type, 763 alloc->pg_count << AGP_PAGE_SHIFT); 764 if (mem) { 765 alloc->key = mem->am_id; 766 alloc->physical = mem->am_physical; 767 return 0; 768 } else { 769 return ENOMEM; 770 } 771 } 772 773 static int 774 agp_deallocate_user(struct agp_softc *sc, int id) 775 { 776 struct agp_memory *mem = agp_find_memory(sc, id); 777 778 if (mem) { 779 AGP_FREE_MEMORY(sc, mem); 780 return 0; 781 } else { 782 return ENOENT; 783 } 784 } 785 786 static int 787 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 788 { 789 struct agp_memory *mem = agp_find_memory(sc, bind->key); 790 791 if (!mem) 792 return ENOENT; 793 794 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 795 } 796 797 static int 798 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 799 { 800 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 801 802 if (!mem) 803 return ENOENT; 804 805 return AGP_UNBIND_MEMORY(sc, mem); 806 } 807 808 static int 809 agpopen(dev_t dev, int oflags, int devtype, 810 struct lwp *l) 811 { 812 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 813 814 if (sc == NULL) 815 return ENXIO; 816 817 if (sc->as_chipc == NULL) 818 return ENXIO; 819 820 if (!sc->as_isopen) 821 sc->as_isopen = 1; 822 else 823 return EBUSY; 824 825 return 0; 826 } 827 828 static int 829 agpclose(dev_t dev, int fflag, int devtype, 830 struct lwp *l) 831 { 832 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 833 struct agp_memory *mem; 834 835 /* 836 * Clear the GATT and force release on last close 837 */ 838 if (sc->as_state == AGP_ACQUIRE_USER) { 839 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 840 if (mem->am_is_bound) { 841 printf("agpclose: mem %d is bound\n", 842 mem->am_id); 843 AGP_UNBIND_MEMORY(sc, mem); 844 } 845 /* 846 * XXX it is not documented, but if the protocol allows 847 * allocate->acquire->bind, it would be possible that 848 * memory ranges are allocated by the kernel here, 849 * which we shouldn't free. We'd have to keep track of 850 * the memory range's owner. 851 * The kernel API is unsed yet, so we get away with 852 * freeing all. 853 */ 854 AGP_FREE_MEMORY(sc, mem); 855 } 856 agp_release_helper(sc, AGP_ACQUIRE_USER); 857 } 858 sc->as_isopen = 0; 859 860 return 0; 861 } 862 863 static int 864 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 865 { 866 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 867 868 if (sc == NULL) 869 return ENODEV; 870 871 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 872 return EPERM; 873 874 switch (cmd) { 875 case AGPIOC_INFO: 876 return agp_info_user(sc, (agp_info *) data); 877 878 case AGPIOC_ACQUIRE: 879 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 880 881 case AGPIOC_RELEASE: 882 return agp_release_helper(sc, AGP_ACQUIRE_USER); 883 884 case AGPIOC_SETUP: 885 return agp_setup_user(sc, (agp_setup *)data); 886 887 case AGPIOC_ALLOCATE: 888 return agp_allocate_user(sc, (agp_allocate *)data); 889 890 case AGPIOC_DEALLOCATE: 891 return agp_deallocate_user(sc, *(int *) data); 892 893 case AGPIOC_BIND: 894 return agp_bind_user(sc, (agp_bind *)data); 895 896 case AGPIOC_UNBIND: 897 return agp_unbind_user(sc, (agp_unbind *)data); 898 899 } 900 901 return EINVAL; 902 } 903 904 static paddr_t 905 agpmmap(dev_t dev, off_t offset, int prot) 906 { 907 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 908 909 if (offset > AGP_GET_APERTURE(sc)) 910 return -1; 911 912 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 913 BUS_SPACE_MAP_LINEAR)); 914 } 915 916 const struct cdevsw agp_cdevsw = { 917 agpopen, agpclose, noread, nowrite, agpioctl, 918 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 919 }; 920 921 /* Implementation of the kernel api */ 922 923 void * 924 agp_find_device(int unit) 925 { 926 return device_lookup(&agp_cd, unit); 927 } 928 929 enum agp_acquire_state 930 agp_state(void *devcookie) 931 { 932 struct agp_softc *sc = devcookie; 933 return sc->as_state; 934 } 935 936 void 937 agp_get_info(void *devcookie, struct agp_info *info) 938 { 939 struct agp_softc *sc = devcookie; 940 941 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 942 sc->as_capoff + AGP_STATUS); 943 info->ai_aperture_base = sc->as_apaddr; 944 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 945 info->ai_memory_allowed = sc->as_maxmem; 946 info->ai_memory_used = sc->as_allocated; 947 } 948 949 int 950 agp_acquire(void *dev) 951 { 952 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 953 } 954 955 int 956 agp_release(void *dev) 957 { 958 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 959 } 960 961 int 962 agp_enable(void *dev, u_int32_t mode) 963 { 964 struct agp_softc *sc = dev; 965 966 return AGP_ENABLE(sc, mode); 967 } 968 969 void *agp_alloc_memory(void *dev, int type, vsize_t bytes) 970 { 971 struct agp_softc *sc = dev; 972 973 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 974 } 975 976 void agp_free_memory(void *dev, void *handle) 977 { 978 struct agp_softc *sc = dev; 979 struct agp_memory *mem = (struct agp_memory *) handle; 980 AGP_FREE_MEMORY(sc, mem); 981 } 982 983 int agp_bind_memory(void *dev, void *handle, off_t offset) 984 { 985 struct agp_softc *sc = dev; 986 struct agp_memory *mem = (struct agp_memory *) handle; 987 988 return AGP_BIND_MEMORY(sc, mem, offset); 989 } 990 991 int agp_unbind_memory(void *dev, void *handle) 992 { 993 struct agp_softc *sc = dev; 994 struct agp_memory *mem = (struct agp_memory *) handle; 995 996 return AGP_UNBIND_MEMORY(sc, mem); 997 } 998 999 void agp_memory_info(void *dev, void *handle, 1000 struct agp_memory_info *mi) 1001 { 1002 struct agp_memory *mem = (struct agp_memory *) handle; 1003 1004 mi->ami_size = mem->am_size; 1005 mi->ami_physical = mem->am_physical; 1006 mi->ami_offset = mem->am_offset; 1007 mi->ami_is_bound = mem->am_is_bound; 1008 } 1009 1010 int 1011 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1012 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1013 bus_dma_segment_t *seg, int nseg, int *rseg) 1014 1015 { 1016 int error, level = 0; 1017 1018 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1019 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1020 goto out; 1021 level++; 1022 1023 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1024 BUS_DMA_NOWAIT | flags)) != 0) 1025 goto out; 1026 level++; 1027 1028 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1029 BUS_DMA_NOWAIT, mapp)) != 0) 1030 goto out; 1031 level++; 1032 1033 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1034 BUS_DMA_NOWAIT)) != 0) 1035 goto out; 1036 1037 *baddr = (*mapp)->dm_segs[0].ds_addr; 1038 1039 return 0; 1040 out: 1041 switch (level) { 1042 case 3: 1043 bus_dmamap_destroy(tag, *mapp); 1044 /* FALLTHROUGH */ 1045 case 2: 1046 bus_dmamem_unmap(tag, *vaddr, size); 1047 /* FALLTHROUGH */ 1048 case 1: 1049 bus_dmamem_free(tag, seg, *rseg); 1050 break; 1051 default: 1052 break; 1053 } 1054 1055 return error; 1056 } 1057 1058 void 1059 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1060 void *vaddr, bus_dma_segment_t *seg, int nseg) 1061 { 1062 1063 bus_dmamap_unload(tag, map); 1064 bus_dmamap_destroy(tag, map); 1065 bus_dmamem_unmap(tag, vaddr, size); 1066 bus_dmamem_free(tag, seg, nseg); 1067 } 1068