1 /* $NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 static bool agp_resume(device_t PMF_FN_PROTO); 107 108 #include "agp_ali.h" 109 #include "agp_amd.h" 110 #include "agp_i810.h" 111 #include "agp_intel.h" 112 #include "agp_sis.h" 113 #include "agp_via.h" 114 #include "agp_amd64.h" 115 116 const struct agp_product { 117 uint32_t ap_vendor; 118 uint32_t ap_product; 119 int (*ap_match)(const struct pci_attach_args *); 120 int (*ap_attach)(device_t, device_t, void *); 121 } agp_products[] = { 122 #if NAGP_AMD64 > 0 123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689, 124 agp_amd64_match, agp_amd64_attach }, 125 #endif 126 127 #if NAGP_ALI > 0 128 { PCI_VENDOR_ALI, -1, 129 NULL, agp_ali_attach }, 130 #endif 131 132 #if NAGP_AMD64 > 0 133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 134 agp_amd64_match, agp_amd64_attach }, 135 #endif 136 137 #if NAGP_AMD > 0 138 { PCI_VENDOR_AMD, -1, 139 agp_amd_match, agp_amd_attach }, 140 #endif 141 142 #if NAGP_I810 > 0 143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 144 NULL, agp_i810_attach }, 145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 146 NULL, agp_i810_attach }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 148 NULL, agp_i810_attach }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 150 NULL, agp_i810_attach }, 151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 152 NULL, agp_i810_attach }, 153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 154 NULL, agp_i810_attach }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 156 NULL, agp_i810_attach }, 157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 158 NULL, agp_i810_attach }, 159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 160 NULL, agp_i810_attach }, 161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 162 NULL, agp_i810_attach }, 163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 164 NULL, agp_i810_attach }, 165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 166 NULL, agp_i810_attach }, 167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 168 NULL, agp_i810_attach }, 169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB, 170 NULL, agp_i810_attach }, 171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 172 NULL, agp_i810_attach }, 173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 174 NULL, agp_i810_attach }, 175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 176 NULL, agp_i810_attach }, 177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 178 NULL, agp_i810_attach }, 179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 180 NULL, agp_i810_attach }, 181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 182 NULL, agp_i810_attach }, 183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB, 184 NULL, agp_i810_attach }, 185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB, 186 NULL, agp_i810_attach }, 187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB, 188 NULL, agp_i810_attach }, 189 #endif 190 191 #if NAGP_INTEL > 0 192 { PCI_VENDOR_INTEL, -1, 193 NULL, agp_intel_attach }, 194 #endif 195 196 #if NAGP_AMD64 > 0 197 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 198 agp_amd64_match, agp_amd64_attach }, 199 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 200 agp_amd64_match, agp_amd64_attach }, 201 #endif 202 203 #if NAGP_AMD64 > 0 204 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 205 agp_amd64_match, agp_amd64_attach }, 206 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 207 agp_amd64_match, agp_amd64_attach }, 208 #endif 209 210 #if NAGP_SIS > 0 211 { PCI_VENDOR_SIS, -1, 212 NULL, agp_sis_attach }, 213 #endif 214 215 #if NAGP_AMD64 > 0 216 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 217 agp_amd64_match, agp_amd64_attach }, 218 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 219 agp_amd64_match, agp_amd64_attach }, 220 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 221 agp_amd64_match, agp_amd64_attach }, 222 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 223 agp_amd64_match, agp_amd64_attach }, 224 #endif 225 226 #if NAGP_VIA > 0 227 { PCI_VENDOR_VIATECH, -1, 228 NULL, agp_via_attach }, 229 #endif 230 231 { 0, 0, 232 NULL, NULL }, 233 }; 234 235 static const struct agp_product * 236 agp_lookup(const struct pci_attach_args *pa) 237 { 238 const struct agp_product *ap; 239 240 /* First find the vendor. */ 241 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 242 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 243 break; 244 } 245 246 if (ap->ap_attach == NULL) 247 return (NULL); 248 249 /* Now find the product within the vendor's domain. */ 250 for (; ap->ap_attach != NULL; ap++) { 251 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 252 /* Ran out of this vendor's section of the table. */ 253 return (NULL); 254 } 255 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 256 /* Exact match. */ 257 break; 258 } 259 if (ap->ap_product == (uint32_t) -1) { 260 /* Wildcard match. */ 261 break; 262 } 263 } 264 265 if (ap->ap_attach == NULL) 266 return (NULL); 267 268 /* Now let the product-specific driver filter the match. */ 269 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 270 return (NULL); 271 272 return (ap); 273 } 274 275 static int 276 agpmatch(device_t parent, cfdata_t match, void *aux) 277 { 278 struct agpbus_attach_args *apa = aux; 279 struct pci_attach_args *pa = &apa->apa_pci_args; 280 281 if (agp_lookup(pa) == NULL) 282 return (0); 283 284 return (1); 285 } 286 287 static const int agp_max[][2] = { 288 {0, 0}, 289 {32, 4}, 290 {64, 28}, 291 {128, 96}, 292 {256, 204}, 293 {512, 440}, 294 {1024, 942}, 295 {2048, 1920}, 296 {4096, 3932} 297 }; 298 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 299 300 static void 301 agpattach(device_t parent, device_t self, void *aux) 302 { 303 struct agpbus_attach_args *apa = aux; 304 struct pci_attach_args *pa = &apa->apa_pci_args; 305 struct agp_softc *sc = device_private(self); 306 const struct agp_product *ap; 307 int memsize, i, ret; 308 309 ap = agp_lookup(pa); 310 KASSERT(ap != NULL); 311 312 aprint_naive(": AGP controller\n"); 313 314 sc->as_dev = self; 315 sc->as_dmat = pa->pa_dmat; 316 sc->as_pc = pa->pa_pc; 317 sc->as_tag = pa->pa_tag; 318 sc->as_id = pa->pa_id; 319 320 /* 321 * Work out an upper bound for agp memory allocation. This 322 * uses a heuristic table from the Linux driver. 323 */ 324 memsize = ptoa(physmem) >> 20; 325 for (i = 0; i < agp_max_size; i++) { 326 if (memsize <= agp_max[i][0]) 327 break; 328 } 329 if (i == agp_max_size) 330 i = agp_max_size - 1; 331 sc->as_maxmem = agp_max[i][1] << 20U; 332 333 /* 334 * The mutex is used to prevent re-entry to 335 * agp_generic_bind_memory() since that function can sleep. 336 */ 337 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 338 339 TAILQ_INIT(&sc->as_memory); 340 341 ret = (*ap->ap_attach)(parent, self, pa); 342 if (ret == 0) 343 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 344 (unsigned long)sc->as_apaddr, 345 (unsigned long)AGP_GET_APERTURE(sc)); 346 else 347 sc->as_chipc = NULL; 348 349 if (!device_pmf_is_registered(self)) { 350 if (!pmf_device_register(self, NULL, agp_resume)) 351 aprint_error_dev(self, "couldn't establish power " 352 "handler\n"); 353 } 354 } 355 356 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc), 357 agpmatch, agpattach, NULL, NULL); 358 359 int 360 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 361 { 362 /* 363 * Find the aperture. Don't map it (yet), this would 364 * eat KVA. 365 */ 366 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 367 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 368 &sc->as_apflags) != 0) 369 return ENXIO; 370 371 sc->as_apt = pa->pa_memt; 372 373 return 0; 374 } 375 376 struct agp_gatt * 377 agp_alloc_gatt(struct agp_softc *sc) 378 { 379 u_int32_t apsize = AGP_GET_APERTURE(sc); 380 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 381 struct agp_gatt *gatt; 382 void *virtual; 383 int dummyseg; 384 385 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 386 if (!gatt) 387 return NULL; 388 gatt->ag_entries = entries; 389 390 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 391 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 392 &gatt->ag_dmaseg, 1, &dummyseg) != 0) { 393 free(gatt, M_AGP); 394 return NULL; 395 } 396 gatt->ag_virtual = (uint32_t *)virtual; 397 398 gatt->ag_size = entries * sizeof(u_int32_t); 399 memset(gatt->ag_virtual, 0, gatt->ag_size); 400 agp_flush_cache(); 401 402 return gatt; 403 } 404 405 void 406 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 407 { 408 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 409 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 410 free(gatt, M_AGP); 411 } 412 413 414 int 415 agp_generic_detach(struct agp_softc *sc) 416 { 417 mutex_destroy(&sc->as_mtx); 418 agp_flush_cache(); 419 return 0; 420 } 421 422 static int 423 agpdev_match(struct pci_attach_args *pa) 424 { 425 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 426 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 427 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 428 NULL, NULL)) 429 return 1; 430 431 return 0; 432 } 433 434 int 435 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 436 { 437 struct pci_attach_args pa; 438 pcireg_t tstatus, mstatus; 439 pcireg_t command; 440 int rq, sba, fw, rate, capoff; 441 442 if (pci_find_device(&pa, agpdev_match) == 0 || 443 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 444 &capoff, NULL) == 0) { 445 aprint_error_dev(sc->as_dev, "can't find display\n"); 446 return ENXIO; 447 } 448 449 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 450 sc->as_capoff + AGP_STATUS); 451 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 452 capoff + AGP_STATUS); 453 454 /* Set RQ to the min of mode, tstatus and mstatus */ 455 rq = AGP_MODE_GET_RQ(mode); 456 if (AGP_MODE_GET_RQ(tstatus) < rq) 457 rq = AGP_MODE_GET_RQ(tstatus); 458 if (AGP_MODE_GET_RQ(mstatus) < rq) 459 rq = AGP_MODE_GET_RQ(mstatus); 460 461 /* Set SBA if all three can deal with SBA */ 462 sba = (AGP_MODE_GET_SBA(tstatus) 463 & AGP_MODE_GET_SBA(mstatus) 464 & AGP_MODE_GET_SBA(mode)); 465 466 /* Similar for FW */ 467 fw = (AGP_MODE_GET_FW(tstatus) 468 & AGP_MODE_GET_FW(mstatus) 469 & AGP_MODE_GET_FW(mode)); 470 471 /* Figure out the max rate */ 472 rate = (AGP_MODE_GET_RATE(tstatus) 473 & AGP_MODE_GET_RATE(mstatus) 474 & AGP_MODE_GET_RATE(mode)); 475 if (rate & AGP_MODE_RATE_4x) 476 rate = AGP_MODE_RATE_4x; 477 else if (rate & AGP_MODE_RATE_2x) 478 rate = AGP_MODE_RATE_2x; 479 else 480 rate = AGP_MODE_RATE_1x; 481 482 /* Construct the new mode word and tell the hardware */ 483 command = AGP_MODE_SET_RQ(0, rq); 484 command = AGP_MODE_SET_SBA(command, sba); 485 command = AGP_MODE_SET_FW(command, fw); 486 command = AGP_MODE_SET_RATE(command, rate); 487 command = AGP_MODE_SET_AGP(command, 1); 488 pci_conf_write(sc->as_pc, sc->as_tag, 489 sc->as_capoff + AGP_COMMAND, command); 490 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 491 492 return 0; 493 } 494 495 struct agp_memory * 496 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 497 { 498 struct agp_memory *mem; 499 500 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 501 return 0; 502 503 if (sc->as_allocated + size > sc->as_maxmem) 504 return 0; 505 506 if (type != 0) { 507 printf("agp_generic_alloc_memory: unsupported type %d\n", 508 type); 509 return 0; 510 } 511 512 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 513 if (mem == NULL) 514 return NULL; 515 516 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 517 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 518 free(mem, M_AGP); 519 return NULL; 520 } 521 522 mem->am_id = sc->as_nextid++; 523 mem->am_size = size; 524 mem->am_type = 0; 525 mem->am_physical = 0; 526 mem->am_offset = 0; 527 mem->am_is_bound = 0; 528 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 529 sc->as_allocated += size; 530 531 return mem; 532 } 533 534 int 535 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 536 { 537 if (mem->am_is_bound) 538 return EBUSY; 539 540 sc->as_allocated -= mem->am_size; 541 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 542 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 543 free(mem, M_AGP); 544 return 0; 545 } 546 547 int 548 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 549 off_t offset) 550 { 551 off_t i, k; 552 bus_size_t done, j; 553 int error; 554 bus_dma_segment_t *segs, *seg; 555 bus_addr_t pa; 556 int contigpages, nseg; 557 558 mutex_enter(&sc->as_mtx); 559 560 if (mem->am_is_bound) { 561 aprint_error_dev(sc->as_dev, "memory already bound\n"); 562 mutex_exit(&sc->as_mtx); 563 return EINVAL; 564 } 565 566 if (offset < 0 567 || (offset & (AGP_PAGE_SIZE - 1)) != 0 568 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 569 aprint_error_dev(sc->as_dev, 570 "binding memory at bad offset %#lx\n", 571 (unsigned long) offset); 572 mutex_exit(&sc->as_mtx); 573 return EINVAL; 574 } 575 576 /* 577 * XXXfvdl 578 * The memory here needs to be directly accessable from the 579 * AGP video card, so it should be allocated using bus_dma. 580 * However, it need not be contiguous, since individual pages 581 * are translated using the GATT. 582 * 583 * Using a large chunk of contiguous memory may get in the way 584 * of other subsystems that may need one, so we try to be friendly 585 * and ask for allocation in chunks of a minimum of 8 pages 586 * of contiguous memory on average, falling back to 4, 2 and 1 587 * if really needed. Larger chunks are preferred, since allocating 588 * a bus_dma_segment per page would be overkill. 589 */ 590 591 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 592 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 593 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 594 if (segs == NULL) { 595 mutex_exit(&sc->as_mtx); 596 return ENOMEM; 597 } 598 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 599 segs, nseg, &mem->am_nseg, 600 contigpages > 1 ? 601 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 602 free(segs, M_AGP); 603 continue; 604 } 605 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 606 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 607 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 608 free(segs, M_AGP); 609 continue; 610 } 611 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 612 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 613 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 614 mem->am_size); 615 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 616 free(segs, M_AGP); 617 continue; 618 } 619 mem->am_dmaseg = segs; 620 break; 621 } 622 623 if (contigpages == 0) { 624 mutex_exit(&sc->as_mtx); 625 return ENOMEM; 626 } 627 628 629 /* 630 * Bind the individual pages and flush the chipset's 631 * TLB. 632 */ 633 done = 0; 634 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 635 seg = &mem->am_dmamap->dm_segs[i]; 636 /* 637 * Install entries in the GATT, making sure that if 638 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 639 * aligned to PAGE_SIZE, we don't modify too many GATT 640 * entries. 641 */ 642 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 643 j += AGP_PAGE_SIZE) { 644 pa = seg->ds_addr + j; 645 AGP_DPF(("binding offset %#lx to pa %#lx\n", 646 (unsigned long)(offset + done + j), 647 (unsigned long)pa)); 648 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 649 if (error) { 650 /* 651 * Bail out. Reverse all the mappings 652 * and unwire the pages. 653 */ 654 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 655 AGP_UNBIND_PAGE(sc, offset + k); 656 657 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 658 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 659 mem->am_size); 660 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 661 mem->am_nseg); 662 free(mem->am_dmaseg, M_AGP); 663 mutex_exit(&sc->as_mtx); 664 return error; 665 } 666 } 667 done += seg->ds_len; 668 } 669 670 /* 671 * Flush the CPU cache since we are providing a new mapping 672 * for these pages. 673 */ 674 agp_flush_cache(); 675 676 /* 677 * Make sure the chipset gets the new mappings. 678 */ 679 AGP_FLUSH_TLB(sc); 680 681 mem->am_offset = offset; 682 mem->am_is_bound = 1; 683 684 mutex_exit(&sc->as_mtx); 685 686 return 0; 687 } 688 689 int 690 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 691 { 692 int i; 693 694 mutex_enter(&sc->as_mtx); 695 696 if (!mem->am_is_bound) { 697 aprint_error_dev(sc->as_dev, "memory is not bound\n"); 698 mutex_exit(&sc->as_mtx); 699 return EINVAL; 700 } 701 702 703 /* 704 * Unbind the individual pages and flush the chipset's 705 * TLB. Unwire the pages so they can be swapped. 706 */ 707 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 708 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 709 710 agp_flush_cache(); 711 AGP_FLUSH_TLB(sc); 712 713 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 714 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 715 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 716 717 free(mem->am_dmaseg, M_AGP); 718 719 mem->am_offset = 0; 720 mem->am_is_bound = 0; 721 722 mutex_exit(&sc->as_mtx); 723 724 return 0; 725 } 726 727 /* Helper functions for implementing user/kernel api */ 728 729 static int 730 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 731 { 732 if (sc->as_state != AGP_ACQUIRE_FREE) 733 return EBUSY; 734 sc->as_state = state; 735 736 return 0; 737 } 738 739 static int 740 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 741 { 742 743 if (sc->as_state == AGP_ACQUIRE_FREE) 744 return 0; 745 746 if (sc->as_state != state) 747 return EBUSY; 748 749 sc->as_state = AGP_ACQUIRE_FREE; 750 return 0; 751 } 752 753 static struct agp_memory * 754 agp_find_memory(struct agp_softc *sc, int id) 755 { 756 struct agp_memory *mem; 757 758 AGP_DPF(("searching for memory block %d\n", id)); 759 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 760 AGP_DPF(("considering memory block %d\n", mem->am_id)); 761 if (mem->am_id == id) 762 return mem; 763 } 764 return 0; 765 } 766 767 /* Implementation of the userland ioctl api */ 768 769 static int 770 agp_info_user(struct agp_softc *sc, agp_info *info) 771 { 772 memset(info, 0, sizeof *info); 773 info->bridge_id = sc->as_id; 774 if (sc->as_capoff != 0) 775 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 776 sc->as_capoff + AGP_STATUS); 777 else 778 info->agp_mode = 0; /* i810 doesn't have real AGP */ 779 info->aper_base = sc->as_apaddr; 780 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 781 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 782 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 783 784 return 0; 785 } 786 787 static int 788 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 789 { 790 return AGP_ENABLE(sc, setup->agp_mode); 791 } 792 793 static int 794 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 795 { 796 struct agp_memory *mem; 797 798 mem = AGP_ALLOC_MEMORY(sc, 799 alloc->type, 800 alloc->pg_count << AGP_PAGE_SHIFT); 801 if (mem) { 802 alloc->key = mem->am_id; 803 alloc->physical = mem->am_physical; 804 return 0; 805 } else { 806 return ENOMEM; 807 } 808 } 809 810 static int 811 agp_deallocate_user(struct agp_softc *sc, int id) 812 { 813 struct agp_memory *mem = agp_find_memory(sc, id); 814 815 if (mem) { 816 AGP_FREE_MEMORY(sc, mem); 817 return 0; 818 } else { 819 return ENOENT; 820 } 821 } 822 823 static int 824 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 825 { 826 struct agp_memory *mem = agp_find_memory(sc, bind->key); 827 828 if (!mem) 829 return ENOENT; 830 831 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 832 } 833 834 static int 835 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 836 { 837 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 838 839 if (!mem) 840 return ENOENT; 841 842 return AGP_UNBIND_MEMORY(sc, mem); 843 } 844 845 static int 846 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l) 847 { 848 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 849 850 if (sc == NULL) 851 return ENXIO; 852 853 if (sc->as_chipc == NULL) 854 return ENXIO; 855 856 if (!sc->as_isopen) 857 sc->as_isopen = 1; 858 else 859 return EBUSY; 860 861 return 0; 862 } 863 864 static int 865 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l) 866 { 867 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 868 struct agp_memory *mem; 869 870 if (sc == NULL) 871 return ENODEV; 872 873 /* 874 * Clear the GATT and force release on last close 875 */ 876 if (sc->as_state == AGP_ACQUIRE_USER) { 877 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 878 if (mem->am_is_bound) { 879 printf("agpclose: mem %d is bound\n", 880 mem->am_id); 881 AGP_UNBIND_MEMORY(sc, mem); 882 } 883 /* 884 * XXX it is not documented, but if the protocol allows 885 * allocate->acquire->bind, it would be possible that 886 * memory ranges are allocated by the kernel here, 887 * which we shouldn't free. We'd have to keep track of 888 * the memory range's owner. 889 * The kernel API is unsed yet, so we get away with 890 * freeing all. 891 */ 892 AGP_FREE_MEMORY(sc, mem); 893 } 894 agp_release_helper(sc, AGP_ACQUIRE_USER); 895 } 896 sc->as_isopen = 0; 897 898 return 0; 899 } 900 901 static int 902 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 903 { 904 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 905 906 if (sc == NULL) 907 return ENODEV; 908 909 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 910 return EPERM; 911 912 switch (cmd) { 913 case AGPIOC_INFO: 914 return agp_info_user(sc, (agp_info *) data); 915 916 case AGPIOC_ACQUIRE: 917 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 918 919 case AGPIOC_RELEASE: 920 return agp_release_helper(sc, AGP_ACQUIRE_USER); 921 922 case AGPIOC_SETUP: 923 return agp_setup_user(sc, (agp_setup *)data); 924 925 case AGPIOC_ALLOCATE: 926 return agp_allocate_user(sc, (agp_allocate *)data); 927 928 case AGPIOC_DEALLOCATE: 929 return agp_deallocate_user(sc, *(int *) data); 930 931 case AGPIOC_BIND: 932 return agp_bind_user(sc, (agp_bind *)data); 933 934 case AGPIOC_UNBIND: 935 return agp_unbind_user(sc, (agp_unbind *)data); 936 937 } 938 939 return EINVAL; 940 } 941 942 static paddr_t 943 agpmmap(dev_t dev, off_t offset, int prot) 944 { 945 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 946 947 if (sc == NULL) 948 return ENODEV; 949 950 if (offset > AGP_GET_APERTURE(sc)) 951 return -1; 952 953 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 954 BUS_SPACE_MAP_LINEAR)); 955 } 956 957 const struct cdevsw agp_cdevsw = { 958 agpopen, agpclose, noread, nowrite, agpioctl, 959 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 960 }; 961 962 /* Implementation of the kernel api */ 963 964 void * 965 agp_find_device(int unit) 966 { 967 return device_lookup_private(&agp_cd, unit); 968 } 969 970 enum agp_acquire_state 971 agp_state(void *devcookie) 972 { 973 struct agp_softc *sc = devcookie; 974 975 return sc->as_state; 976 } 977 978 void 979 agp_get_info(void *devcookie, struct agp_info *info) 980 { 981 struct agp_softc *sc = devcookie; 982 983 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 984 sc->as_capoff + AGP_STATUS); 985 info->ai_aperture_base = sc->as_apaddr; 986 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 987 info->ai_memory_allowed = sc->as_maxmem; 988 info->ai_memory_used = sc->as_allocated; 989 } 990 991 int 992 agp_acquire(void *dev) 993 { 994 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 995 } 996 997 int 998 agp_release(void *dev) 999 { 1000 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 1001 } 1002 1003 int 1004 agp_enable(void *dev, u_int32_t mode) 1005 { 1006 struct agp_softc *sc = dev; 1007 1008 return AGP_ENABLE(sc, mode); 1009 } 1010 1011 void * 1012 agp_alloc_memory(void *dev, int type, vsize_t bytes) 1013 { 1014 struct agp_softc *sc = dev; 1015 1016 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 1017 } 1018 1019 void 1020 agp_free_memory(void *dev, void *handle) 1021 { 1022 struct agp_softc *sc = dev; 1023 struct agp_memory *mem = handle; 1024 1025 AGP_FREE_MEMORY(sc, mem); 1026 } 1027 1028 int 1029 agp_bind_memory(void *dev, void *handle, off_t offset) 1030 { 1031 struct agp_softc *sc = dev; 1032 struct agp_memory *mem = handle; 1033 1034 return AGP_BIND_MEMORY(sc, mem, offset); 1035 } 1036 1037 int 1038 agp_unbind_memory(void *dev, void *handle) 1039 { 1040 struct agp_softc *sc = dev; 1041 struct agp_memory *mem = handle; 1042 1043 return AGP_UNBIND_MEMORY(sc, mem); 1044 } 1045 1046 void 1047 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 1048 { 1049 struct agp_memory *mem = handle; 1050 1051 mi->ami_size = mem->am_size; 1052 mi->ami_physical = mem->am_physical; 1053 mi->ami_offset = mem->am_offset; 1054 mi->ami_is_bound = mem->am_is_bound; 1055 } 1056 1057 int 1058 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1059 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1060 bus_dma_segment_t *seg, int nseg, int *rseg) 1061 1062 { 1063 int error, level = 0; 1064 1065 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1066 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1067 goto out; 1068 level++; 1069 1070 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1071 BUS_DMA_NOWAIT | flags)) != 0) 1072 goto out; 1073 level++; 1074 1075 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1076 BUS_DMA_NOWAIT, mapp)) != 0) 1077 goto out; 1078 level++; 1079 1080 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1081 BUS_DMA_NOWAIT)) != 0) 1082 goto out; 1083 1084 *baddr = (*mapp)->dm_segs[0].ds_addr; 1085 1086 return 0; 1087 out: 1088 switch (level) { 1089 case 3: 1090 bus_dmamap_destroy(tag, *mapp); 1091 /* FALLTHROUGH */ 1092 case 2: 1093 bus_dmamem_unmap(tag, *vaddr, size); 1094 /* FALLTHROUGH */ 1095 case 1: 1096 bus_dmamem_free(tag, seg, *rseg); 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 return error; 1103 } 1104 1105 void 1106 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1107 void *vaddr, bus_dma_segment_t *seg, int nseg) 1108 { 1109 bus_dmamap_unload(tag, map); 1110 bus_dmamap_destroy(tag, map); 1111 bus_dmamem_unmap(tag, vaddr, size); 1112 bus_dmamem_free(tag, seg, nseg); 1113 } 1114 1115 static bool 1116 agp_resume(device_t dv PMF_FN_ARGS) 1117 { 1118 agp_flush_cache(); 1119 1120 return true; 1121 } 1122