xref: /netbsd-src/sys/dev/pci/agp.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.64 2008/11/29 23:48:12 christos Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <uvm/uvm_extern.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/agpvar.h>
87 #include <dev/pci/agpreg.h>
88 #include <dev/pci/pcidevs.h>
89 
90 #include <sys/bus.h>
91 
92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
93 
94 /* Helper functions for implementing chipset mini drivers. */
95 /* XXXfvdl get rid of this one. */
96 
97 extern struct cfdriver agp_cd;
98 
99 static int agp_info_user(struct agp_softc *, agp_info *);
100 static int agp_setup_user(struct agp_softc *, agp_setup *);
101 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
102 static int agp_deallocate_user(struct agp_softc *, int);
103 static int agp_bind_user(struct agp_softc *, agp_bind *);
104 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
105 static int agpdev_match(struct pci_attach_args *);
106 static bool agp_resume(device_t PMF_FN_PROTO);
107 
108 #include "agp_ali.h"
109 #include "agp_amd.h"
110 #include "agp_i810.h"
111 #include "agp_intel.h"
112 #include "agp_sis.h"
113 #include "agp_via.h"
114 #include "agp_amd64.h"
115 
116 const struct agp_product {
117 	uint32_t	ap_vendor;
118 	uint32_t	ap_product;
119 	int		(*ap_match)(const struct pci_attach_args *);
120 	int		(*ap_attach)(device_t, device_t, void *);
121 } agp_products[] = {
122 #if NAGP_AMD64 > 0
123 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
124 	  agp_amd64_match,	agp_amd64_attach },
125 #endif
126 
127 #if NAGP_ALI > 0
128 	{ PCI_VENDOR_ALI,	-1,
129 	  NULL,			agp_ali_attach },
130 #endif
131 
132 #if NAGP_AMD64 > 0
133 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
134 	  agp_amd64_match,	agp_amd64_attach },
135 #endif
136 
137 #if NAGP_AMD > 0
138 	{ PCI_VENDOR_AMD,	-1,
139 	  agp_amd_match,	agp_amd_attach },
140 #endif
141 
142 #if NAGP_I810 > 0
143 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
144 	  NULL,			agp_i810_attach },
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
186 	  NULL,			agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
188 	  NULL, 		agp_i810_attach },
189 #endif
190 
191 #if NAGP_INTEL > 0
192 	{ PCI_VENDOR_INTEL,	-1,
193 	  NULL,			agp_intel_attach },
194 #endif
195 
196 #if NAGP_AMD64 > 0
197 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
198 	  agp_amd64_match,	agp_amd64_attach },
199 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
200 	  agp_amd64_match,	agp_amd64_attach },
201 #endif
202 
203 #if NAGP_AMD64 > 0
204 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
205 	  agp_amd64_match,	agp_amd64_attach },
206 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
207 	  agp_amd64_match,	agp_amd64_attach },
208 #endif
209 
210 #if NAGP_SIS > 0
211 	{ PCI_VENDOR_SIS,	-1,
212 	  NULL,			agp_sis_attach },
213 #endif
214 
215 #if NAGP_AMD64 > 0
216 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
217 	  agp_amd64_match,	agp_amd64_attach },
218 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
219 	  agp_amd64_match,	agp_amd64_attach },
220 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
221 	  agp_amd64_match,	agp_amd64_attach },
222 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
223 	  agp_amd64_match,	agp_amd64_attach },
224 #endif
225 
226 #if NAGP_VIA > 0
227 	{ PCI_VENDOR_VIATECH,	-1,
228 	  NULL,			agp_via_attach },
229 #endif
230 
231 	{ 0,			0,
232 	  NULL,			NULL },
233 };
234 
235 static const struct agp_product *
236 agp_lookup(const struct pci_attach_args *pa)
237 {
238 	const struct agp_product *ap;
239 
240 	/* First find the vendor. */
241 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
242 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
243 			break;
244 	}
245 
246 	if (ap->ap_attach == NULL)
247 		return (NULL);
248 
249 	/* Now find the product within the vendor's domain. */
250 	for (; ap->ap_attach != NULL; ap++) {
251 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
252 			/* Ran out of this vendor's section of the table. */
253 			return (NULL);
254 		}
255 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
256 			/* Exact match. */
257 			break;
258 		}
259 		if (ap->ap_product == (uint32_t) -1) {
260 			/* Wildcard match. */
261 			break;
262 		}
263 	}
264 
265 	if (ap->ap_attach == NULL)
266 		return (NULL);
267 
268 	/* Now let the product-specific driver filter the match. */
269 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
270 		return (NULL);
271 
272 	return (ap);
273 }
274 
275 static int
276 agpmatch(device_t parent, cfdata_t match, void *aux)
277 {
278 	struct agpbus_attach_args *apa = aux;
279 	struct pci_attach_args *pa = &apa->apa_pci_args;
280 
281 	if (agp_lookup(pa) == NULL)
282 		return (0);
283 
284 	return (1);
285 }
286 
287 static const int agp_max[][2] = {
288 	{0,	0},
289 	{32,	4},
290 	{64,	28},
291 	{128,	96},
292 	{256,	204},
293 	{512,	440},
294 	{1024,	942},
295 	{2048,	1920},
296 	{4096,	3932}
297 };
298 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
299 
300 static void
301 agpattach(device_t parent, device_t self, void *aux)
302 {
303 	struct agpbus_attach_args *apa = aux;
304 	struct pci_attach_args *pa = &apa->apa_pci_args;
305 	struct agp_softc *sc = device_private(self);
306 	const struct agp_product *ap;
307 	int memsize, i, ret;
308 
309 	ap = agp_lookup(pa);
310 	KASSERT(ap != NULL);
311 
312 	aprint_naive(": AGP controller\n");
313 
314 	sc->as_dev = self;
315 	sc->as_dmat = pa->pa_dmat;
316 	sc->as_pc = pa->pa_pc;
317 	sc->as_tag = pa->pa_tag;
318 	sc->as_id = pa->pa_id;
319 
320 	/*
321 	 * Work out an upper bound for agp memory allocation. This
322 	 * uses a heuristic table from the Linux driver.
323 	 */
324 	memsize = ptoa(physmem) >> 20;
325 	for (i = 0; i < agp_max_size; i++) {
326 		if (memsize <= agp_max[i][0])
327 			break;
328 	}
329 	if (i == agp_max_size)
330 		i = agp_max_size - 1;
331 	sc->as_maxmem = agp_max[i][1] << 20U;
332 
333 	/*
334 	 * The mutex is used to prevent re-entry to
335 	 * agp_generic_bind_memory() since that function can sleep.
336 	 */
337 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
338 
339 	TAILQ_INIT(&sc->as_memory);
340 
341 	ret = (*ap->ap_attach)(parent, self, pa);
342 	if (ret == 0)
343 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
344 		    (unsigned long)sc->as_apaddr,
345 		    (unsigned long)AGP_GET_APERTURE(sc));
346 	else
347 		sc->as_chipc = NULL;
348 
349 	if (!device_pmf_is_registered(self)) {
350 		if (!pmf_device_register(self, NULL, agp_resume))
351 			aprint_error_dev(self, "couldn't establish power "
352 			    "handler\n");
353 	}
354 }
355 
356 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
357     agpmatch, agpattach, NULL, NULL);
358 
359 int
360 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
361 {
362 	/*
363 	 * Find the aperture. Don't map it (yet), this would
364 	 * eat KVA.
365 	 */
366 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
367 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
368 	    &sc->as_apflags) != 0)
369 		return ENXIO;
370 
371 	sc->as_apt = pa->pa_memt;
372 
373 	return 0;
374 }
375 
376 struct agp_gatt *
377 agp_alloc_gatt(struct agp_softc *sc)
378 {
379 	u_int32_t apsize = AGP_GET_APERTURE(sc);
380 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
381 	struct agp_gatt *gatt;
382 	void *virtual;
383 	int dummyseg;
384 
385 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
386 	if (!gatt)
387 		return NULL;
388 	gatt->ag_entries = entries;
389 
390 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
391 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
392 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
393 		free(gatt, M_AGP);
394 		return NULL;
395 	}
396 	gatt->ag_virtual = (uint32_t *)virtual;
397 
398 	gatt->ag_size = entries * sizeof(u_int32_t);
399 	memset(gatt->ag_virtual, 0, gatt->ag_size);
400 	agp_flush_cache();
401 
402 	return gatt;
403 }
404 
405 void
406 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
407 {
408 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
409 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
410 	free(gatt, M_AGP);
411 }
412 
413 
414 int
415 agp_generic_detach(struct agp_softc *sc)
416 {
417 	mutex_destroy(&sc->as_mtx);
418 	agp_flush_cache();
419 	return 0;
420 }
421 
422 static int
423 agpdev_match(struct pci_attach_args *pa)
424 {
425 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
426 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
427 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
428 		    NULL, NULL))
429 		return 1;
430 
431 	return 0;
432 }
433 
434 int
435 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
436 {
437 	struct pci_attach_args pa;
438 	pcireg_t tstatus, mstatus;
439 	pcireg_t command;
440 	int rq, sba, fw, rate, capoff;
441 
442 	if (pci_find_device(&pa, agpdev_match) == 0 ||
443 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
444 	     &capoff, NULL) == 0) {
445 		aprint_error_dev(sc->as_dev, "can't find display\n");
446 		return ENXIO;
447 	}
448 
449 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
450 	    sc->as_capoff + AGP_STATUS);
451 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
452 	    capoff + AGP_STATUS);
453 
454 	/* Set RQ to the min of mode, tstatus and mstatus */
455 	rq = AGP_MODE_GET_RQ(mode);
456 	if (AGP_MODE_GET_RQ(tstatus) < rq)
457 		rq = AGP_MODE_GET_RQ(tstatus);
458 	if (AGP_MODE_GET_RQ(mstatus) < rq)
459 		rq = AGP_MODE_GET_RQ(mstatus);
460 
461 	/* Set SBA if all three can deal with SBA */
462 	sba = (AGP_MODE_GET_SBA(tstatus)
463 	       & AGP_MODE_GET_SBA(mstatus)
464 	       & AGP_MODE_GET_SBA(mode));
465 
466 	/* Similar for FW */
467 	fw = (AGP_MODE_GET_FW(tstatus)
468 	       & AGP_MODE_GET_FW(mstatus)
469 	       & AGP_MODE_GET_FW(mode));
470 
471 	/* Figure out the max rate */
472 	rate = (AGP_MODE_GET_RATE(tstatus)
473 		& AGP_MODE_GET_RATE(mstatus)
474 		& AGP_MODE_GET_RATE(mode));
475 	if (rate & AGP_MODE_RATE_4x)
476 		rate = AGP_MODE_RATE_4x;
477 	else if (rate & AGP_MODE_RATE_2x)
478 		rate = AGP_MODE_RATE_2x;
479 	else
480 		rate = AGP_MODE_RATE_1x;
481 
482 	/* Construct the new mode word and tell the hardware */
483 	command = AGP_MODE_SET_RQ(0, rq);
484 	command = AGP_MODE_SET_SBA(command, sba);
485 	command = AGP_MODE_SET_FW(command, fw);
486 	command = AGP_MODE_SET_RATE(command, rate);
487 	command = AGP_MODE_SET_AGP(command, 1);
488 	pci_conf_write(sc->as_pc, sc->as_tag,
489 	    sc->as_capoff + AGP_COMMAND, command);
490 	pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command);
491 
492 	return 0;
493 }
494 
495 struct agp_memory *
496 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
497 {
498 	struct agp_memory *mem;
499 
500 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
501 		return 0;
502 
503 	if (sc->as_allocated + size > sc->as_maxmem)
504 		return 0;
505 
506 	if (type != 0) {
507 		printf("agp_generic_alloc_memory: unsupported type %d\n",
508 		       type);
509 		return 0;
510 	}
511 
512 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
513 	if (mem == NULL)
514 		return NULL;
515 
516 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
517 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
518 		free(mem, M_AGP);
519 		return NULL;
520 	}
521 
522 	mem->am_id = sc->as_nextid++;
523 	mem->am_size = size;
524 	mem->am_type = 0;
525 	mem->am_physical = 0;
526 	mem->am_offset = 0;
527 	mem->am_is_bound = 0;
528 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
529 	sc->as_allocated += size;
530 
531 	return mem;
532 }
533 
534 int
535 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
536 {
537 	if (mem->am_is_bound)
538 		return EBUSY;
539 
540 	sc->as_allocated -= mem->am_size;
541 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
542 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
543 	free(mem, M_AGP);
544 	return 0;
545 }
546 
547 int
548 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
549 			off_t offset)
550 {
551 	off_t i, k;
552 	bus_size_t done, j;
553 	int error;
554 	bus_dma_segment_t *segs, *seg;
555 	bus_addr_t pa;
556 	int contigpages, nseg;
557 
558 	mutex_enter(&sc->as_mtx);
559 
560 	if (mem->am_is_bound) {
561 		aprint_error_dev(sc->as_dev, "memory already bound\n");
562 		mutex_exit(&sc->as_mtx);
563 		return EINVAL;
564 	}
565 
566 	if (offset < 0
567 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
568 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
569 		aprint_error_dev(sc->as_dev,
570 			      "binding memory at bad offset %#lx\n",
571 			      (unsigned long) offset);
572 		mutex_exit(&sc->as_mtx);
573 		return EINVAL;
574 	}
575 
576 	/*
577 	 * XXXfvdl
578 	 * The memory here needs to be directly accessable from the
579 	 * AGP video card, so it should be allocated using bus_dma.
580 	 * However, it need not be contiguous, since individual pages
581 	 * are translated using the GATT.
582 	 *
583 	 * Using a large chunk of contiguous memory may get in the way
584 	 * of other subsystems that may need one, so we try to be friendly
585 	 * and ask for allocation in chunks of a minimum of 8 pages
586 	 * of contiguous memory on average, falling back to 4, 2 and 1
587 	 * if really needed. Larger chunks are preferred, since allocating
588 	 * a bus_dma_segment per page would be overkill.
589 	 */
590 
591 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
592 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
593 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
594 		if (segs == NULL) {
595 			mutex_exit(&sc->as_mtx);
596 			return ENOMEM;
597 		}
598 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
599 				     segs, nseg, &mem->am_nseg,
600 				     contigpages > 1 ?
601 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
602 			free(segs, M_AGP);
603 			continue;
604 		}
605 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
606 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
607 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
608 			free(segs, M_AGP);
609 			continue;
610 		}
611 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
612 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
613 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
614 			    mem->am_size);
615 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
616 			free(segs, M_AGP);
617 			continue;
618 		}
619 		mem->am_dmaseg = segs;
620 		break;
621 	}
622 
623 	if (contigpages == 0) {
624 		mutex_exit(&sc->as_mtx);
625 		return ENOMEM;
626 	}
627 
628 
629 	/*
630 	 * Bind the individual pages and flush the chipset's
631 	 * TLB.
632 	 */
633 	done = 0;
634 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
635 		seg = &mem->am_dmamap->dm_segs[i];
636 		/*
637 		 * Install entries in the GATT, making sure that if
638 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
639 		 * aligned to PAGE_SIZE, we don't modify too many GATT
640 		 * entries.
641 		 */
642 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
643 		     j += AGP_PAGE_SIZE) {
644 			pa = seg->ds_addr + j;
645 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
646 				(unsigned long)(offset + done + j),
647 				(unsigned long)pa));
648 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
649 			if (error) {
650 				/*
651 				 * Bail out. Reverse all the mappings
652 				 * and unwire the pages.
653 				 */
654 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
655 					AGP_UNBIND_PAGE(sc, offset + k);
656 
657 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
658 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
659 						 mem->am_size);
660 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
661 						mem->am_nseg);
662 				free(mem->am_dmaseg, M_AGP);
663 				mutex_exit(&sc->as_mtx);
664 				return error;
665 			}
666 		}
667 		done += seg->ds_len;
668 	}
669 
670 	/*
671 	 * Flush the CPU cache since we are providing a new mapping
672 	 * for these pages.
673 	 */
674 	agp_flush_cache();
675 
676 	/*
677 	 * Make sure the chipset gets the new mappings.
678 	 */
679 	AGP_FLUSH_TLB(sc);
680 
681 	mem->am_offset = offset;
682 	mem->am_is_bound = 1;
683 
684 	mutex_exit(&sc->as_mtx);
685 
686 	return 0;
687 }
688 
689 int
690 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
691 {
692 	int i;
693 
694 	mutex_enter(&sc->as_mtx);
695 
696 	if (!mem->am_is_bound) {
697 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
698 		mutex_exit(&sc->as_mtx);
699 		return EINVAL;
700 	}
701 
702 
703 	/*
704 	 * Unbind the individual pages and flush the chipset's
705 	 * TLB. Unwire the pages so they can be swapped.
706 	 */
707 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
708 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
709 
710 	agp_flush_cache();
711 	AGP_FLUSH_TLB(sc);
712 
713 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
714 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
715 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
716 
717 	free(mem->am_dmaseg, M_AGP);
718 
719 	mem->am_offset = 0;
720 	mem->am_is_bound = 0;
721 
722 	mutex_exit(&sc->as_mtx);
723 
724 	return 0;
725 }
726 
727 /* Helper functions for implementing user/kernel api */
728 
729 static int
730 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
731 {
732 	if (sc->as_state != AGP_ACQUIRE_FREE)
733 		return EBUSY;
734 	sc->as_state = state;
735 
736 	return 0;
737 }
738 
739 static int
740 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
741 {
742 
743 	if (sc->as_state == AGP_ACQUIRE_FREE)
744 		return 0;
745 
746 	if (sc->as_state != state)
747 		return EBUSY;
748 
749 	sc->as_state = AGP_ACQUIRE_FREE;
750 	return 0;
751 }
752 
753 static struct agp_memory *
754 agp_find_memory(struct agp_softc *sc, int id)
755 {
756 	struct agp_memory *mem;
757 
758 	AGP_DPF(("searching for memory block %d\n", id));
759 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
760 		AGP_DPF(("considering memory block %d\n", mem->am_id));
761 		if (mem->am_id == id)
762 			return mem;
763 	}
764 	return 0;
765 }
766 
767 /* Implementation of the userland ioctl api */
768 
769 static int
770 agp_info_user(struct agp_softc *sc, agp_info *info)
771 {
772 	memset(info, 0, sizeof *info);
773 	info->bridge_id = sc->as_id;
774 	if (sc->as_capoff != 0)
775 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
776 					       sc->as_capoff + AGP_STATUS);
777 	else
778 		info->agp_mode = 0; /* i810 doesn't have real AGP */
779 	info->aper_base = sc->as_apaddr;
780 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
781 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
782 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
783 
784 	return 0;
785 }
786 
787 static int
788 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
789 {
790 	return AGP_ENABLE(sc, setup->agp_mode);
791 }
792 
793 static int
794 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
795 {
796 	struct agp_memory *mem;
797 
798 	mem = AGP_ALLOC_MEMORY(sc,
799 			       alloc->type,
800 			       alloc->pg_count << AGP_PAGE_SHIFT);
801 	if (mem) {
802 		alloc->key = mem->am_id;
803 		alloc->physical = mem->am_physical;
804 		return 0;
805 	} else {
806 		return ENOMEM;
807 	}
808 }
809 
810 static int
811 agp_deallocate_user(struct agp_softc *sc, int id)
812 {
813 	struct agp_memory *mem = agp_find_memory(sc, id);
814 
815 	if (mem) {
816 		AGP_FREE_MEMORY(sc, mem);
817 		return 0;
818 	} else {
819 		return ENOENT;
820 	}
821 }
822 
823 static int
824 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
825 {
826 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
827 
828 	if (!mem)
829 		return ENOENT;
830 
831 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
832 }
833 
834 static int
835 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
836 {
837 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
838 
839 	if (!mem)
840 		return ENOENT;
841 
842 	return AGP_UNBIND_MEMORY(sc, mem);
843 }
844 
845 static int
846 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
847 {
848 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
849 
850 	if (sc == NULL)
851 		return ENXIO;
852 
853 	if (sc->as_chipc == NULL)
854 		return ENXIO;
855 
856 	if (!sc->as_isopen)
857 		sc->as_isopen = 1;
858 	else
859 		return EBUSY;
860 
861 	return 0;
862 }
863 
864 static int
865 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
866 {
867 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
868 	struct agp_memory *mem;
869 
870 	if (sc == NULL)
871 		return ENODEV;
872 
873 	/*
874 	 * Clear the GATT and force release on last close
875 	 */
876 	if (sc->as_state == AGP_ACQUIRE_USER) {
877 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
878 			if (mem->am_is_bound) {
879 				printf("agpclose: mem %d is bound\n",
880 				       mem->am_id);
881 				AGP_UNBIND_MEMORY(sc, mem);
882 			}
883 			/*
884 			 * XXX it is not documented, but if the protocol allows
885 			 * allocate->acquire->bind, it would be possible that
886 			 * memory ranges are allocated by the kernel here,
887 			 * which we shouldn't free. We'd have to keep track of
888 			 * the memory range's owner.
889 			 * The kernel API is unsed yet, so we get away with
890 			 * freeing all.
891 			 */
892 			AGP_FREE_MEMORY(sc, mem);
893 		}
894 		agp_release_helper(sc, AGP_ACQUIRE_USER);
895 	}
896 	sc->as_isopen = 0;
897 
898 	return 0;
899 }
900 
901 static int
902 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
903 {
904 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
905 
906 	if (sc == NULL)
907 		return ENODEV;
908 
909 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
910 		return EPERM;
911 
912 	switch (cmd) {
913 	case AGPIOC_INFO:
914 		return agp_info_user(sc, (agp_info *) data);
915 
916 	case AGPIOC_ACQUIRE:
917 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
918 
919 	case AGPIOC_RELEASE:
920 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
921 
922 	case AGPIOC_SETUP:
923 		return agp_setup_user(sc, (agp_setup *)data);
924 
925 	case AGPIOC_ALLOCATE:
926 		return agp_allocate_user(sc, (agp_allocate *)data);
927 
928 	case AGPIOC_DEALLOCATE:
929 		return agp_deallocate_user(sc, *(int *) data);
930 
931 	case AGPIOC_BIND:
932 		return agp_bind_user(sc, (agp_bind *)data);
933 
934 	case AGPIOC_UNBIND:
935 		return agp_unbind_user(sc, (agp_unbind *)data);
936 
937 	}
938 
939 	return EINVAL;
940 }
941 
942 static paddr_t
943 agpmmap(dev_t dev, off_t offset, int prot)
944 {
945 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
946 
947 	if (sc == NULL)
948 		return ENODEV;
949 
950 	if (offset > AGP_GET_APERTURE(sc))
951 		return -1;
952 
953 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
954 	    BUS_SPACE_MAP_LINEAR));
955 }
956 
957 const struct cdevsw agp_cdevsw = {
958 	agpopen, agpclose, noread, nowrite, agpioctl,
959 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
960 };
961 
962 /* Implementation of the kernel api */
963 
964 void *
965 agp_find_device(int unit)
966 {
967 	return device_lookup_private(&agp_cd, unit);
968 }
969 
970 enum agp_acquire_state
971 agp_state(void *devcookie)
972 {
973 	struct agp_softc *sc = devcookie;
974 
975 	return sc->as_state;
976 }
977 
978 void
979 agp_get_info(void *devcookie, struct agp_info *info)
980 {
981 	struct agp_softc *sc = devcookie;
982 
983 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
984 	    sc->as_capoff + AGP_STATUS);
985 	info->ai_aperture_base = sc->as_apaddr;
986 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
987 	info->ai_memory_allowed = sc->as_maxmem;
988 	info->ai_memory_used = sc->as_allocated;
989 }
990 
991 int
992 agp_acquire(void *dev)
993 {
994 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
995 }
996 
997 int
998 agp_release(void *dev)
999 {
1000 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1001 }
1002 
1003 int
1004 agp_enable(void *dev, u_int32_t mode)
1005 {
1006 	struct agp_softc *sc = dev;
1007 
1008 	return AGP_ENABLE(sc, mode);
1009 }
1010 
1011 void *
1012 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1013 {
1014 	struct agp_softc *sc = dev;
1015 
1016 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1017 }
1018 
1019 void
1020 agp_free_memory(void *dev, void *handle)
1021 {
1022 	struct agp_softc *sc = dev;
1023 	struct agp_memory *mem = handle;
1024 
1025 	AGP_FREE_MEMORY(sc, mem);
1026 }
1027 
1028 int
1029 agp_bind_memory(void *dev, void *handle, off_t offset)
1030 {
1031 	struct agp_softc *sc = dev;
1032 	struct agp_memory *mem = handle;
1033 
1034 	return AGP_BIND_MEMORY(sc, mem, offset);
1035 }
1036 
1037 int
1038 agp_unbind_memory(void *dev, void *handle)
1039 {
1040 	struct agp_softc *sc = dev;
1041 	struct agp_memory *mem = handle;
1042 
1043 	return AGP_UNBIND_MEMORY(sc, mem);
1044 }
1045 
1046 void
1047 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1048 {
1049 	struct agp_memory *mem = handle;
1050 
1051 	mi->ami_size = mem->am_size;
1052 	mi->ami_physical = mem->am_physical;
1053 	mi->ami_offset = mem->am_offset;
1054 	mi->ami_is_bound = mem->am_is_bound;
1055 }
1056 
1057 int
1058 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1059 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1060 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1061 
1062 {
1063 	int error, level = 0;
1064 
1065 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1066 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1067 		goto out;
1068 	level++;
1069 
1070 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1071 			BUS_DMA_NOWAIT | flags)) != 0)
1072 		goto out;
1073 	level++;
1074 
1075 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1076 			BUS_DMA_NOWAIT, mapp)) != 0)
1077 		goto out;
1078 	level++;
1079 
1080 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1081 			BUS_DMA_NOWAIT)) != 0)
1082 		goto out;
1083 
1084 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1085 
1086 	return 0;
1087 out:
1088 	switch (level) {
1089 	case 3:
1090 		bus_dmamap_destroy(tag, *mapp);
1091 		/* FALLTHROUGH */
1092 	case 2:
1093 		bus_dmamem_unmap(tag, *vaddr, size);
1094 		/* FALLTHROUGH */
1095 	case 1:
1096 		bus_dmamem_free(tag, seg, *rseg);
1097 		break;
1098 	default:
1099 		break;
1100 	}
1101 
1102 	return error;
1103 }
1104 
1105 void
1106 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1107 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1108 {
1109 	bus_dmamap_unload(tag, map);
1110 	bus_dmamap_destroy(tag, map);
1111 	bus_dmamem_unmap(tag, vaddr, size);
1112 	bus_dmamem_free(tag, seg, nseg);
1113 }
1114 
1115 static bool
1116 agp_resume(device_t dv PMF_FN_ARGS)
1117 {
1118 	agp_flush_cache();
1119 
1120 	return true;
1121 }
1122